1
|
Liu S, Zhang X, Wang W, Li X, Sun X, Zhao Y, Wang Q, Li Y, Hu F, Ren H. Metabolic reprogramming and therapeutic resistance in primary and metastatic breast cancer. Mol Cancer 2024; 23:261. [PMID: 39574178 PMCID: PMC11580516 DOI: 10.1186/s12943-024-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024] Open
Abstract
Metabolic alterations, a hallmark of cancer, enable tumor cells to adapt to their environment by modulating glucose, lipid, and amino acid metabolism, which fuels rapid growth and contributes to treatment resistance. In primary breast cancer, metabolic shifts such as the Warburg effect and enhanced lipid synthesis are closely linked to chemotherapy failure. Similarly, metastatic lesions often display distinct metabolic profiles that not only sustain tumor growth but also confer resistance to targeted therapies and immunotherapies. The review emphasizes two major aspects: the mechanisms driving metabolic resistance in both primary and metastatic breast cancer, and how the unique metabolic environments in metastatic sites further complicate treatment. By targeting distinct metabolic vulnerabilities at both the primary and metastatic stages, new strategies could improve the efficacy of existing therapies and provide better outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Shan Liu
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xingda Zhang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenzheng Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Sun
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuqian Zhao
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qi Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingpu Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Fangjie Hu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - He Ren
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
2
|
Feng D, Pu D, Ren J, Liu M, Zhang Z, Liu Z, Li J. CD8 + T-cell exhaustion: Impediment to triple-negative breast cancer (TNBC) immunotherapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189193. [PMID: 39413858 DOI: 10.1016/j.bbcan.2024.189193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/16/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
CD8+ T-cell exhaustion has been identified as a significant contributor to immunosuppression and immune escape in triple-negative breast cancer (TNBC). Dysfunction due to cell exhaustion is characterized by reduced effector capacity and sustained expression of inhibitory receptors (IRs). The factors contributing to CD8+ T-cell exhaustion are multifaceted, encompassing external influences such as the upregulation of IRs, reduction of effector cytokines, and internal changes within the immune cell, including transcriptomic alterations, epigenetic landscape remodeling, and metabolomic shifts. The impact of the altered TNBC tumor microenvironment (TME) on Tex is also a critical consideration. The production of exhausted CD8+ T-cells (CD8+ Tex) is positively correlated with poor prognosis and reduced response rates to immunotherapy in TNBC patients, underscoring the urgent need for the development of novel TNBC immunotherapeutic strategies that target the mechanisms of CD8+ T-cell exhaustion. This review delineates the dynamic trajectory of CD8+ T-cell exhaustion development in TNBC, provides an update on the latest research advancements in understanding its pathogenesis, and offers insights into potential immunotherapeutic strategies.
Collapse
Affiliation(s)
- Dandan Feng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dongqing Pu
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China
| | - Jinlu Ren
- Shandong Xiandai University, Jinan 250104, China
| | - Ming Liu
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China
| | - Zhen Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhiyong Liu
- Central Laboratory, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China; Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Jinan 250014, China.
| | - Jingwei Li
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China.
| |
Collapse
|
3
|
Xia A, Wan J, Li X, Quan J, Chen X, Xu Z, Jiao X. M. tb Rv0927c suppresses the activation of HIF-1α pathway through VHL-mediated ubiquitination and NF-κB/COX-2 pathway to enhance mycobacteria survival. Microbiol Res 2024; 278:127529. [PMID: 37922696 DOI: 10.1016/j.micres.2023.127529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/24/2023] [Accepted: 10/15/2023] [Indexed: 11/07/2023]
Abstract
Mycobacterium tuberculosis (M. tuberculosis), the causative agent of tuberculosis, employs various effector proteins to target and modulate host defenses. Our previous study showed that M. tuberculosis protein Rv0927c can promote the survival of intracellular mycobacteria, but the underlying mechanisms remain poorly understood. Here, we found that Rv0927c inhibited Mycobacterium smegmatis (M. smegmatis) induced hypoxia-inducible factor-1α (HIF-1α) activation in macrophages, and HIF-1α is required for Rv0927c to promote mycobacteria survival. Western blot analysis showed that Rv0927c promoted the proteasomal degradation of HIF-1α via Von Hippel-Lindau (VHL)-mediated ubiquitination and inhibited the nuclear localization of HIF-1α through the NF-κB/COX-2 pathway, thereby suppressing HIF-1α pathway activation. Furthermore, Rv0927c suppressed the host glycolytic metabolism, which is known to be regulated by HIF-1α and depended on the glycolysis process to promote mycobacterial survival. Our findings provide evidence that Rv0927c inhibits the activation of HIF-1α pathway, allowing pathogens to evade host immune responses, suggesting that targeting Rv0927c or HIF-1α might be a potential anti-tuberculosis therapy.
Collapse
Affiliation(s)
- Aihong Xia
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jiaxu Wan
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry Of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Xin Li
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry Of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Juanjuan Quan
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry Of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Zhengzhong Xu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry Of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China.
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry Of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
4
|
Wei X, Michelakos T, He Q, Wang X, Chen Y, Kontos F, Wang H, Liu X, Liu H, Zheng W, Ferrone S, Zhang Y, Ferrone CR, Li X, Cai L. Association of Tumor Cell Metabolic Subtype and Immune Response With the Clinical Course of Hepatocellular Carcinoma. Oncologist 2023; 28:e1031-e1042. [PMID: 37159555 PMCID: PMC10628596 DOI: 10.1093/oncolo/oyad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/15/2023] [Indexed: 05/11/2023] Open
Abstract
AIM Tumor metabolism plays an important role in tumorigenesis and tumor progression. This study evaluated the potential association of tumor cell metabolism and immune cell tumor infiltration with the clinical course of hepatocellular carcinoma (HCC). METHODS Gene-wise normalization and principal component analysis were performed to evaluate the metabolic system. A tumor microenvironment score system of tumor immune cell infiltration was constructed to evaluate its association with metabolic subtypes. Finally, we analyzed the impact of metabolism and immune cell infiltration on the clinical course of HCC. RESULTS A total of 673 HCC patients were categorized into cholesterogenic (25.3%), glycolytic (14.6%), mixed (10.4%), and quiescent (49.8%) types based on glycolysis and cholesterol biosynthesis gene expression. The subgroups including the glycolytic genotyping expression (glycolytic and mixed types) showed a higher mortality rate. The glycolytic, cholesterogenic, and mixed types were positively correlated with M0 macrophage, resting mast cell, and naïve B-cell infiltration (P = .013, P = .019, and P = .006, respectively). In TCGA database, high CD8+ T cell and low M0 macrophage infiltration were associated with prolonged overall survival (OS, P = .0017 and P < .0001, respectively). Furthermore, in glycolytic and mixed types, patients with high M0 macrophage infiltration had a shorter OS (P = .03 and P = .013, respectively), and in quiescent type, patients with low naïve B-cell infiltration had a longer OS (P = .007). CONCLUSIONS Tumor metabolism plays a prognostic role and correlates with immune cell infiltration in HCC. M0 macrophage and CD8+ T cell appear to be promising prognostic biomarker for HCC. Finally, M0 macrophages may represent a useful immunotherapeutic target in patients with HCC.
Collapse
Affiliation(s)
- Xiaolin Wei
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases and Carson International Cancer Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Theodoros Michelakos
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Qian He
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases and Carson International Cancer Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Xianxing Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, People’s Republic of China
| | - Yu Chen
- Department of Digestive Diseases, Shanghai Fourth People’s Hospital Affiliated to Tongji University, Shanghai, People’s Republic of China
| | - Filippos Kontos
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, People’s Republic of China
| | - Xiangde Liu
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases and Carson International Cancer Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Hui Liu
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases and Carson International Cancer Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Wenjing Zheng
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases and Carson International Cancer Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yun Zhang
- Department of Foreign Languages, Army Medical University, Chongqing, People’s Republic of China
| | - Cristina R Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Cedar-Sinai Health System, Los Angeles, CA, USA
| | - Xiaowu Li
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases and Carson International Cancer Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Lei Cai
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, People’s Republic of China
| |
Collapse
|
5
|
Gnanaprakasam JNR, Kushwaha B, Liu L, Chen X, Kang S, Wang T, Cassel TA, Adams CM, Higashi RM, Scott DA, Xin G, Li Z, Yang J, Lane AN, Fan TWM, Zhang J, Wang R. Asparagine restriction enhances CD8 + T cell metabolic fitness and antitumoral functionality through an NRF2-dependent stress response. Nat Metab 2023; 5:1423-1439. [PMID: 37550596 PMCID: PMC10447245 DOI: 10.1038/s42255-023-00856-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 07/05/2023] [Indexed: 08/09/2023]
Abstract
Robust and effective T cell immune surveillance and cancer immunotherapy require proper allocation of metabolic resources to sustain energetically costly processes, including growth and cytokine production. Here, we show that asparagine (Asn) restriction on CD8+ T cells exerted opposing effects during activation (early phase) and differentiation (late phase) following T cell activation. Asn restriction suppressed activation and cell cycle entry in the early phase while rapidly engaging the nuclear factor erythroid 2-related factor 2 (NRF2)-dependent stress response, conferring robust proliferation and effector function on CD8+ T cells during differentiation. Mechanistically, NRF2 activation in CD8+ T cells conferred by Asn restriction rewired the metabolic program by reducing the overall glucose and glutamine consumption but increasing intracellular nucleotides to promote proliferation. Accordingly, Asn restriction or NRF2 activation potentiated the T cell-mediated antitumoral response in preclinical animal models, suggesting that Asn restriction is a promising and clinically relevant strategy to enhance cancer immunotherapy. Our study revealed Asn as a critical metabolic node in directing the stress signaling to shape T cell metabolic fitness and effector functions.
Collapse
Affiliation(s)
- J N Rashida Gnanaprakasam
- Center for Childhood Cancer, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics at The Ohio State University, Columbus, OH, USA
| | - Bhavana Kushwaha
- Center for Childhood Cancer, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics at The Ohio State University, Columbus, OH, USA
| | - Lingling Liu
- Center for Childhood Cancer, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics at The Ohio State University, Columbus, OH, USA
| | - Xuyong Chen
- Center for Childhood Cancer, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics at The Ohio State University, Columbus, OH, USA
| | - Siwen Kang
- Center for Childhood Cancer, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics at The Ohio State University, Columbus, OH, USA
| | - Tingting Wang
- Center for Childhood Cancer, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics at The Ohio State University, Columbus, OH, USA
| | - Teresa A Cassel
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Christopher M Adams
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - Richard M Higashi
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - David A Scott
- Cancer Metabolism Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Gang Xin
- Department of Microbial Infection and Immunity, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, USA
| | - Zihai Li
- Department of Microbial Infection and Immunity, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, USA
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Teresa W-M Fan
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Ji Zhang
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ruoning Wang
- Center for Childhood Cancer, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics at The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
6
|
Polinário G, Primo LMDG, Rosa MABC, Dett FHM, Barbugli PA, Roque-Borda CA, Pavan FR. Antimicrobial peptides as drugs with double response against Mycobacterium tuberculosis coinfections in lung cancer. Front Microbiol 2023; 14:1183247. [PMID: 37342560 PMCID: PMC10277934 DOI: 10.3389/fmicb.2023.1183247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Tuberculosis and lung cancer are, in many cases, correlated diseases that can be confused because they have similar symptoms. Many meta-analyses have proven that there is a greater chance of developing lung cancer in patients who have active pulmonary tuberculosis. It is, therefore, important to monitor the patient for a long time after recovery and search for combined therapies that can treat both diseases, as well as face the great problem of drug resistance. Peptides are molecules derived from the breakdown of proteins, and the membranolytic class is already being studied. It has been proposed that these molecules destabilize cellular homeostasis, performing a dual antimicrobial and anticancer function and offering several possibilities of adaptation for adequate delivery and action. In this review, we focus on two important reason for the use of multifunctional peptides or peptides, namely the double activity and no harmful effects on humans. We review some of the main antimicrobial and anti-inflammatory bioactive peptides and highlight four that have anti-tuberculosis and anti-cancer activity, which may contribute to obtaining drugs with this dual functionality.
