1
|
Teschke R. Molecular Idiosyncratic Toxicology of Drugs in the Human Liver Compared with Animals: Basic Considerations. Int J Mol Sci 2023; 24:ijms24076663. [PMID: 37047633 PMCID: PMC10095090 DOI: 10.3390/ijms24076663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Drug induced liver injury (DILI) occurs in patients exposed to drugs at recommended doses that leads to idiosyncratic DILI and provides an excellent human model with well described clinical features, liver injury pattern, and diagnostic criteria, based on patients assessed for causality using RUCAM (Roussel Uclaf Causality Assessment Method) as original method of 1993 or its update of 2016. Overall, 81,856 RUCAM based DILI cases have been published until mid of 2020, allowing now for an analysis of mechanistic issues of the disease. From selected DILI cases with verified diagnosis by using RUCAM, direct evidence was provided for the involvement of the innate and adapted immune system as well as genetic HLA (Human Leucocyte Antigen) genotypes. Direct evidence for a role of hepatic immune systems was substantiated by (1) the detection of anti-CYP (Cytochrome P450) isoforms in the plasma of affected patients, in line with the observation that 65% of the drugs most implicated in DILI are metabolized by a range of CYP isoforms, (2) the DIAIH (drug induced autoimmune hepatitis), a subgroup of idiosyncratic DILI, which is characterized by high RUCAM causality gradings and the detection of plasma antibodies such as positive serum anti-nuclear antibodies (ANA) and anti-smooth muscle antibodies (ASMA), rarely also anti-mitochondrial antibodies (AMA), (3) the effective treatment with glucocorticoids in part of an unselected RUCAM based DILI group, and (4) its rare association with the immune-triggered Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) caused by a small group of drugs. Direct evidence of a genetic basis of idiosyncratic DILI was shown by the association of several HLA genotypes for DILI caused by selected drugs. Finally, animal models of idiosyncratic DILI mimicking human immune and genetic features are not available and further search likely will be unsuccessful. In essence and based on cases of DILI with verified diagnosis using RUCAM for causality evaluation, there is now substantial direct evidence that immune mechanisms and genetics can account for idiosyncratic DILI by many but not all implicated drugs, which may help understand the mechanistic background of the disease and contribute to new approaches of therapy and prevention.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Germany
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, D-60590 Frankfurt am Main, Germany
| |
Collapse
|
2
|
Redrawing the map to novel DILI biomarkers in circulation: Where are we, where should we go, and how can we get there? LIVERS 2021; 1:286-293. [PMID: 34966905 DOI: 10.3390/livers1040022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Circulating biomarkers of drug-induced liver injury (DILI) have been a focus of research in hepatology over the last decade, and several novel DILI biomarkers that hold promise for certain applications have been identified. For example, glutamate dehydrogenase holds promise as a specific biomarker of liver injury in patients with concomitant muscle damage. It may also be a specific indicator of mitochondrial damage. In addition, microRNA-122 is sensitive for early detection of liver injury in acetaminophen overdose patients. However, recent events in the field of DILI biomarker research have provided us with an opportunity to step back, consider how biomarker discovery has been done thus far, and determine how to move forward in a way that will optimize the discovery process. This is important because major challenges remain in the DILI field and related areas that could be overcome in part by new biomarkers. In this short review, we briefly describe recent progress in DILI biomarker discovery and development, identify current needs, and suggest a general approach to move forward.
Collapse
|
3
|
Atallah E, Freixo C, Alvarez-Alvarez I, Cubero F, Gerbes AL, Kullak-Ublick GA, Aithal GP. Biomarkers of idiosyncratic drug-induced liver injury (DILI) - a systematic review. Expert Opin Drug Metab Toxicol 2021; 17:1327-1343. [PMID: 34727797 PMCID: PMC7617394 DOI: 10.1080/17425255.2021.1999410] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/21/2021] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Idiosyncratic drug-induced liver injury (DILI) is an unpredictable event, and there are no specific biomarkers that can distinguish DILI from alternative explanations or predict its clinical outcomes. AREAS COVERED This systematic review summarizes the available evidence for all biomarkers proposed to have a role in the diagnosis or prognosis of DILI. Following a comprehensive search, we included all types of studies in humans. We included DILI cases based on any threshold criteria but excluded intrinsic DILI, commonly caused by paracetamol overdose. We classified studies into diagnostic and prognostic categories and assessed their methodological quality. After reviewing the literature, 14 studies were eligible. EXPERT OPINION Diagnostic studies were heterogeneous with regard to the study population and outcomes measured. Prognostic models were developed by integrating novel biomarkers, risk scores, and traditional biomarkers, which increased their prognostic ability to predict death or transplantation by 6 months. This systematic review highlights the case of need for non-genetic biomarkers that distinguish DILI from acute liver injury related to alternative etiology. Biomarkers with the potential to identify serious adverse outcomes from acute DILI should be validated in independent prospective cohorts with a substantial number of cases.
Collapse
Affiliation(s)
- Edmond Atallah
- School of Medicine, Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham, UK
- National Institute for Health Research (NIHR)Nottingham Biomedical Research Centre, Nottingham University Hospitals Nhs Trust and the University of Nottingham, Nottingham, UK
| | - Cristiana Freixo
- Cintesis, Center for Health Technology and Services Research, Faculdade De Medicina Da Universidade Do Porto, Porto, Portugal
| | - Ismael Alvarez-Alvarez
- Servicio De Farmacología Clínica and Ugc Aparato Digestivo, Hospital Universitario Virgen De La Victoria, Instituto De Investigación Biomédica De Málaga-IBIMA, Universidad De Málaga, Málaga, Spain
- Centro De Investigación Biomédica En Red De Enfermedades Hepáticas Y Digestivas (Ciberehd), Madrid, Spain
| | - F.J Cubero
- Centro De Investigación Biomédica En Red De Enfermedades Hepáticas Y Digestivas (Ciberehd), Madrid, Spain
- Department of Immunology, Ophthalmology, and ENT, Complutense University School of Medicine, Madrid, Spain
| | - Alexander L. Gerbes
- Department of Medicine, Liver Centre Munich, University Hospital Munich, Munich, Germany
| | - Gerd A. Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland
| | - Guruprasad P. Aithal
- School of Medicine, Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham, UK
- National Institute for Health Research (NIHR)Nottingham Biomedical Research Centre, Nottingham University Hospitals Nhs Trust and the University of Nottingham, Nottingham, UK
| |
Collapse
|
4
|
Toresson L, Steiner JM, Suchodolski JS. Cholestyramine treatment in two dogs with presumptive bile acid diarrhoea: a case report. Canine Med Genet 2021; 8:1. [PMID: 33468234 PMCID: PMC7814458 DOI: 10.1186/s40575-021-00099-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/01/2021] [Indexed: 11/24/2022] Open
Abstract
Background In people, bile acid diarrhoea is a prevalent complication of Crohn’s disease and diarrhoea-associated irritable bowel syndrome. Affected patients typically respond to bile acid sequestrants, such as cholestyramine, but human gastroenterologists often fail to recognize bile acid diarrhoea. Consequently, bile acid diarrhoea is regarded as an underrecognized and undertreated condition in human medicine. Due to lack of diagnostic tools, clinical response to bile acid sequestrants is often used to confirm a diagnosis of bile acid diarrhoea in people. Several recent studies have shown that bile acid dysmetabolism also occurs in dogs with chronic enteropathies. It has further been shown that dogs with chronic enteropathies have significantly decreased expression of a bile acid transport protein in the ileum compared to healthy dogs, which correlates with faecal bile acid dysmetabolism. Consequently, in spite of the lack of reports in the literature, bile acid diarrhoea is likely to exist in dogs as well. Case descriptions Two dogs, an 8-year old Rottweiler and a 4.5-year old Siberian Husky were evaluated for chronic watery diarrhoea. Neither dog responded to dietary trials, probiotics, cyclosporine, faecal microbial transplantations or metronidazole. One of the dogs responded to high daily doses of corticosteroids, which were however associated with unacceptable side effects. The other dog was refractory to all standard treatment protocols, including cyclosporine and corticosteroids. Since none of the dogs responded satisfactorily to standard treatment or modulation of the intestinal microbiome, a suspicion of possible bile acid diarrhoea was raised. Treatment with cholestyramine, a bile acid sequestrant was initiated and resulted in marked improvement of faecal consistency, frequency of defecation and activity level in both dogs. Conclusion This report presents two dogs with presumed bile acid diarrhoea that were successfully treated with cholestyramine. Therefore, bile acid diarrhoea should be considered as a possible diagnosis in dogs with treatment-refractory chronic diarrhoea. Supplementary Information The online version contains supplementary material available at 10.1186/s40575-021-00099-x.
