1
|
Cases‐Cunillera S, Friker LL, Müller P, Becker AJ, Gielen GH. From bedside to bench: New insights in epilepsy-associated tumors based on recent classification updates and animal models on brain tumor networks. Mol Oncol 2024; 18:2951-2965. [PMID: 38899375 PMCID: PMC11619802 DOI: 10.1002/1878-0261.13680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 12/28/2023] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Low-grade neuroepithelial tumors (LGNTs), particularly those with glioneuronal histology, are highly associated with pharmacoresistant epilepsy. Increasing research focused on these neoplastic lesions did not translate into drug discovery; and anticonvulsant or antitumor therapies are not available yet. During the last years, animal modeling has improved, thereby leading to the possibility of generating brain tumors in mice mimicking crucial genetic, molecular and immunohistological features. Among them, intraventricular in utero electroporation (IUE) has been proven to be a valuable tool for the generation of animal models for LGNTs allowing endogenous tumor growth within the mouse brain parenchyma. Epileptogenicity is mostly determined by the slow-growing patterns of these tumors, thus mirroring intrinsic interactions between tumor cells and surrounding neurons is crucial to investigate the mechanisms underlying convulsive activity. In this review, we provide an updated classification of the human LGNT and summarize the most recent data from human and animal models, with a focus on the crosstalk between brain tumors and neuronal function.
Collapse
Affiliation(s)
- Silvia Cases‐Cunillera
- INSERM U1266, Neuronal Signaling in Epilepsy and GliomaInstitute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris CitéParisFrance
- Section for Translational Epilepsy ResearchInstitute of Neuropathology, University Hospital BonnBonnGermany
| | - Lea L. Friker
- Institute of NeuropathologyUniversity Hospital BonnBonnGermany
| | - Philipp Müller
- Section for Translational Epilepsy ResearchInstitute of Neuropathology, University Hospital BonnBonnGermany
| | - Albert J. Becker
- Section for Translational Epilepsy ResearchInstitute of Neuropathology, University Hospital BonnBonnGermany
| | | |
Collapse
|
2
|
Wang N, Yuan Y, Hu T, Xu H, Piao H. Metabolism: an important player in glioma survival and development. Discov Oncol 2024; 15:577. [PMID: 39436434 PMCID: PMC11496451 DOI: 10.1007/s12672-024-01402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Gliomas are malignant tumors originating from both neuroglial cells and neural stem cells. The involvement of neural stem cells contributes to the tumor's heterogeneity, affecting its metabolic features, development, and response to therapy. This review provides a brief introduction to the importance of metabolism in gliomas before systematically categorizing them into specific groups based on their histological and molecular genetic markers. Metabolism plays a critical role in glioma biology, as tumor cells rely heavily on altered metabolic pathways to support their rapid growth, survival, and progression. Dysregulated metabolic processes, involving carbohydrates, lipids, and amino acids not only fuel tumor development but also contribute to therapy resistance and metastatic potential. By understanding these metabolic changes, key intervention points, such as mutations in genes like RTK, EGFR, RAS, and IDH can be identified, paving the way for novel therapeutic strategies. This review emphasizes the connection between metabolic pathways and clinical challenges, offering actionable insights for future research and therapeutic development in gliomas.
Collapse
Affiliation(s)
- Ning Wang
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi, Dalian, Dalian, Liaoning, 116024, People's Republic of China
- Department of Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong, Shenyang, Liaoning, 110042, People's Republic of China
| | - Yiru Yuan
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi, Dalian, Dalian, Liaoning, 116024, People's Republic of China
- Department of Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong, Shenyang, Liaoning, 110042, People's Republic of China
| | - Tianhao Hu
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi, Dalian, Dalian, Liaoning, 116024, People's Republic of China
- Department of Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong, Shenyang, Liaoning, 110042, People's Republic of China
| | - Huizhe Xu
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi, Dalian, Dalian, Liaoning, 116024, People's Republic of China.
- Department of Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong, Shenyang, Liaoning, 110042, People's Republic of China.
| | - Haozhe Piao
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi, Dalian, Dalian, Liaoning, 116024, People's Republic of China.