Collapse
Affiliation(s)
- Giulia Polinário
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | | | | | - Paula Aboud Barbugli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Fernando Rogério Pavan
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
7
|
Chen C, Wang Z, Ding Y, Qin Y. Manipulating T-cell metabolism to enhance immunotherapy in solid tumor. Front Immunol 2022; 13:1090429. [PMID: 36618408 PMCID: PMC9812959 DOI: 10.3389/fimmu.2022.1090429] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Cellular metabolism is not only essential for tumor cells to sustain their rapid growth and proliferation, but also crucial to maintain T cell fitness and robust immunity. Dysregulated metabolism has been recognized as a hallmark of cancer, which provides survival advantages for tumor cells under stress conditions. Also, emerging evidence suggests that metabolic reprogramming impacts the activation, differentiation, function, and exhaustion of T cells. Normal stimulation of resting T cells promotes the conversion of catabolic and oxidative metabolism to aerobic glycolysis in effector T cells, and subsequently back to oxidative metabolism in memory T cells. These metabolic transitions profoundly affect the trajectories of T-cell differentiation and fate. However, these metabolic events of T cells could be dysregulated by their interplays with tumor or the tumor microenvironment (TME). Importantly, metabolic competition in the tumor ecosystem is a new mechanism resulting in strong suppression of effector T cells. It is appreciated that targeting metabolic reprogramming is a promising way to disrupt the hypermetabolic state of tumor cells and enhance the capacity of immune cells to obtain nutrients. Furthermore, immunotherapies, such as immune checkpoint inhibitor (ICI), adoptive cell therapy (ACT), and oncolytic virus (OV) therapy, have significantly refashioned the clinical management of solid tumors, they are not sufficiently effective for all patients. Understanding how immunotherapy affects T cell metabolism provides a bright avenue to better modulate T cell anti-tumor response. In this review, we provide an overview of the cellular metabolism of tumor and T cells, provide evidence on their dynamic interaction, highlight how metabolic reprogramming of tumor and T cells regulate the anti-tumor responses, describe T cell metabolic patterns in the context of ICI, ACT, and OV, and propose hypothetical combination strategies to favor potent T cell functionality.
Collapse
|
8
|
Glutaminase inhibitors rejuvenate human skin via clearance of senescent cells: a study using a mouse/human chimeric model. Aging (Albany NY) 2022; 14:8914-8926. [PMID: 36435512 PMCID: PMC9740363 DOI: 10.18632/aging.204391] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022]
Abstract
Skin aging caused by various endogenous and exogenous factors results in structural and functional changes to skin components. However, the role of senescent cells in skin aging has not been clarified. To elucidate the function of senescent cells in skin aging, we evaluated the effects of the glutaminase inhibitor BPTES (bis-2-(5-phenylacetamido-1, 3, 4-thiadiazol-2-yl)ethyl sulfide) on human senescent dermal fibroblasts and aged human skin. Here, primary human dermal fibroblasts (HDFs) were induced to senescence by long-term passaging, ionizing radiation, and treatment with doxorubicin, an anticancer drug. Cell viability of HDFs was assessed after BPTES treatment. A mouse/human chimeric model was created by subcutaneously transplanting whole skin grafts from aged humans into nude mice. The model was treated intraperitoneally with BPTES or vehicle for 30 days. Skin samples were collected and subjected to reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blotting, and histological analysis. BPTES selectively eliminated senescent dermal fibroblasts regardless of the method used to induce senescence; aged human skin grafts treated with BPTES exhibited increased collagen density, increased cell proliferation in the dermis, and decreased aging-related secretory phenotypes, such as matrix metalloprotease and interleukin. These effects were maintained in the grafts 1 month after termination of the treatment. In conclusion, selective removal of senescent dermal fibroblasts can improve the skin aging phenotype, indicating that BPTES may be an effective novel therapeutic agent for skin aging.
Collapse
|
9
|
Pokrovsky VS, Abo Qoura L, Morozova E, Bunik VI. Predictive markers for efficiency of the amino-acid deprivation therapies in cancer. Front Med (Lausanne) 2022; 9:1035356. [PMID: 36405587 PMCID: PMC9669297 DOI: 10.3389/fmed.2022.1035356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Amino acid deprivation therapy (AADT) is a promising strategy for developing novel anticancer treatments, based on variations in metabolism of healthy and malignant cells. L-asparaginase was the first amino acid-degrading enzyme that received FDA approval for the treatment of acute lymphoblastic leukemia (ALL). Arginase and arginine deiminase were effective in clinical trials for the treatment of metastatic melanomas and hepatocellular carcinomas. Essential dependence of certain cancer cells on methionine explains the anticancer efficacy of methionine-g-lyase. Along with significant progress in identification of metabolic vulnerabilities of cancer cells, new amino acid-cleaving enzymes appear as promising agents for cancer treatment: lysine oxidase, tyrosine phenol-lyase, cysteinase, and phenylalanine ammonia-lyase. However, sensitivity of specific cancer cell types to these enzymes differs. Hence, search for prognostic and predictive markers for AADT and introduction of the markers into clinical practice are of great importance for translational medicine. As specific metabolic pathways in cancer cells are determined by the enzyme expression, some of these enzymes may define the sensitivity to AADT. This review considers the known predictors for efficiency of AADT, emphasizing the importance of knowledge on cancer-specific amino acid significance for such predictions.
Collapse
Affiliation(s)
- Vadim S. Pokrovsky
- Laboratory of Experimental Oncology, Research Institute of Molecular and Cellular Medicine, People’s Friendship University of Russia (RUDN University), Moscow, Russia
- Laboratory of Combined Treatment, N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation, Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia
- *Correspondence: Vadim S. Pokrovsky,
| | - Louay Abo Qoura
- Laboratory of Experimental Oncology, Research Institute of Molecular and Cellular Medicine, People’s Friendship University of Russia (RUDN University), Moscow, Russia
| | - Elena Morozova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Victoria I. Bunik
- A.N. Belozersky Institute of Physicochemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia
- Department of Biological Chemistry, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
10
|
Prabhu NB, Vinay CM, Satyamoorthy K, Rai PS. Pharmacogenomics deliberations of 2-deoxy-d-glucose in the treatment of COVID-19 disease: an in silico approach. 3 Biotech 2022; 12:287. [PMID: 36164436 PMCID: PMC9491670 DOI: 10.1007/s13205-022-03363-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
AbstractThe outbreak of COVID-19 caused by the coronavirus (SARS-CoV-2) prompted number of computational and laboratory efforts to discover molecules against the virus entry or replication. Simultaneously, due to the availability of clinical information, drug-repurposing efforts led to the discovery of 2-deoxy-d-glucose (2-DG) for treating COVID-19 infection. 2-DG critically accumulates in the infected cells to prevent energy production and viral replication. As there is no clarity on the impact of genetic variations on the efficacy and adverse effects of 2-DG in treating COVID-19 using in silico approaches, we attempted to extract the genes associated with the 2-DG pathway using the Comparative Toxicogenomics Database. The interaction between selected genes was assessed using ClueGO, to identify the susceptible gene loci for SARS-CoV infections. Further, SNPs that were residing in the distinct genomic regions were retrieved from the Ensembl genome browser and characterized. A total of 80 SNPs were retrieved using diverse bioinformatics resources after assessing their (a) detrimental influence on the protein stability using Swiss-model, (b) miRNA regulation employing miRNASNP3, PolymiRTS, MirSNP databases, (c) binding of transcription factors by SNP2TFBS, SNPInspector, and (d) enhancers regulation using EnhancerDB and HaploReg reported A2M rs201769751, PARP1 rs193238922 destabilizes protein, six polymorphisms of XIAP effecting microRNA binding sites, EGFR rs712829 generates 15 TFBS, BECN1 rs60221525, CASP9 rs4645980, SLC2A2 rs5393 impairs 14 TFBS, STK11 rs3795063 altered 19 regulatory motifs. These data may provide the relationship between genetic variations and drug effects of 2-DG which may further assist in assigning the right individuals to benefit from the treatment.
Collapse
Affiliation(s)
- Navya B. Prabhu
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Chigateri M. Vinay
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Padmalatha S. Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
11
|
Kolev M, Das M, Gerber M, Baver S, Deschatelets P, Markiewski MM. Inside-Out of Complement in Cancer. Front Immunol 2022; 13:931273. [PMID: 35860237 PMCID: PMC9291441 DOI: 10.3389/fimmu.2022.931273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 12/21/2022] Open
Abstract
The role of complement in cancer has received increasing attention over the last decade. Recent studies provide compelling evidence that complement accelerates cancer progression. Despite the pivotal role of complement in fighting microbes, complement seems to suppress antitumor immunity via regulation of host cell in the tumor microenvironment. Although most studies link complement in cancer to complement activation in the extracellular space, the discovery of intracellular activation of complement, raises the question: what is the relevance of this process for malignancy? Intracellular activation is pivotal for the survival of immune cells. Therefore, complement can be important for tumor cell survival and growth regardless of the role in immunosuppression. On the other hand, because intracellular complement (the complosome) is indispensable for activation of T cells, these functions will be essential for priming antitumor T cell responses. Here, we review functions of complement in cancer with the consideration of extra and intracellular pathways of complement activation and spatial distribution of complement proteins in tumors and periphery and provide our take on potential significance of complement as biomarker and target for cancer therapy.
Collapse
Affiliation(s)
- Martin Kolev
- Discovery, Apellis Pharmaceuticals, Waltham, MA, United States
- *Correspondence: Martin Kolev, ; Maciej M. Markiewski,
| | - Madhumita Das
- Discovery, Apellis Pharmaceuticals, Waltham, MA, United States
| | - Monica Gerber
- Legal Department, Apellis Pharmaceuticals, Waltham, MA, United States
| | - Scott Baver
- Medical Affairs, Apellis Pharmaceuticals, Waltham, MA, United States
| | | | - Maciej M. Markiewski
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
- *Correspondence: Martin Kolev, ; Maciej M. Markiewski,
| |
Collapse
|
12
|
Sen P, Andrabi SBA, Buchacher T, Khan MM, Kalim UU, Lindeman TM, Alves MA, Hinkkanen V, Kemppainen E, Dickens AM, Rasool O, Hyötyläinen T, Lahesmaa R, Orešič M. Quantitative genome-scale metabolic modeling of human CD4 + T cell differentiation reveals subset-specific regulation of glycosphingolipid pathways. Cell Rep 2021; 37:109973. [PMID: 34758307 DOI: 10.1016/j.celrep.2021.109973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/26/2021] [Accepted: 10/19/2021] [Indexed: 02/04/2023] Open
Abstract
T cell activation, proliferation, and differentiation involve metabolic reprogramming resulting from the interplay of genes, proteins, and metabolites. Here, we aim to understand the metabolic pathways involved in the activation and functional differentiation of human CD4+ T cell subsets (T helper [Th]1, Th2, Th17, and induced regulatory T [iTreg] cells). Here, we combine genome-scale metabolic modeling, gene expression data, and targeted and non-targeted lipidomics experiments, together with in vitro gene knockdown experiments, and show that human CD4+ T cells undergo specific metabolic changes during activation and functional differentiation. In addition, we confirm the importance of ceramide and glycosphingolipid biosynthesis pathways in Th17 differentiation and effector functions. Through in vitro gene knockdown experiments, we substantiate the requirement of serine palmitoyltransferase (SPT), a de novo sphingolipid pathway in the expression of proinflammatory cytokines (interleukin [IL]-17A and IL17F) by Th17 cells. Our findings provide a comprehensive resource for selective manipulation of CD4+ T cells under disease conditions characterized by an imbalance of Th17/natural Treg (nTreg) cells.
