1
|
Brandt MP, Vakhrusheva O, Hackl H, Daher T, Tagscherer K, Roth W, Tsaur I, Handle F, Eigentler A, Culig Z, Thomas C, Erb HHH, Haferkamp A, Jüngel E, Puhr M. Inhibition of the Sterol Regulatory Element Binding Protein SREBF-1 Overcomes Docetaxel Resistance in Advanced Prostate Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2150-2162. [PMID: 39168364 DOI: 10.1016/j.ajpath.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/03/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024]
Abstract
Resistance to antiandrogens and chemotherapy (Cx) limits therapeutic options for patients with metastatic hormone-sensitive (mHSPC) and metastatic castration-resistant (mCRPC) prostate cancer. In this context, up-regulation of the glucocorticoid receptor is identified as a potential bypass mechanism in mCRPC. A combination of docetaxel and mifepristone (Doc + RU-486), an inhibitor of the glucocorticoid receptor, re-sensitizes docetaxel-resistant cell models to Cx. This study was designed to elucidate the molecular mechanisms responsible for this phenomenon. RNA sequencing was performed in docetaxel-resistant prostate cancer cell models after Doc + RU-486 treatment with consecutive functional assays. Expression of selected proteins was verified in prostatic tissue from prostate cancer patients with progressive disease. Treatment with Doc + RU-486 significantly reduced cancer cell viability, and RNA sequencing revealed sterol regulatory element of binding transcription factor 1 (SREBF-1), a transcription factor of cholesterol and lipid biosynthesis, as a significantly down-regulated target. Functional assays confirmed that SREBF-1 down-regulation is partially responsible for this observation. In concordance, SREBF-1 knockdown and pharmacologic sterol regulatory element binding protein inhibition, together with other key enzymes in the cholesterol pathway, showed similar results. Furthermore, SREBF-1 expression is significantly elevated in advanced prostate cancer tissues, showing its potential involvement in tumor progression and emerging therapy resistance. Therefore, specific inhibition of cholesterol and lipid biosynthesis might also target Cx-resistant cancer cells and represents a potential additive future therapeutic option to improve mCRPC therapy.
Collapse
Affiliation(s)
- Maximilian P Brandt
- Department of Urology and Pediatric Urology, Mainz University Medical Center, Mainz, Germany.
| | - Olesya Vakhrusheva
- Department of Urology and Pediatric Urology, Mainz University Medical Center, Mainz, Germany; Department of Urology, University of Tuebingen, Tuebingen, Germany
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Tamas Daher
- Institute of Pathology, Mainz University Medical Center, Mainz, Germany; Optipath, Ambulatory Health Care Center for Pathology Frankfurt, Frankfurt, Germany
| | - Katrin Tagscherer
- Institute of Pathology, Mainz University Medical Center, Mainz, Germany
| | - Wilfried Roth
- Institute of Pathology, Mainz University Medical Center, Mainz, Germany
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, Mainz University Medical Center, Mainz, Germany; Department of Urology, University of Tuebingen, Tuebingen, Germany
| | - Florian Handle
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria; Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea Eigentler
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoran Culig
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Thomas
- Department of Urology, Technische Universität Dresden, Dresden, Germany
| | - Holger H H Erb
- Department of Urology, Technische Universität Dresden, Dresden, Germany
| | - Axel Haferkamp
- Department of Urology and Pediatric Urology, Mainz University Medical Center, Mainz, Germany
| | - Eva Jüngel
- Department of Urology and Pediatric Urology, Mainz University Medical Center, Mainz, Germany
| | - Martin Puhr
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
2
|
Kübler IC, Kretzschmar J, Arredondo-Lasso MN, Keeley SD, Rößler LC, Ganss K, Sandoval-Guzmán T, Brankatschk M. Systemic and local lipid adaptations underlie regeneration in Drosophila melanogaster and Ambystoma mexicanum. NPJ Regen Med 2024; 9:33. [PMID: 39472660 PMCID: PMC11522293 DOI: 10.1038/s41536-024-00375-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
In regenerating tissues, synthesis and remodeling of membranes rely on lipid turnover and transport. Our study addresses lipid adaptations in intestinal regeneration of Drosophila melanogaster and limb regeneration of Ambystoma mexicanum. We found changes in lipid profiles at different locations: transport, storage organs and regenerating tissues. We demonstrate that attenuating insulin signaling, exclusively in fat storage, inhibits the regeneration-specific response in both the fat storage and the regenerating tissue in Drosophila. Furthermore, in uninjured axolotls we found sex-specific lipid profiles in both storage and circulation, while in regenerating animals these differences subside. The regenerating limb presents a unique sterol profile, albeit with no sex differences. We postulate that regeneration triggers a systemic response, where organs storing lipids play a significant role in the regulation of systemic lipid traffic. Second, that this response may be an active and well-regulated mechanism, as observed when homeostatic sex-differences disappear in regenerating salamanders.
Collapse
Affiliation(s)
- Ines C Kübler
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jenny Kretzschmar
- Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Trumpington, Cambridge, UK
| | - Maria Nieves Arredondo-Lasso
- Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
- Metabolic Programming, Technische Universität München, Freising-Weihenstephan, Germany
| | - Sean D Keeley
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Luca Claudia Rößler
- Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
| | - Katharina Ganss
- Paul Langerhans Institute Dresden, Helmholtz Centre Munich, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tatiana Sandoval-Guzmán
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Paul Langerhans Institute Dresden, Helmholtz Centre Munich, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Dresden, Germany.
| | - Marko Brankatschk
- Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany.
- Faculty of Biology Technische Universität Dresden, Dresden, Germany. Zellescher Weg 23b, Dresden, Germany.
| |
Collapse
|
3
|
Sokol KH, Lee CJ, Rogers TJ, Waldhart A, Ellis AE, Madireddy S, Daniels SR, House RRJ, Ye X, Olesnavich M, Johnson A, Furness BR, Sheldon RD, Lien EC. Lipid availability influences ferroptosis sensitivity in cancer cells by regulating polyunsaturated fatty acid trafficking. Cell Chem Biol 2024:S2451-9456(24)00404-5. [PMID: 39442523 DOI: 10.1016/j.chembiol.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/09/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Ferroptosis is a form of cell death caused by lipid peroxidation that is emerging as a target for cancer therapy, highlighting the need to identify factors that govern ferroptosis susceptibility. Lipid peroxidation occurs primarily on phospholipids containing polyunsaturated fatty acids (PUFAs). Here, we show that even though extracellular lipid limitation reduces cellular PUFA levels, lipid-starved cancer cells are paradoxically more sensitive to ferroptosis. Using mass spectrometry-based lipidomics with stable isotope fatty acid labeling, we show that lipid limitation induces a fatty acid trafficking pathway in which PUFAs are liberated from triglycerides to synthesize highly unsaturated PUFAs such as arachidonic and adrenic acid. These PUFAs then accumulate in phospholipids, including ether phospholipids, to promote ferroptosis sensitivity. Therefore, PUFA levels within cancer cells do not necessarily correlate with ferroptosis susceptibility. Rather, how cancer cells respond to extracellular lipid levels by trafficking PUFAs into proper phospholipid pools contributes to their sensitivity to ferroptosis.
Collapse
Affiliation(s)
- Kelly H Sokol
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Cameron J Lee
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Thomas J Rogers
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Althea Waldhart
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Abigail E Ellis
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Sahithi Madireddy
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Samuel R Daniels
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA; Van Andel Institute Graduate School, Grand Rapids, MI 49503, USA
| | - Rachel Rae J House
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Xinyu Ye
- Van Andel Institute Graduate School, Grand Rapids, MI 49503, USA
| | - Mary Olesnavich
- Van Andel Institute Graduate School, Grand Rapids, MI 49503, USA
| | - Amy Johnson
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Benjamin R Furness
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ryan D Sheldon
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Evan C Lien
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
4
|
Buglakova E, Ekelöf M, Schwaiger-Haber M, Schlicker L, Molenaar MR, Shahraz M, Stuart L, Eisenbarth A, Hilsenstein V, Patti GJ, Schulze A, Snaebjornsson MT, Alexandrov T. Spatial single-cell isotope tracing reveals heterogeneity of de novo fatty acid synthesis in cancer. Nat Metab 2024; 6:1695-1711. [PMID: 39251875 PMCID: PMC11422168 DOI: 10.1038/s42255-024-01118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 07/26/2024] [Indexed: 09/11/2024]
Abstract
While heterogeneity is a key feature of cancer, understanding metabolic heterogeneity at the single-cell level remains a challenge. Here we present 13C-SpaceM, a method for spatial single-cell isotope tracing that extends the previously published SpaceM method with detection of 13C6-glucose-derived carbons in esterified fatty acids. We validated 13C-SpaceM on spatially heterogeneous models using liver cancer cells subjected to either normoxia-hypoxia or ATP citrate lyase depletion. This revealed substantial single-cell heterogeneity in labelling of the lipogenic acetyl-CoA pool and in relative fatty acid uptake versus synthesis hidden in bulk analyses. Analysing tumour-bearing brain tissue from mice fed a 13C6-glucose-containing diet, we found higher glucose-dependent synthesis of saturated fatty acids and increased elongation of essential fatty acids in tumours compared with healthy brains. Furthermore, our analysis uncovered spatial heterogeneity in lipogenic acetyl-CoA pool labelling in tumours. Our method enhances spatial probing of metabolic activities in single cells and tissues, providing insights into fatty acid metabolism in homoeostasis and disease.
Collapse
Affiliation(s)
- Elena Buglakova
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Cell Biology and Biophysics Unit, EMBL, Heidelberg, Germany
| | - Måns Ekelöf
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Michaela Schwaiger-Haber
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Lisa Schlicker
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Martijn R Molenaar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Mohammed Shahraz
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Lachlan Stuart
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Andreas Eisenbarth
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Volker Hilsenstein
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Gary J Patti
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Almut Schulze
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | - Marteinn T Snaebjornsson
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | - Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Metabolomics Core Facility, EMBL, Heidelberg, Germany.
- Molecular Medicine Partnership Unit, EMBL and Heidelberg University, Heidelberg, Germany.
- BioStudio, BioInnovation Institute, Copenhagen, Denmark.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Alicea GM, Patel P, Portuallo ME, Fane ME, Wei M, Chhabra Y, Dixit A, Carey AE, Wang V, Rocha MR, Behera R, Speicher DW, Tang HY, Kossenkov AV, Rebecca VW, Wirtz D, Weeraratna AT. Age-Related Increases in IGFBP2 Increase Melanoma Cell Invasion and Lipid Synthesis. CANCER RESEARCH COMMUNICATIONS 2024; 4:1908-1918. [PMID: 39007351 PMCID: PMC11295880 DOI: 10.1158/2767-9764.crc-23-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/31/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Aged patients with melanoma (>65 years old) have more aggressive disease relative to young patients (<55 years old) for reasons that are not completely understood. Analysis of the young and aged secretome from human dermal fibroblasts identified >5-fold levels of IGF-binding protein 2 (IGFBP2) in the aged fibroblast secretome. IGFBP2 functionally triggers upregulation of the PI3K-dependent fatty acid biosynthesis program in melanoma cells. Melanoma cells co-cultured with aged dermal fibroblasts have higher levels of lipids relative to those co-cultured with young dermal fibroblasts, which can be lowered by silencing IGFBP2 expression in fibroblasts prior to treating with conditioned media. Conversely, ectopically treating melanoma cells with recombinant IGFBP2 in the presence of conditioned media from young fibroblasts or overexpressing IGFBP2 in melanoma cells promoted lipid synthesis and accumulation in melanoma cells. Treatment of young mice with rIGFBP2 increases tumor growth. Neutralizing IGFBP2 in vitro reduces migration and invasion in melanoma cells, and in vivo studies demonstrate that neutralizing IGFBP2 in syngeneic aged mice reduces tumor growth and metastasis. Our results suggest that aged dermal fibroblasts increase melanoma cell aggressiveness through increased secretion of IGFBP2, stressing the importance of considering age when designing studies and treatment. SIGNIFICANCE The aged microenvironment drives metastasis in melanoma cells. This study reports that IGFBP2 secretion by aged fibroblasts induces lipid accumulation in melanoma cells, driving an increase in tumor invasiveness. Neutralizing IGFBP2 decreases melanoma tumor growth and metastasis.