- Department of Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong, Shenyang, Liaoning, 110042, People's Republic of China.
| |
Collapse
|
3
|
Hammon K, Renner K, Althammer M, Voll F, Babl N, Decking SM, Siska PJ, Matos C, Conejo ZEC, Mendes K, Einwag F, Siegmund H, Iberl S, Berger RS, Dettmer K, Schoenmehl R, Brochhausen C, Herr W, Oefner PJ, Rehli M, Thomas S, Kreutz M. D-2-hydroxyglutarate supports a tolerogenic phenotype with lowered major histocompatibility class II expression in non-malignant dendritic cells and acute myeloid leukemia cells. Haematologica 2024; 109:2500-2514. [PMID: 38235501 PMCID: PMC11290548 DOI: 10.3324/haematol.2023.283597] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
D-2-hydroxyglutarate (D-2-HG) accumulates in patients with acute myeloid leukemia (AML) with mutated isocitrate dehydrogenase (IDH) and in other malignancies. D-2-HG suppresses antitumor T-cell immunity but little is known about potential effects on non-malignant myeloid cells. Here we show that D-2-HG impairs human but not murine dendritic cell differentiation, resulting in a tolerogenic phenotype with low major histocompatibility class II expression. In line with this, IDH-mutated AML blasts exhibited lower expression of HLA-DP and were less susceptible to lysis by HLA-DP-specific T cells. Interestingly, besides its expected impact on DNA demethylation, D-2-HG reprogrammed metabolism towards increased lactate production in dendritic cells and AML. Vitamin C accelerated DNA demethylation, but only the combination of vitamin C and glycolytic inhibition lowered lactate levels and supported major histocompatibility complex class II expression. Our results indicate an unexpected link between the immunosuppressive metabolites 2-HG and lactic acid and suggest a potentially novel therapeutic strategy with combinations of anti-glycolytic drugs and epigenetic modulators (hypomethylating agents) or other therapeutics for the treatment of AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/drug effects
- Glutarates/metabolism
- Glutarates/pharmacology
- Mice
- Animals
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/metabolism
- Phenotype
- Cell Differentiation/drug effects
- Lactic Acid/metabolism
- Immune Tolerance/drug effects
- Isocitrate Dehydrogenase/genetics
Collapse
Affiliation(s)
- Kathrin Hammon
- Department of Internal Medicine III, University Hospital Regensburg; Regensburg, Germany; LIT - Leibniz Institute for Immunotherapy; Regensburg
| | - Kathrin Renner
- Department of Internal Medicine III, University Hospital Regensburg; Regensburg, Germany; LIT - Leibniz Institute for Immunotherapy; Regensburg, Germany; Department of Otorhinolaryngology, University Hospital Regensburg, Regensburg
| | - Michael Althammer
- Department of Internal Medicine III, University Hospital Regensburg; Regensburg
| | - Florian Voll
- LIT - Leibniz Institute for Immunotherapy; Regensburg
| | - Nathalie Babl
- Department of Internal Medicine III, University Hospital Regensburg; Regensburg
| | - Sonja-Maria Decking
- Department of Otorhinolaryngology, University Hospital Regensburg, Regensburg
| | - Peter J Siska
- Department of Internal Medicine III, University Hospital Regensburg; Regensburg
| | - Carina Matos
- Department of Internal Medicine III, University Hospital Regensburg; Regensburg
| | | | - Karina Mendes
- Department of Internal Medicine III, University Hospital Regensburg; Regensburg, Germany; Present address: Universidade Católica Portuguesa, Center for Interdisciplinary Research in Health (CIIS), Institute of Health Sciences (ICS); Viseu
| | - Friederike Einwag
- Department of Internal Medicine III, University Hospital Regensburg; Regensburg
| | - Heiko Siegmund
- Institute of Pathology, University of Regensburg; Regensburg
| | - Sabine Iberl
- Department of Internal Medicine III, University Hospital Regensburg; Regensburg
| | - Raffaela S Berger
- Institute of Functional Genomics, University of Regensburg; Regensburg
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg; Regensburg
| | - Rebecca Schoenmehl
- Institute of Pathology, University Medical Center Mannheim, University Heidelberg, Mannheim
| | - Christoph Brochhausen
- Institute of Pathology, University of Regensburg; Regensburg, Germany; Institute of Pathology, University Medical Center Mannheim, University Heidelberg, Mannheim
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg; Regensburg
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg; Regensburg
| | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg; Regensburg, Germany; LIT - Leibniz Institute for Immunotherapy; Regensburg
| | - Simone Thomas
- Department of Internal Medicine III, University Hospital Regensburg; Regensburg, Germany; LIT - Leibniz Institute for Immunotherapy; Regensburg
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg; Regensburg, Germany; LIT - Leibniz Institute for Immunotherapy; Regensburg.