Collapse
Affiliation(s)
- Partho Sen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden.
| | | | - Tanja Buchacher
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Mohd Moin Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Ubaid Ullah Kalim
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Tuomas Mikael Lindeman
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Marina Amaral Alves
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Victoria Hinkkanen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Esko Kemppainen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Alex M Dickens
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Department of Chemistry, University of Turku, 20520 Turku, Finland
| | - Omid Rasool
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | | | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland.
| | - Matej Orešič
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden.
| |
Collapse
|
13
|
Aria H, Ghaedrahmati F, Ganjalikhani-Hakemi M. Cutting edge: Metabolic immune reprogramming, reactive oxygen species, and cancer. J Cell Physiol 2021; 236:6168-6189. [PMID: 33561318 DOI: 10.1002/jcp.30303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/09/2021] [Accepted: 01/19/2021] [Indexed: 02/05/2023]
Abstract
A recently proposed term "immunometabolism" points to the functional intracellular metabolic changes that occur within different immune cells. Recent findings suggest that immune responses can be determined by the metabolic status of immune cells and metabolic reprogramming is an important feature of immune cell activation. Metabolic reprogramming is also well known for cancer cells and has been suggested as a major sign of cancer progression. Metabolic reprogramming of immune cells is also seen in the tumor microenvironment. In the past decade, immunometabolism has progressively become an extraordinarily vibrant and productive area of study in immunology because of its importance for immunotherapy. Understanding the immunometabolic situation of T cells and other immune cells along with the metabolic behavior of cancer cells can help us design new therapeutic approaches against cancers. Here, we have the aim to review the cutting-edge findings on the immunometabolic situation in immune and tumor cells. We discuss new findings on signaling pathways during metabolic reprogramming, its regulation, and the participation of reactive oxygen species in these processes.
Collapse
Affiliation(s)
- Hamid Aria
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
14
|
Lucero García Rojas EY, Villanueva C, Bond RA. Hypoxia Inducible Factors as Central Players in the Pathogenesis and Pathophysiology of Cardiovascular Diseases. Front Cardiovasc Med 2021; 8:709509. [PMID: 34447792 PMCID: PMC8382733 DOI: 10.3389/fcvm.2021.709509] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/09/2021] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular (CV) diseases are the major cause of death in industrialized countries. The main function of the CV system is to deliver nutrients and oxygen to all tissues. During most CV pathologies, oxygen and nutrient delivery is decreased or completely halted. Several mechanisms, including increased oxygen transport and delivery, as well as increased blood flow are triggered to compensate for the hypoxic state. If the compensatory mechanisms fail to sufficiently correct the hypoxia, irreversible damage can occur. Thus, hypoxia plays a central role in the pathogenesis and pathophysiology of CV diseases. Hypoxia inducible factors (HIFs) orchestrate the gene transcription for hundreds of proteins involved in erythropoiesis, glucose transport, angiogenesis, glycolytic metabolism, reactive oxygen species (ROS) handling, cell proliferation and survival, among others. The overall regulation of the expression of HIF-dependent genes depends on the severity, duration, and location of hypoxia. In the present review, common CV diseases were selected to illustrate that HIFs, and proteins derived directly or indirectly from their stabilization and activation, are related to the development and perpetuation of hypoxia in these pathologies. We further classify CV diseases into acute and chronic hypoxic states to better understand the temporal relevance of HIFs in the pathogenesis, disease progression and clinical outcomes of these diseases. We conclude that HIFs and their derived factors are fundamental in the genesis and progression of CV diseases. Understanding these mechanisms will lead to more effective treatment strategies leading to reduced morbidity and mortality.
Collapse
Affiliation(s)
| | - Cleva Villanueva
- Instituto Politecnico Nacional, Escuela Superior de Medicina, Mexico City, Mexico
| | - Richard A Bond
- Department of Pharmacology and Pharmaceutical Sciences, University of Houston, Houston, TX, United States
| |
Collapse
|
15
|
Cruz-Pineda WD, Parra-Rojas I, Rodríguez-Ruíz HA, Illades-Aguiar B, Matia-García I, Garibay-Cerdenares OL. The regulatory role of insulin in energy metabolism and leukocyte functions. J Leukoc Biol 2021; 111:197-208. [PMID: 33724523 PMCID: PMC9291603 DOI: 10.1002/jlb.2ru1220-847r] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
Insulin is the hormone responsible for maintaining glucose homeostasis in the body, in addition to participating in lipid metabolism, protein synthesis, and the inhibition of gluconeogenesis. These functions are well characterized in the classic organ target cells that are responsible for general energy regulation: the liver, skeletal muscle, and adipose tissue. However, these actions are not restricted to these tissues because insulin has been shown to affect most cells in the body. This review describes the role of insulin in leukocyte signaling pathways, metabolism and functions, and how insulin resistance could affect this signaling and deteriorate leukocyte metabolism and function, in addition to showing evidence that suggests leukocytes may substantially contribute to the development of systemic insulin resistance.
Collapse
Affiliation(s)
- Walter David Cruz-Pineda
- Laboratorio de Investigación en Obesidad y Diabetes, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Isela Parra-Rojas
- Laboratorio de Investigación en Obesidad y Diabetes, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Hugo Alberto Rodríguez-Ruíz
- Laboratorio de Investigación en Obesidad y Diabetes, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico.,Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Inés Matia-García
- Laboratorio de Investigación en Obesidad y Diabetes, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Olga Lilia Garibay-Cerdenares
- CONACyT-Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico.,Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| |
Collapse
|
16
|
Abstract
Immunologic memory is the ability of adaptive immune system to quickly and specifically recognize previously encountered antigens and initiate an effector response. Alloreactive memory cells can mount rapid and robust responses to the transplanted organ resulting in allograft injury. Thus preexisting humoral or cellular memory alloresponses are typically associated with poor graft outcomes in experimental and clinical transplantation. While both B and T lymphocytes exhibit memory responses, this review discusses recent updates on the biology of memory T cells and their relevance to the field of transplantation. Three major areas of focus are the emergence and characterization of tissue resident memory T cells, manipulation of T cell metabolic pathways, and the latest promising approaches to targeting detrimental T cell memory in the settings of organ transplantation.
Collapse
|
17
|
Abstract
Metabolic pathways and redox reactions are at the core of life. In the past decade(s), numerous discoveries have shed light on how metabolic pathways determine the cellular fate and function of lymphoid and myeloid cells, giving rise to an area of research referred to as immunometabolism. Upon activation, however, immune cells not only engage specific metabolic pathways but also rearrange their oxidation-reduction (redox) system, which in turn supports metabolic reprogramming. In fact, studies addressing the redox metabolism of immune cells are an emerging field in immunology. Here, we summarize recent insights revealing the role of reactive oxygen species (ROS) and the differential requirement of the main cellular antioxidant pathways, including the components of the thioredoxin (TRX) and glutathione (GSH) pathways, as well as their transcriptional regulator NF-E2-related factor 2 (NRF2), for proliferation, survival and function of T cells, B cells and macrophages.
Collapse
Affiliation(s)
- Jonathan Muri
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland.
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
18
|
Effects of Acute Subdural Hematoma-Induced Brain Injury On Energy Metabolism in Peripheral Blood Mononuclear Cells. Shock 2020; 55:407-417. [PMID: 32826816 DOI: 10.1097/shk.0000000000001642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT In activated immune cells, differentiation and function are determined by cell type-specific modifications of metabolic patterns. After traumatic brain injury both immune cell activation and suppression were reported. Therefore, we sought to explore immune cell energy metabolism in a long-term, resuscitated porcine model of acute subdural hematoma (ASDH)-induced acute brain injury devoid of impaired systemic hemodynamics and oxygen transport.Before and up to 50 h after induction of ASDH, peripheral blood mononuclear cells (PBMCs) were separated by density gradient centrifugation, and cell metabolism was analyzed using high-resolution respirometry for mitochondrial respiration and electron spin resonance for reactive oxygen species production. After incubation with stable isotope-labeled 1,2-13C2-glucose or 13C5-glutamine, distinct labeling patterns of intermediates of glycolysis or tricarboxylic acid (TCA) cycle and 13CO2 production were measured by gas chromatography-mass spectroscopy. Principal component analysis was followed by a varimax rotation on the covariance across all measured variables and all measured time points.After ASDH induction, average PBMC metabolic activity remained unaffected, possibly because strict adherence to intensive care unit guidelines limited trauma to ASDH induction without any change in parameters of systemic hemodynamics, oxygen transport, and whole-body metabolism. Despite decreased glycolytic activity fueling the TCA cycle, the principal component analysis indicated a cell type-specific activation pattern with biosynthetic and proliferative characteristics.
Collapse
|
19
|
Psychological distress and lack of PINK1 promote bioenergetics alterations in peripheral blood mononuclear cells. Sci Rep 2020; 10:9820. [PMID: 32555260 PMCID: PMC7300038 DOI: 10.1038/s41598-020-66745-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022] Open
Abstract
Psychological distress induces oxidative stress and alters mitochondrial metabolism in the nervous and immune systems. Psychological distress promotes alterations in brain metabolism and neurochemistry in wild-type (WT) rats in a similar manner as in Parkinsonian rats lacking endogenous PTEN-induced kinase 1 (PINK1), a serine/threonine kinase mutated in a recessive forms of Parkinson’s disease. PINK1 has been extensively studied in the brain, but its physiological role in peripheral tissues and the extent to which it intersects with the neuroimmune axis is not clear. We surmised that PINK1 modulates the bioenergetics of peripheral blood mononuclear cells (PBMCs) under basal conditions or in situations that promote oxidative stress as psychological distress. By using an XF metabolic bioanalyzer, PINK1-KO-PBMCs showed significantly increased oxidative phosphorylation and basal glycolysis compared to WT cells and correlated with motor dysfunction. In addition, psychological distress enhanced the glycolytic capacity in PINK1-KO-PBMCs but not in WT-PBMCs. The level of antioxidant markers and brain-derived neurotrophic factor were altered in PINK1-KO-PBMCs and by psychological distress. In summary, our data suggest that PINK1 is critical for modulating the bioenergetics and antioxidant responses in PBMCs whereas lack of PINK1 upregulates compensatory glycolysis in response to oxidative stress induced by psychological distress.
Collapse
|
20
|
ROS-associated immune response and metabolism: a mechanistic approach with implication of various diseases. Arch Toxicol 2020; 94:2293-2317. [PMID: 32524152 DOI: 10.1007/s00204-020-02801-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022]
Abstract
The immune system plays a pivotal role in maintaining the defense mechanism against external agents and also internal danger signals. Metabolic programming of immune cells is required for functioning of different subsets of immune cells under different physiological conditions. The field of immunometabolism has gained ground because of its immense importance in coordination and balance of immune responses. Metabolism is very much related with production of energy and certain by-products. Reactive oxygen species (ROS) are generated as one of the by-products of various metabolic pathways. The amount, localization of ROS and redox status determine transcription of genes, and also influences the metabolism of immune cells. This review discusses ROS, metabolism of immune cells at different cellular conditions and sheds some light on how ROS might regulate immunometabolism.
Collapse
|
21
|
Prieto J, Ponsoda X, Izpisua Belmonte JC, Torres J. Mitochondrial dynamics and metabolism in induced pluripotency. Exp Gerontol 2020; 133:110870. [PMID: 32045634 DOI: 10.1016/j.exger.2020.110870] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/20/2019] [Accepted: 02/05/2020] [Indexed: 12/15/2022]
Abstract
Somatic cells can be reprogrammed to pluripotency by either ectopic expression of defined factors or exposure to chemical cocktails. During reprogramming, somatic cells undergo dramatic changes in a wide range of cellular processes, such as metabolism, mitochondrial morphology and function, cell signaling pathways or immortalization. Regulation of these processes during cell reprograming lead to the acquisition of a pluripotent state, which enables indefinite propagation by symmetrical self-renewal without losing the ability of reprogrammed cells to differentiate into all cell types of the adult. In this review, recent data from different laboratories showing how these processes are controlled during the phenotypic transformation of a somatic cell into a pluripotent stem cell will be discussed.