Collapse
Affiliation(s)
- Gretchen M. Alicea
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland.
| | - Payal Patel
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland.
| | - Marie E. Portuallo
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
| | - Mitchell E. Fane
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
- The Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| | - Meihan Wei
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
| | - Yash Chhabra
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
- The Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| | - Agrani Dixit
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
| | - Alexis E. Carey
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
| | - Vania Wang
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
| | - Murilo R. Rocha
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
| | - Reeti Behera
- The Wistar Institute, Philadelphia, Pennsylvania.
| | | | | | | | - Vito W. Rebecca
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Denis Wirtz
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland.
| | - Ashani T. Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
6
|
Koppula S, Wankhede NL, Sammeta SS, Shende PV, Pawar RS, Chimthanawala N, Umare MD, Taksande BG, Upaganlawar AB, Umekar MJ, Kopalli SR, Kale MB. Modulation of cholesterol metabolism with Phytoremedies in Alzheimer's disease: A comprehensive review. Ageing Res Rev 2024; 99:102389. [PMID: 38906182 DOI: 10.1016/j.arr.2024.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Alzheimer's disease (AD) is a complex neurological ailment that causes cognitive decline and memory loss. Cholesterol metabolism dysregulation has emerged as a crucial element in AD pathogenesis, contributing to the formation of amyloid-beta (Aβ) plaques and tau tangles, the disease's hallmark neuropathological characteristics. Thus, targeting cholesterol metabolism has gained attention as a potential therapeutic method for Alzheimer's disease. Phytoremedies, which are generated from plants and herbs, have shown promise as an attainable therapeutic option for Alzheimer's disease. These remedies contain bioactive compounds like phytochemicals, flavonoids, and polyphenols, which have demonstrated potential in modulating cholesterol metabolism and related pathways. This comprehensive review explores the modulation of cholesterol metabolism by phytoremedies in AD. It delves into the role of cholesterol in brain function, highlighting disruptions observed in AD. Additionally, it examines the underlying molecular mechanisms of cholesterol-related pathology in AD. The review emphasizes the significance of phytoremedies as a potential therapeutic intervention for AD. It discusses the drawbacks of current treatments and the need for alternative strategies addressing cholesterol dysregulation and its consequences. Through an in-depth analysis of specific phytoremedies, the review presents compelling evidence of their potential benefits. Molecular mechanisms underlying phytoremedy effects on cholesterol metabolism are examined, including regulation of cholesterol-related pathways, interactions with Aβ pathology, influence on tau pathology, and anti-inflammatory effects. The review also highlights challenges and future perspectives, emphasizing standardization, clinical evidence, and personalized medicine approaches to maximize therapeutic potential in AD treatment. Overall, phytoremedies offer promise as a potential avenue for AD management, but further research and collaboration are necessary to fully explore their efficacy, safety, and mechanisms of action.
Collapse
Affiliation(s)
- Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| | - Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| | - Shivkumar S Sammeta
- National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India.
| | - Prajwali V Shende
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| | - Rupali S Pawar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| | | | - Mohit D Umare
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India.
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea.
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| |
Collapse
|
7
|
Sokol KH, Lee CJ, Rogers TJ, Waldhart A, Ellis AE, Madireddy S, Daniels SR, Ye X, Olesnavich M, Johnson A, Furness BR, Sheldon RD, Lien EC. Lipid availability influences ferroptosis sensitivity in cancer cells by regulating polyunsaturated fatty acid trafficking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592780. [PMID: 38766165 PMCID: PMC11100758 DOI: 10.1101/2024.05.06.592780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Ferroptosis is a form of cell death caused by lipid peroxidation that is emerging as a target for cancer therapy, highlighting the need to identify factors that govern ferroptosis susceptibility. Lipid peroxidation occurs primarily on phospholipids containing polyunsaturated fatty acids (PUFAs). Here, we show that even though extracellular lipid limitation reduces cellular PUFA levels, lipid-starved cancer cells are paradoxically more sensitive to ferroptosis. Using mass spectrometry-based lipidomics with stable isotope fatty acid labeling, we show that lipid limitation induces a fatty acid trafficking pathway in which PUFAs are liberated from triglycerides to synthesize highly unsaturated PUFAs such as arachidonic acid and adrenic acid. These PUFAs then accumulate in phospholipids, particularly ether phospholipids, to promote ferroptosis sensitivity. Therefore, PUFA levels within cancer cells do not necessarily correlate with ferroptosis susceptibility. Rather, how cancer cells respond to extracellular lipid levels by trafficking PUFAs into proper phospholipid pools dictates their sensitivity to ferroptosis.
Collapse
Affiliation(s)
- Kelly H. Sokol
- Department of Metabolism and Nutritional Programming, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Cameron J. Lee
- Department of Metabolism and Nutritional Programming, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Thomas J. Rogers
- Department of Metabolism and Nutritional Programming, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Althea Waldhart
- Department of Metabolism and Nutritional Programming, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Abigail E. Ellis
- Mass Spectrometry Core, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Sahithi Madireddy
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Samuel R. Daniels
- Department of Metabolism and Nutritional Programming, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
- Van Andel Institute Graduate School, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Xinyu Ye
- Van Andel Institute Graduate School, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Mary Olesnavich
- Van Andel Institute Graduate School, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Amy Johnson
- Mass Spectrometry Core, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Benjamin R. Furness
- Department of Metabolism and Nutritional Programming, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Ryan D. Sheldon
- Mass Spectrometry Core, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Evan C. Lien
- Department of Metabolism and Nutritional Programming, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| |
Collapse
|
8
|
Menendez JA, Cuyàs E, Encinar JA, Vander Steen T, Verdura S, Llop‐Hernández À, López J, Serrano‐Hervás E, Osuna S, Martin‐Castillo B, Lupu R. Fatty acid synthase (FASN) signalome: A molecular guide for precision oncology. Mol Oncol 2024; 18:479-516. [PMID: 38158755 PMCID: PMC10920094 DOI: 10.1002/1878-0261.13582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/27/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024] Open
Abstract
The initial excitement generated more than two decades ago by the discovery of drugs targeting fatty acid synthase (FASN)-catalyzed de novo lipogenesis for cancer therapy was short-lived. However, the advent of the first clinical-grade FASN inhibitor (TVB-2640; denifanstat), which is currently being studied in various phase II trials, and the exciting advances in understanding the FASN signalome are fueling a renewed interest in FASN-targeted strategies for the treatment and prevention of cancer. Here, we provide a detailed overview of how FASN can drive phenotypic plasticity and cell fate decisions, mitochondrial regulation of cell death, immune escape and organ-specific metastatic potential. We then present a variety of FASN-targeted therapeutic approaches that address the major challenges facing FASN therapy. These include limitations of current FASN inhibitors and the lack of precision tools to maximize the therapeutic potential of FASN inhibitors in the clinic. Rethinking the role of FASN as a signal transducer in cancer pathogenesis may provide molecularly driven strategies to optimize FASN as a long-awaited target for cancer therapeutics.
Collapse
Affiliation(s)
- Javier A. Menendez
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Elisabet Cuyàs
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Jose Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC)Miguel Hernández University (UMH)ElcheSpain
| | - Travis Vander Steen
- Division of Experimental Pathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
- Mayo Clinic Cancer CenterRochesterMNUSA
- Department of Biochemistry and Molecular Biology LaboratoryMayo Clinic LaboratoryRochesterMNUSA
| | - Sara Verdura
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Àngela Llop‐Hernández
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Júlia López
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Eila Serrano‐Hervás
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain
| | - Sílvia Osuna
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain
- ICREABarcelonaSpain
| | - Begoña Martin‐Castillo
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
- Unit of Clinical ResearchCatalan Institute of OncologyGironaSpain
| | - Ruth Lupu
- Division of Experimental Pathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
- Mayo Clinic Cancer CenterRochesterMNUSA
- Department of Biochemistry and Molecular Biology LaboratoryMayo Clinic LaboratoryRochesterMNUSA
| |
Collapse
|
9
|
Buglakova E, Ekelöf M, Schwaiger-Haber M, Schlicker L, Molenaar MR, Mohammed S, Stuart L, Eisenbarth A, Hilsenstein V, Patti GJ, Schulze A, Snaebjornsson MT, Alexandrov T. 13C-SpaceM: Spatial single-cell isotope tracing reveals heterogeneity of de novo fatty acid synthesis in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.18.553810. [PMID: 38464218 PMCID: PMC10925155 DOI: 10.1101/2023.08.18.553810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Metabolism has emerged as a key factor in homeostasis and disease including cancer. Yet, little is known about the heterogeneity of metabolic activity of cancer cells due to the lack of tools to directly probe it. Here, we present a novel method, 13C-SpaceM for spatial single-cell isotope tracing of glucose-dependent de novo lipogenesis. The method combines imaging mass spectrometry for spatially-resolved detection of 13C6-glucose-derived 13C label incorporated into esterified fatty acids with microscopy and computational methods for data integration and analysis. We validated 13C-SpaceM on a spatially-heterogeneous normoxia-hypoxia model of liver cancer cells. Investigating cultured cells, we revealed single-cell heterogeneity of lipogenic acetyl-CoA pool labelling degree upon ACLY knockdown that is hidden in the bulk analysis and its effect on synthesis of individual fatty acids. Next, we adapted 13C-SpaceM to analyze tissue sections of mice harboring isocitrate dehydrogenase (IDH)-mutant gliomas. We found a strong induction of de novo fatty acid synthesis in the tumor tissue compared to the surrounding brain. Comparison of fatty acid isotopologue patterns revealed elevated uptake of mono-unsaturated and essential fatty acids in the tumor. Furthermore, our analysis uncovered substantial spatial heterogeneity in the labelling of the lipogenic acetyl-CoA pool indicative of metabolic reprogramming during microenvironmental adaptation. Overall, 13C-SpaceM enables novel ways for spatial probing of metabolic activity at the single cell level. Additionally, this methodology provides unprecedented insight into fatty acid uptake, synthesis and modification in normal and cancerous tissues.
Collapse
Affiliation(s)
- Elena Buglakova
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Måns Ekelöf
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Michaela Schwaiger-Haber
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Lisa Schlicker
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Martijn R. Molenaar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Shahraz Mohammed
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Lachlan Stuart
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Andreas Eisenbarth
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Volker Hilsenstein
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Gary J. Patti
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Almut Schulze
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Marteinn T. Snaebjornsson
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Metabolomics Core Facility, EMBL, Heidelberg, Germany
- Molecular Medicine Partnership Unit, EMBL and Heidelberg University, Heidelberg, Germany
- BioStudio, BioInnovation Institute, Copenhagen, Denmark
| |
Collapse
|
10
|
Akbar S, Rahman A, Ahmad N, Imran M, Hafeez Z. Understanding the Role of Polyunsaturated Fatty Acids in the Development and Prevention of Cancer. Cancer Treat Res 2024; 191:57-93. [PMID: 39133404 DOI: 10.1007/978-3-031-55622-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Polyunsaturated fatty acids (PUFAs), notably omega-3 (n-3) and omega-6 (n-6), have received much attention owing to their multifaceted effects not only in the management of diverse pathological conditions but also in the maintenance of overall health of an individual. A disproportionately high n-6 to n-3 ratio contributes to the development of various disorders including cancer, which ranks as a leading cause of death worldwide with profound social and economic burden. Epidemiological studies and clinical trials combined with the animal and cell culture models have demonstrated the beneficial effects of n-3 PUFAs in reducing the risk of various cancer types including breast, prostate and colon cancer. The anti-cancer actions of n-3 PUFAs are mainly attributed to their role in the modulation of a wide array of cellular processes including membrane dynamics, apoptosis, inflammation, angiogenesis, oxidative stress, gene expression and signal transduction pathways. On the contrary, n-6 PUFAs have been shown to exert pro-tumor actions; however, the inconsistent findings and controversial data emphasize upon the need to further investigation. Nevertheless, one of the biggest challenges in future is to optimize the n-6 to n-3 ratio despite the genetic predisposition, age, gender and disease severity. Moreover, a better understanding of the potential risks and benefits as well as the cellular and molecular mechanisms of the basic actions of these PUFAs is required to explore their role as adjuvants in cancer therapy. All these aspects will be reviewed in this chapter.
Collapse
Affiliation(s)
- Samina Akbar
- CALBINOTOX, Université de Lorraine, 54000, Nancy, France.
| | - Abdur Rahman
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Nazir Ahmad
- Faculty of Life Sciences, Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- Department of Biosciences, Faculty of Sciences, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
| | - Zeeshan Hafeez
- CALBINOTOX, Université de Lorraine, 54000, Nancy, France
| |
Collapse
|
11
|
Vogel FCE, Chaves-Filho AB, Schulze A. Lipids as mediators of cancer progression and metastasis. NATURE CANCER 2024; 5:16-29. [PMID: 38273023 DOI: 10.1038/s43018-023-00702-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/08/2023] [Indexed: 01/27/2024]
Abstract
Metastasis formation is a complex process, involving multiple crucial steps, which are controlled by different regulatory mechanisms. In this context, the contribution of cancer metabolism to the metastatic cascade is being increasingly recognized. This Review focuses on changes in lipid metabolism that contribute to metastasis formation in solid tumors. We discuss the molecular mechanisms by which lipids induce a pro-metastatic phenotype and explore the role of lipids in response to oxidative stress and as signaling molecules. Finally, we reflect on potential avenues to target lipid metabolism to improve the treatment of metastatic cancers.