Collapse
Affiliation(s)
- L Toresson
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, Helsinki University, Agnes Sjobergin katu 2, 00014, Helsinki, Finland. .,Evidensia Specialist Animal Hospital, Bergavagen 3, 25466, Helsingborg, Sweden.
| | - J M Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4474 TAMU, College Station, TX, 77843-4474, USA
| | - J S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4474 TAMU, College Station, TX, 77843-4474, USA
| |
Collapse
|
5
|
Vazquez JH, Clemens MM, Allard FD, Yee EU, Kennon-McGill S, Mackintosh SG, Jaeschke H, Hambuchen MD, McGill MR. Identification of Serum Biomarkers to Distinguish Hazardous and Benign Aminotransferase Elevations. Toxicol Sci 2020; 173:244-254. [PMID: 31651977 DOI: 10.1093/toxsci/kfz222] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The standard circulating biomarker of liver injury in both clinical settings and drug safety testing is alanine aminotransferase (ALT). However, ALT elevations sometimes lack specificity for tissue damage. To identify novel serum biomarkers with greater specificity for injury, we combined unique animal models with untargeted proteomics, followed by confirmation with immunoblotting. Using proteomics, we identified 109 proteins in serum from mice with acetaminophen (APAP)-induced liver injury that were not detectable in serum from mice with benign ALT elevations due to high-dose dexamethasone (Dex). We selected 4 (alcohol dehydrogenase 1A1 [Aldh1a1], aldehyde dehydrogenase 1 [Adh1], argininosuccinate synthetase 1 [Ass1], and adenosylhomocysteinase [Ahcy]) with high levels for further evaluation. Importantly, all 4 were specific for injury when using immunoblots to compare serum from Dex-treated mice and mice with similar lower ALT elevations due to milder models of APAP or bromobenzene-induced liver injury. Immunoblotting for ALDH1A1, ADH1, and ASS1 in serum from APAP overdose patients without liver injury and APAP overdose patients with mild liver injury revealed that these candidate biomarkers can be detected in humans with moderate liver injury as well. Interestingly, further experiments with serum from rats with bile duct ligation-induced liver disease indicated that Aldh1a1 and Adh1 are not detectable in serum in cholestasis and may therefore be specific for hepatocellular injury and possibly even drug-induced liver injury, in particular. Overall, our results strongly indicate that ALDH1A1, ADH1, and ASS1 are promising specific biomarkers for liver injury. Adoption of these biomarkers could improve preapproval drug safety assessment.
Collapse
Affiliation(s)
- Joel H Vazquez
- Department of Pharmacology and Toxicology.,Graduate Program in Interdisciplinary Biomedical Sciences
| | - Melissa M Clemens
- Department of Pharmacology and Toxicology.,Graduate Program in Interdisciplinary Biomedical Sciences
| | - Felicia D Allard
- Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Eric U Yee
- Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Stefanie Kennon-McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health
| | - Samuel G Mackintosh
- Department of Biochemistry, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Michael D Hambuchen
- Department of Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, West Virginia 25701
| | - Mitchell R McGill
- Department of Pharmacology and Toxicology.,Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health
| |
Collapse
|
6
|
Watkins PB, Church RJ, Li J, Knappertz V. Cannabidiol and Abnormal Liver Chemistries in Healthy Adults: Results of a Phase I Clinical Trial. Clin Pharmacol Ther 2020; 109:1224-1231. [PMID: 33022751 PMCID: PMC8246741 DOI: 10.1002/cpt.2071] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/27/2020] [Indexed: 12/15/2022]
Abstract
Liver safety concerns were raised in randomized controlled trials of cannabidiol (CBD) in patients with Lennox-Gastaut and Dravet syndromes, but the relevance of these concerns to healthy adults consuming CBD is unclear. The objective of this manuscript is to report on liver safety findings from healthy adults who received therapeutic daily doses of CBD for ~ 3.5 weeks and to investigate any correlation between transaminase elevations and baseline characteristics, pharmacogenetic, and pharmacokinetic data. Sixteen healthy adults were enrolled in a phase I, open-label, fixed single-sequence drug-drug interaction trial to investigate the effect of repeated dose administration of CBD (1,500 mg/day) on cytochrome P450 (CYP) 1A2 activity. Seven (44%) participants experienced peak serum alanine aminotransferase (ALT) values greater than the upper limit of normal (ULN). For five (31%) participants, the value exceeded 5 × ULN, therefore meeting the international consensus criteria for drug-induced liver injury. There was no correlation between transaminase elevations and baseline characteristics, CYP2C19 genotype, or CBD plasma concentrations. All ALT elevations above the ULN began within 2-4 weeks of initial exposure to CBD. Among the six participants with ALT elevations who were discontinued from the protocol, some had symptoms consistent with hepatitis or hypersensitivity. We conclude that healthy adults consuming CBD may experience elevations in serum ALT consistent with drug-induced liver injury. Given the demonstrated interindividual variation in susceptibility, clinicians should be alert to this potential effect from CBD, which is increasingly available in various nonprescription forms and doses to consumers.
Collapse
Affiliation(s)
- Paul B Watkins
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy and Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rachel J Church
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy and Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jie Li
- Greenwich Biosciences, 5750 Fleet St Ste 200, Carlsbad, CA, USA
| | | |
Collapse
|
7
|
Church RJ, Watkins PB. The Challenge of Interpreting Alanine Aminotransferase Elevations in Clinical Trials of New Drug Candidates. Clin Transl Sci 2020; 14:434-436. [PMID: 33113257 PMCID: PMC7993316 DOI: 10.1111/cts.12900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/12/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Rachel J Church
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy and Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Paul B Watkins
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy and Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
8
|
Maeda M, Tanaka R, Aso M, Sakamoto Y, Song I, Ochiai M, Saito Y, Maekawa K, Arakawa N, Ohno Y, Kumagai Y. Hepatic Adaptation to Therapeutic Doses of Acetaminophen: An Exploratory Study in Healthy Individuals. Clin Ther 2020; 42:1276-1291.e1. [DOI: 10.1016/j.clinthera.2020.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 02/06/2023]
|
9
|
Marín-Romero A, Tabraue-Chávez M, Dear JW, Sánchez-Martín RM, Ilyine H, Guardia-Monteagudo JJ, Fara MA, López-Delgado FJ, Díaz-Mochón JJ, Pernagallo S. Amplification-free profiling of microRNA-122 biomarker in DILI patient serums, using the luminex MAGPIX system. Talanta 2020; 219:121265. [PMID: 32887156 DOI: 10.1016/j.talanta.2020.121265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 01/08/2023]
Abstract
Dynamic chemical labelling is a single-base specific method to enable detection and quantification of micro-Ribonucleic Acids in biological fluids without extraction and pre-amplification. In this study, dynamic chemical labelling was combined with the Luminex MAGPIX system to profile levels of microRNA-122 biomarker in serum from patients with Drug-Induced Liver Injury.