Collapse
Affiliation(s)
- Javier Prieto
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Calle Dr. Moliner 50, 46100 Burjassot, Spain; Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Xavier Ponsoda
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Calle Dr. Moliner 50, 46100 Burjassot, Spain; Instituto de Investigación Sanitaria (INCLIVA), Avenida de Menéndez y Pelayo 4, 46010, Valencia, Spain
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Josema Torres
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Calle Dr. Moliner 50, 46100 Burjassot, Spain; Instituto de Investigación Sanitaria (INCLIVA), Avenida de Menéndez y Pelayo 4, 46010, Valencia, Spain.
| |
Collapse
|
22
|
Energy Metabolism in Cancer: The Roles of STAT3 and STAT5 in the Regulation of Metabolism-Related Genes. Cancers (Basel) 2020; 12:cancers12010124. [PMID: 31947710 PMCID: PMC7016889 DOI: 10.3390/cancers12010124] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/03/2019] [Accepted: 12/12/2019] [Indexed: 12/21/2022] Open
Abstract
A central characteristic of many types of cancer is altered energy metabolism processes such as enhanced glucose uptake and glycolysis and decreased oxidative metabolism. The regulation of energy metabolism is an elaborate process involving regulatory proteins such as HIF (pro-metastatic protein), which reduces oxidative metabolism, and some other proteins such as tumour suppressors that promote oxidative phosphorylation. In recent years, it has been demonstrated that signal transducer and activator of transcription (STAT) proteins play a pivotal role in metabolism regulation. STAT3 and STAT5 are essential regulators of cytokine- or growth factor-induced cell survival and proliferation, as well as the crosstalk between STAT signalling and oxidative metabolism. Several reports suggest that the constitutive activation of STAT proteins promotes glycolysis through the transcriptional activation of hypoxia-inducible factors and therefore, the alteration of mitochondrial activity. It seems that STAT proteins function as an integrative centre for different growth and survival signals for energy and respiratory metabolism. This review summarises the functions of STAT3 and STAT5 in the regulation of some metabolism-related genes and the importance of oxygen in the tumour microenvironment to regulate cell metabolism, particularly in the metabolic pathways that are involved in energy production in cancer cells.
Collapse
|
23
|
López-Sánchez LM, Aranda E, Rodríguez-Ariza A. Nitric oxide and tumor metabolic reprogramming. Biochem Pharmacol 2019; 176:113769. [PMID: 31862448 DOI: 10.1016/j.bcp.2019.113769] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) has been highlighted as an important agent in tumor processes. However, a complete understanding of the mechanisms by which this simple diatomic molecule contributes in tumorigenesis is lacking. Evidence is rapidly accumulating that metabolic reprogramming is a major new aspect of NO biology and this review is aimed to summarize recent research progress on this novel feature that expands the complex and multifaceted role of NO in cancer. Therefore, we discuss how NO may influence glucose and glutamine utilization by tumor cells, and its participation in the regulation of mitochondrial function and dynamics, that is an important mechanism through which cancer cells reprogram their metabolism to meet the biosynthetic needs of rapid proliferation. Finally, we also discuss the NO-related metabolic rewiring involved in the modification of the tumor microenvironment to support cancer invasion and the escape from immune system-mediated recognition. Protein S-nitrosylation appears as a common mechanism by which NO signaling reprograms metabolism. Hence, future research is needed on dysregulated S-nitrosylation/denitrosylation in cancer to comprehend the NO-induced metabolic changes in tumor cells and the role of NO in the metabolic crosstalk within tumor microenvironment.
Collapse
Affiliation(s)
- Laura M López-Sánchez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Av. Menéndez Pidal s/n, E14004 Córdoba, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, E 28029 Madrid, Spain
| | - Enrique Aranda
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Av. Menéndez Pidal s/n, E14004 Córdoba, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, E 28029 Madrid, Spain; Unidad de Gestión Clínica de Oncología Médica, Hospital Reina Sofía, Universidad de Córdoba, Av. Menéndez Pidal s/n, E14004 Córdoba, Spain
| | - Antonio Rodríguez-Ariza
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Av. Menéndez Pidal s/n, E14004 Córdoba, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, E 28029 Madrid, Spain; Unidad de Gestión Clínica de Oncología Médica, Hospital Reina Sofía, Universidad de Córdoba, Av. Menéndez Pidal s/n, E14004 Córdoba, Spain.
| |
Collapse
|
24
|
Immunomodulatory roles of nitric oxide in cancer: tumor microenvironment says "NO" to antitumor immune response. Transl Res 2019; 210:99-108. [PMID: 30953610 DOI: 10.1016/j.trsl.2019.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/18/2019] [Accepted: 03/12/2019] [Indexed: 01/01/2023]
Abstract
In recent years, an increasing number of studies have shown that there is an important connection between nitric oxide (NO) and the pathology of malignant diseases, but we are far from a complete comprehension of how this simple diatomic molecule contributes to tumorigenesis. The emerging identification of immune-mediated mechanisms regulated by NO may help to unravel the intricate and complex relationships between NO and cancer. Therefore, this review provides a summary of recent advances in our understanding of the immunomodulatory role of NO in cancer, and in particular the role of this pleiotropic signaling molecule as an immunosuppressive mediator in the tumor microenvironment. We will discuss the participation of NO in the different strategies used by tumors to escape from immune system-mediated recognition, including the acquisition of stem cell like capacities by tumor cells and the metabolic reprogramming of tumor infiltrating immune cells. Finally, we will also discuss different therapeutic strategies directed against NO for abating the immunosuppressive tumor microenvironment and to increase the efficacy of immunotherapy in cancer.
Collapse
|
25
|
Pokrovsky VS, Chepikova OE, Davydov DZ, Zamyatnin AA, Lukashev AN, Lukasheva EV. Amino Acid Degrading Enzymes and their Application in Cancer Therapy. Curr Med Chem 2019; 26:446-464. [PMID: 28990519 DOI: 10.2174/0929867324666171006132729] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 09/12/2017] [Accepted: 09/28/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Amino acids are essential components in various biochemical pathways. The deprivation of certain amino acids is an antimetabolite strategy for the treatment of amino acid-dependent cancers which exploits the compromised metabolism of malignant cells. Several studies have focused on the development and preclinical and clinical evaluation of amino acid degrading enzymes, namely L-asparaginase, L-methionine γ-lyase, L-arginine deiminase, L-lysine α-oxidase. Further research into cancer cell metabolism may therefore define possible targets for controlling tumor growth. OBJECTIVE The purpose of this review was to summarize recent progress in the relationship between amino acids metabolism and cancer therapy, with a particular focus on Lasparagine, L-methionine, L-arginine and L-lysine degrading enzymes and their formulations, which have been successfully used in the treatment of several types of cancer. METHODS We carried out a structured search among literature regarding to amino acid degrading enzymes. The main aspects of search were in vitro and in vivo studies, clinical trials concerning application of these enzymes in oncology. RESULTS Most published research are on the subject of L-asparaginase properties and it's use for cancer treatment. L-arginine deiminase has shown promising results in a phase II trial in advanced melanoma and hepatocellular carcinoma. Other enzymes, in particular Lmethionine γ-lyase and L-lysine α-oxidase, were effective in vitro and in vivo. CONCLUSION The findings of this review revealed that therapy based on amino acid depletion may have the potential application for cancer treatment but further clinical investigations are required to provide the efficacy and safety of these agents.
Collapse
Affiliation(s)
- Vadim S Pokrovsky
- Blokhin Cancer Research Center, Moscow, Russian Federation.,Orekhovich Institute of Biomedical Chemistry, Moscow, Russian Federation.,People's Friendship University, Russia (RUDN University), Moscow, Russian Federation
| | - Olga E Chepikova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Belozersky Institute of Physico- Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Alexander N Lukashev
- People's Friendship University, Russia (RUDN University), Moscow, Russian Federation.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Elena V Lukasheva
- People's Friendship University, Russia (RUDN University), Moscow, Russian Federation
| |
Collapse
|
26
|
McGuire PJ. Mitochondrial Dysfunction and the Aging Immune System. BIOLOGY 2019; 8:biology8020026. [PMID: 31083529 PMCID: PMC6627503 DOI: 10.3390/biology8020026] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/04/2019] [Accepted: 01/16/2019] [Indexed: 01/28/2023]
Abstract
Mitochondria are ancient organelles that have co-evolved with their cellular hosts, developing a mutually beneficial arrangement. In addition to making energy, mitochondria are multifaceted, being involved in heat production, calcium storage, apoptosis, cell signaling, biosynthesis, and aging. Many of these mitochondrial functions decline with age, and are the basis for many diseases of aging. Despite the vast amount of research dedicated to this subject, the relationship between aging mitochondria and immune function is largely absent from the literature. In this review, three main issues facing the aging immune system are discussed: (1) inflamm-aging; (2) susceptibility to infection and (3) declining T-cell function. These issues are re-evaluated using the lens of mitochondrial dysfunction with aging. With the recent expansion of numerous profiling technologies, there has been a resurgence of interest in the role of metabolism in immunity, with mitochondria taking center stage. Building upon this recent accumulation of knowledge in immunometabolism, this review will advance the hypothesis that the decline in immunity and associated pathologies are partially related to the natural progression of mitochondrial dysfunction with aging.
Collapse
Affiliation(s)
- Peter J McGuire
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Domblides C, Lartigue L, Faustin B. Control of the Antitumor Immune Response by Cancer Metabolism. Cells 2019; 8:cells8020104. [PMID: 30708988 PMCID: PMC6406288 DOI: 10.3390/cells8020104] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022] Open
Abstract
The metabolic reprogramming of tumor cells and immune escape are two major hallmarks of cancer cells. The metabolic changes that occur during tumorigenesis, enabling survival and proliferation, are described for both solid and hematological malignancies. Concurrently, tumor cells have deployed mechanisms to escape immune cell recognition and destruction. Additionally, therapeutic blocking of tumor-mediated immunosuppression has proven to have an unprecedented positive impact in clinical oncology. Increased evidence suggests that cancer metabolism not only plays a crucial role in cancer signaling for sustaining tumorigenesis and survival, but also has wider implications in the regulation of antitumor immune signaling through both the release of signaling molecules and the expression of immune membrane ligands. Here, we review these molecular events to highlight the contribution of cancer cell metabolic reprogramming on the shaping of the antitumor immune response.
Collapse
Affiliation(s)
- Charlotte Domblides
- Bordeaux University, CNRS, UMR 5164, ImmunoConcEpT, 33000 Bordeaux, France.
- Department of Medical Oncology, Hôpital Saint-André, Bordeaux University Hospital-CHU, 33000 Bordeaux, France.
| | - Lydia Lartigue
- Curematch, Inc., 6440 Lusk Bvld, San Diego, CA 92121, USA.
| | - Benjamin Faustin
- Bordeaux University, CNRS, UMR 5164, ImmunoConcEpT, 33000 Bordeaux, France.
- Cellomet, CGFB, 146 Rue léo Saignat, F-33000 Bordeaux, France.
| |
Collapse
|
28
|
Olivas-Aguirre M, Pottosin I, Dobrovinskaya O. Mitochondria as emerging targets for therapies against T cell acute lymphoblastic leukemia. J Leukoc Biol 2019; 105:935-946. [PMID: 30698851 DOI: 10.1002/jlb.5vmr0818-330rr] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/29/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) comprises a heterogeneous group of hematologic malignancies, arising from diverse genetic alterations in the early lymphocyte development. T-cell subtype of ALL (T-ALL) accounts for about 15% and 25% of ALL in children and adults, respectively. Being less frequent among ALL subtypes, T-ALL represents a high-risk factor for poor prognosis due to its aggressiveness and resistance to common antileukemic drugs. Mitochondria were widely explored recently as a target for anticancer treatment because they are involved in a metabolic reprogramming of a cancer cell and play key roles in reactive oxygen species generation, Ca2+ signaling, and cell death induction. Accordingly, a new class of anticancer compounds named mitocans has been developed, which target mitochondria at distinct crucial points to promote their dysfunction and subsequent cell death. The present review analyses the role of mitochondria in malignant reprogramming and emerging therapeutic strategies targeting mitochondria as an "Achilles' heel" in T-ALL, with an emphasis on BH3 mimetics, sequestering pro-survival BCL proteins and voltage-dependent anion channel (VDAC)1-directed drugs, which promote the suppression of aerobic glycolysis, VDAC1 closure, mitochondrial Ca2+ overload, stoppage of the oxidative phosphorylation, oxidative stress, and release of proapoptotic factors.