| |
Collapse
|
4
|
van Noorden CJ, Yetkin-Arik B, Serrano Martinez P, Bakker N, van Breest Smallenburg ME, Schlingemann RO, Klaassen I, Majc B, Habic A, Bogataj U, Galun SK, Vittori M, Erdani Kreft M, Novak M, Breznik B, Hira VV. New Insights in ATP Synthesis as Therapeutic Target in Cancer and Angiogenic Ocular Diseases. J Histochem Cytochem 2024; 72:329-352. [PMID: 38733294 PMCID: PMC11107438 DOI: 10.1369/00221554241249515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/01/2024] [Indexed: 05/13/2024] Open
Abstract
Lactate and ATP formation by aerobic glycolysis, the Warburg effect, is considered a hallmark of cancer. During angiogenesis in non-cancerous tissue, proliferating stalk endothelial cells (ECs) also produce lactate and ATP by aerobic glycolysis. In fact, all proliferating cells, both non-cancer and cancer cells, need lactate for the biosynthesis of building blocks for cell growth and tissue expansion. Moreover, both non-proliferating cancer stem cells in tumors and leader tip ECs during angiogenesis rely on glycolysis for pyruvate production, which is used for ATP synthesis in mitochondria through oxidative phosphorylation (OXPHOS). Therefore, aerobic glycolysis is not a specific hallmark of cancer but rather a hallmark of proliferating cells and limits its utility in cancer therapy. However, local treatment of angiogenic eye conditions with inhibitors of glycolysis may be a safe therapeutic option that warrants experimental investigation. Most types of cells in the eye such as photoreceptors and pericytes use OXPHOS for ATP production, whereas proliferating angiogenic stalk ECs rely on glycolysis for lactate and ATP production. (J Histochem Cytochem XX.XXX-XXX, XXXX).
Collapse
Affiliation(s)
- Cornelis J.F. van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | - Bahar Yetkin-Arik
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paola Serrano Martinez
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | - Noëlle Bakker
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | | | - Reinier O. Schlingemann
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
- Department of Ophthalmology, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
- Department of Ophthalmology, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | - Bernarda Majc
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Anamarija Habic
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
- Jozef Stefan Postgraduate School, Ljubljana, Slovenia
| | - Urban Bogataj
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - S. Katrin Galun
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Milos Vittori
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Vashendriya V.V. Hira
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
5
|
Arutyunyan I, Soboleva A, Balchir D, Jumaniyazova E, Kudelkina V, Elchaninov A, Fatkhudinov T. Hyaluronic Acid Prevents Fusion of Brain Tumor-Derived Spheroids and Selectively Alters Their Gene Expression Profile. Biomolecules 2024; 14:466. [PMID: 38672482 PMCID: PMC11048098 DOI: 10.3390/biom14040466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Hyaluronic acid (HA), a major glycosaminoglycan of the brain extracellular matrix, modulates cell behaviors through binding its receptor, Cd44. In this study, we assessed the influence of HA on high-grade brain tumors in vitro. The model comprised cell cultures derived from six rodent carcinogen-induced brain tumors, forming 3D spheroids prone to spontaneous fusion. Supplementation of the standard culture medium with 0.25% HA significantly inhibited the fusion rates, preserving the shape and size uniformity of spheroids. The 3D cultures were assigned to two groups; a Cd44lo group had a tenfold decreased relative expression of Cd44 than another (Cd44hi) group. In addition, these two groups differed by expression levels of Sox2 transcription factor; the correlation analysis revealed a tight negative association for Cd44 and Sox2. Transcriptomic responses of spheroids to HA exposure also depended on Cd44 expression levels, from subtle in Cd44lo to more pronounced and specific in Cd44hi, involving cell cycle progression, PI3K/AKT/mTOR pathway activation, and multidrug resistance genes. The potential HA-induced increase in brain tumor 3D models' resistance to anticancer drug therapy should be taken into account when designing preclinical studies using HA scaffold-based models. The property of HA to prevent the fusion of brain-derived spheroids can be employed in CNS regenerative medicine and experimental oncology to ensure the production of uniform, controllably fusing neurospheres when creating more accurate in vitro brain models.