Collapse
Affiliation(s)
- Antonio Marín-Romero
- DESTINA Genomica S.L. Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Innovación 1, Edificio BIC, Armilla, Granada, 18100, Spain; GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada, Andalusian Regional Government, PTS Granada - Avenida de la Ilustración, 114 - 18016, GRANADA, Spain; Universidad de Granada. Facultad de Farmacia. Departamento de Quimica Farmacéutica y Orgánica, Campus Cartuja s/n, 18071, Granada, Spain
| | - Mavys Tabraue-Chávez
- DESTINA Genomica S.L. Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Innovación 1, Edificio BIC, Armilla, Granada, 18100, Spain
| | - James W Dear
- Pharmacology,Therapeutics and Toxicology, Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47, Little France Crescent, Edinburgh, EH16, 4TJ, UK
| | - Rosario M Sánchez-Martín
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada, Andalusian Regional Government, PTS Granada - Avenida de la Ilustración, 114 - 18016, GRANADA, Spain; Universidad de Granada. Facultad de Farmacia. Departamento de Quimica Farmacéutica y Orgánica, Campus Cartuja s/n, 18071, Granada, Spain
| | - Hugh Ilyine
- DESTINA Genomics Ltd, 7-11 Melville St, Edinburgh, EH3 7PE, UK
| | - Juan J Guardia-Monteagudo
- DESTINA Genomica S.L. Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Innovación 1, Edificio BIC, Armilla, Granada, 18100, Spain
| | - Mario A Fara
- DESTINA Genomica S.L. Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Innovación 1, Edificio BIC, Armilla, Granada, 18100, Spain
| | - Francisco J López-Delgado
- DESTINA Genomica S.L. Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Innovación 1, Edificio BIC, Armilla, Granada, 18100, Spain
| | - Juan J Díaz-Mochón
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada, Andalusian Regional Government, PTS Granada - Avenida de la Ilustración, 114 - 18016, GRANADA, Spain; Universidad de Granada. Facultad de Farmacia. Departamento de Quimica Farmacéutica y Orgánica, Campus Cartuja s/n, 18071, Granada, Spain.
| | - Salvatore Pernagallo
- DESTINA Genomica S.L. Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Innovación 1, Edificio BIC, Armilla, Granada, 18100, Spain.
| |
Collapse
|
10
|
Serum glutamate dehydrogenase activity enables early detection of liver injury in subjects with underlying muscle impairments. PLoS One 2020; 15:e0229753. [PMID: 32407333 PMCID: PMC7224523 DOI: 10.1371/journal.pone.0229753] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/11/2020] [Indexed: 12/18/2022] Open
Abstract
Serum activities of alanine and aspartate aminotransferases (ALT and AST) are used as gold standard biomarkers for the diagnosis of hepatocellular injury. Since ALT and AST lack liver specificity, the diagnosis of the onset of hepatocellular injury in patients with underlying muscle impairments is severely limited. Thus, we evaluated the potential of glutamate dehydrogenase (GLDH) as a liver specific alternative biomarker of hepatocellular injury. In our study, serum GLDH in subjects with Duchene muscular dystrophy (DMD) was equivalent to serum GLDH in age matched healthy subjects, while serum ALT was increased 20-fold in DMD subjects. Furthermore, serum GLDH in 131 subjects with variety of muscle impairments was similar to serum GLDH of healthy subjects while serum ALT corelated with serum creatine kinase, a widely accepted biomarker of muscle impairment. In addition, significant elevations of ALT, AST, and CK were observed in a case of a patient with rhabdomyolysis, while serum GLDH stayed within the normal range until the onset of hypoxia-induced liver injury. In a mouse model of DMD (DMDmdx), serum GLDH but not serum ALT clearly correlated with the degree of acetaminophen-induced liver injury. Taken together, our data support the utility of serum GLDH as a liver-specific biomarker of liver injury that has a potential to improve diagnosis of hepatocellular injury in patients with underlying muscle impairments. In drug development, GLDH may have utility as a biomarker of drug induced liver injury in clinical trials of new therapies to treat muscle diseases such as DMD.
Collapse
|
11
|
Mosedale M, Watkins PB. Understanding Idiosyncratic Toxicity: Lessons Learned from Drug-Induced Liver Injury. J Med Chem 2020; 63:6436-6461. [PMID: 32037821 DOI: 10.1021/acs.jmedchem.9b01297] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Idiosyncratic adverse drug reactions (IADRs) encompass a diverse group of toxicities that can vary by drug and patient. The complex and unpredictable nature of IADRs combined with the fact that they are rare makes them particularly difficult to predict, diagnose, and treat. Common clinical characteristics, the identification of human leukocyte antigen risk alleles, and drug-induced proliferation of lymphocytes isolated from patients support a role for the adaptive immune system in the pathogenesis of IADRs. Significant evidence also suggests a requirement for direct, drug-induced stress, neoantigen formation, and stimulation of an innate response, which can be influenced by properties intrinsic to both the drug and the patient. This Perspective will provide an overview of the clinical profile, mechanisms, and risk factors underlying IADRs as well as new approaches to study these reactions, focusing on idiosyncratic drug-induced liver injury.
Collapse
Affiliation(s)
- Merrie Mosedale
- Institute for Drug Safety Sciences and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| | - Paul B Watkins
- Institute for Drug Safety Sciences and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
12
|
Roth SE, Avigan MI, Bourdet D, Brott D, Church R, Dash A, Keller D, Sherratt P, Watkins PB, Westcott‐Baker L, Lentini S, Merz M, Ramaiah L, Ramaiah SK, Stanley AM, Marcinak J. Next-Generation DILI Biomarkers: Prioritization of Biomarkers for Qualification and Best Practices for Biospecimen Collection in Drug Development. Clin Pharmacol Ther 2020; 107:333-346. [PMID: 31314926 PMCID: PMC7006882 DOI: 10.1002/cpt.1571] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022]
Abstract
The diagnosis and management of drug-induced liver injury (DILI) remains a challenge in clinical trials in drug development. The qualification of emerging biomarkers capable of predicting DILI soon after the initiation of treatment, differentiating DILI from underlying liver disease, identifying the causal entity, and assigning appropriate treatment options after DILI is diagnosed are needed. Qualification efforts have been hindered by lack of properly stored and consented biospecimens that are linked to clinical data relevant to a specific context of use. Recommendations are made for biospecimen collection procedures, with the focus on clinical trials, and for specific emerging biomarkers to focus qualification efforts.