Collapse
Affiliation(s)
- Miguel Olivas-Aguirre
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| | - Igor Pottosin
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| | - Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| |
Collapse
|
29
|
Berrino E, Supuran CT. Novel approaches for designing drugs that interfere with pH regulation. Expert Opin Drug Discov 2019; 14:231-248. [PMID: 30681011 DOI: 10.1080/17460441.2019.1567488] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION In all living species, pH regulation is a tightly controlled process, with a plethora of proteins involved in its regulation. These include sodium-proton exchangers, carbonic anhydrases, anion exchangers, bicarbonate transporters/cotransporters, H+-ATPases, and monocarboxylate transporters. All of them play crucial roles in acid-base balancing, both in eukaryotic as well as in prokaryotic organisms, making them interesting drug targets for the management of pathological events (in)directly involved in pH regulation. Areas covered: Interfering with pH regulation for the treatment of tumors and microbial infections is the main focus of this review, with particular attention paid to inhibitors targeting the above-mentioned proteins. The latest advances in each field id reviewed. Expert opinion: Interfering with the pH regulation of tumor cells is a validated approach to tackle primary tumors and metastases growth. Carbonic anhydrases are the most investigated proteins of those aforementioned, with several inhibitors in clinical development. Recent advances in the characterization of proteins involved in pH homeostasis of various pathogens evidenced their crucial role in the survival and virulence of bacterial, fungal, and protozoan microorganisms. Some encouraging results shed light on the possibility to target such proteins for obtaining new anti-infectives, overcoming the extensive drug resistance problems of clinically used drugs.
Collapse
Affiliation(s)
- Emanuela Berrino
- a NEUROFARBA Department, Sezione di Scienze Farmaceutiche , University of Florence , Sesto Fiorentino (Florence) , Italy
| | - Claudiu T Supuran
- a NEUROFARBA Department, Sezione di Scienze Farmaceutiche , University of Florence , Sesto Fiorentino (Florence) , Italy
| |
Collapse
|
30
|
Hurst KE, Lawrence KA, Essman MT, Walton ZJ, Leddy LR, Thaxton JE. Endoplasmic Reticulum Stress Contributes to Mitochondrial Exhaustion of CD8 + T Cells. Cancer Immunol Res 2019; 7:476-486. [PMID: 30659052 DOI: 10.1158/2326-6066.cir-18-0182] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/23/2018] [Accepted: 12/12/2018] [Indexed: 12/24/2022]
Abstract
Tumor antigen-specific T cells rapidly lose energy and effector function in tumors. The cellular mechanisms by which energy loss and inhibition of effector function occur in tumor-infiltrating lymphocytes (TILs) are ill-defined, and methods to identify tumor antigen-specific TILs that experience such stress are unknown. Processes upstream of the mitochondria guide cell-intrinsic energy depletion. We hypothesized that a mechanism of T-cell-intrinsic energy consumption was the process of oxidative protein folding and disulfide bond formation that takes place in the endoplasmic reticulum (ER) guided by protein kinase R-like endoplasmic reticulum kinase (PERK) and downstream PERK axis target ER oxidoreductase 1 (ERO1α). To test this hypothesis, we created TCR transgenic mice with a T-cell-specific PERK gene deletion (OT1 + Lckcre+ PERK f/f , PERK KO). We found that PERK KO and T cells that were pharmacologically inhibited by PERK or ERO1α maintained reserve energy and exhibited a protein profile consistent with reduced oxidative stress. These T-cell groups displayed superior tumor control compared with T effectors. We identified a biomarker of ER-induced mitochondrial exhaustion in T cells as mitochondrial reactive oxygen species (mtROS), and found that PD-1+ tumor antigen-specific CD8+ TILs express mtROS. In vivo treatment with a PERK inhibitor abrogated mtROS in PD-1+ CD8+ TILs and bolstered CD8+ TIL viability. Combination therapy enabled 100% survival and 71% tumor clearance in a sarcoma mouse model. Our data identify the ER as a regulator of T-cell energetics and indicate that ER elements are effective targets to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Katie E Hurst
- Department of Orthopedics, College of Medicine, Medical University of South Carolina Medical School, Charleston, South Carolina
| | - Kiley A Lawrence
- Department of Orthopedics, College of Medicine, Medical University of South Carolina Medical School, Charleston, South Carolina
| | - Matthew T Essman
- Department of Orthopedics, College of Medicine, Medical University of South Carolina Medical School, Charleston, South Carolina.,Medical University of South Carolina Medical School, Charleston, South Carolina
| | - Zeke J Walton
- Department of Orthopedics, College of Medicine, Medical University of South Carolina Medical School, Charleston, South Carolina.,Hollings Cancer Center, Medical University of South Carolina Medical School, Charleston, South Carolina
| | - Lee R Leddy
- Department of Orthopedics, College of Medicine, Medical University of South Carolina Medical School, Charleston, South Carolina.,Hollings Cancer Center, Medical University of South Carolina Medical School, Charleston, South Carolina
| | - Jessica E Thaxton
- Department of Orthopedics, College of Medicine, Medical University of South Carolina Medical School, Charleston, South Carolina. .,Hollings Cancer Center, Medical University of South Carolina Medical School, Charleston, South Carolina.,Department of Microbiology and Immunology, Medical University of South Carolina Medical School, Charleston, South Carolina
| |
Collapse
|
31
|
Tramutola A, Abate G, Lanzillotta C, Triani F, Barone E, Iavarone F, Vincenzoni F, Castagnola M, Marziano M, Memo M, Garrafa E, Butterfield DA, Perluigi M, Di Domenico F, Uberti D. Protein nitration profile of CD3 + lymphocytes from Alzheimer disease patients: Novel hints on immunosenescence and biomarker detection. Free Radic Biol Med 2018; 129:430-439. [PMID: 30321702 DOI: 10.1016/j.freeradbiomed.2018.10.414] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a progressive form of dementia characterized by increased production of amyloid-β plaques and hyperphosphorylated tau protein, mitochondrial dysfunction, elevated oxidative stress, reduced protein clearance, among other. Several studies showed systemic modifications of immune and inflammatory systems due, in part, to decreased levels of CD3+ lymphocytes in peripheral blood in AD. Considering that oxidative stress, both in the brain and in the periphery, can influence the activation and differentiation of T-cells, we investigated the 3-nitrotyrosine (3-NT) proteome of blood T-cells derived from AD patients compared to non-demented (ND) subjects by using a proteomic approach. 3-NT is a formal protein oxidation and index of nitrosative stress. We identified ten proteins showing increasing levels of 3-NT in CD3+ T-cells from AD patients compared with ND subjects. These proteins are involved in energy metabolism, cytoskeletal structure, intracellular signaling, protein folding and turnover, and antioxidant response and provide new insights into the molecular mechanism that impact reduced T-cell differentiation in AD. Our results highlight the role of peripheral oxidative stress in T-cells related to immune-senescence during AD pathology focusing on the specific targets of protein nitration that conceivably can be suitable to further therapies. Further, our data demonstrate common targets of protein nitration between the brain and the periphery, supporting their significance as disease biomarkers.
Collapse
Affiliation(s)
- Antonella Tramutola
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Giulia Abate
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy
| | - Chiara Lanzillotta
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesca Triani
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Federica Iavarone
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica, and/or Dip. di Diagnostica di Laboratorio e Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Federica Vincenzoni
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica, and/or Dip. di Diagnostica di Laboratorio e Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Massimo Castagnola
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica, and/or Dip. di Diagnostica di Laboratorio e Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Mariagrazia Marziano
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy
| | - Maurizio Memo
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy
| | - Emirena Garrafa
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Daniela Uberti
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy
| |
Collapse
|
32
|
Rahmani M, Mohammadnia-Afrouzi M, Nouri HR, Fattahi S, Akhavan-Niaki H, Mostafazadeh A. Human PBMCs fight or flight response to starvation stress: Increased T-reg, FOXP3, and TGF-β1 with decreased miR-21 and Constant miR-181c levels. Biomed Pharmacother 2018; 108:1404-1411. [PMID: 30453448 DOI: 10.1016/j.biopha.2018.09.163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 12/11/2022] Open
Abstract
Regulatory T-lymphocytes play a prominent role in autoimmunity, allergy, and cancer. In some conditions such as inflammation and tumor, immune cells are encountered with metabolic stress. Emerging evidence indicates the contribution of microRNAs in both metabolism and immune regulation. Herewith, we have examined the in vitro effects of serum starvation for 16, 48, 72 and 96 h on the expression of T-reg differentiation markers (CD4, CD25, CD127, and FOXP3) as well as on the Transforming Growth Factor-β1 (TGF-β1) and some microRNAs (miR-21,-29a,-31,146a,-155,-181a and -181c) levels in human Peripheral Blood Mononuclear Cells (PBMCs). The percentage of CD4+CD25+CD127low/-FOXP3+ T-regs, as well as FOXP3 expression, was increased in starved lymphocytes (p < 0.01). 96 h-starved PBMCs had the lowest T-eff/T-reg ratio (p < 0.05). All the studied miRNAs except miR-181c were significantly down-regulated in those cells (p < 0.05), in particular, miR-29a and miR-155 were sharply declined in 48h-starved PBMCs (p < 0.01). There was a negative correlation between time of starvation and microRNAs expression, except for miR-181c (r-value = -0. 61 to -0.9 and p-value = 0.037 to 0). The percentage of T-reg was inversely correlated with all miRNAs levels except for miR-31 and miR-181c (r-value = -0.68 to -0.78 and p-value = 0.015 to 0.003). FOXP3 expression exhibited a same degree of negative correlation with miR-31 and miR-155 expression levels (r = -0.57 and p = 0.05, for both). Increasing starvation duration led to a rise inTGF-β1 protein levels (p<0.01), especially its active form (P<0.001). This study introduced the serum starvation as a tool for immunoregulation which acts probably through increasing TGF-β1 production and inducing some alterations in microRNAs expression.
Collapse
Affiliation(s)
- Mahsa Rahmani
- Students Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mousa Mohammadnia-Afrouzi
- Cellular and Molecular Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hamid Reza Nouri
- Cellular and Molecular Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sadegh Fattahi
- Cellular and Molecular Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Haleh Akhavan-Niaki
- Cellular and Molecular Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Amrollah Mostafazadeh
- Cellular and Molecular Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
33
|
Zhang W, Cai H, Tan WS. Dynamic suspension culture improves ex vivo expansion of cytokine-induced killer cells by upregulating cell activation and glucose consumption rate. J Biotechnol 2018; 287:8-17. [PMID: 30273619 DOI: 10.1016/j.jbiotec.2018.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/17/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022]
Abstract
Ex vivo expansion is an effective strategy to acquire cytokine-induced killer (CIK) cells needed for clinical trials. In this work, the effects of dynamic suspension culture, which was carried out by shake flasks on a shaker, on CIK cells were investigated by the analysis of expansion characteristics and physiological functions, with the objective to optimize the culture conditions for ex vivo expansion of CIK cells. The results showed that the expansion folds of total cells in dynamic cultures reached 69.36 ± 30.36 folds on day 14, which were significantly higher than those in static cultures (9.24 ± 1.12 folds, P < 0.05), however, the proportions of CD3+ cells and CD3+CD56+ cells in both cultures were similar, leading to much higher expansion of CD3+ cells and CD3+CD56+ cells in dynamic cultures. Additionally, expanded CIK cells in two cultures possessed comparable physiological functions. Notably, significantly higher percentages of CD25+ cells and CD69+ cells were found in dynamic cultures (P < 0.05). Besides, much higher glucose consumption rate of cells (P < 0.05) but similar YLac/gluc were observed in dynamic cultures. Further, cells in dynamic cultures had better glucose utilization efficiency. Together, these results suggested that dynamic cultures improved cell activation, then accelerated glucose consumption rate, which enhanced cell expansion and promoted glucose utilization efficiency of cells.