Collapse
Affiliation(s)
- Irina Arutyunyan
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Anna Soboleva
- Research Institute of Molecular and Cellular Medicine, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Dorzhu Balchir
- Research Institute of Molecular and Cellular Medicine, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Enar Jumaniyazova
- Research Institute of Molecular and Cellular Medicine, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Vera Kudelkina
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Timur Fatkhudinov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| |
Collapse
|
6
|
Pang Y, Li Q, Sergi Z, Yu G, Sang X, Kim O, Wang H, Ranjan A, Merchant M, Oudit B, Robey RW, Soheilian F, Tran B, Núñez FJ, Zhang M, Song H, Zhang W, Davis D, Gilbert MR, Gottesman MM, Liu Z, Khan J, Thomas CJ, Castro MG, Gujral TS, Wu J. Exploiting the therapeutic vulnerability of IDH-mutant gliomas with zotiraciclib. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.29.547143. [PMID: 37786680 PMCID: PMC10541587 DOI: 10.1101/2023.06.29.547143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Isocitrate dehydrogenase (IDH)-mutant gliomas have distinctive metabolic and biological traits that may render them susceptible to targeted treatments. Here, by conducting a high-throughput drug screen, we pinpointed a specific susceptibility of IDH-mutant gliomas to zotiraciclib (ZTR). ZTR exhibited selective growth inhibition across multiple IDH-mutant glioma in vitro and in vivo models. Mechanistically, ZTR at low doses suppressed CDK9 and RNA Pol II phosphorylation in IDH-mutant cells, disrupting mitochondrial function and NAD+ production, causing oxidative stress. Integrated biochemical profiling of ZTR kinase targets and transcriptomics unveiled that ZTR-induced bioenergetic failure was linked to the suppression of PIM kinase activity. We posit that the combination of mitochondrial dysfunction and an inability to adapt to oxidative stress resulted in significant cell death upon ZTR treatment, ultimately increasing the therapeutic vulnerability of IDH-mutant gliomas. These findings prompted a clinical trial evaluating ZTR in IDH-mutant gliomas towards precision medicine ( NCT05588141 ). Highlights Zotiraciclib (ZTR), a CDK9 inhibitor, hinders IDH-mutant glioma growth in vitro and in vivo . ZTR halts cell cycle, disrupts respiration, and induces oxidative stress in IDH-mutant cells.ZTR unexpectedly inhibits PIM kinases, impacting mitochondria and causing bioenergetic failure.These findings led to the clinical trial NCT05588141, evaluating ZTR for IDH-mutant gliomas.
Collapse
|
7
|
Park JW. Metabolic Rewiring in Adult-Type Diffuse Gliomas. Int J Mol Sci 2023; 24:ijms24087348. [PMID: 37108511 PMCID: PMC10138713 DOI: 10.3390/ijms24087348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Multiple metabolic pathways are utilized to maintain cellular homeostasis. Given the evidence that altered cell metabolism significantly contributes to glioma biology, the current research efforts aim to improve our understanding of metabolic rewiring between glioma's complex genotype and tissue context. In addition, extensive molecular profiling has revealed activated oncogenes and inactivated tumor suppressors that directly or indirectly impact the cellular metabolism that is associated with the pathogenesis of gliomas. The mutation status of isocitrate dehydrogenases (IDHs) is one of the most important prognostic factors in adult-type diffuse gliomas. This review presents an overview of the metabolic alterations in IDH-mutant gliomas and IDH-wildtype glioblastoma (GBM). A particular focus is placed on targeting metabolic vulnerabilities to identify new therapeutic strategies for glioma.