Collapse
Affiliation(s)
| | | | - David Bourdet
- Theravance BiopharmaSouth San FranciscoCaliforniaUSA
| | | | - Rachel Church
- Department of Pharmacotherapy and Experimental TherapeuticsEshelman School of PharmacyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Ajit Dash
- GenentechSouth San FranciscoCaliforniaUSA
| | | | | | - Paul B. Watkins
- Department of Pharmacotherapy and Experimental TherapeuticsEshelman School of PharmacyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Fu S, Wu D, Jiang W, Li J, Long J, Jia C, Zhou T. Molecular Biomarkers in Drug-Induced Liver Injury: Challenges and Future Perspectives. Front Pharmacol 2020; 10:1667. [PMID: 32082163 PMCID: PMC7002317 DOI: 10.3389/fphar.2019.01667] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 12/20/2019] [Indexed: 02/05/2023] Open
Abstract
Drug-induced liver injury (DILI) is one among the common adverse drug reactions and the leading causes of drug development attritions, black box warnings, and post-marketing withdrawals. Despite having relatively low clinical incidence, its potentially severe adverse events should be considered in the individual patients due to the high risk of acute liver failure. Although traditional liver parameters have been applied to the diagnosis of DILI, the lack of specific and sensitive biomarkers poses a major limitation, and thus accurate prediction of the subsequent clinical course remains a significant challenge. These drawbacks prompt the investigation and discovery of more effective biomarkers, which could lead to early detection of DILI, and improve its diagnosis and prognosis. Novel promising biomarkers include glutamate dehydrogenase, keratin 18, sorbitol dehydrogenase, glutathione S-transferase, bile acids, cytochrome P450, osteopontin, high mobility group box-1 protein, fatty acid binding protein 1, cadherin 5, miR-122, genetic testing, and omics technologies, among others. Furthermore, several clinical scoring systems have gradually emerged for the diagnosis of DILI including the Roussel Uclaf Causality Assessment Method (RUCAM), Clinical Diagnostic Scale (CDS), and Digestive Disease Week Japan (DDW-J) systems. However, currently their predictive value is limited with certain inherent deficiencies. Thus, perhaps the greatest benefit would be achieved by simultaneously combining the scoring systems and those biomarkers. Herein, we summarized the recent research progress on molecular biomarkers for DILI to improved approaches for its diagnosis and clinical management.
Collapse
Affiliation(s)
- Siyu Fu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Dongbo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Jiang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Li
- Department of Infectious Diseases, Pidu District People's Hospital, Chengdu, China
| | - Jiang Long
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Chengyao Jia
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Taoyou Zhou
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Affiliation(s)
- Chiara Gabbi
- University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
15
|
Watkins PB. Idiosyncratic drug-induced liver injury in patients: Detection, severity assessment, and regulatory implications. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 85:165-193. [PMID: 31307586 DOI: 10.1016/bs.apha.2019.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Idiosyncratic Drug-Induced Liver Injury (IDILI) is a rare but potentially life-threatening event that is caused by drugs that, at usual therapeutic doses, do not cause any biochemical or clinical evidence of liver injury in the majority of treated patients. The most common clinical phenotypes of IDILI are "acute hepatitis," "mixed hepatocellular-cholestatic hepatitis," and "cholestatic hepatitis" and these are distinguished by clinical, biochemical and histologic characteristics. Anti-microbials, herbals and dietary supplements are now the agents most often implicated in the US Drug-Induced Liver Injury Network registry. There are several scales that have been used to characterize the severity of IDILI events. There are no reliable means to accurately predict the course of an IDILI event at presentation. In clinical trials, the "gold standard" liver safety signal is the occurrence of "Hy's Law Cases." Making the diagnosis of IDILI, and when a patient is taking multiple drugs, identifying the most likely culprit can be challenging, but many drugs cause IDILI with characteristic clinical and biochemical presentations, or "signatures." In a clinical trial, it is sometimes possible to identify an overlooked "signature" of IDILI by characterizing more minor, asymptomatic, and transient elevations in liver chemistries. This observation can be helpful in assessing causation in rare serious liver events occurring in the clinical trial, or first recognized post-marketing.
Collapse
Affiliation(s)
- Paul B Watkins
- Eshelman School of Pharmacy, Institute for Drug Safety Sciences, University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|
16
|
Schadt HS, Wolf A, Mahl JA, Wuersch K, Couttet P, Schwald M, Fischer A, Lienard M, Emotte C, Teng CH, Skuba E, Richardson TA, Manenti L, Weiss A, Graus Porta D, Fairhurst RA, Kullak-Ublick GA, Chibout SD, Pognan F, Kluwe W, Kinyamu-Akunda J. Bile Acid Sequestration by Cholestyramine Mitigates FGFR4 Inhibition-Induced ALT Elevation. Toxicol Sci 2019; 163:265-278. [PMID: 29432567 DOI: 10.1093/toxsci/kfy031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The FGF19- fibroblast growth factor receptor (FGFR4)-βKlotho (KLB) pathway plays an important role in the regulation of bile acid (BA) homeostasis. Aberrant activation of this pathway has been described in the development and progression of a subset of liver cancers including hepatocellular carcinoma, establishing FGFR4 as an attractive therapeutic target for such solid tumors. FGF401 is a highly selective FGFR4 kinase inhibitor being developed for hepatocellular carcinoma, currently in phase I/II clinical studies. In preclinical studies in mice and dogs, oral administration of FGF401 led to induction of Cyp7a1, elevation of its peripheral marker 7alpha-hydroxy-4-cholesten-3-one, increased BA pool size, decreased serum cholesterol and diarrhea in dogs. FGF401 was also associated with increases of serum aminotransferases, primarily alanine aminotransferase (ALT), in the absence of any observable adverse histopathological findings in the liver, or in any other organs. We hypothesized that the increase in ALT could be secondary to increased BAs and conducted an investigative study in dogs with FGF401 and coadministration of the BA sequestrant cholestyramine (CHO). CHO prevented and reversed FGF401-related increases in ALT in dogs in parallel to its ability to reduce BAs in the circulation. Correlation analysis showed that FGF401-mediated increases in ALT strongly correlated with increases in taurolithocholic acid and taurodeoxycholic acid, the major secondary BAs in dog plasma, indicating a mechanistic link between ALT elevation and changes in BA pool hydrophobicity. Thus, CHO may offer the potential to mitigate elevations in serum aminotransferases in human subjects that are caused by targeted FGFR4 inhibition and elevated intracellular BA levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Corinne Emotte
- PK Sciences, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Chi-Hse Teng
- Biostatistics and Pharmacometrics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| | | | | | - Luigi Manenti
- Oncology, Novartis Institutes for Biomedical Research, East Hanover, New Jersey 07936
| | | | | | - Robin A Fairhurst
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Gerd A Kullak-Ublick
- Mechanistic Safety, Novartis Global Drug Development, 4002 Basel, Switzerland.,Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
17
|
Church RJ, Watkins PB. Serum biomarkers of drug-induced liver injury: Current status and future directions. J Dig Dis 2019; 20:2-10. [PMID: 30378260 DOI: 10.1111/1751-2980.12684] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022]
Abstract
Drug-induced liver injury (DILI), which is caused by drugs and herbal or dietary supplements, remains a serious concern for drug developers, regulators, and clinicians; however, serum biomarkers utilized to detect and monitor DILI have not changed in decades and have limitations. Data-driven mathematical modeling that incorporates the release and clearance kinetics of traditional biomarkers has improved their use in the prediction of liver safety liabilities for new drug candidates. Several newer biomarkers have shown promise in terms of liver specificity, predicting the outcome of DILI events, and providing insight into its underlying mechanisms. For these new biomarkers to be qualified for regulatory acceptance, it will require their assessment in large numbers of patients who are receiving a wide range of compounds and who develop a broad spectrum of liver injuries. The ongoing and evolving international biomarker consortia should play a major role in this effort, which is likely to transform the assessment of liver safety in clinical trials and in the clinic.