Collapse
Affiliation(s)
- Weiwei Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China.
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| |
Collapse
|
34
|
Metabolic Stress in the Immune Function of T Cells, Macrophages and Dendritic Cells. Cells 2018; 7:cells7070068. [PMID: 29966302 PMCID: PMC6070887 DOI: 10.3390/cells7070068] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022] Open
Abstract
Innate and adaptive immune cells from myeloid and lymphoid lineages resolve host infection or cell stress by mounting an appropriate and durable immune response. Upon sensing of cellular insults, immune cells become activated and undergo rapid and efficient functional changes to unleash biosynthesis of macromolecules, proliferation, survival, and trafficking; unprecedented events among other mammalian cells within the host. These changes must become operational within restricted timing to rapidly control the insult and to avoid tissue damage and pathogen spread. Such changes occur at high energy cost. Recent advances have established that plasticity of immune functions occurs in distinct metabolic stress features. Evidence has accumulated to indicate that specific metabolic signatures dictate appropriate immune functions in both innate and adaptive immunity. Importantly, recent studies have shed light on whether successfully manipulating particular metabolic targets is sufficient to modulate immune function and polarization, thereby offering strong therapeutic potential for various common immune-mediated diseases, including inflammation and autoimmune-associated diseases and cancer. In this review, we detail how cellular metabolism controls immune function and phenotype within T cells and macrophages particularly, and the distinct molecular metabolic programming and targets instrumental to engage this regulation.
Collapse
|
35
|
Feist M, Schwarzfischer P, Heinrich P, Sun X, Kemper J, von Bonin F, Perez-Rubio P, Taruttis F, Rehberg T, Dettmer K, Gronwald W, Reinders J, Engelmann JC, Dudek J, Klapper W, Trümper L, Spang R, Oefner PJ, Kube D. Cooperative STAT/NF-κB signaling regulates lymphoma metabolic reprogramming and aberrant GOT2 expression. Nat Commun 2018; 9:1514. [PMID: 29666362 PMCID: PMC5904148 DOI: 10.1038/s41467-018-03803-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/14/2018] [Indexed: 12/14/2022] Open
Abstract
Knowledge of stromal factors that have a role in the transcriptional regulation of metabolic pathways aside from c-Myc is fundamental to improvements in lymphoma therapy. Using a MYC-inducible human B-cell line, we observed the cooperative activation of STAT3 and NF-κB by IL10 and CpG stimulation. We show that IL10 + CpG-mediated cell proliferation of MYClow cells depends on glutaminolysis. By 13C- and 15N-tracing of glutamine metabolism and metabolite rescue experiments, we demonstrate that GOT2 provides aspartate and nucleotides to cells with activated or aberrant Jak/STAT and NF-κB signaling. A model of GOT2 transcriptional regulation is proposed, in which the cooperative phosphorylation of STAT3 and direct joint binding of STAT3 and p65/NF-κB to the proximal GOT2 promoter are important. Furthermore, high aberrant GOT2 expression is prognostic in diffuse large B-cell lymphoma underscoring the current findings and importance of stromal factors in lymphoma biology. Metabolic rewiring of cancer cells can be driven by both extrinsic and intrinsic factors. Here the authors show that microenvironmental factors induce metabolic rewiring of B-cell lymphoma through activation of STAT3 and NF-ΚB resulting in upregulation of the aminotransferase GOT2 and glutamine addiction.
Collapse
Affiliation(s)
- Maren Feist
- Clinic of Haematology and Medical Oncology, University Medical Centre Göttingen, Lower Saxony, 37075, Göttingen, Germany.,Network BMBF eBio MMML MYC-SYS, 37099 Göttingen / 93053 Regensburg, Germany
| | - Philipp Schwarzfischer
- Network BMBF eBio MMML MYC-SYS, 37099 Göttingen / 93053 Regensburg, Germany.,Institute of Functional Genomics, University of Regensburg, Bavaria, 93053, Regensburg, Germany
| | - Paul Heinrich
- Institute of Functional Genomics, University of Regensburg, Bavaria, 93053, Regensburg, Germany.,Network BMBF eMed MMML-Demonstrators, 37099 Göttingen / 93053 Regensburg, Germany
| | - Xueni Sun
- Institute of Functional Genomics, University of Regensburg, Bavaria, 93053, Regensburg, Germany.,Network BMBF eMed MMML-Demonstrators, 37099 Göttingen / 93053 Regensburg, Germany
| | - Judith Kemper
- Clinic of Haematology and Medical Oncology, University Medical Centre Göttingen, Lower Saxony, 37075, Göttingen, Germany
| | - Frederike von Bonin
- Clinic of Haematology and Medical Oncology, University Medical Centre Göttingen, Lower Saxony, 37075, Göttingen, Germany
| | - Paula Perez-Rubio
- Network BMBF eMed MMML-Demonstrators, 37099 Göttingen / 93053 Regensburg, Germany.,Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Bavaria, 93053, Regensburg, Germany
| | - Franziska Taruttis
- Network BMBF eBio MMML MYC-SYS, 37099 Göttingen / 93053 Regensburg, Germany.,Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Bavaria, 93053, Regensburg, Germany
| | - Thorsten Rehberg
- Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Bavaria, 93053, Regensburg, Germany
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, Bavaria, 93053, Regensburg, Germany.,Network BMBF eMed MMML-Demonstrators, 37099 Göttingen / 93053 Regensburg, Germany
| | - Wolfram Gronwald
- Network BMBF eBio MMML MYC-SYS, 37099 Göttingen / 93053 Regensburg, Germany.,Institute of Functional Genomics, University of Regensburg, Bavaria, 93053, Regensburg, Germany.,Network BMBF eMed MMML-Demonstrators, 37099 Göttingen / 93053 Regensburg, Germany
| | - Jörg Reinders
- Institute of Functional Genomics, University of Regensburg, Bavaria, 93053, Regensburg, Germany
| | - Julia C Engelmann
- Network BMBF eBio MMML MYC-SYS, 37099 Göttingen / 93053 Regensburg, Germany.,Network BMBF eMed MMML-Demonstrators, 37099 Göttingen / 93053 Regensburg, Germany.,Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Bavaria, 93053, Regensburg, Germany.,NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, 1790 AB, Den Burg, The Netherlands
| | - Jan Dudek
- Institute of Biochemistry, University Medical Centre Göttingen, Lower Saxony, 37075, Göttingen, Germany
| | - Wolfram Klapper
- Network BMBF eBio MMML MYC-SYS, 37099 Göttingen / 93053 Regensburg, Germany.,Network BMBF eMed MMML-Demonstrators, 37099 Göttingen / 93053 Regensburg, Germany.,Department of Pathology, Hematopathology Section, UKSH Campus Kiel, 24105, Kiel, Germany
| | - Lorenz Trümper
- Clinic of Haematology and Medical Oncology, University Medical Centre Göttingen, Lower Saxony, 37075, Göttingen, Germany.,Network BMBF eBio MMML MYC-SYS, 37099 Göttingen / 93053 Regensburg, Germany.,Network BMBF eMed MMML-Demonstrators, 37099 Göttingen / 93053 Regensburg, Germany
| | - Rainer Spang
- Network BMBF eBio MMML MYC-SYS, 37099 Göttingen / 93053 Regensburg, Germany.,Network BMBF eMed MMML-Demonstrators, 37099 Göttingen / 93053 Regensburg, Germany.,Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Bavaria, 93053, Regensburg, Germany
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg, Bavaria, 93053, Regensburg, Germany
| | - Dieter Kube
- Clinic of Haematology and Medical Oncology, University Medical Centre Göttingen, Lower Saxony, 37075, Göttingen, Germany. .,Network BMBF eBio MMML MYC-SYS, 37099 Göttingen / 93053 Regensburg, Germany. .,Network BMBF eMed MMML-Demonstrators, 37099 Göttingen / 93053 Regensburg, Germany.
| |
Collapse
|
36
|
6-mercaptopurine promotes energetic failure in proliferating T cells. Oncotarget 2018; 8:43048-43060. [PMID: 28574837 PMCID: PMC5522126 DOI: 10.18632/oncotarget.17889] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/11/2017] [Indexed: 02/06/2023] Open
Abstract
The anticancer drug 6-mercaptopurine (6-MP) inhibits de novo purine synthesis and acts as an antiproliferative agent by interfering with protein, DNA and RNA synthesis and promoting apoptosis. Metabolic reprogramming is crucial for tumor progression to foster cancer cells growth and proliferation, and is regulated by mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) as well as the oncogenes Myc and hypoxia inducible factor 1α (HIF-1α). We hypothesized that 6-MP impacts metabolic remodeling through its action on nucleotide synthesis. The aim of our study is to provide a comprehensive characterization of the metabolic changes induced by 6-MP in leukemic T cells. Our results indicate that exposition to 6-MP rapidly reduces intracellular ATP concentration, leading to the activation of AMPK. In turn, mTOR, an AMPK target, was inhibited, and the expression of HIF-1α and Myc was reduced upon 6-MP incubation. As a consequence of these inhibitions, glucose and glutamine fluxes were strongly decreased. Notably, no difference was observed on glucose uptake upon exposition to 6-MP. In conclusion, our findings provide new insights into how 6-MP profoundly impacts cellular energetic metabolism by reducing ATP production and decreasing glycolytic and glutaminolytic fluxes, and how 6-MP modifies human leukemic T cells metabolism with potential antiproliferative effects.
Collapse
|
37
|
Mikami K, Endo T, Sawada N, Igarashi GO, Kimura M, Sakuraba H, Fukuda S. Inhibition of Systemic Hyaluronan Synthesis Exacerbates Murine Hepatic Carcinogenesis. ACTA ACUST UNITED AC 2018; 32:273-278. [PMID: 29475909 DOI: 10.21873/invivo.11234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND/AIM Hyaluronan (HA) is used as a biomarker of liver fibrosis, which is a key risk factor for the development of hepatocellular carcinoma (HCC). We examined the effects of prolonged pharmacological inhibition of HA synthesis on liver carcinogenesis. MATERIALS AND METHODS Liver tumors were induced in mice by administering 0.03% thioacetamide (TAA) in drinking water over a 12-month period. Animals simultaneously received either a diet containing of an inhibitor of HA synthesis [4-methylumbelliferone (4-MU)], or a control diet. RESULTS Addition of 4-MU resulted in a significantly higher number of tumors compared to TAA treatment alone. Moreover, addition of 4-MU resulted in a dose-dependent increase in maximum tumor size. CONCLUSION While local HA suppression has been shown to have an inhibitory effect on HCC in vitro and in tumor cell implantation experiments, the present results indicate that systemic inhibition of HA synthesis by 4-MU supplementation facilitates hepatic carcinogenesis in vivo.