Collapse
Affiliation(s)
- Felix C E Vogel
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Adriano B Chaves-Filho
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Almut Schulze
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
12
|
Ma Y, Wang Z, Sun J, Tang J, Zhou J, Dong M. Investigating the Diagnostic and Therapeutic Potential of SREBF2-Related Lipid Metabolism Genes in Colon Cancer. Onco Targets Ther 2023; 16:1027-1042. [PMID: 38107762 PMCID: PMC10723182 DOI: 10.2147/ott.s428150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
Purpose Colon cancer is one of the leading causes of death worldwide, and screening of effective molecular markers for the diagnosis is prioritised for prevention and treatment. This study aimed to investigate the diagnostic and predictive potential of genes related to the lipid metabolism pathway, regulated by a protein called sterol-regulatory element-binding transcription Factor 2 (SREBF2), for colon cancer and patient outcomes. Methods We used machine-learning algorithms to identify key genes associated with SREBF2 in colon cancer based on a public database. A nomogram was created to assess the diagnostic value of these genes and validated in the Cancer Genome Atlas. We also analysed the relationship between these genes and the immune microenvironment of colon tumours, as well as the correlation between gene expression and clinicopathological characteristics and prognosis in the China Medical University (CMU) clinical cohort. Results Three genes, 7-dehydrocholesterol reductase (DHCR7), hydroxysteroid 11-beta dehydrogenase 2 (HSD11B2), and Ral guanine nucleotide dissociation stimulator-like 1 (RGL1), were identified as hub genes related to SREBF2 and colon cancer. Using the TCGA dataset, receiver operating characteristic curve analysis showed the area under the curve values of 0.943, 0.976, and 0.868 for DHCR7, HSD11B2, and RGL1, respectively. In the CMU cohort, SREBF2 and DHCR7 expression levels were correlated with TNM stage and tumour invasion depth (P < 0.05), and high DHCR7 expression was related to poor prognosis of colon cancer (P < 0.05). Furthermore, DHCR7 gene expression was positively correlated with the abundance of M0 and M1 macrophages and inversely correlated with the abundance of M2 macrophages, suggesting that the immune microenvironment may play a role in colon cancer surveillance. There was a correlation between SREBF2 and DHCR7 expression across cancers in the TCGA database. Conclusion This study highlights the potential of DHCR7 as a diagnostic marker and therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Yuteng Ma
- Department of Gastrointestinal Surgery, First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China
| | - Zhe Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, 110001, People’s Republic of China
| | - Jian Sun
- Department of Gastrointestinal Surgery, First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China
| | - Jingtong Tang
- Department of Gastrointestinal Surgery, First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China
| | - Jianping Zhou
- Department of Gastrointestinal Surgery, First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China
| | - Ming Dong
- Department of Gastrointestinal Surgery, First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China
| |
Collapse
|
13
|
Torcasio R, Gallo Cantafio ME, Ikeda RK, Ganino L, Viglietto G, Amodio N. Lipid metabolic vulnerabilities of multiple myeloma. Clin Exp Med 2023; 23:3373-3390. [PMID: 37639069 PMCID: PMC10618328 DOI: 10.1007/s10238-023-01174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/15/2023] [Indexed: 08/29/2023]
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy worldwide, characterized by abnormal proliferation of malignant plasma cells within a tumor-permissive bone marrow microenvironment. Metabolic dysfunctions are emerging as key determinants in the pathobiology of MM. In this review, we highlight the metabolic features of MM, showing how alterations in various lipid pathways, mainly involving fatty acids, cholesterol and sphingolipids, affect the growth, survival and drug responsiveness of MM cells, as well as their cross-talk with other cellular components of the tumor microenvironment. These findings will provide a new path to understanding the mechanisms underlying how lipid vulnerabilities may arise and affect the phenotype of malignant plasma cells, highlighting novel druggable pathways with a significant impact on the management of MM.
Collapse
Affiliation(s)
- Roberta Torcasio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
- Department of Biology, Ecology and Heart Sciences, University of Calabria, Arcavacata Di Rende, Cosenza, Italy
| | - Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Raissa Kaori Ikeda
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
- Centro Universitário São Camilo, São Paulo, Brazil
| | - Ludovica Ganino
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy.
| |
Collapse
|
14
|
Jeong DW, Park JW, Kim KS, Kim J, Huh J, Seo J, Kim YL, Cho JY, Lee KW, Fukuda J, Chun YS. Palmitoylation-driven PHF2 ubiquitination remodels lipid metabolism through the SREBP1c axis in hepatocellular carcinoma. Nat Commun 2023; 14:6370. [PMID: 37828054 PMCID: PMC10570296 DOI: 10.1038/s41467-023-42170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Palmitic acid (PA) is the most common fatty acid in humans and mediates palmitoylation through its conversion into palmitoyl coenzyme A. Although palmitoylation affects many proteins, its pathophysiological functions are only partially understood. Here we demonstrate that PA acts as a molecular checkpoint of lipid reprogramming in HepG2 and Hep3B cells. The zinc finger DHHC-type palmitoyltransferase 23 (ZDHHC23) mediates the palmitoylation of plant homeodomain finger protein 2 (PHF2), subsequently enhancing ubiquitin-dependent degradation of PHF2. This study also reveals that PHF2 functions as a tumor suppressor by acting as an E3 ubiquitin ligase of sterol regulatory element-binding protein 1c (SREBP1c), a master transcription factor of lipogenesis. PHF2 directly destabilizes SREBP1c and reduces SREBP1c-dependent lipogenesis. Notably, SREBP1c increases free fatty acids in hepatocellular carcinoma (HCC) cells, and the consequent PA induction triggers the PHF2/SREBP1c axis. Since PA seems central to activating this axis, we suggest that levels of dietary PA should be carefully monitored in patients with HCC.
Collapse
Affiliation(s)
- Do-Won Jeong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Jong-Wan Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Kyeong Seog Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, 03080, Korea
| | - Jiyoung Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - June Huh
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Korea
| | - Jieun Seo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Faculty of Engineering, Yokohama National University, Yokohama, 240-8501, Japan
| | - Ye Lee Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Joo-Youn Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, 03080, Korea
| | - Kwang-Woong Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Junji Fukuda
- Faculty of Engineering, Yokohama National University, Yokohama, 240-8501, Japan
| | - Yang-Sook Chun
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
15
|
Lobel GP, Jiang Y, Simon MC. Tumor microenvironmental nutrients, cellular responses, and cancer. Cell Chem Biol 2023; 30:1015-1032. [PMID: 37703882 PMCID: PMC10528750 DOI: 10.1016/j.chembiol.2023.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023]
Abstract
Over the last two decades, the rapidly expanding field of tumor metabolism has enhanced our knowledge of the impact of nutrient availability on metabolic reprogramming in cancer. Apart from established roles in cancer cells themselves, various nutrients, metabolic enzymes, and stress responses are key to the activities of tumor microenvironmental immune, fibroblastic, endothelial, and other cell types that support malignant transformation. In this article, we review our current understanding of how nutrient availability affects metabolic pathways and responses in both cancer and "stromal" cells, by dissecting major examples and their regulation of cellular activity. Understanding the relationship of nutrient availability to cellular behaviors in the tumor ecosystem will broaden the horizon of exploiting novel therapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Graham P Lobel
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yanqing Jiang
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Palma GBH, Kaur M. miRNA-128 and miRNA-223 regulate cholesterol-mediated drug resistance in breast cancer. IUBMB Life 2023; 75:743-764. [PMID: 37070323 DOI: 10.1002/iub.2726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/24/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND Breast cancer is the second most common malignancy worldwide and 70% of all breast cancer cases are estrogen receptor-positive (ER+). Endocrine therapy, Tamoxifen (TAM), is a popular treatment for ER+ breast cancer patients; however, despite its success in reducing breast cancer mortality, cancer drug resistance remains a significant challenge. A major contributor to this resistance is the dysregulation of cholesterol homeostasis, where breast cancer cells have elevated cholesterol levels. MicroRNAs (miRNAs) are master regulators of cholesterol-related and cancer drug resistance pathways, and their aberrant expression often confers resistance. Therefore, we aimed to investigate the roles of miRNA-128 and miRNA-223 in cholesterol-mediated TAM resistance. METHODS Three breast cancer cell lines were treated with a combination of 1 μM TAM and 10 μM of a cholesterol depleting agent (Acetyl Plumbagin: AP) following transfection with a miR-128 inhibitor or a miR-223 mimic. Cell viability and cholesterol levels were assessed using an MTT assay and fluorescence staining, respectively. In addition, expression levels of several genes and proteins involved in cancer drug resistance and cholesterol homeostasis were also assessed using RT-qPCR and western blotting. RESULTS The combination treatment with altered miRNA expression led to reduced cell viability due to a reduction in free cholesterol and lipid rafts in MCF-7, MDA-MB-231, and long-term estrogen-deprived cells (resistant breast cancer cells). Moreover, reduced miR-128 expression was favoured in all breast cancer cell lines as this alteration lowered the expression of genes involved in cholesterol synthesis and transport, drug resistance, and cell signalling. CONCLUSIONS Investigating the gene expression profiles in different breast cancer cell lines was important to elucidate further the molecular mechanisms involved in miRNA-regulated cholesterol homeostasis and cancer drug resistance. Therefore, our findings demonstrated that miR-128 and miR-223 could be potential targets in reducing TAM resistance through the depletion of excess cholesterol.
Collapse
Affiliation(s)
| | - Mandeep Kaur
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
17
|
Cho S, Chun Y, He L, Ramirez CB, Ganesh KS, Jeong K, Song J, Cheong JG, Li Z, Choi J, Kim J, Koundouros N, Ding F, Dephoure N, Jang C, Blenis J, Lee G. FAM120A couples SREBP-dependent transcription and splicing of lipogenesis enzymes downstream of mTORC1. Mol Cell 2023; 83:3010-3026.e8. [PMID: 37595559 PMCID: PMC10494788 DOI: 10.1016/j.molcel.2023.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 05/23/2023] [Accepted: 07/15/2023] [Indexed: 08/20/2023]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth that stimulates macromolecule synthesis through transcription, RNA processing, and post-translational modification of metabolic enzymes. However, the mechanisms of how mTORC1 orchestrates multiple steps of gene expression programs remain unclear. Here, we identify family with sequence similarity 120A (FAM120A) as a transcription co-activator that couples transcription and splicing of de novo lipid synthesis enzymes downstream of mTORC1-serine/arginine-rich protein kinase 2 (SRPK2) signaling. The mTORC1-activated SRPK2 phosphorylates splicing factor serine/arginine-rich splicing factor 1 (SRSF1), enhancing its binding to FAM120A. FAM120A directly interacts with a lipogenic transcription factor SREBP1 at active promoters, thereby bridging the newly transcribed lipogenic genes from RNA polymerase II to the SRSF1 and U1-70K-containing RNA-splicing machinery. This mTORC1-regulated, multi-protein complex promotes efficient splicing and stability of lipogenic transcripts, resulting in fatty acid synthesis and cancer cell proliferation. These results elucidate FAM120A as a critical transcription co-factor that connects mTORC1-dependent gene regulation programs for anabolic cell growth.