Collapse
Affiliation(s)
- Rachel J Church
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina, USA.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Paul B Watkins
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina, USA.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| |
Collapse
|
18
|
Liu Y, Li P, Liu L, Zhang Y. The diagnostic role of miR-122 in drug-induced liver injury: A systematic review and meta-analysis. Medicine (Baltimore) 2018; 97:e13478. [PMID: 30544438 PMCID: PMC6310488 DOI: 10.1097/md.0000000000013478] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 11/07/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Drug-induced liver injury (DILI) is a potentially severe adverse drug reaction especially in susceptible patients. But there are no sensitive or specific parameters to detecting DILI. The specific expression of miR-122 in the liver has been a hotspot in the evaluation of hepatic toxicity due to its high stability and sensitivity. METHODS We performed a systematic literature review through July 31, 2017 to identify studies which evolved DILI patients testing miR-122 without limiting a certain drug. According to the PRISMA statement, a meta-analysis: the diagnostic role of miR-122 in DILI was made. QUADAS-2 quality evaluation table was used to evaluate the quality of the documentary evidence, PRISMA flowchart and quality evaluation table were drawn with RevMan, use Stata to calculate the sensitivity and specificity of miR-122 in diagnosing DILI, ROC curve and Deeks funnel plot were also drawn by STATA. RESULTS Eleven studies involved 194 DILI patients and 251 controls, all were tested miR-122 (fold change). Sensitivity of miR-122 in diagnosing DILI was [0.85 (95% CI, 0.75-0.91), I = 53.46%] and specificity was [0.93 (95% CI, 0.86-0.97), I = 65.10%], the area under ROC curve was 0.95 (95% CI, 0.93-0.97). While in acetaminophen (APAP)-induced liver injury, the sensitivity was [0.82 (95%CI, 0.67-0.91), I = 65.77%] specificity was [0.96 (95%CI, 0.88-0.99), I = 31.46%], AUROC was 0.97 (95% CI, 0.95-0.98). CONCLUSIONS In this systematic review and meta-analysis, we found miR-122 have a high specificity in DILI, and a modest positive diagnostic effects. On the basis of the limited evidence, further research is needed to evaluate the long-term observation and more clinical data to testify miR-122 in diagnosing DILI.
Collapse
Affiliation(s)
- Yiqi Liu
- School of Graduates, Tianjin Medical University
- Department of Hepatology, Tianjin Second People's Hospital
| | - Ping Li
- Department of Hepatology, Tianjin Second People's Hospital
- Tianjin Research Institute of Liver Diseases, Tianjin, China
| | - Liang Liu
- School of Graduates, Tianjin Medical University
- Department of Hepatology, Tianjin Second People's Hospital
| | | |
Collapse
|
19
|
Previous Drug Exposure in Patients Hospitalised for Acute Liver Injury: A Case-Population Study in the French National Healthcare Data System. Drug Saf 2018; 42:559-572. [DOI: 10.1007/s40264-018-0752-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
20
|
Wang Y, Matye D, Nguyen N, Zhang Y, Li T. HNF4α Regulates CSAD to Couple Hepatic Taurine Production to Bile Acid Synthesis in Mice. Gene Expr 2018; 18:187-196. [PMID: 29871716 PMCID: PMC6190117 DOI: 10.3727/105221618x15277685544442] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cysteine dioxygenase 1 (CDO1) converts cysteine to cysteine sulfinic acid, which can be further converted by cysteine sulfinic acid decarboxylase (CSAD) to hypotaurine for taurine production. This cysteine catabolic pathway plays a major role in regulating hepatic cysteine homeostasis. Furthermore, taurine is used for bile acid conjugation, which enhances bile acid solubility and physiological function in the gut. Recent studies show that this cysteine catabolic pathway is repressed by bile acid signaling, but the molecular mechanisms have not been fully elucidated. The mechanisms of bile acid and farnesoid X receptor (FXR) regulation of hepatic CSAD expression were studied in mice and hepatocytes. We showed that hepatocyte nuclear factor 4α (HNF4α) bound the mouse CSAD proximal promoter and induced CSAD transcription. FXR-induced small heterodimer partner (SHP) repressed mouse CSAD gene transcription via interacting with HNF4α as a repressor. Consistent with this model, cholic acid feeding, obeticholic acid administration, and liver HNF4α knockdown reduced hepatic CSAD expression, while liver SHP knockout and apical sodium-dependent bile acid transporter (ASBT) inhibitor treatment induced hepatic CSAD expression in mice. Furthermore, TNF-α also inhibited CSAD expression, which may be partially mediated by reduced HNF4α in mouse hepatocytes. In contrast, bile acids and GW4064 did not inhibit CSAD expression in human hepatocytes. This study identified mouse CSAD as a novel transcriptional target of HNF4α. Bile acids and cytokines repress hepatic CSAD, which closely couples taurine production to bile acid synthesis in mice. The species-specific regulation of CSAD reflects the differential preference of bile acid conjugation to glycine and taurine in humans and mice, respectively.
Collapse
Affiliation(s)
- Yifeng Wang
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, KS, USA
| | - David Matye
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, KS, USA
| | - Nga Nguyen
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, KS, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, KS, USA
| | - Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, KS, USA
| |
Collapse
|
21
|
Wang Y, Li J, Matye D, Zhang Y, Dennis K, Ding WX, Li T. Bile acids regulate cysteine catabolism and glutathione regeneration to modulate hepatic sensitivity to oxidative injury. JCI Insight 2018; 3:99676. [PMID: 29669937 DOI: 10.1172/jci.insight.99676] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/20/2018] [Indexed: 12/23/2022] Open
Abstract
Bile acids are signaling molecules that critically control hepatocellular function. Disrupted bile acid homeostasis may be implicated in the pathogenesis of chronic liver diseases. Glutathione is an important antioxidant that protects the liver against oxidative injury. Various forms of liver disease share the common characteristics of reduced cellular glutathione and elevated oxidative stress. This study reports a potentially novel physiological function of bile acids in regulating hepatic sulfur amino acid and glutathione metabolism. We found that bile acids strongly inhibited the cysteine dioxygenase type-1-mediated (CDO1-mediated) cysteine catabolic pathway via a farnesoid X receptor-dependent mechanism. Attenuating this bile acid repressive effect depleted the free cysteine pool and reduced the glutathione concentration in mouse liver. Upon acetaminophen challenge, cholestyramine-fed mice showed impaired hepatic glutathione regeneration capacity and markedly worsened liver injury, which was fully prevented by N-acetylcysteine administration. These effects were recapitulated in CDO1-overexpressing hepatocytes. Findings from this study support the importance of maintaining bile acid homeostasis under physiological and pathophysiological conditions, as altered hepatic bile acid signaling may negatively impact the antioxidant defense mechanism and sensitivity to oxidative injury. Furthermore, this finding provides a possible explanation for the reported mild hepatotoxicity associated with the clinical use of bile acid sequestrants in human patients.