Collapse
Affiliation(s)
- Kenichiro Mikami
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tetsu Endo
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Naoya Sawada
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - G O Igarashi
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masayo Kimura
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hirotake Sakuraba
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shinsaku Fukuda
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
38
|
The 150 most important questions in cancer research and clinical oncology series: questions 86-93 : Edited by Chinese Journal of Cancer. CHINESE JOURNAL OF CANCER 2018; 37:1. [PMID: 29357949 PMCID: PMC5778741 DOI: 10.1186/s40880-018-0266-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Abstract
Since the beginning of 2017, Chinese Journal of Cancer has published a series of important questions in cancer research and clinical oncology, which spark diverse thoughts, interesting communications, and potential collaborations among researchers all over the world. In this article, 8 more questions are presented as follows. Question 86. In which circumstances is good supportive care associated with a survival advantage in patients with cancer? Question 87. Can we develop animal models to mimic immunotherapy response of cancer patients? Question 88. What are the mechanisms underlying hepatitis B virus-associated non-hepatocellular cancers? Question 89. Can we more precisely target tumor metabolism by identifying individual patients who would benefit from the treatment? Question 90. What type of cranial irradiation-based prophylactic therapy combination can dramatically improve the survival of patients with extensive small-cell lung cancer? Question 91. How can postoperative radiotherapy prolong overall survival of the patients with resected pIIIA-N2 non-small cell lung cancer? Question 92. What are the key molecular events that drive oral leukoplakia or erythroplakia into oral cancer? Question 93. How could we track the chemotherapeutics-driven evolution of tumor genome in non-small cell lung cancer for more effective treatment?
Collapse
|
39
|
Teoh ST, Lunt SY. Metabolism in cancer metastasis: bioenergetics, biosynthesis, and beyond. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 10. [DOI: 10.1002/wsbm.1406] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/10/2017] [Accepted: 08/28/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Shao Thing Teoh
- Department of Biochemistry and Molecular Biology; Department of Chemical Engineering and Materials Science, Michigan State University; East Lansing MI USA
| | - Sophia Y. Lunt
- Department of Biochemistry and Molecular Biology; Department of Chemical Engineering and Materials Science, Michigan State University; East Lansing MI USA
| |
Collapse
|
40
|
Fernández-Ramos AA, Marchetti-Laurent C, Poindessous V, Antonio S, Petitgas C, Ceballos-Picot I, Laurent-Puig P, Bortoli S, Loriot MA, Pallet N. A comprehensive characterization of the impact of mycophenolic acid on the metabolism of Jurkat T cells. Sci Rep 2017; 7:10550. [PMID: 28874730 PMCID: PMC5585210 DOI: 10.1038/s41598-017-10338-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/02/2017] [Indexed: 12/23/2022] Open
Abstract
Metabolic reprogramming is critical for T cell fate and polarization and is regulated by metabolic checkpoints, including Myc, HIF-1α, AMPK and mTORC1. Our objective was to determine the impact of mycophenolic acid (MPA) in comparison with rapamycin (Rapa), an inhibitor of mTORC1, on the metabolism of Jurkat T cells. We identified a drug-specific transcriptome signature consisting of the key enzymes and transporters involved in glycolysis, glutaminolysis or nucleotide synthesis. MPA produced an early and transient drop in the intracellular ATP content related to the inhibition of de novo synthesis of purines, leading to the activation of the energy sensor AMPK. MPA decreases glycolytic flux, consistent with a reduction in glucose uptake, but also in the oxidation of glutamine. Additionally, both drugs reduce aerobic glycolysis. The expression of HIF-1α and Myc, promoting the activation of glycolysis and glutaminolysis, was inhibited by MPA and Rapa. In conclusion, we report that MPA profoundly impacts the cellular metabolism of Jurkat T cells by generating an energetic distress, decreasing the glycolytic and glutaminolytic fluxes and by targeting HIF-1α and Myc. These findings open interesting perspectives for novel combinatorial therapeutic strategies targeting metabolic checkpoints to block the proliferation of T cells.
Collapse
Affiliation(s)
- Ana A Fernández-Ramos
- INSERM UMR-S 1147, Centre Universitaire des Saints-Pères, 45 rue des Saints-Pères, 75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité. 45, rue des Saints-Pères, 75006, Paris, France
| | - Catherine Marchetti-Laurent
- INSERM UMR-S 1147, Centre Universitaire des Saints-Pères, 45 rue des Saints-Pères, 75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité. 45, rue des Saints-Pères, 75006, Paris, France
| | - Virginie Poindessous
- INSERM UMR-S 1147, Centre Universitaire des Saints-Pères, 45 rue des Saints-Pères, 75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité. 45, rue des Saints-Pères, 75006, Paris, France
| | - Samantha Antonio
- Université Paris Descartes, Sorbonne Paris Cité. 45, rue des Saints-Pères, 75006, Paris, France.,INSERM UMR-S 1124, 45 rue des Saints-Pères, 75006, Paris, France
| | - Céline Petitgas
- Université Paris Descartes, Sorbonne Paris Cité. 45, rue des Saints-Pères, 75006, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Laboratoire de Biochimie métabolomique et protéomique, 149 rue de Sèvres, 75015, Paris, France
| | - Irène Ceballos-Picot
- Université Paris Descartes, Sorbonne Paris Cité. 45, rue des Saints-Pères, 75006, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Laboratoire de Biochimie métabolomique et protéomique, 149 rue de Sèvres, 75015, Paris, France
| | - Pierre Laurent-Puig
- INSERM UMR-S 1147, Centre Universitaire des Saints-Pères, 45 rue des Saints-Pères, 75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité. 45, rue des Saints-Pères, 75006, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Biochimie, 20 rue Leblanc, 75015, Paris, France
| | - Sylvie Bortoli
- Université Paris Descartes, Sorbonne Paris Cité. 45, rue des Saints-Pères, 75006, Paris, France.,INSERM UMR-S 1124, 45 rue des Saints-Pères, 75006, Paris, France
| | - Marie-Anne Loriot
- INSERM UMR-S 1147, Centre Universitaire des Saints-Pères, 45 rue des Saints-Pères, 75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité. 45, rue des Saints-Pères, 75006, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Biochimie, 20 rue Leblanc, 75015, Paris, France
| | - Nicolas Pallet
- INSERM UMR-S 1147, Centre Universitaire des Saints-Pères, 45 rue des Saints-Pères, 75006, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité. 45, rue des Saints-Pères, 75006, Paris, France. .,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Biochimie, 20 rue Leblanc, 75015, Paris, France.
| |
Collapse
|
41
|
Allison KE, Coomber BL, Bridle BW. Metabolic reprogramming in the tumour microenvironment: a hallmark shared by cancer cells and T lymphocytes. Immunology 2017. [PMID: 28621843 DOI: 10.1111/imm.12777] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Altered metabolism is a hallmark of cancers, including shifting oxidative phosphorylation to glycolysis and up-regulating glutaminolysis to divert carbon sources into biosynthetic pathways that promote proliferation and survival. Therefore, metabolic inhibitors represent promising anti-cancer drugs. However, T cells must rapidly divide and survive in harsh microenvironments to mediate anti-cancer effects. Metabolic profiles of cancer cells and activated T lymphocytes are similar, raising the risk of metabolic inhibitors impairing the immune system. Immune checkpoint blockade provides an example of how metabolism can be differentially impacted to impair cancer cells but support T cells. Implications for research with metabolic inhibitors are discussed.
Collapse
Affiliation(s)
- Katrina E Allison
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Brenda L Coomber
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
42
|
Abstract
Cancer immunotherapy is an increasingly successful strategy for the treatment of patients who have advanced or conventional therapy-resistant cancers. T cells are key mediators of tumor destruction and their specificity for tumor-expressed antigens is of paramount importance, but other T cell-intrinsic qualities, such as durability, longevity, and functionality also play important roles in determining the efficacy of immunotherapy. The cellular energetic pathways that are utilized by T cells play a key role in regulating each of these qualities. Metabolic activity, which both regulates and is regulated by cellular signaling pathways and epigenetics, also profoundly influences the trajectories of T cell differentiation and fate. In this Review, we discuss how cell metabolism influences T cell anti-tumor activity, the metabolic qualities of highly-functional T cells, and strategies to modulate metabolism for improving the immune response to tumors.
Collapse
Affiliation(s)
- Rigel J Kishton
- Center for Cell-Based Therapy, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; Surgery Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Madhusudhanan Sukumar
- Center for Cell-Based Therapy, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; Surgery Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Nicholas P Restifo
- Center for Cell-Based Therapy, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; Surgery Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
43
|
Reactive oxygen species are required for driving efficient and sustained aerobic glycolysis during CD4+ T cell activation. PLoS One 2017; 12:e0175549. [PMID: 28426686 PMCID: PMC5398529 DOI: 10.1371/journal.pone.0175549] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/28/2017] [Indexed: 01/08/2023] Open
Abstract
The immune system is necessary for protecting against various pathogens. However, under certain circumstances, self-reactive immune cells can drive autoimmunity, like that exhibited in type 1 diabetes (T1D). CD4+ T cells are major contributors to the immunopathology in T1D, and in order to drive optimal T cell activation, third signal reactive oxygen species (ROS) must be present. However, the role ROS play in mediating this process remains to be further understood. Recently, cellular metabolic programs have been shown to dictate the function and fate of immune cells, including CD4+ T cells. During activation, CD4+ T cells must transition metabolically from oxidative phosphorylation to aerobic glycolysis to support proliferation and effector function. As ROS are capable of modulating cellular metabolism in other models, we sought to understand if blocking ROS also regulates CD4+ T cell activation and effector function by modulating T cell metabolism. To do so, we utilized an ROS scavenging and potent antioxidant manganese metalloporphyrin (MnP). Our results demonstrate that redox modulation during activation regulates the mTOR/AMPK axis by maintaining AMPK activation, resulting in diminished mTOR activation and reduced transition to aerobic glycolysis in diabetogenic splenocytes. These results correlated with decreased Myc and Glut1 upregulation, reduced glucose uptake, and diminished lactate production. In an adoptive transfer model of T1D, animals treated with MnP demonstrated delayed diabetes progression, concurrent with reduced CD4+ T cell activation. Our results demonstrate that ROS are required for driving and sustaining T cell activation-induced metabolic reprogramming, and further support ROS as a target to minimize aberrant immune responses in autoimmunity.
Collapse
|
44
|
Mambetsariev N, Lin WW, Wallis AM, Stunz LL, Bishop GA. TRAF3 deficiency promotes metabolic reprogramming in B cells. Sci Rep 2016; 6:35349. [PMID: 27752131 PMCID: PMC5082756 DOI: 10.1038/srep35349] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/27/2016] [Indexed: 12/23/2022] Open
Abstract
The adaptor protein TNF receptor-associated factor 3 (TRAF3) is a critical regulator of B lymphocyte survival. B cell-specific TRAF3 deficiency results in enhanced viability and is associated with development of lymphoma and multiple myeloma. We show that TRAF3 deficiency led to induction of two proteins important for glucose metabolism, Glut1 and Hexokinase 2 (HXK2). This was associated with increased glucose uptake. In the absence of TRAF3, anaerobic glycolysis and oxidative phosphorylation were increased in B cells without changes in mitochondrial mass or reactive oxygen species. Chemical inhibition of glucose metabolism or glucose deprivation substantially attenuated the enhanced survival of TRAF3-deficient B cells, with a decrease in the pro-survival protein Mcl-1. Changes in Glut1 and Mcl-1 levels, glucose uptake and B cell number in the absence of TRAF3 were all dependent upon NF-κB inducing kinase (NIK). These results indicate that TRAF3 deficiency suffices to metabolically reprogram B cells, a finding that improves our understanding of the role of TRAF3 as a tumor suppressor, and suggests potential therapeutic strategies.