Collapse
Affiliation(s)
- Sungyun Cho
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Yujin Chun
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Long He
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Cuauhtemoc B Ramirez
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA, USA; Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Kripa S Ganesh
- Department of Biochemistry, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Kyungjo Jeong
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Junho Song
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Jin Gyu Cheong
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Zhongchi Li
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jungmin Choi
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea; Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Joohwan Kim
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Nikos Koundouros
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Fangyuan Ding
- Department of Biomedical Engineering, Department of Developmental and Cell Biology, Department of Pharmaceutical Sciences, Center for Synthetic Biology, and Center for Neural Circuit Mapping, University of California Irvine, Irvine, CA, USA; Center for Complex Biological Systems and Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Noah Dephoure
- Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA; Center for Complex Biological Systems and Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA, USA
| | - John Blenis
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| | - Gina Lee
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA, USA; Center for Complex Biological Systems and Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
18
|
Jin Y, Tan Y, Wu J, Ren Z. Lipid droplets: a cellular organelle vital in cancer cells. Cell Death Discov 2023; 9:254. [PMID: 37474495 PMCID: PMC10359296 DOI: 10.1038/s41420-023-01493-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/24/2023] [Accepted: 06/16/2023] [Indexed: 07/22/2023] Open
Abstract
Lipid droplets (LDs) are cellular organelles comprising a core of neutral lipids (glycerides, sterols) encased within a single phospholipid membrane, responsible for storing surplus lipids and furnishing cellular energy. LDs engage in lipid synthesis, catabolism, and transport processes by interacting with other organelles (e.g., endoplasmic reticulum, mitochondria), and they play critical roles in regulating cellular stress and immunity. Recent research has uncovered that an elevated number of LDs is a hallmark of cancer cells, attributable to their enhanced lipid uptake and synthesis capacity, with lipids stored as LDs. Depletion of LDs in cancer cells induces apoptosis, prompting the emergence of small molecule antitumor drugs targeting LDs or key factors (e.g., FASN, SCD1) within the lipid synthesis pathway. Advancements in LD isolation and artificial synthesis have demonstrated their potential applicability in antitumor research. LDs extracted from murine adipose tissue and incubated with lipophilic antitumor drugs yield drug-coated LDs, which promote apoptosis in cancer cells. Furthermore, LDs have been employed as biological lenses to augment the resolution of subcellular structures (microfilaments, microtubules), facilitating the observation of intricate structures within thicker cells, including cancer cells. This review delineates the functional and metabolic mechanisms of LDs in cancer cells and encapsulates recent progress in LD-centered antitumor research, offering novel insights for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Yi Jin
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
| | - Yanjie Tan
- Institute of Biomedical Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, P. R. China
| | - Jian Wu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China.
- Hubei Hongshan Laboratory, Wuhan, P. R. China.
| |
Collapse
|
19
|
Nguyen T, Sridaran D, Chouhan S, Weimholt C, Wilson A, Luo J, Li T, Koomen J, Fang B, Putluri N, Sreekumar A, Feng FY, Mahajan K, Mahajan NP. Histone H2A Lys130 acetylation epigenetically regulates androgen production in prostate cancer. Nat Commun 2023; 14:3357. [PMID: 37296155 PMCID: PMC10256812 DOI: 10.1038/s41467-023-38887-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The testicular androgen biosynthesis is well understood, however, how cancer cells gauge dwindling androgen to dexterously initiate its de novo synthesis remained elusive. We uncover dual-phosphorylated form of sterol regulatory element-binding protein 1 (SREBF1), pY673/951-SREBF1 that acts as an androgen sensor, and dissociates from androgen receptor (AR) in androgen deficient environment, followed by nuclear translocation. SREBF1 recruits KAT2A/GCN5 to deposit epigenetic marks, histone H2A Lys130-acetylation (H2A-K130ac) in SREBF1, reigniting de novo lipogenesis & steroidogenesis. Androgen prevents SREBF1 nuclear translocation, promoting T cell exhaustion. Nuclear SREBF1 and H2A-K130ac levels are significantly increased and directly correlated with late-stage prostate cancer, reversal of which sensitizes castration-resistant prostate cancer (CRPC) to androgen synthesis inhibitor, Abiraterone. Further, we identify a distinct CRPC lipid signature resembling lipid profile of prostate cancer in African American (AA) men. Overall, pY-SREBF1/H2A-K130ac signaling explains cancer sex bias and reveal synchronous inhibition of KAT2A and Tyr-kinases as an effective therapeutic strategy.
Collapse
Affiliation(s)
- Thanh Nguyen
- Department of Surgery, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
- Department of Urology, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
- Section of Gastroenterology & Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Dhivya Sridaran
- Department of Surgery, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
- Department of Urology, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
| | - Surbhi Chouhan
- Department of Surgery, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
- Department of Urology, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
| | - Cody Weimholt
- Siteman Cancer Center, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
- Department of Pathology & Immunology, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
| | - Audrey Wilson
- Department of Surgery, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
- Department of Urology, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
| | - Jingqin Luo
- Division of Public Health Sciences, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
| | - Tiandao Li
- Bioinformatics Research Core, Center of Regenerative Medicine, Department of Developmental Biology, Washington University at St. Louis, St Louis, MO, 63110, USA
| | - John Koomen
- Molecular Oncology and Molecular Medicine, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Bin Fang
- Molecular Oncology and Molecular Medicine, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Nagireddy Putluri
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Arun Sreekumar
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Felix Y Feng
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94158, USA
| | - Kiran Mahajan
- Department of Surgery, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
- Department of Urology, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
| | - Nupam P Mahajan
- Department of Surgery, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA.
- Department of Urology, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA.
- Siteman Cancer Center, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA.
| |
Collapse
|
20
|
Jing J, He Y, Liu Y, Tang J, Wang L, Jia G, Liu G, Chen X, Tian G, Cai J, Che L, Kang B, Zhao H. Selenoproteins synergistically protect porcine skeletal muscle from oxidative damage via relieving mitochondrial dysfunction and endoplasmic reticulum stress. J Anim Sci Biotechnol 2023; 14:79. [PMID: 37270539 DOI: 10.1186/s40104-023-00877-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/05/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND The skeletal muscle of pigs is vulnerable to oxidative damage, resulting in growth retardation. Selenoproteins are important components of antioxidant systems for animals, which are generally regulated by dietary selenium (Se) level. Here, we developed the dietary oxidative stress (DOS)-inducing pig model to investigate the protective effects of selenoproteins on DOS-induced skeletal muscle growth retardation. RESULTS Dietary oxidative stress caused porcine skeletal muscle oxidative damage and growth retardation, which is accompanied by mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and protein and lipid metabolism disorders. Supplementation with Se (0.3, 0.6 or 0.9 mg Se/kg) in form of hydroxy selenomethionine (OH-SeMet) linearly increased muscular Se deposition and exhibited protective effects via regulating the expression of selenotranscriptome and key selenoproteins, which was mainly reflected in lower ROS levels and higher antioxidant capacity in skeletal muscle, and the mitigation of mitochondrial dysfunction and ER stress. What's more, selenoproteins inhibited DOS induced protein and lipid degradation and improved protein and lipid biosynthesis via regulating AKT/mTOR/S6K1 and AMPK/SREBP-1 signalling pathways in skeletal muscle. However, several parameters such as the activity of GSH-Px and T-SOD, the protein abundance of JNK2, CLPP, SELENOS and SELENOF did not show dose-dependent changes. Notably, several key selenoproteins such as MSRB1, SELENOW, SELENOM, SELENON and SELENOS play the unique roles during this protection. CONCLUSIONS Increased expression of selenoproteins by dietary OH-SeMet could synergistically alleviate mitochondrial dysfunction and ER stress, recover protein and lipid biosynthesis, thus alleviate skeletal muscle growth retardation. Our study provides preventive measure for OS-dependent skeletal muscle retardation in livestock husbandry.
Collapse
Affiliation(s)
- Jinzhong Jing
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ying He
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yan Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jiayong Tang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Longqiong Wang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jingyi Cai
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
21
|
Jeon YG, Kim YY, Lee G, Kim JB. Physiological and pathological roles of lipogenesis. Nat Metab 2023; 5:735-759. [PMID: 37142787 DOI: 10.1038/s42255-023-00786-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
Lipids are essential metabolites, which function as energy sources, structural components and signalling mediators. Most cells are able to convert carbohydrates into fatty acids, which are often converted into neutral lipids for storage in the form of lipid droplets. Accumulating evidence suggests that lipogenesis plays a crucial role not only in metabolic tissues for systemic energy homoeostasis but also in immune and nervous systems for their proliferation, differentiation and even pathophysiological roles. Thus, excessive or insufficient lipogenesis is closely associated with aberrations in lipid homoeostasis, potentially leading to pathological consequences, such as dyslipidaemia, diabetes, fatty liver, autoimmune diseases, neurodegenerative diseases and cancers. For systemic energy homoeostasis, multiple enzymes involved in lipogenesis are tightly controlled by transcriptional and post-translational modifications. In this Review, we discuss recent findings regarding the regulatory mechanisms, physiological roles and pathological importance of lipogenesis in multiple tissues such as adipose tissue and the liver, as well as the immune and nervous systems. Furthermore, we briefly introduce the therapeutic implications of lipogenesis modulation.
Collapse
Affiliation(s)
- Yong Geun Jeon
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ye Young Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Gung Lee
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
22
|
Alicea GM, Portuallo ME, Patel P, Fane ME, Carey AE, Speicher D, Tang HY, Kossenkov AV, Rebecca VW, Wirtz DG, Weeraratna AT. Age-related increases in IGFBP2 increase melanoma cell invasion and lipid synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539059. [PMID: 37205503 PMCID: PMC10187234 DOI: 10.1101/2023.05.02.539059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Aged melanoma patients (>65 years old) have more aggressive disease relative to young patients (<55 years old) for reasons that are not completely understood. Analysis of the young and aged secretome from human dermal fibroblasts identified >5-fold levels of insulin-like growth factor binding protein 2 (IGFBP2) in the aged fibroblast secretome. IGFBP2 functionally triggers upregulation of the PI3K-dependent fatty acid biosynthesis program in melanoma cells through increases in FASN. Melanoma cells co-cultured with aged dermal fibroblasts have higher levels of lipids relative to young dermal fibroblasts, which can be lowered by silencing IGFBP2 expression in fibroblasts, prior to treating with conditioned media. Conversely, ectopically treating melanoma cells with recombinant IGFBP2 in the presence of conditioned media from young fibroblasts, promoted lipid synthesis and accumulation in the melanoma cells. Neutralizing IGFBP2 in vitro reduces migration and invasion in melanoma cells, and in vivo studies demonstrate that neutralizing IGFBP2 in syngeneic aged mice, ablates tumor growth as well as metastasis. Conversely, ectopic treatment of young mice with IGFBP2 in young mice increases tumor growth and metastasis. Our data reveal that aged dermal fibroblasts increase melanoma cell aggressiveness through increased secretion of IGFBP2, stressing the importance of considering age when designing studies and treatment. Significance The aged microenvironment drives metastasis in melanoma cells. This study reports that IGFBP2 secretion by aged fibroblasts induces FASN in melanoma cells and drives metastasis. Neutralizing IGFBP2 decreases melanoma tumor growth and metastasis.