Collapse
Affiliation(s)
- Yifeng Wang
- Department of Pharmacology, Toxicology and Therapeutics, and
| | - Jibiao Li
- Department of Pharmacology, Toxicology and Therapeutics, and
| | - David Matye
- Department of Pharmacology, Toxicology and Therapeutics, and
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology and Therapeutics, and
| | - Katie Dennis
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, and
| | - Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, and
| |
Collapse
|
22
|
Church RJ, Watkins PB. In silico modeling to optimize interpretation of liver safety biomarkers in clinical trials. Exp Biol Med (Maywood) 2017; 243:300-307. [PMID: 29096561 DOI: 10.1177/1535370217740853] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Current strategies to delineate the risk of serious drug-induced liver injury associated with drugs rely on assessment of serum biomarkers that have been utilized for many decades. In particular, serum alanine aminotransferase and total bilirubin levels are typically used to assess hepatic integrity and function, respectively. Parallel measurement of these biomarkers is utilized to identify patients with drug-induced hepatocellular jaundice ("Hy's Law" cases) which carries at least a 10% risk of death or liver transplant. However, current guidelines regarding use of these biomarkers in clinical trials can put study subjects at risk for life-threatening drug-induced liver injury, or result in over estimation of risk that may halt development of safe drugs. In addition, pharmaceutical companies are increasingly being required to conduct large and expensive clinical trials to "defend" the safety of their new drug when results from smaller trials are inconclusive. Innovative approaches and some novel biomarkers are now being employed to maximize the value of traditional biochemical tests. DILIsym®, a product of the DILIsim Initiative, utilizes serial serum alanine aminotransferase values, along with serum biomarkers of apoptosis vs necrosis, to estimate percent hepatocyte loss and total bilirubin elevations resulting from loss of global liver function. The results from analyses conducted with DILIsym have been reported to the FDA to support the safety of entolimod and cimaglermin alfa after elevations in serum alanine aminotransferase and/or bilirubin halted clinical development. DILIsym can also be utilized to determine whether rises in serum conjugated and unconjugated bilirubin are consistent with mechanisms unrelated to toxicity ( i.e. inhibition of bilirubin transport or metabolism). In silico modeling of traditional and novel drug-induced liver injury biomarker data obtained in clinical trials may be the most efficient and accurate way to define the liver safety profile of new drug candidates. Impact statement Blood tests used in clinical trials to detect and monitor drug-induced liver injury (DILI) have not changed in half a century. These tests have several shortcomings: their use has not completely prevented clinical trial participants from risk of life-threatening DILI, they can give false positive results that halt the development of safe drug candidates, and they can create liver safety "concerns" that require large additional clinical trials to accurately define DILI risk. This review highlights the use of in silico modeling to improve interpretation of the blood tests currently available to detect DILI risk in new drug candidates. This approach is increasingly being applied in clinical trials to more precisely assess the degree of hepatocellular injury and its functional impact. This new approach holds the promise of more accurately defining DILI risk in smaller clinical trials.
Collapse
Affiliation(s)
- Rachel J Church
- 1 UNC Institute for Drug Safety Sciences, 2331 Research Triangle Park , NC 27709, USA.,2 Division of Pharmacotherapy and Experimental Therapeutics, 15521 UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill , NC 27599, USA
| | - Paul B Watkins
- 1 UNC Institute for Drug Safety Sciences, 2331 Research Triangle Park , NC 27709, USA.,2 Division of Pharmacotherapy and Experimental Therapeutics, 15521 UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill , NC 27599, USA
| |
Collapse
|
23
|
do Amaral AE, Cisilotto J, Creczynski-Pasa TB, de Lucca Schiavon L. Circulating miRNAs in nontumoral liver diseases. Pharmacol Res 2017; 128:274-287. [PMID: 29037479 DOI: 10.1016/j.phrs.2017.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 12/23/2022]
Abstract
In recent years, there has been increasing interest in finding new biomarkers for diagnosis and prognostication of liver diseases. MicroRNAs (miRNAs) are small noncoding RNA molecules involved in the regulation of gene expression and have been studied in relation to several conditions, including liver disease. Mature miRNAs can reach the bloodstream by passive release or by incorporation into lipoprotein complexes or microvesicles, and have stable and reproducible concentrations among individuals. In this review, we summarize studies involving circulating miRNAs sourced from the serum or plasma of patients with nontumoral liver diseases in attempt to bring insights in the use of miRNAs as biomarkers for diagnosis, as well as for prognosis of such diseases. In addition, we present pre-analytical aspects involving miRNA analysis and strategies for normalization of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) data related to the studies evaluated.
Collapse
Affiliation(s)
- Alex Evangelista do Amaral
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Delfino Conti Street, 88040-370 Florianopolis, SC, Brazil.
| | - Júlia Cisilotto
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Delfino Conti Street, 88040-370 Florianopolis, SC, Brazil.
| | - Tânia Beatriz Creczynski-Pasa
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Delfino Conti Street, 88040-370 Florianopolis, SC, Brazil.
| | - Leonardo de Lucca Schiavon
- Department of Internal Medicine, Division of Gastroenterology, Federal University of Santa Catarina, Maria Flora Pausewang Street, 88036-800 Florianopolis, SC, Brazil.
| |
Collapse
|
24
|
Abstract
The development of better diagnostic and prognostic non-invasive biomarkers holds an enormous potential to improve the ability to diagnose and individualize treatment of a great number of human diseases and substantially reduce health care cost. The discovery of a fundamental role of microRNAs in the disease pathogenesis and their presence and stability in biological fluids has led to extensive investigation of the role of microRNAs as potential non-invasive biomarkers for disease diagnosis and prognosis. The result of this research has suggested that alterations of microRNAs may be sensitive indicators of various pathologies; however, despite the indisputable progress in this field, the diagnostic promise of microRNAs has remained a work in progress, and circulating microRNAs have not entered the field of clinical medicine yet. Commonly reported microRNAs as disease biomarkers are largely not disease-specific and the results are often contradicting in independent studies. This review summarizes the current knowledge on the role of microRNAs as disease indicators and emphasizes the current gaps, challenges, and questions that need to be addressed in future well-designed and well-controlled studies for a successful translation of microRNA profiling into clinically meaningful tests. Impact statement This review summarizes the current knowledge on the role of circulating miRNAs as clinical diagnostic biomarkers and highlights the challenges that need to be addressed in future studies for a successful translation of circulating miRNAs into a novel diagnostic tool.
Collapse
Affiliation(s)
- Igor P Pogribny
- Division of Biochemical Toxicology, 4136 National Center for Toxicological Research , Jefferson, AR 72079, USA
| |
Collapse
|
25
|
Vliegenthart ADB, Berends C, Potter CMJ, Kersaudy‐Kerhoas M, Dear JW. MicroRNA-122 can be measured in capillary blood which facilitates point-of-care testing for drug-induced liver injury. Br J Clin Pharmacol 2017; 83:2027-2033. [PMID: 28257154 PMCID: PMC5555871 DOI: 10.1111/bcp.13282] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/03/2017] [Accepted: 02/18/2017] [Indexed: 02/06/2023] Open
Abstract
AIMS Liver-enriched microRNA-122 (miR-122) is a novel circulating biomarker for drug-induced liver injury (DILI). To date, miR-122 has been measured in serum or plasma venous samples. If miR-122 could be measured in capillary blood obtained from a finger prick it would facilitate point-of-care testing, such as in resource-limited settings that have a high burden of DILI. METHODS In this study, in healthy subjects, miR-122 was measured by polymerase chain reaction in three capillary blood drops taken from different fingers and in venous blood and plasma (n = 20). miR-122 was also measured in capillary blood obtained from patients with DILI (n = 8). RESULTS Circulating miR-122 could be readily measured in a capillary blood drop in healthy volunteers with a median (interquartile range) cycle threshold (Ct) of 32.6 (31.1-34.2). The coefficient of variation for intraindividual variability across replicate blood drops was 49.9%. Capillary miR-122 faithfully reflected the concentration in venous blood and plasma (Pearson R = 0.89, P < 0.0001; 0.88, P < 0.0001, respectively). miR-122 was 86-fold higher in DILI patients [median value 1.0 × 108 (interquartile range 1.89 × 107 -3.04 × 109 ) copies/blood drop] compared to healthy subjects [1.85 × 106 (4.92 × 105 -5.88 × 106 ) copies/blood drop]. Receiver operator characteristic analysis demonstrated that capillary miR-122 sensitively and specifically reported DILI (area under the curve: 0.96, P = 0.0002). CONCLUSION This work supports the potential use of miR-122 as biomarker of human DILI when measured in a capillary blood drop. With development across DILI aetiologies, this could be used by novel point-of-care technologies to produce a minimally invasive, near-patient, diagnostic test.