Collapse
Affiliation(s)
- Nurbek Mambetsariev
- Dept. of Microbiology, The University of Iowa, 3-403 Bowen Science Building, 51 Newton Road, Iowa City, IA 52242, USA
- Medical Scientist Training Program, The University of Iowa, Carver College of Medicine, 2206 MERF, Iowa City, IA 52242-2600, USA
- Immunology Graduate Program, 357 Medical Research Center, Iowa City, IA 52242-1182, USA
| | - Wai W. Lin
- Dept. of Microbiology, The University of Iowa, 3-403 Bowen Science Building, 51 Newton Road, Iowa City, IA 52242, USA
- Immunology Graduate Program, 357 Medical Research Center, Iowa City, IA 52242-1182, USA
| | - Alicia M. Wallis
- Dept. of Microbiology, The University of Iowa, 3-403 Bowen Science Building, 51 Newton Road, Iowa City, IA 52242, USA
- Immunology Graduate Program, 357 Medical Research Center, Iowa City, IA 52242-1182, USA
| | - Laura L. Stunz
- Dept. of Microbiology, The University of Iowa, 3-403 Bowen Science Building, 51 Newton Road, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Gail A. Bishop
- Dept. of Microbiology, The University of Iowa, 3-403 Bowen Science Building, 51 Newton Road, Iowa City, IA 52242, USA
- Medical Scientist Training Program, The University of Iowa, Carver College of Medicine, 2206 MERF, Iowa City, IA 52242-2600, USA
- Immunology Graduate Program, 357 Medical Research Center, Iowa City, IA 52242-1182, USA
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA 52242, USA
- University of Iowa and DVA Medical Center, 601 Highway 6 West, Iowa City, IA 52246, USA
- Internal Medicine, 200 Hawkins Drive, Iowa City, Iowa 52242, USA
| |
Collapse
|
45
|
Keibler MA, Wasylenko TM, Kelleher JK, Iliopoulos O, Vander Heiden MG, Stephanopoulos G. Metabolic requirements for cancer cell proliferation. Cancer Metab 2016; 4:16. [PMID: 27540483 PMCID: PMC4989334 DOI: 10.1186/s40170-016-0156-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/14/2016] [Indexed: 12/02/2022] Open
Abstract
Background The study of cancer metabolism has been largely dedicated to exploring the hypothesis that oncogenic transformation rewires cellular metabolism to sustain elevated rates of growth and division. Intense examination of tumors and cancer cell lines has confirmed that many cancer-associated metabolic phenotypes allow robust growth and survival; however, little attention has been given to explicitly identifying the biochemical requirements for cell proliferation in a rigorous manner in the context of cancer metabolism. Results Using a well-studied hybridoma line as a model, we comprehensively and quantitatively enumerate the metabolic requirements for generating new biomass in mammalian cells; this indicated a large biosynthetic requirement for ATP, NADPH, NAD+, acetyl-CoA, and amino acids. Extension of this approach to serine/glycine and glutamine metabolic pathways suggested lower limits on serine and glycine catabolism to supply one-carbon unit synthesis and significant availability of glutamine-derived carbon for biosynthesis resulting from nitrogen demands alone, respectively. We integrated our biomass composition results into a flux balance analysis model, placing upper bounds on mitochondrial NADH oxidation to simulate metformin treatment; these simulations reproduced several empirically observed metabolic phenotypes, including increased reductive isocitrate dehydrogenase flux. Conclusions Our analysis clarifies the differential needs for central carbon metabolism precursors, glutamine-derived nitrogen, and cofactors such as ATP, NADPH, and NAD+, while also providing justification for various extracellular nutrient uptake behaviors observed in tumors. Collectively, these results demonstrate how stoichiometric considerations alone can successfully predict empirically observed phenotypes and provide insight into biochemical dynamics that underlie responses to metabolic perturbations. Electronic supplementary material The online version of this article (doi:10.1186/s40170-016-0156-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mark A Keibler
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Thomas M Wasylenko
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ; Current Address: Late Stage Process Development, Sanofi Genzyme, 31 New York Ave, Framingham, Massachusetts 01701 USA
| | - Joanne K Kelleher
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Othon Iliopoulos
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129 USA ; Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| |
Collapse
|
46
|
The effect of immunosuppressive molecules on T-cell metabolic reprogramming. Biochimie 2016; 127:23-36. [DOI: 10.1016/j.biochi.2016.04.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/22/2016] [Indexed: 12/22/2022]
|
47
|
Matheson NJ, Greenwood EJ, Lehner PJ. Manipulation of immunometabolism by HIV-accessories to the crime? Curr Opin Virol 2016; 19:65-70. [PMID: 27448768 DOI: 10.1016/j.coviro.2016.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/17/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
Abstract
Evolutionary pressure has produced an 'arms race' between cellular restriction factors (limiting viral replication) and viral proteins (overcoming host restriction). The host factors SAMHD1 and SLFN1 patrol metabolic bottlenecks required for HIV replication. Conversely, the HIV accessory proteins Vpx, Vpu and Nef manipulate cellular metabolism to enable viral replication. Recent work identifying Vpu-mediated downregulation of the alanine transporter SNAT1 and Nef-mediated downregulation of the serine carriers SERINC3/5 has uncovered the importance of HIV manipulation of the amino acid supply. Interference with CD4(+) T-cell amino acid metabolism suggests a novel paradigm of viral immunomodulation, and signposts fundamental aspects of lymphocyte biology.
Collapse
Affiliation(s)
- Nicholas J Matheson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK.
| | - Edward Jd Greenwood
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Paul J Lehner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK.
| |
Collapse
|
48
|
Ilievski V, Kinchen JM, Prabhu R, Rim F, Leoni L, Unterman TG, Watanabe K. Experimental Periodontitis Results in Prediabetes and Metabolic Alterations in Brain, Liver and Heart: Global Untargeted Metabolomic Analyses. ACTA ACUST UNITED AC 2016; 3. [PMID: 27390783 DOI: 10.13188/2377-987x.1000020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Results from epidemiological studies suggest that there is an association between periodontitis and prediabetes, however, causality is not known. The results from our previous studies suggest that induction of periodontitis leads to hyperinsulinemia glucose intolerance and insulin resistance, all hallmarks of prediabetes. However, global effects of periodontitis on critical organs in terms of metabolic alterations are unknown. We determined the metabolic effects of periodontitis on brain, liver, heart and plasma resulting from Porphyromonas gingivalis induced periodontitis in mice. Periodontitis was induced by oral application of the periodontal pathogen, Porphyromonas gingivalis for 22 weeks. Global untargeted biochemical profiles in samples from these organs/plasma were determined by liquid and gas chromatography/mass spectrometry and compared between controls and animals with periodontitis. Oral application of Porphyromonas gingivalis induced chronic periodontitis and hallmarks of prediabetes. The results of sample analyses indicated a number of changes in metabolic readouts, including changes in metabolites related to glucose and arginine metabolism, inflammation and redox homeostasis. Changes in biochemicals suggested subtle systemic effects related to periodontal disease, with increases in markers of inflammation and oxidative stress most prominent in the liver. Signs of changes in redox homeostasis were also seen in the brain and heart. Elevated bile acids in liver were suggestive of increased biosynthesis, which may reflect changes in liver function. Interestingly, signs of decreasing glucose availability were seen in the brain. In all three organs and plasma, there was a significant increase in the microbiome-derived bioactive metabolite 4-ethylphenylsulfate sulfate in animals with periodontitis. The results of metabolic profiling suggest that periodontitis/bacterial products alter metabolomic signatures of brain, heart, liver, and plasma in the prediabetic state. These data provide scientific community valuable metabolic signatures that become the basis for understanding the impact of periodontitis on a systemic disease and potentially targets for therapeutic intervention.
Collapse
Affiliation(s)
- Vladimir Ilievski
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Ramya Prabhu
- Undergraduate Program, University of Illinois at Chicago, Chicago, IL, USA
| | - Fadi Rim
- Undergraduate Program, University of Illinois at Chicago, Chicago, IL, USA
| | - Lara Leoni
- Department of Radiology, University of Chicago, Chicago, IL, USA
| | - Terry G Unterman
- Departments of Medicine and Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, and Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Keiko Watanabe
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
49
|
Shi L, Eugenin EA, Subbian S. Immunometabolism in Tuberculosis. Front Immunol 2016; 7:150. [PMID: 27148269 PMCID: PMC4838633 DOI: 10.3389/fimmu.2016.00150] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/05/2016] [Indexed: 01/11/2023] Open
Abstract
Immunometabolism, the study of the relationship between bioenergetic pathways and specific functions of immune cells, has recently gained increasing appreciation. In response to infection, activation of the host innate and adaptive immune cells is accompanied by a switch in the bioenergetic pathway from oxidative phosphorylation to glycolysis, a metabolic remodeling known as the Warburg effect, which is required for the production of antimicrobial and pro-inflammatory effector molecules. In this review, we summarize the current understanding of the Warburg effect and discuss its association with the expression of host immune responses in tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis (Mtb). We also discuss potential mechanisms underlying the Warburg effect with a focus on the expression and regulation of hypoxia-inducible factor 1 alpha (HIF-1α), the regulatory subunit of HIF-1, a major transcription regulator involved in cellular stress adaptation processes, including energy metabolism and antimicrobial responses. We also propose a novel hypothesis that Mtb perturbs the Warburg effect of immune cells to facilitate its survival and persistence in the host. A better understanding of the dynamics of metabolic states of immune cells and their specific functions during TB pathogenesis can lead to the development of immunotherapies capable of promoting Mtb clearance and reducing Mtb persistence and the emergence of drug resistant strains.
Collapse
Affiliation(s)
- Lanbo Shi
- Public Health Research Institute, New Jersey Medical School, Biomedical and Health Sciences, Rutgers - The State University of New Jersey , Newark, NJ , USA
| | - Eliseo A Eugenin
- Public Health Research Institute, New Jersey Medical School, Biomedical and Health Sciences, Rutgers - The State University of New Jersey , Newark, NJ , USA
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Biomedical and Health Sciences, Rutgers - The State University of New Jersey , Newark, NJ , USA
| |
Collapse
|
50
|
Kishton RJ, Barnes CE, Nichols AG, Cohen S, Gerriets VA, Siska PJ, Macintyre AN, Goraksha-Hicks P, de Cubas AA, Liu T, Warmoes MO, Abel ED, Yeoh AEJ, Gershon TR, Rathmell WK, Richards KL, Locasale JW, Rathmell JC. AMPK Is Essential to Balance Glycolysis and Mitochondrial Metabolism to Control T-ALL Cell Stress and Survival. Cell Metab 2016; 23:649-62. [PMID: 27076078 PMCID: PMC4832577 DOI: 10.1016/j.cmet.2016.03.008] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 12/23/2015] [Accepted: 03/24/2016] [Indexed: 01/20/2023]
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy associated with Notch pathway mutations. While both normal activated and leukemic T cells can utilize aerobic glycolysis to support proliferation, it is unclear to what extent these cell populations are metabolically similar and if differences reveal T-ALL vulnerabilities. Here we show that aerobic glycolysis is surprisingly less active in T-ALL cells than proliferating normal T cells and that T-ALL cells are metabolically distinct. Oncogenic Notch promoted glycolysis but also induced metabolic stress that activated 5' AMP-activated kinase (AMPK). Unlike stimulated T cells, AMPK actively restrained aerobic glycolysis in T-ALL cells through inhibition of mTORC1 while promoting oxidative metabolism and mitochondrial Complex I activity. Importantly, AMPK deficiency or inhibition of Complex I led to T-ALL cell death and reduced disease burden. Thus, AMPK simultaneously inhibits anabolic growth signaling and is essential to promote mitochondrial pathways that mitigate metabolic stress and apoptosis in T-ALL.
Collapse
Affiliation(s)
- Rigel J Kishton
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA; Duke Molecular Physiology Institute, Duke University, Durham, NC 27710, USA
| | - Carson E Barnes
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Amanda G Nichols
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA; Duke Molecular Physiology Institute, Duke University, Durham, NC 27710, USA
| | - Sivan Cohen
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA; Duke Molecular Physiology Institute, Duke University, Durham, NC 27710, USA
| | - Valerie A Gerriets
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Peter J Siska
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA; Duke Molecular Physiology Institute, Duke University, Durham, NC 27710, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University, Nashville, TN 37232, USA
| | - Andrew N Macintyre
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | | | - Aguirre A de Cubas
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Tingyu Liu
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Marc O Warmoes
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - E Dale Abel
- Department of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Allen Eng Juh Yeoh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 119077, Singapore; Department of Pediatrics, National University Health System, Singapore 119228, Singapore
| | - Timothy R Gershon
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - W Kimryn Rathmell
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Kristy L Richards
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA; Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Jeffrey C Rathmell
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA; Duke Molecular Physiology Institute, Duke University, Durham, NC 27710, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|