Collapse
|
23
|
Mahmud I, Tian G, Wang J, Hutchinson TE, Kim BJ, Awasthee N, Hale S, Meng C, Moore A, Zhao L, Lewis JE, Waddell A, Wu S, Steger JM, Lydon ML, Chait A, Zhao LY, Ding H, Li JL, Purayil HT, Huo Z, Daaka Y, Garrett TJ, Liao D. DAXX drives de novo lipogenesis and contributes to tumorigenesis. Nat Commun 2023; 14:1927. [PMID: 37045819 PMCID: PMC10097704 DOI: 10.1038/s41467-023-37501-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Cancer cells exhibit elevated lipid synthesis. In breast and other cancer types, genes involved in lipid production are highly upregulated, but the mechanisms that control their expression remain poorly understood. Using integrated transcriptomic, lipidomic, and molecular studies, here we report that DAXX is a regulator of oncogenic lipogenesis. DAXX depletion attenuates, while its overexpression enhances, lipogenic gene expression, lipogenesis, and tumor growth. Mechanistically, DAXX interacts with SREBP1 and SREBP2 and activates SREBP-mediated transcription. DAXX associates with lipogenic gene promoters through SREBPs. Underscoring the critical roles for the DAXX-SREBP interaction for lipogenesis, SREBP2 knockdown attenuates tumor growth in cells with DAXX overexpression, and DAXX mutants unable to bind SREBP1/2 have weakened activity in promoting lipogenesis and tumor growth. Remarkably, a DAXX mutant deficient of SUMO-binding fails to activate SREBP1/2 and lipogenesis due to impaired SREBP binding and chromatin recruitment and is defective of stimulating tumorigenesis. Hence, DAXX's SUMO-binding activity is critical to oncogenic lipogenesis. Notably, a peptide corresponding to DAXX's C-terminal SUMO-interacting motif (SIM2) is cell-membrane permeable, disrupts the DAXX-SREBP1/2 interactions, and inhibits lipogenesis and tumor growth. These results establish DAXX as a regulator of lipogenesis and a potential therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Iqbal Mahmud
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
- Southeast Center for Integrated Metabolomics, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guimei Tian
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jia Wang
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450008, Zhengzhou, Henan, China
| | - Tarun E Hutchinson
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Brandon J Kim
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Nikee Awasthee
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Seth Hale
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Chengcheng Meng
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Allison Moore
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Liming Zhao
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jessica E Lewis
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Aaron Waddell
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Shangtao Wu
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Julia M Steger
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - McKenzie L Lydon
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Aaron Chait
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Lisa Y Zhao
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Haocheng Ding
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Jian-Liang Li
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Hamsa Thayele Purayil
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Zhiguang Huo
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Yehia Daaka
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Timothy J Garrett
- Southeast Center for Integrated Metabolomics, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Daiqing Liao
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
24
|
Li X, Li L, Xiong X, Kuang Q, Peng M, Zhu K, Luo P. Identification of the Prognostic Biomarkers CBX6 and CBX7 in Bladder Cancer. Diagnostics (Basel) 2023; 13:diagnostics13081393. [PMID: 37189494 DOI: 10.3390/diagnostics13081393] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/22/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Chromobox (CBX) proteins are essential components of polycomb group proteins and perform essential functions in bladder cancer (BLCA). However, research on CBX proteins is still limited, and the function of CBXs in BLCA has not been well illustrated. METHODS AND RESULTS We analyzed the expression of CBX family members in BLCA patients from The Cancer Genome Atlas database. By Cox regression analysis and survival analysis, CBX6 and CBX7 were identified as potential prognostic factors. Subsequently, we identified genes associated with CBX6/7 and performed enrichment analysis, and they were enriched in urothelial carcinoma and transitional carcinoma. Mutation rates of TP53 and TTN correlate with expression of CBX6/7. In addition, differential analysis indicated that the roles played by CBX6 and CBX7 may be related to immune checkpoints. The CIBERSORT algorithm was used to screen out immune cells that play a role in the prognosis of bladder cancer patients. Multiplex immunohistochemistry staining confirmed a negative correlation between CBX6 and M1 macrophages, as well as a consistent alteration in CBX6 and regulatory T cells (Tregs), a positive correlation between CBX7 and resting mast cells, and a negative correlation between CBX7 and M0 macrophages. CONCLUSIONS CBX6 and CBX7 expression levels may assist in predicting the prognosis of BLCA patients. CBX6 may contribute to a poor prognosis in patients by inhibiting M1 polarization and promoting Treg recruitment in the tumor microenvironment, while CBX7 may contribute to a better prognosis in patients by increasing resting mast cell numbers and decreasing macrophage M0 content.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Urology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan 430060, China
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xi Xiong
- Department of Urology, Wuhan Third Hospital, School of Medicine, Wuhan University of Science and Technology, Wuhan 430060, China
| | - Qihui Kuang
- Department of Urology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan 430060, China
| | - Min Peng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Kai Zhu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Pengcheng Luo
- Department of Urology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
25
|
Talapatra J, Reddy MM. Lipid Metabolic Reprogramming in Embryonal Neoplasms with MYCN Amplification. Cancers (Basel) 2023; 15:cancers15072144. [PMID: 37046804 PMCID: PMC10093342 DOI: 10.3390/cancers15072144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Tumor cells reprogram their metabolism, including glucose, glutamine, nucleotide, lipid, and amino acids to meet their enhanced energy demands, redox balance, and requirement of biosynthetic substrates for uncontrolled cell proliferation. Altered lipid metabolism in cancer provides lipids for rapid membrane biogenesis, generates the energy required for unrestricted cell proliferation, and some of the lipids act as signaling pathway mediators. In this review, we focus on the role of lipid metabolism in embryonal neoplasms with MYCN dysregulation. We specifically review lipid metabolic reactions in neuroblastoma, retinoblastoma, medulloblastoma, Wilms tumor, and rhabdomyosarcoma and the possibility of targeting lipid metabolism. Additionally, the regulation of lipid metabolism by the MYCN oncogene is discussed.
Collapse
Affiliation(s)
- Jyotirmayee Talapatra
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Bhubaneswar 751024, India
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India
| | - Mamatha M Reddy
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Bhubaneswar 751024, India
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India
| |
Collapse
|
26
|
Kim SH, Yun C, Kwon D, Lee YH, Kwak JH, Jung YS. Effect of Isoquercitrin on Free Fatty Acid-Induced Lipid Accumulation in HepG2 Cells. Molecules 2023; 28:molecules28031476. [PMID: 36771140 PMCID: PMC9919102 DOI: 10.3390/molecules28031476] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Liver metabolic disorders and oxidative stress are crucial factors in the development of nonalcoholic fatty liver disease (NAFLD); however, treatment strategies to combat NAFLD remain poorly established, presenting an important challenge that needs to be addressed. Herein, we aimed to examine the effect of isoquercitrin on lipid accumulation induced by exogenous free fatty acids (FFA) using HepG2 cells and elucidate the underlying molecular mechanism. The cells were exposed to 0.5 mM FFA to induce intracellular lipid accumulation, followed by co-treatment with isoquercitrin to confirm the potential inhibitory effect on FFA-induced lipid production. HepG2 cells exposed to FFA alone exhibited intracellular lipid accumulation, compromised endoplasmic reticulum (ER) stress, and enhanced expression of proteins and genes involved in lipid synthesis; however, co-treatment with isoquercitrin decreased the expression of these molecules in a dose-dependent manner. Furthermore, isoquercitrin could activate AMP-activated protein kinase (AMPK), a key regulatory protein of hepatic fatty acid oxidation, suppressing new lipid production by phosphorylating acetyl-CoA carboxylase (ACC) and inhibiting sterol regulatory element-binding transcription factor 1 (SREBP-1)/fatty acid synthase (FAS) signals. Overall, these findings suggest that isoquercitrin can be employed as a therapeutic agent to improve NAFLD via the regulation of lipid metabolism by targeting the AMPK/ACC and SREBP1/FAS pathways.
Collapse
Affiliation(s)
- Sou Hyun Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Chawon Yun
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Doyoung Kwon
- College of Pharmacy, Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Yun-Hee Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae-Hwan Kwak
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Young-Suk Jung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: ; Tel.: +82-51-5102816
| |
Collapse
|
27
|
De Martino M, Daviaud C, Hajjar E, Vanpouille-Box C. Fatty acid metabolism and radiation-induced anti-tumor immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 376:121-141. [PMID: 36997267 DOI: 10.1016/bs.ircmb.2023.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fatty acid metabolic reprogramming has emerged as a major regulator of anti-tumor immune responses with large body of evidence that demonstrate its ability to impact the differentiation and function of immune cells. Therefore, depending on the metabolic cues that stem in the tumor microenvironment, the tumor fatty acid metabolism can tilt the balance of inflammatory signals to either promote or impair anti-tumor immune responses. Oxidative stressors such as reactive oxygen species generated from radiation therapy can rewire the tumor energy supply, suggesting that radiation therapy can further perturb the energy metabolism of a tumor by promoting fatty acid production. In this review, we critically discuss the network of fatty acid metabolism and how it regulates immune response especially in the context of radiation therapy.
Collapse
|
28
|
Lipid Metabolism Heterogeneity and Crosstalk with Mitochondria Functions Drive Breast Cancer Progression and Drug Resistance. Cancers (Basel) 2022; 14:cancers14246267. [PMID: 36551752 PMCID: PMC9776509 DOI: 10.3390/cancers14246267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is a heterogeneous disease that can be triggered by genetic alterations in mammary epithelial cells, leading to diverse disease outcomes in individual patients. The metabolic heterogeneity of BC enhances its ability to adapt to changes in the tumor microenvironment and metabolic stress, but unfavorably affects the patient's therapy response, prognosis and clinical effect. Extrinsic factors from the tumor microenvironment and the intrinsic parameters of cancer cells influence their mitochondrial functions, which consequently alter their lipid metabolism and their ability to proliferate, migrate and survive in a harsh environment. The balanced interplay between mitochondria and fatty acid synthesis or fatty acid oxidation has been attributed to a combination of environmental factors and to the genetic makeup, oncogenic signaling and activities of different transcription factors. Hence, understanding the mechanisms underlying lipid metabolic heterogeneity and alterations in BC is gaining interest as a major target for drug resistance. Here we review the major recent reports on lipid metabolism heterogeneity and bring to light knowledge on the functional contribution of diverse lipid metabolic pathways to breast tumorigenesis and therapy resistance.
Collapse
|
29
|
SREBP2/Rab11s/GLUT1/6 network regulates proliferation and migration of glioblastoma. Pathol Res Pract 2022; 240:154176. [PMID: 36327817 DOI: 10.1016/j.prp.2022.154176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/01/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Cholesterol serves a vital role in the occurrence and development of glioblastoma multiforme (GBM). Furthermore, cholesterol synthesis is regulated by sterol regulatory element-binding protein 2 (SREBP2), and certain glucose transporters (GLUTs) and Ras-related protein Rab11 (Rab11) small GTPase family members (Rab11s) may contribute to the process. The Cancer Genome Atlas was used to analyze the relationship between prognosis and GLUT gene expressions. To investigate the regulatory effect of Rab11s and SREBP2 on GLUTs during tumor progression, single cell RNA sequencing (scRNA-seq), western blotting and reverse transcription-quantitative PCR were performed on glioma tissues and the T98G GBM cell line. Cell viability and migration were assessed by performing MTT and wound healing assays, respectively. Moreover, the dual-luciferase reporter gene assay was conducted to predict the sterol regulatory elements in the promoter regions of the target genes. The results demonstrated that high SREBP2, GLUT1 and GLUT6 expression was associated with poor survival of patients with GBM. ScRNA-seq distinguished glioblastoma cells by EGFR and indicated the related lipid metabolism signaling pathways. Moreover, the results indicated that GLUT1 and GLUT6 were regulated by SREBP2 and Rab11s. Rab11s and SREBP2 also contributed to T98G cell viability and migration. Additionally, the results indicated that Rab11s, GLUT1 and GLUT6 were transcriptionally regulated by SREBP2. Therefore, the present study suggested that the SREBP2/Rab11/GLUT network promoted T98G cell growth, thus, identifying potential therapeutic targets for GBM.
Collapse
|
30
|
AZ12756122, a novel fatty acid synthase inhibitor, decreases resistance features in EGFR-TKI resistant EGFR-mutated NSCLC cell models. Biomed Pharmacother 2022; 156:113942. [DOI: 10.1016/j.biopha.2022.113942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2022] Open
|
31
|
The Aurora Kinase Inhibitor TAK901 Inhibits Glioblastoma Growth by Blocking SREBP1-Mediated Lipid Metabolism. Cancers (Basel) 2022; 14:cancers14235805. [PMID: 36497287 PMCID: PMC9737940 DOI: 10.3390/cancers14235805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/13/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Glioblastoma (GBM) is the most common and lethal malignant primary brain tumor. The standard treatment for GBM including surgical resection followed by radiation therapy and adjuvant chemotherapy with temozolomide remains unsatisfactory. In this study, we investigated the effects of the Aurora kinase inhibitor, TAK901, in GBM both in vitro and in vivo, and explored its key downstream targets. The effects of TAK901 were investigated using cell viability, cell apoptosis, live/dead, cell cycle, Transwell, 3D cell invasion, neuro-sphere, and self-renewal assays. Mechanistic studies were conducted using RNA-seq, lipid measurements, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and Western blotting. The in vivo efficacy of TAK901 was validated using orthotopic xenograft GBM mouse models. In both GBM cells and GSCs, TAK901 remarkably reduced cell viability, self-renewal, migration and invasion and induced apoptosis and cell cycle arrest. Treatment with TAK901 considerably inhibited GBM growth in vivo. RNA-seq and RT-qPCR analyses showed that TAK901 downregulated the expression and activation of SREBP1. Moreover, SREBP1 overexpression alleviated the TAK901-mediated suppression of cell viability and apoptosis in GBM cells. Our results provide evidence that TAK901 inhibits GBM growth by suppressing SREBP1-mediated lipid metabolism.
Collapse
|
32
|
Sphingosine 1-phosphate mediates adiponectin receptor signaling essential for lipid homeostasis and embryogenesis. Nat Commun 2022; 13:7162. [PMID: 36418331 PMCID: PMC9684441 DOI: 10.1038/s41467-022-34931-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
Cells and organisms require proper membrane composition to function and develop. Phospholipids are the major component of membranes and are primarily acquired through the diet. Given great variability in diet composition, cells must be able to deploy mechanisms that correct deviations from optimal membrane composition and properties. Here, using lipidomics and unbiased proteomics, we found that the embryonic lethality in mice lacking the fluidity regulators Adiponectin Receptors 1 and 2 (AdipoR1/2) is associated with aberrant high saturation of the membrane phospholipids. Using mouse embryonic fibroblasts (MEFs) derived from AdipoR1/2-KO embryos, human cell lines and the model organism C. elegans we found that, mechanistically, AdipoR1/2-derived sphingosine 1-phosphate (S1P) signals in parallel through S1PR3-SREBP1 and PPARγ to sustain the expression of the fatty acid desaturase SCD and maintain membrane properties. Thus, our work identifies an evolutionary conserved pathway by which cells and organisms achieve membrane homeostasis and adapt to a variable environment.