Collapse
Affiliation(s)
- A. D. Bastiaan Vliegenthart
- Pharmacology, Toxicology and Therapeutics, University/BHF Centre for Cardiovascular ScienceEdinburgh UniversityUK
| | - Cécile Berends
- Pharmacology, Toxicology and Therapeutics, University/BHF Centre for Cardiovascular ScienceEdinburgh UniversityUK
| | - Carmelita M. J. Potter
- Pharmacology, Toxicology and Therapeutics, University/BHF Centre for Cardiovascular ScienceEdinburgh UniversityUK
| | - Maiwenn Kersaudy‐Kerhoas
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical ScienceHeriot‐Watt UniversityUK
- Division of Infection and Pathway MedicineUniversity of EdinburghUK
| | - James W. Dear
- Pharmacology, Toxicology and Therapeutics, University/BHF Centre for Cardiovascular ScienceEdinburgh UniversityUK
| |
Collapse
|
26
|
Kullak-Ublick GA, Andrade RJ, Merz M, End P, Benesic A, Gerbes AL, Aithal GP. Drug-induced liver injury: recent advances in diagnosis and risk assessment. Gut 2017; 66:1154-1164. [PMID: 28341748 PMCID: PMC5532458 DOI: 10.1136/gutjnl-2016-313369] [Citation(s) in RCA: 317] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/24/2017] [Accepted: 02/28/2017] [Indexed: 12/12/2022]
Abstract
Idiosyncratic drug-induced liver injury (IDILI) is a rare but potentially severe adverse drug reaction that should be considered in patients who develop laboratory criteria for liver injury secondary to the administration of a potentially hepatotoxic drug. Although currently used liver parameters are sensitive in detecting DILI, they are neither specific nor able to predict the patient's subsequent clinical course. Genetic risk assessment is useful mainly due to its high negative predictive value, with several human leucocyte antigen alleles being associated with DILI. New emerging biomarkers which could be useful in assessing DILI include total keratin18 (K18) and caspase-cleaved keratin18 (ccK18), macrophage colony-stimulating factor receptor 1, high mobility group box 1 and microRNA-122. From the numerous in vitro test systems that are available, monocyte-derived hepatocytes generated from patients with DILI show promise in identifying the DILI-causing agent from among a panel of coprescribed drugs. Several computer-based algorithms are available that rely on cumulative scores of known risk factors such as the administered dose or potential liabilities such as mitochondrial toxicity, inhibition of the bile salt export pump or the formation of reactive metabolites. A novel DILI cluster score is being developed which predicts DILI from multiple complimentary cluster and classification models using absorption-distribution-metabolism-elimination-related as well as physicochemical properties, diverse substructural descriptors and known structural liabilities. The provision of more advanced scientific and regulatory guidance for liver safety assessment will depend on validating the new diagnostic markers in the ongoing DILI registries, biobanks and public-private partnerships.
Collapse
Affiliation(s)
- Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich and University of Zurich, Zurich, Switzerland,Drug Safety and Epidemiology, Novartis Pharma, Basel, Switzerland
| | - Raul J Andrade
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Málaga, Spain
| | - Michael Merz
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Peter End
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Andreas Benesic
- Department of Medicine II, Klinikum Grosshadern of the University of Munich (KUM), University of Munich, Munich, Germany,MetaHeps GmbH, Planegg/Martinsried, Germany
| | - Alexander L Gerbes
- Department of Medicine II, Klinikum Grosshadern of the University of Munich (KUM), University of Munich, Munich, Germany
| | - Guruprasad P Aithal
- National Institute for Health Research (NIHR), Nottingham Digestive Diseases Biomedical Research Unit, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| |
Collapse
|
27
|
Harrill AH, McCullough SD, Wood CE, Kahle JJ, Chorley BN. MicroRNA Biomarkers of Toxicity in Biological Matrices. Toxicol Sci 2016; 152:264-72. [DOI: 10.1093/toxsci/kfw090] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
28
|
Nunez DJ, Yao X, Lin J, Walker A, Zuo P, Webster L, Krug-Gourley S, Zamek-Gliszczynski MJ, Gillmor DS, Johnson SL. Glucose and lipid effects of the ileal apical sodium-dependent bile acid transporter inhibitor GSK2330672: double-blind randomized trials with type 2 diabetes subjects taking metformin. Diabetes Obes Metab 2016; 18:654-62. [PMID: 26939572 DOI: 10.1111/dom.12656] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/10/2016] [Accepted: 02/27/2016] [Indexed: 12/15/2022]
Abstract
AIMS To investigate the pharmacodynamics, pharmacokinetics and safety/tolerability of blocking reuptake of bile acids using the inhibitor GSK2330672 (GSK672) in patients with type 2 diabetes (T2D). METHODS Subjects with T2D taking metformin were enrolled in two studies in which they took metformin 850 mg twice daily for 2 weeks prior to and during the randomized treatment periods. In the first crossover study (n = 15), subjects received GSK672 45 mg, escalating to 90 mg, twice daily, or placebo for 7 days. The second parallel-group study (n = 75) investigated GSK672 10-90 mg twice daily, placebo or sitagliptin for 14 days. RESULTS In both studies, GSK672 reduced circulating bile acids and increased serum 7-α-hydroxy-4-cholesten-3-one (C4), an intermediate in the hepatic synthesis of bile acids. Compared with placebo, in the parallel-group study 90 mg GSK672 twice daily reduced fasting plasma glucose [FPG; -1.21 mmol/l; 95% confidence interval (CI) -2.14, -0.28] and weighted-mean glucose area under the curve (AUC)0-24 h (-1.33 mmol/l; 95% CI -2.30, -0.36), as well as fasting and weighted-mean insulin AUC0 -24 h . GSK672 also reduced cholesterol (LDL, non-HDL and total cholesterol) and apolipoprotein B concentrations; the maximum LDL cholesterol reduction was ∼40%. There was no change in HDL cholesterol but there was a trend towards increased fasting triglyceride levels in the GSK672 groups compared with placebo. In both studies, the most common adverse events associated with GSK672 were gastrointestinal, mostly diarrhoea (22-100%), which appeared to be independent of dose. CONCLUSIONS In subjects with T2D on metformin, GSK672 improved glucose and lipids, but there was a high incidence of gastrointestinal adverse events.