Collapse
Affiliation(s)
- Jong-Whi Park
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| |
Collapse
|
8
|
Dasgupta P, Balasubramanyian V, de Groot JF, Majd NK. Preclinical Models of Low-Grade Gliomas. Cancers (Basel) 2023; 15:cancers15030596. [PMID: 36765553 PMCID: PMC9913857 DOI: 10.3390/cancers15030596] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Diffuse infiltrating low-grade glioma (LGG) is classified as WHO grade 2 astrocytoma with isocitrate dehydrogenase (IDH) mutation and oligodendroglioma with IDH1 mutation and 1p/19q codeletion. Despite their better prognosis compared with glioblastoma, LGGs invariably recur, leading to disability and premature death. There is an unmet need to discover new therapeutics for LGG, which necessitates preclinical models that closely resemble the human disease. Basic scientific efforts in the field of neuro-oncology are mostly focused on high-grade glioma, due to the ease of maintaining rapidly growing cell cultures and highly reproducible murine tumors. Development of preclinical models of LGG, on the other hand, has been difficult due to the slow-growing nature of these tumors as well as challenges involved in recapitulating the widespread genomic and epigenomic effects of IDH mutation. The most recent WHO classification of CNS tumors emphasizes the importance of the role of IDH mutation in the classification of gliomas, yet there are relatively few IDH-mutant preclinical models available. Here, we review the in vitro and in vivo preclinical models of LGG and discuss the mechanistic challenges involved in generating such models and potential strategies to overcome these hurdles.
Collapse
Affiliation(s)
- Pushan Dasgupta
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | | | - John F. de Groot
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA 94143, USA
- Correspondence: (J.F.d.G.); (N.K.M.)
| | - Nazanin K. Majd
- Department of Neuro-Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (J.F.d.G.); (N.K.M.)
| |
Collapse
|
9
|
Hvinden IC, Cadoux-Hudson T, Schofield CJ, McCullagh JS. Metabolic adaptations in cancers expressing isocitrate dehydrogenase mutations. Cell Rep Med 2021; 2:100469. [PMID: 35028610 PMCID: PMC8714851 DOI: 10.1016/j.xcrm.2021.100469] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The most frequently mutated metabolic genes in human cancer are those encoding the enzymes isocitrate dehydrogenase 1 (IDH1) and IDH2; these mutations have so far been identified in more than 20 tumor types. Since IDH mutations were first reported in glioma over a decade ago, extensive research has revealed their association with altered cellular processes. Mutations in IDH lead to a change in enzyme function, enabling efficient conversion of 2-oxoglutarate to R-2-hydroxyglutarate (R-2-HG). It is proposed that elevated cellular R-2-HG inhibits enzymes that regulate transcription and metabolism, subsequently affecting nuclear, cytoplasmic, and mitochondrial biochemistry. The significance of these biochemical changes for tumorigenesis and potential for therapeutic exploitation remains unclear. Here we comprehensively review reported direct and indirect metabolic changes linked to IDH mutations and discuss their clinical significance. We also review the metabolic effects of first-generation mutant IDH inhibitors and highlight the potential for combination treatment strategies and new metabolic targets.
Collapse
Affiliation(s)
- Ingvild Comfort Hvinden
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Tom Cadoux-Hudson
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Christopher J. Schofield
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
- Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - James S.O. McCullagh
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| |
Collapse
|
10
|
Jaroch K, Modrakowska P, Bojko B. Glioblastoma Metabolomics-In Vitro Studies. Metabolites 2021; 11:315. [PMID: 34068300 PMCID: PMC8153257 DOI: 10.3390/metabo11050315] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/20/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
In 2016, the WHO introduced new guidelines for the diagnosis of brain gliomas based on new genomic markers. The addition of these new markers to the pre-existing diagnostic methods provided a new level of precision for the diagnosis of glioma and the prediction of treatment effectiveness. Yet, despite this new classification tool, glioblastoma (GBM), a grade IV glioma, continues to have one of the highest mortality rates among central nervous system tumors. Metabolomics is a particularly promising tool for the analysis of GBM tumors and potential methods of treating them, as it is the only "omics" approach that is capable of providing a metabolic signature of a tumor's phenotype. With careful experimental design, cell cultures can be a useful matrix in GBM metabolomics, as they ensure stable conditions and, under proper conditions, are capable of capturing different tumor phenotypes. This paper reviews in vitro metabolomic profiling studies of high-grade gliomas, with a particular focus on sample-preparation techniques, crucial metabolites identified, cell culture conditions, in vitro-in vivo extrapolation, and pharmacometabolomics. Ultimately, this review aims to elucidate potential future directions for in vitro GBM metabolomics.