Collapse
|
33
|
Shiau JP, Chuang YT, Tang JY, Yang KH, Chang FR, Hou MF, Yen CY, Chang HW. The Impact of Oxidative Stress and AKT Pathway on Cancer Cell Functions and Its Application to Natural Products. Antioxidants (Basel) 2022; 11:1845. [PMID: 36139919 PMCID: PMC9495789 DOI: 10.3390/antiox11091845] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/10/2023] Open
Abstract
Oxidative stress and AKT serine-threonine kinase (AKT) are responsible for regulating several cell functions of cancer cells. Several natural products modulate both oxidative stress and AKT for anticancer effects. However, the impact of natural product-modulating oxidative stress and AKT on cell functions lacks systemic understanding. Notably, the contribution of regulating cell functions by AKT downstream effectors is not yet well integrated. This review explores the role of oxidative stress and AKT pathway (AKT/AKT effectors) on ten cell functions, including apoptosis, autophagy, endoplasmic reticulum stress, mitochondrial morphogenesis, ferroptosis, necroptosis, DNA damage response, senescence, migration, and cell-cycle progression. The impact of oxidative stress and AKT are connected to these cell functions through cell function mediators. Moreover, the AKT effectors related to cell functions are integrated. Based on this rationale, natural products with the modulating abilities for oxidative stress and AKT pathway exhibit the potential to regulate these cell functions, but some were rarely reported, particularly for AKT effectors. This review sheds light on understanding the roles of oxidative stress and AKT pathway in regulating cell functions, providing future directions for natural products in cancer treatment.
Collapse
Affiliation(s)
- Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
| | - Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
| | - Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
34
|
Bengoechea-Alonso MT, Aldaalis A, Ericsson J. Loss of the Fbw7 tumor suppressor rewires cholesterol metabolism in cancer cells leading to activation of the PI3K-AKT signalling axis. Front Oncol 2022; 12:990672. [PMID: 36176395 PMCID: PMC9513553 DOI: 10.3389/fonc.2022.990672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
The sterol regulatory-element binding proteins (SREBPs) are transcription factors controlling cholesterol and fatty acid synthesis and metabolism. There are three SREBP proteins, SREBP1a, SREBP1c and SREBP2, with SREBP1a being the strongest transcription factor. The expression of SREBP1a is restricted to rapidly proliferating cells, including cancer cells. The SREBP proteins are translated as large, inactive precursors bound to the endoplasmic reticulum (ER) membranes. These precursors undergo a two-step cleavage process that releases the amino terminal domains of the proteins, which translocate to the nucleus and function as transcription factors. The nuclear forms of the SREBPs are rapidly degraded by the ubiquitin-proteasome system in a manner dependent on the Fbw7 ubiquitin ligase. Consequently, inactivation of Fbw7 results in the stabilization of active SREBP1 and SREBP2 and enhanced expression of target genes. We report that the inactivation of Fbw7 in cancer cells blocks the proteolytic maturation of SREBP2. The same is true in cells expressing a cancer-specific loss-of-function Fbw7 protein. Interestingly, the activation of SREBP2 is restored in response to cholesterol depletion, suggesting that Fbw7-deficient cells accumulate cholesterol. Importantly, inactivation of SREBP1 in Fbw7-deficient cells also restores the cholesterol-dependent regulation of SREBP2, suggesting that the stabilization of active SREBP1 molecules could be responsible for the blunted activation of SREBP2 in Fbw7-deficient cancer cells. We suggest that this could be an important negative feedback loop in cancer cells with Fbw7 loss-of-function mutations to protect these cells from the accumulation of toxic levels of cholesterol and/or cholesterol metabolites. Surprisingly, we also found that the inactivation of Fbw7 resulted in the activation of AKT. Importantly, the activation of AKT was dependent on SREBP1 and on the accumulation of cholesterol. Thus, we suggest that the loss of Fbw7 rewires lipid metabolism in cancer cells to support cell proliferation and survival.
Collapse
Affiliation(s)
- Maria T. Bengoechea-Alonso
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Arwa Aldaalis
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Johan Ericsson
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- *Correspondence: Johan Ericsson,
| |
Collapse
|
35
|
Wang S, Hao HF, Jiao YN, Fu JL, Guo ZW, Guo Y, Yuan Y, Li PP, Han SY. Dandelion extract inhibits triple-negative breast cancer cell proliferation by interfering with glycerophospholipids and unsaturated fatty acids metabolism. Front Pharmacol 2022; 13:942996. [PMID: 36147318 PMCID: PMC9486077 DOI: 10.3389/fphar.2022.942996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype with limited treatment options and a poor prognosis. TNBC exists widely reprogrammed lipid metabolism, and its metabolic-associated proteins and oncometabolites are promising as potential therapeutic targets. Dandelion (Taraxacum mongolicum) is a classical herbal medicine used to treat breast diseases based on traditional Chinese medicine theory and was reported to have antitumor effects and lipid regulatory capacities. Our previous study showed that dandelion extract was effective against TNBC. However, whether dandelion extract could regulate the lipid metabolisms of TNBC and exert its antitumor effects via interfering with lipids metabolism remained unclear. In this study, an integrated approach combined with network pharmacology and multi-omics techniques (including proteomics, metabolomics, and lipidomics) was performed to investigate the potential regulatory mechanisms of dandelion extract against TNBC. We first determined the antitumor effects of dandelion extract in vitro and in vivo. Then, network pharmacology analysis speculated the antitumor effects involving various metabolic processes, and the multi-omics results of the cells, tumor tissues, and plasma revealed the changes in the metabolites and metabolic-associated proteins after dandelion extract treatment. The alteration of glycerophospholipids and unsaturated fatty acids were the most remarkable types of metabolites. Therefore, the metabolism of glycerophospholipids and unsaturated fatty acids, and their corresponding proteins CHKA and FADS2, were considered the primary regulatory pathways and biomarkers of dandelion extract against TNBC. Subsequently, experimental validation showed that dandelion extract decreased CHKA expression, leading to the inhibition of the PI3K/AKT pathway and its downstream targets, SREBP and FADS2. Finally, the molecular docking simulation suggested that picrasinoside F and luteolin in dandelion extract had the most highly binding scores with CHKA, indicating they may be the potential CHKA inhibitors to regulate glycerophospholipids metabolisms of TNBC. In conclusion, we confirmed the antitumor effects of dandelion extract against TNBC cells in vitro and demonstrated that dandelion extract could interfere with glycerophospholipids and unsaturated fatty acids metabolism via downregulating the CHKA expression and inhibiting PI3K/AKT/SREBP/FADS2 axis.
Collapse
Affiliation(s)
- Shan Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Hui-feng Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yan-na Jiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jia-lei Fu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zheng-wang Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yang Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yuan Yuan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Ping-ping Li
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, China
- *Correspondence: Shu-yan Han, ; Ping-ping Li,
| | - Shu-yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, China
- *Correspondence: Shu-yan Han, ; Ping-ping Li,
| |
Collapse
|
36
|
Aldaalis A, Bengoechea-Alonso MT, Ericsson J. The SREBP-dependent regulation of cyclin D1 coordinates cell proliferation and lipid synthesis. Front Oncol 2022; 12:942386. [PMID: 36091143 PMCID: PMC9451027 DOI: 10.3389/fonc.2022.942386] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022] Open
Abstract
The sterol regulatory-element binding protein (SREBP) family of transcription factors regulates cholesterol, fatty acid, and triglyceride synthesis and metabolism. However, they are also targeted by the ubiquitin ligase Fbw7, a major tumor suppressor, suggesting that they could regulate cell growth. Indeed, enhanced lipid synthesis is a hallmark of many human tumors. Thus, the SREBP pathway has recently emerged as a potential target for cancer therapy. We have previously demonstrated that one of these transcription factors, SREBP1, is stabilized and remains associated with target promoters during mitosis, suggesting that the expression of these target genes could be important as cells enter G1 and transcription is restored. Activation of cyclin D-cdk4/6 complexes is critical for the phosphorylation and inactivation of the retinoblastoma protein (Rb) family of transcriptional repressors and progression through the G1 phase of the cell cycle. Importantly, the cyclin D-cdk4/6-Rb regulatory axis is frequently dysregulated in human cancer. In the current manuscript, we demonstrate that SREBP1 activates the expression of cyclin D1, a coactivator of cdk4 and cdk6, by binding to an E-box in the cyclin D1 promoter. Consequently, inactivation of SREBP1 in human liver and breast cancer cell lines reduces the expression of cyclin D1 and attenuates Rb phosphorylation. Rb phosphorylation in these cells can be rescued by restoring cyclin D1 expression. On the other hand, expression of active SREBP1 induced the expression of cyclin D1 and increased the phosphorylation of Rb in a manner dependent on cyclin D1 and cdk4/6 activity. Inactivation of SREBP1 resulted in reduced expression of cyclin D1, attenuated phosphorylation of Rb, and reduced proliferation. Inactivation of SREBP1 also reduced the insulin-dependent regulation of the cyclin D1 gene. At the same time, SREBP1 is known to play an important role in supporting lipid synthesis in cancer cells. Thus, we propose that the SREBP1-dependent regulation of cyclin D1 coordinates cell proliferation with the enhanced lipid synthesis required to support cell growth.
Collapse
Affiliation(s)
- Arwa Aldaalis
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Maria T. Bengoechea-Alonso
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Johan Ericsson
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- *Correspondence: Johan Ericsson,
| |
Collapse
|
37
|
Sahoo OS, Pethusamy K, Srivastava TP, Talukdar J, Alqahtani MS, Abbas M, Dhar R, Karmakar S. The metabolic addiction of cancer stem cells. Front Oncol 2022; 12:955892. [PMID: 35957877 PMCID: PMC9357939 DOI: 10.3389/fonc.2022.955892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer stem cells (CSC) are the minor population of cancer originating cells that have the capacity of self-renewal, differentiation, and tumorigenicity (when transplanted into an immunocompromised animal). These low-copy number cell populations are believed to be resistant to conventional chemo and radiotherapy. It was reported that metabolic adaptation of these elusive cell populations is to a large extent responsible for their survival and distant metastasis. Warburg effect is a hallmark of most cancer in which the cancer cells prefer to metabolize glucose anaerobically, even under normoxic conditions. Warburg's aerobic glycolysis produces ATP efficiently promoting cell proliferation by reprogramming metabolism to increase glucose uptake and stimulating lactate production. This metabolic adaptation also seems to contribute to chemoresistance and immune evasion, a prerequisite for cancer cell survival and proliferation. Though we know a lot about metabolic fine-tuning in cancer, what is still in shadow is the identity of upstream regulators that orchestrates this process. Epigenetic modification of key metabolic enzymes seems to play a decisive role in this. By altering the metabolic flux, cancer cells polarize the biochemical reactions to selectively generate "onco-metabolites" that provide an added advantage for cell proliferation and survival. In this review, we explored the metabolic-epigenetic circuity in relation to cancer growth and proliferation and establish the fact how cancer cells may be addicted to specific metabolic pathways to meet their needs. Interestingly, even the immune system is re-calibrated to adapt to this altered scenario. Knowing the details is crucial for selective targeting of cancer stem cells by choking the rate-limiting stems and crucial branch points, preventing the formation of onco-metabolites.
Collapse
Affiliation(s)
- Om Saswat Sahoo
- Department of Biotechnology, National Institute of technology, Durgapur, India
| | - Karthikeyan Pethusamy
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Joyeeta Talukdar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
- Computers and communications Department, College of Engineering, Delta University for Science and Technology, Gamasa, Egypt
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
38
|
Zhao Q, Lin X, Wang G. Targeting SREBP-1-Mediated Lipogenesis as Potential Strategies for Cancer. Front Oncol 2022; 12:952371. [PMID: 35912181 PMCID: PMC9330218 DOI: 10.3389/fonc.2022.952371] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Sterol regulatory element binding protein-1 (SREBP-1), a transcription factor with a basic helix–loop–helix leucine zipper, has two isoforms, SREBP-1a and SREBP-1c, derived from the same gene for regulating the genes of lipogenesis, including acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase. Importantly, SREBP-1 participates in metabolic reprogramming of various cancers and has been a biomarker for the prognosis or drug efficacy for the patients with cancer. In this review, we first introduced the structure, activation, and key upstream signaling pathway of SREBP-1. Then, the potential targets and molecular mechanisms of SREBP-1-regulated lipogenesis in various types of cancer, such as colorectal, prostate, breast, and hepatocellular cancer, were summarized. We also discussed potential therapies targeting the SREBP-1-regulated pathway by small molecules, natural products, or the extracts of herbs against tumor progression. This review could provide new insights in understanding advanced findings about SREBP-1-mediated lipogenesis in cancer and its potential as a target for cancer therapeutics.