Collapse
Affiliation(s)
- D J Nunez
- GlaxoSmithKline plc, Research Triangle Park, NC and Collegeville, PA, USA
| | - X Yao
- Alexion Pharmaceuticals, Inc., Cambridge, MA, USA
| | - J Lin
- Grifols Therapeutics Inc., Research Triangle Park, NC, USA
| | - A Walker
- GlaxoSmithKline plc, Research Triangle Park, NC and Collegeville, PA, USA
| | - P Zuo
- Parexel International, Durham, NC, USA
| | | | - S Krug-Gourley
- GlaxoSmithKline plc, Research Triangle Park, NC and Collegeville, PA, USA
| | | | - D S Gillmor
- Pharmaceutical Product Development LLC, Morrisville, NC, USA
| | | |
Collapse
|
29
|
Lea JD, Clarke JI, McGuire N, Antoine DJ. Redox-Dependent HMGB1 Isoforms as Pivotal Co-Ordinators of Drug-Induced Liver Injury: Mechanistic Biomarkers and Therapeutic Targets. Antioxid Redox Signal 2016; 24:652-65. [PMID: 26481429 DOI: 10.1089/ars.2015.6406] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE High-mobility group box 1 (HMGB1) is a critical protein in the coordination of the inflammatory response in drug-induced liver injury (DILI). HMGB1 is released from necrotic hepatocytes and activated immune cells. The extracellular function of HMGB1 is dependent upon redox modification of cysteine residues that control chemoattractant and cytokine-inducing properties. Existing biomarkers of DILI such as alanine aminotransferase (ALT) have limitations such as lack of sensitivity and tissue specificity that can adversely affect clinical intervention. RECENT ADVANCES HMGB1 isoforms have been shown to be more sensitive biomarkers than ALT for predicting DILI development and the requirement for liver transplant following acetaminophen (APAP) overdose. Hepatocyte-specific conditional knockout of HMGB1 has demonstrated the pivotal role of HMGB1 in DILI and liver disease. Tandem mass spectrometry (MS/MS) enables the characterization and quantification of different mechanism-dependent post-translationally modified isoforms of HMGB1. CRITICAL ISSUES HMGB1 shows great promise as a biomarker of DILI. However, current diagnostic assays are either too time-consuming to be clinically applicable (MS/MS) or are unable to distinguish between different redox and acetyl isoforms of HMGB1 (ELISA). Additionally, HMGB1 is not liver specific, so while it outperforms ALT (also not liver specific) as a biomarker for the prediction of DILI development, it should be used in a biomarker panel along with liver-specific markers such as miR-122. FUTURE DIRECTIONS A point-of-care test for HMGB1 and the development of redox and acetyl isoform-targeting antibodies will advance clinical utility. Work is ongoing to validate baseline levels of circulating HMGB1 in healthy volunteers.
Collapse
Affiliation(s)
- Jonathan D Lea
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool , Liverpool, United Kingdom
| | - Joanna I Clarke
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool , Liverpool, United Kingdom
| | - Niamh McGuire
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool , Liverpool, United Kingdom
| | - Daniel J Antoine
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool , Liverpool, United Kingdom
| |
Collapse
|
30
|
Clarke JI, Dear JW, Antoine DJ. Recent advances in biomarkers and therapeutic interventions for hepatic drug safety – false dawn or new horizon? Expert Opin Drug Saf 2016; 15:625-34. [DOI: 10.1517/14740338.2016.1160057] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Joanna I. Clarke
- MRC Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - James W. Dear
- Pharmacology, Toxicology and Therapeutics Unit, BHF/University Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Daniel J. Antoine
- MRC Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
31
|
Characterization of release profile of ornithine carbamoyltransferase from primary rat hepatocytes treated with hepatotoxic drugs: Implications for its unique potential as a drug-induced liver injury biomarker. Drug Metab Pharmacokinet 2015; 31:102-105. [PMID: 26825849 DOI: 10.1016/j.dmpk.2015.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/10/2015] [Accepted: 11/25/2015] [Indexed: 12/17/2022]
Abstract
Ornithine carbamoyltransferase (OCT) is a mitochondrial protein expressed primarily in the liver. It has been shown that, like alanine aminotransferase (ALT), OCT is released from damaged hepatocytes in rats and humans, which has given rise to the possibility that OCT might provide a diagnostic biomarker of various forms of liver damage, including drug-induced liver injury (DILI). However, OCT release characteristics in DILI, as well as their diagnostic advantages, remain elusive. Therefore, this study aimed at clarifying whether and how OCT is released from rat primary hepatocytes in vitro using seven potentially hepatotoxic drugs. The results showed that OCT releases from damaged hepatocytes were observed for all tested drugs, and that those releases were not associated with mitochondrial membrane proteins. It should be underscored that the release dynamics were significantly larger than those of ALT. Furthermore, unlike ALT, the maximum OCT release levels showed differences depending on the drug being tested, suggesting that OCT release was susceptible to toxicity mechanisms. Taken together, these unique release characteristics highlight the possibility that OCT could provide a promising DILI biomarker that might contribute not only to diagnostic accuracy improvements, but also to a better understanding of toxicity types in clinical and drug development settings.
Collapse
|
32
|
Marrone AK, Beland FA, Pogribny IP. The role for microRNAs in drug toxicity and in safety assessment. Expert Opin Drug Metab Toxicol 2015; 11:601-11. [PMID: 25739314 DOI: 10.1517/17425255.2015.1021687] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Adverse drug reactions present significant challenges that impact pharmaceutical development and are major burdens to public health services worldwide. In response to this need, the field of toxicology is rapidly expanding to identify key pathways involved in drug toxicity. AREAS COVERED MicroRNAs (miRNAs) are a class of small evolutionary conserved endogenous non-coding RNAs that regulate the translation of protein-coding genes. A wide range of toxicants alter miRNA levels in target organs and these altered miRNAs can also be detected in easily accessible biological fluids. This, combined with an early miRNA response to toxic insults and miRNA stability, substantiates the potential for these small molecules to be useful biomarkers for drug safety assessment. EXPERT OPINION miRNAs are early indicators and useful tools to detect drug-induced toxicity. Incorporation of miRNA profiling into the drug safety testing process will complement currently used techniques and may substantially enhance drug safety. With the increasing interests in translational research, the field of miRNA biomarker research will continue to expand and become an important part of the investigation of human drug toxicity.
Collapse
Affiliation(s)
- April K Marrone
- FDA-National Center for Toxicological Research, Division of Biochemical Toxicology , Jefferson, AR , USA
| | | | | |
Collapse
|
33
|
Shi Q, Yang X, Mattes WB, Mendrick DL, Harrill AH, Beger RD. Circulating mitochondrial biomarkers for drug-induced liver injury. Biomark Med 2015; 9:1215-23. [PMID: 26507261 DOI: 10.2217/bmm.15.59] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver mitochondria affected by drugs can be released into circulation and serve as biomarkers for drug-induced liver injury (DILI). The tissue specificity of ALT was improved by differentiating cytosolic ALT1 and mitochondrial ALT2 isoforms released in circulation. Prior to ALT elevation, mitochondrial cytochrome c, OCT, GLDH, CPS1 and DNA were increased in circulation following DILI. The baseline expression of mt-Nd6 was predictive of individual DILI susceptibility in animals. As mitochondrial DILI biomarkers appeared to be drug or species dependent, they might have value in clinical scenarios when culprit drugs are established, but may not be ideal tools to assess DILI potentials of new drugs.
Collapse
Affiliation(s)
- Qiang Shi
- Division of Systems Biology, National Center for Toxicological Research, Food & Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Xi Yang
- Division of Systems Biology, National Center for Toxicological Research, Food & Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - William B Mattes
- Division of Systems Biology, National Center for Toxicological Research, Food & Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Donna L Mendrick
- Regulatory Activities, National Center for Toxicological Research, Food & Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Alison H Harrill
- Department of Environmental & Occupational Health, The University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA
| | - Richard D Beger
- Division of Systems Biology, National Center for Toxicological Research, Food & Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| |
Collapse
|