Collapse
Affiliation(s)
- Qiushi Zhao
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Xingyu Lin
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Xingyu Lin, ; Guan Wang,
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- *Correspondence: Xingyu Lin, ; Guan Wang,
| |
Collapse
|
39
|
Seo B, Coates D, Lewis J, Seymour G, Rich A. Unfolded protein response is involved in the metabolic and apoptotic regulation of oral squamous cell carcinoma. Pathology 2022; 54:874-881. [DOI: 10.1016/j.pathol.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022]
|
40
|
Zhang C, Zhu N, Li H, Gong Y, Gu J, Shi Y, Liao D, Wang W, Dai A, Qin L. New dawn for cancer cell death: Emerging role of lipid metabolism. Mol Metab 2022; 63:101529. [PMID: 35714911 PMCID: PMC9237930 DOI: 10.1016/j.molmet.2022.101529] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/30/2022] [Accepted: 06/11/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Resistance to cell death, a protective mechanism for removing damaged cells, is a "Hallmark of Cancer" that is essential for cancer progression. Increasing attention to cancer lipid metabolism has revealed a number of pathways that induce cancer cell death. SCOPE OF REVIEW We summarize emerging concepts regarding lipid metabolic reprogramming in cancer that is mainly involved in lipid uptake and trafficking, de novo synthesis and esterification, fatty acid synthesis and oxidation, lipogenesis, and lipolysis. During carcinogenesis and progression, continuous metabolic adaptations are co-opted by cancer cells, to maximize their fitness to the ever-changing environmental. Lipid metabolism and the epigenetic modifying enzymes interact in a bidirectional manner which involves regulating cancer cell death. Moreover, lipids in the tumor microenvironment play unique roles beyond metabolic requirements that promote cancer progression. Finally, we posit potential therapeutic strategies targeting lipid metabolism to improve treatment efficacy and survival of cancer patient. MAJOR CONCLUSIONS The profound comprehension of past findings, current trends, and future research directions on resistance to cancer cell death will facilitate the development of novel therapeutic strategies targeting the lipid metabolism.
Collapse
Affiliation(s)
- Chanjuan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Neng Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, PR China
| | - Hongfang Li
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Yongzhen Gong
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Jia Gu
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Yaning Shi
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Duanfang Liao
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Aiguo Dai
- Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Province Engineering Research Center of Bioactive Substance Discovery of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| |
Collapse
|
41
|
Crocco M, Verrico A, Milanaccio C, Piccolo G, De Marco P, Gaggero G, Iurilli V, Di Profio S, Malerba F, Panciroli M, Giordano P, Calevo MG, Casalini E, Di Iorgi N, Garrè ML. Dyslipidemia in Children Treated with a BRAF Inhibitor for Low-Grade Gliomas: A New Side Effect? Cancers (Basel) 2022; 14:2693. [PMID: 35681673 PMCID: PMC9179293 DOI: 10.3390/cancers14112693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
BRAF inhibitors, in recent years, have played a central role in the disease control of unresectable BRAF-mutated pediatric low-grade gliomas (LGGs). The aim of the study was to investigate the acute and long-term effects of vemurafenib on the lipid metabolism in children treated for an LGG. In our cohort, children treated with vemurafenib (n = 6) exhibited alterations in lipid metabolism a few weeks after starting, as was demonstrated after 1 month (n = 4) by the high plasma levels of the total cholesterol (TC = 221.5 ± 42.1 mg/dL), triglycerides (TG = 107.8 ± 44.4 mg/dL), and low-density lipoprotein (LDL = 139.5 ± 51.5 mg/dL). Despite dietary recommendations, the dyslipidemia persisted over time. The mean lipid levels of the TC (222.3 ± 34.7 mg/dL), TG (134.8 ± 83.6 mg/dL), and LDL (139.8 ± 46.9 mg/dL) were confirmed abnormal at the last follow-up (45 ± 27 months, n = 6). Vemurafenib could be associated with an increased risk of dyslipidemia. An accurate screening strategy in new clinical trials, and a multidisciplinary team, are required for the optimal management of unexpected adverse events, including dyslipidemia.
Collapse
Affiliation(s)
- Marco Crocco
- Neuroncology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (A.V.); (C.M.); (G.P.); (M.L.G.)
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, 16132 Genova, Italy; (F.M.); (M.P.); (P.G.); (E.C.); (N.D.I.)
| | - Antonio Verrico
- Neuroncology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (A.V.); (C.M.); (G.P.); (M.L.G.)
| | - Claudia Milanaccio
- Neuroncology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (A.V.); (C.M.); (G.P.); (M.L.G.)
| | - Gianluca Piccolo
- Neuroncology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (A.V.); (C.M.); (G.P.); (M.L.G.)
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, 16132 Genova, Italy; (F.M.); (M.P.); (P.G.); (E.C.); (N.D.I.)
| | - Patrizia De Marco
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Gabriele Gaggero
- Department of Clinical Pathology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Valentina Iurilli
- Pharmacy Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Sonia Di Profio
- Clinical Psychology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Federica Malerba
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, 16132 Genova, Italy; (F.M.); (M.P.); (P.G.); (E.C.); (N.D.I.)
| | - Marta Panciroli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, 16132 Genova, Italy; (F.M.); (M.P.); (P.G.); (E.C.); (N.D.I.)
| | - Paolo Giordano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, 16132 Genova, Italy; (F.M.); (M.P.); (P.G.); (E.C.); (N.D.I.)
| | - Maria Grazia Calevo
- Epidemiology and Biostatistics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Emilio Casalini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, 16132 Genova, Italy; (F.M.); (M.P.); (P.G.); (E.C.); (N.D.I.)
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Natascia Di Iorgi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, 16132 Genova, Italy; (F.M.); (M.P.); (P.G.); (E.C.); (N.D.I.)
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Maria Luisa Garrè
- Neuroncology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (A.V.); (C.M.); (G.P.); (M.L.G.)
| |
Collapse
|
42
|
Luo SD, Tsai HT, Chiu TJ, Li SH, Hsu YL, Su LJ, Tsai MH, Lee CY, Hsiao CC, Chen CH. Leptin Silencing Attenuates Lipid Accumulation through Sterol Regulatory Element-Binding Protein 1 Inhibition in Nasopharyngeal Carcinoma. Int J Mol Sci 2022; 23:ijms23105700. [PMID: 35628510 PMCID: PMC9146162 DOI: 10.3390/ijms23105700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/10/2022] Open
Abstract
Leptin is a crucial regulator of metabolism and energy homeostasis in mammals. Many studies have investigated the impacts of leptin on human cancers, such as proliferation and metastasis. However, the mechanisms underlying leptin-mediated regulation of lipid metabolism in nasopharyngeal carcinoma (NPC) remain incompletely understood. In the current study, leptin downregulation ameliorated lipid accumulation, triglyceride, and cholesterol levels. Mechanistically, diminished leptin by siRNA not only inhibited sterol regulatory element-binding protein 1 (SREBP1), a master regulator of lipid metabolism, at the mRNA and protein levels, but also reduced SREBP1 downstream target expressions, such as fatty acid synthase (FASN) and stearoyl-CoA desaturase-1 (SCD1), in NPC cells. In addition, leptin expression could modulate the promoter activity of SREBP1. We also found that pharmacological inhibition of poly-ADP ribose polymerase-γ (PPAR-γ) resulted in increased SREBP1 expression in leptin-depleted NPC cells. Functionally, SREBP1 overexpression overcame the effects of leptin-silencing attenuated triglyceride level, cholesterol level and cell survival in NPC cells. Taken together, our results demonstrate that leptin is an important regulator of lipid metabolism in NPC cells and might could be a potential therapeutic target for treatment of NPC patients.
Collapse
Affiliation(s)
- Sheng-Dean Luo
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (S.-D.L.); (Y.-L.H.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Hsin-Ting Tsai
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan; (H.-T.T.); (C.-Y.L.)
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Tai-Jan Chiu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Shau-Hsuan Li
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Ya-Ling Hsu
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (S.-D.L.); (Y.-L.H.)
| | - Li-Jen Su
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 32001, Taiwan; (L.-J.S.); (M.-H.T.)
- Education and Research Center for Technology Assisted Substance Abuse Prevention and Management, College of Health Science and Technology, National Central University, Taoyuan 32001, Taiwan
| | - Meng-Hsiu Tsai
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 32001, Taiwan; (L.-J.S.); (M.-H.T.)
- Education and Research Center for Technology Assisted Substance Abuse Prevention and Management, College of Health Science and Technology, National Central University, Taoyuan 32001, Taiwan
| | - Ching-Yi Lee
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan; (H.-T.T.); (C.-Y.L.)
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chang-Chun Hsiao
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Correspondence: (C.-C.H.); (C.-H.C.); Tel.: +886-7-7317123 (ext. 8979) (C.-C.H.); +886-4-24730022 (ext. 12189) (C.-H.C.)
| | - Chang-Han Chen
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan; (H.-T.T.); (C.-Y.L.)
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Correspondence: (C.-C.H.); (C.-H.C.); Tel.: +886-7-7317123 (ext. 8979) (C.-C.H.); +886-4-24730022 (ext. 12189) (C.-H.C.)
| |
Collapse
|
43
|
Yang R, Yi M, Xiang B. Novel Insights on Lipid Metabolism Alterations in Drug Resistance in Cancer. Front Cell Dev Biol 2022; 10:875318. [PMID: 35646898 PMCID: PMC9136290 DOI: 10.3389/fcell.2022.875318] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/13/2022] [Indexed: 12/26/2022] Open
Abstract
Chemotherapy is one of the primary treatments for most human cancers. Despite great progress in cancer therapeutics, chemotherapy continues to be important for improving the survival of cancer patients, especially for those who has unresectable metastatic tumors or fail to respond to immunotherapy. However, intrinsic or acquired chemoresistance results in tumor recurrence, which remains a major obstacle in anti-cancer treatment. The high prevalence of chemoresistant cancer makes it urgent to deepen our understanding on chemoresistance mechanisms and to develop novel therapeutic strategies. Multiple mechanisms, including drug efflux, enhanced DNA damage reparability, increased detoxifying enzymes levels, presence of cancer stem cells (CSCs), epithelial mesenchymal transition (EMT), autophagy, ferroptosis and resistance to apoptosis, underlie the development of chemoresistance. Recently, accumulating evidence suggests that lipid metabolism alteration is closely related to drug resistance in tumor. Targeting lipid metabolism in combination with traditional chemotherapeutic drugs is a promising strategy to overcome drug resistance. Therefore, this review compiles the current knowledge about aberrant lipid metabolism in chemoresistant cancer, mainly focusing on aberrant fatty acid metabolism, and presents novel therapeutic strategies targeting altered lipid metabolism to overcome chemoresistance in cancer.
Collapse
Affiliation(s)
- Ruixue Yang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hypertension Center, FuWai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Mei Yi
- Department of Dermatology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
44
|
Menendez JA, Lupu R. Fatty acid synthase: A druggable driver of breast cancer brain metastasis. Expert Opin Ther Targets 2022; 26:427-444. [PMID: 35545806 DOI: 10.1080/14728222.2022.2077189] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Brain metastasis (BrM) is a key contributor to morbidity and mortality in breast cancer patients, especially among high-risk epidermal growth factor receptor 2-positive (HER2+) and triple-negative/basal-like molecular subtypes. Optimal management of BrM is focused on characterizing a "BrM dependency map" to prioritize targetable therapeutic vulnerabilities. AREAS COVERED We review recent studies addressing the targeting of BrM in the lipid-deprived brain environment, which selects for brain-tropic breast cancer cells capable of cell-autonomously generating fatty acids by upregulating de novo lipogenesis via fatty acid synthase (FASN). Disruption of FASN activity impairs breast cancer growth in the brain, but not extracranially, and mapping of the molecular causes of organ-specific patterns of metastasis has uncovered an enrichment of lipid metabolism signatures in brain metastasizing cells. Targeting SREBP1-the master regulator of lipogenic gene transcription-curtails the ability of breast cancer cells to survive in the brain microenvironment. EXPERT OPINION Targeting FASN represents a new therapeutic opportunity for patients with breast cancer and BrM. Delivery of brain-permeable FASN inhibitors and identifying strategies to target metabolic plasticity that might compensate for impaired brain FASN activity are two potential roadblocks that may hinder FASN-centered strategies against BrM.
Collapse
Affiliation(s)
- Javier A Menendez
- Metabolism and Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
| | - Ruth Lupu
- Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Mayo Clinic, Rochester, MN 55905, USA.,Department of Biochemistry and Molecular Biology Laboratory, Mayo Clinic Minnesota, Rochester, MN 55905, USA.,Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| |
Collapse
|
45
|
The mevalonate pathway in breast cancer biology. Cancer Lett 2022; 542:215761. [DOI: 10.1016/j.canlet.2022.215761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023]
|
46
|
Timosaponin A3 Inhibits Palmitate and Stearate through Suppression of SREBP-1 in Pancreatic Cancer. Pharmaceutics 2022; 14:pharmaceutics14050945. [PMID: 35631531 PMCID: PMC9147344 DOI: 10.3390/pharmaceutics14050945] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 12/13/2022] Open
Abstract
Timosaponin A3 (TA3) was demonstrated as a potent anticancer chemical by several studies. Although the effects of inhibiting growth, metastasis, and angiogenesis in various cancer cells were demonstrated through multiple mechanisms, the pharmacological mechanism of TA3 shown in pancreatic cancer (PC) is insufficient compared to other cancers. In this study, we aimed to explore the key molecular mechanisms underlying the growth inhibitory effects of TA3 using PC cells and a xenograft model. First, from the microarray results, we found that TA3 regulated INSIG-1 and HMGCR in BxPC-3 cells. Furthermore, we showed that inhibition of sterol regulatory element-binding protein-1 (SREBP-1) by TA3 reduced the fatty acid synthases FASN and ACC, thereby controlling the growth of BxPC-3 cells. We also tried to find mechanisms involved with SREBP-1, such as Akt, Gsk3β, mTOR, and AMPK, but these were not related to SREBP-1 inhibition by TA3. In the BxPC-3 xenograft model, the TA3 group had more reduced tumor formation and lower toxicity than the gemcitabine group. Interestingly, the level of the fatty acid metabolites palmitate and stearate were significantly reduced in the tumor tissue in the TA3 group. Overall, our study demonstrated that SREBP-1 was a key transcription factor involved in pancreatic cancer growth and it remained a precursor form due to TA3, reducing the adipogenesis and growth in BxPC-3 cells. Our results improve our understanding of novel mechanisms of TA3 for the regulation of lipogenesis and provide a new approach to the prevention and treatment of PC.
Collapse
|
47
|
Yang Z, Hu N, Wang W, Hu W, Zhou S, Shi J, Li M, Jing Z, Chen C, Zhang X, Yang R, Fu X, Wang X. Loss of FBXW7 Correlates with Increased IDH1 Expression in Glioma and Enhances IDH1-Mutant Cancer Cell Sensitivity to Radiation. Cancer Res 2022; 82:497-509. [PMID: 34737211 DOI: 10.1158/0008-5472.can-21-0384] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/20/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022]
Abstract
F-box and WD repeat domain containing 7 (FBXW7) is a substrate receptor of the ubiquitin ligase SKP1-Cullin1-F-box complex and a potent tumor suppressor that prevents unregulated cell growth and tumorigenesis. However, little is known about FBXW7-mediated control of cell metabolism and related functions in cancer therapy. Here, we report that FBXW7 expression inversely correlates with the expression levels of the key metabolic enzyme isocitrate dehydrogenase 1 (IDH1) in patients with glioma and public glioma datasets. Deletion of FBXW7 significantly increased both wild-type (WT) and mutant IDH1 expression, which was mediated by blocking degradation of sterol regulatory element binding protein 1 (SREBP1). The upregulation of neomorphic mutant IDH1 by FBXW7 deletion stimulated production of the oncometabolite 2-hydroxyglutarate at the expense of increasing pentose phosphate pathway activity and NADPH consumption, limiting the buffering ability against radiation-induced oxidative stress. In addition, FBXW7 knockout and IDH1 mutations induced nonhomologous end joining and homologous recombination defects, respectively. In vitro and in vivo, loss of FBXW7 dramatically enhanced the efficacy of radiation treatment in IDH1-mutant cancer cells. Taken together, this work identifies FBXW7 deficiency as a potential biomarker representing both DNA repair and metabolic vulnerabilities that sensitizes IDH1-mutant cancers to radiotherapy. SIGNIFICANCE: Deficiency of FBXW7 causes defects in DNA repair and disrupts NADPH homeostasis in IDH1-mutant glioma cells, conferring high sensitivity to radiotherapy.
Collapse
Affiliation(s)
- Zhuo Yang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, P.R. China
| | - Nan Hu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, P.R. China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Weihua Hu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, P.R. China
| | - Shaolong Zhou
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, P.R. China
| | - Jianxiang Shi
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, P.R. China
| | - Minghe Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, P.R. China
| | - Zhou Jing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, P.R. China
| | - Chao Chen
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, P.R. China
| | - Xuyang Zhang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Ruyi Yang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, P.R. China
| | - Xudong Fu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China.
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, P.R. China
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China.
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, P.R. China
| |
Collapse
|
48
|
Aird R, Wills J, Roby KF, Bénézech C, Stimson RH, Wabitsch M, Pollard JW, Finch A, Michailidou Z. Hypoxia-driven metabolic reprogramming of adipocytes fuels cancer cell proliferation. Front Endocrinol (Lausanne) 2022; 13:989523. [PMID: 36329893 PMCID: PMC9623062 DOI: 10.3389/fendo.2022.989523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/15/2022] [Indexed: 12/05/2022] Open
Abstract
OBJECTIVE Obesity increases the risk of certain cancers, especially tumours that reside close to adipose tissue (breast and ovarian metastasis in the omentum). The obesogenic and tumour micro-environment share a common pathogenic feature, oxygen deprivation (hypoxia). Here we test how hypoxia changes the metabolome of adipocytes to assist cancer cell growth. METHODS Human and mouse breast and ovarian cancer cell lines were co-cultured with human and mouse adipocytes respectively under normoxia or hypoxia. Proliferation and lipid uptake in cancer cells were measured by commercial assays. Metabolite changes under normoxia or hypoxia were measured in the media of human adipocytes by targeted LC/MS. RESULTS Hypoxic cancer-conditioned media increased lipolysis in both human and mouse adipocytes. This led to increased transfer of lipids to cancer cells and consequent increased proliferation under hypoxia. These effects were dependent on HIF1α expression in adipocytes, as mouse adipocytes lacking HIF1α showed blunted responses under hypoxic conditions. Targeted metabolomics of the human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes media revealed that culture with hypoxic-conditioned media from non-malignant mammary epithelial cells (MCF10A) can alter the adipocyte metabolome and drive proliferation of the non-malignant cells. CONCLUSION Here, we show that hypoxia in the adipose-tumour microenvironment is the driving force of the lipid uptake in both mammary and ovarian cancer cells. Hypoxia can modify the adipocyte metabolome towards accelerated lipolysis, glucose deprivation and reduced ketosis. These metabolic shifts in adipocytes could assist both mammary epithelial and cancer cells to bypass the inhibitory effects of hypoxia on proliferation and thrive.
Collapse
Affiliation(s)
- R. Aird
- University/British Heart Foundation (BHF) Centre for Cardiovascular Science, Edinburgh University, Edinburgh, United Kingdom
| | - J. Wills
- MRC Institute of Genetics and Molecular Medicine, Edinburgh University, Edinburgh, United Kingdom
| | - K. F. Roby
- University of Kansas Medical Center, Kansas City, Kansas, KS, United States
| | - C. Bénézech
- University/British Heart Foundation (BHF) Centre for Cardiovascular Science, Edinburgh University, Edinburgh, United Kingdom
| | - R. H. Stimson
- University/British Heart Foundation (BHF) Centre for Cardiovascular Science, Edinburgh University, Edinburgh, United Kingdom
| | - M. Wabitsch
- University Medical Center Department of Pediatrics and Adolescent Medicine, Ulm, Germany
| | - J. W. Pollard
- Medical Research Council (MRC) Centre for Reproductive Health, Edinburgh University, Edinburgh, United Kingdom
| | - A. Finch
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Z. Michailidou
- University/British Heart Foundation (BHF) Centre for Cardiovascular Science, Edinburgh University, Edinburgh, United Kingdom
- *Correspondence: Z. Michailidou,
| |
Collapse
|
49
|
Coradini D. De novo cholesterol biosynthesis: an additional therapeutic target for the treatment of postmenopausal breast cancer with excessive adipose tissue. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:841-852. [PMID: 36654818 PMCID: PMC9834634 DOI: 10.37349/etat.2022.00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/08/2022] [Indexed: 12/29/2022] Open
Abstract
The onset and development of breast cancer in postmenopausal women are associated with closely related individual-dependent factors, including weight gain and high levels of circulating androgens. Adipose tissue is the most peripheral site of aromatase enzyme synthesis; therefore, the excessive accumulation of visceral fat results in increased androgens aromatization and estradiol production that provides the microenvironment favorable to tumorigenesis in mammary epithelial cells expressing estrogen receptors (ERs). Moreover, to meet the increased requirement of cholesterol for cell membrane assembly and the production of steroid hormones to sustain their proliferation, ER-positive cells activate de novo cholesterol biosynthesis and subsequent steroidogenesis. Several approaches have been followed to neutralize the de novo cholesterol synthesis, including specific enzyme inhibitors, statins, and, more recently, metformin. Cumulating evidence indicated that inhibiting cholesterol biosynthesis by statins and metformin may be a promising therapeutic strategy to block breast cancer progression. Unlike antiestrogens and aromatase inhibitors (AIs) which compete for binding to ER and inhibit androgens aromatization, respectively, statins block the production of mevalonic acid by inhibiting the activity of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, and metformin hampers the activation of the sterol regulatory element-binding protein 2 (SREBP2) transcription factor, thus inhibiting the synthesis of several enzymes involved in cholesterol biosynthesis. Noteworthy, statins and metformin not only improve the prognosis of overweight patients with ER-positive cancer but also improve the prognosis of patients with triple-negative breast cancer, the aggressive tumor subtype that lacks, at present, specific therapy.
Collapse
Affiliation(s)
- Danila Coradini
- Department of Clinical Sciences and Community Health, Campus Cascina Rosa, University of Milan, 20133 Milan, Italy,Correspondence: Danila Coradini, Department of Clinical Sciences and Community Health, Campus Cascina Rosa, University of Milan, Via Vanzetti 5, 20133 Milan, Italy.
| |
Collapse
|
50
|
Jing J, Sun J, Wu Y, Zhang N, Liu C, Chen S, Li W, Hong C, Xu B, Chen M. AQP9 Is a Prognostic Factor for Kidney Cancer and a Promising Indicator for M2 TAM Polarization and CD8+ T-Cell Recruitment. Front Oncol 2021; 11:770565. [PMID: 34804972 PMCID: PMC8602816 DOI: 10.3389/fonc.2021.770565] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022] Open
Abstract
Background It is undeniable that the tumor microenvironment (TME) plays an indispensable role in the progression of kidney renal clear cell carcinoma (KIRC). However, the precise mechanism of activities in TME is still unclear. Methods and Results Using the CIBERSORT and ESTIMATE calculation methods, the scores of the two main fractions of tumor-infiltrating immune cells (TICs) from The Cancer Genome Atlas (TCGA) database of 537 KIRC patients were calculated. Subsequently, differentially expressed genes (DEGs) were drawn out by performing an overlap between Cox regression analysis and protein–protein interaction (PPI) network. Aquaporin 9 (AQP9) was identified as a latent predictor through the process. Following research revealed that AQP9 expression was positively correlated with the pathological characteristics (TNM stage) and negatively connected with survival time. Then, by performing gene set enrichment analysis (GSEA), it can be inferred that genes with high expression level of AQP9 were mainly enriched in immune-related activities, while low AQP9 group was associated with functions of cellular metabolism. Further studies have shown that regulatory T cells (Tregs), macrophages M2, macrophages M0, CD4+ T cells, and neutrophils were positively correlated with AQP9 expression. While the levels of mast cells, natural killer (NK) cells, and CD8+ T cells are negatively correlated with AQP9. The result of multiple immunohistochemistry (mIHC) suggests a negative relevance between AQP9 and CD8+ T cells and reveals a trend of consistent change on AQP9 and M2 macrophages. Conclusion The expression level of AQP9 may be helpful in predicting the prognosis of patients with KIRC, especially to the TME state transition, the mechanism of which is possibly through lipid metabolism and P53, Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathways that affect M2 polarization. AQP9 was associated with the expression levels of M2, tumor-associated macrophages (TAMs), and the recruitment of CD8+ T cells in tumor environment. The research result indicates that AQP9 may be an obstacle to maintain the immune activity of TME.
Collapse
Affiliation(s)
- Jibo Jing
- Institute of Urology, Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Jin Sun
- Department of Urology, People's Hospital of Xuyi County, Nanjing, China
| | - Yuqing Wu
- Institute of Urology, Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Nieke Zhang
- Institute of Urology, Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Chunhui Liu
- Institute of Urology, Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Saisai Chen
- Institute of Urology, Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Wenchao Li
- Institute of Urology, Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Cheng Hong
- Institute of Urology, Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Bin Xu
- Institute of Urology, Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Ming Chen
- Institute of Urology, Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| |
Collapse
|