Collapse
Affiliation(s)
| | | | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, dr A. Jurasza 2 Street, 85-089 Bydgoszcz, Poland; (K.J.); (P.M.)
| |
Collapse
|
11
|
van Noorden CJ, Hira VV, van Dijck AJ, Novak M, Breznik B, Molenaar RJ. Energy Metabolism in IDH1 Wild-Type and IDH1-Mutated Glioblastoma Stem Cells: A Novel Target for Therapy? Cells 2021; 10:cells10030705. [PMID: 33810170 PMCID: PMC8005124 DOI: 10.3390/cells10030705] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is a redox disease. Low levels of reactive oxygen species (ROS) are beneficial for cells and have anti-cancer effects. ROS are produced in the mitochondria during ATP production by oxidative phosphorylation (OXPHOS). In the present review, we describe ATP production in primary brain tumors, glioblastoma, in relation to ROS production. Differentiated glioblastoma cells mainly use glycolysis for ATP production (aerobic glycolysis) without ROS production, whereas glioblastoma stem cells (GSCs) in hypoxic periarteriolar niches use OXPHOS for ATP and ROS production, which is modest because of the hypoxia and quiescence of GSCs. In a significant proportion of glioblastoma, isocitrate dehydrogenase 1 (IDH1) is mutated, causing metabolic rewiring, and all cancer cells use OXPHOS for ATP and ROS production. Systemic therapeutic inhibition of glycolysis is not an option as clinical trials have shown ineffectiveness or unwanted side effects. We argue that systemic therapeutic inhibition of OXPHOS is not an option either because the anti-cancer effects of ROS production in healthy cells is inhibited as well. Therefore, we advocate to remove GSCs out of their hypoxic niches by the inhibition of their binding to niches to enable their differentiation and thus increase their sensitivity to radiotherapy and/or chemotherapy.
Collapse
Affiliation(s)
- Cornelis J.F. van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia; (V.V.V.H.); (M.N.); (B.B.); (R.J.M.)
- Department of Medical Biology, Amsterdam UMC Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Correspondence: ; Tel.: +31-638-639-561
| | - Vashendriya V.V. Hira
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia; (V.V.V.H.); (M.N.); (B.B.); (R.J.M.)
| | - Amber J. van Dijck
- Department of Medical Biology, Amsterdam UMC Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia; (V.V.V.H.); (M.N.); (B.B.); (R.J.M.)
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia; (V.V.V.H.); (M.N.); (B.B.); (R.J.M.)
| | - Remco J. Molenaar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia; (V.V.V.H.); (M.N.); (B.B.); (R.J.M.)
- Department of Medical Oncology, Amsterdam UMC Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
12
|
Golebiewska A, Hau AC, Oudin A, Stieber D, Yabo YA, Baus V, Barthelemy V, Klein E, Bougnaud S, Keunen O, Wantz M, Michelucci A, Neirinckx V, Muller A, Kaoma T, Nazarov PV, Azuaje F, De Falco A, Flies B, Richart L, Poovathingal S, Arns T, Grzyb K, Mock A, Herold-Mende C, Steino A, Brown D, May P, Miletic H, Malta TM, Noushmehr H, Kwon YJ, Jahn W, Klink B, Tanner G, Stead LF, Mittelbronn M, Skupin A, Hertel F, Bjerkvig R, Niclou SP. Patient-derived organoids and orthotopic xenografts of primary and recurrent gliomas represent relevant patient avatars for precision oncology. Acta Neuropathol 2020; 140:919-949. [PMID: 33009951 PMCID: PMC7666297 DOI: 10.1007/s00401-020-02226-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 11/29/2022]
Abstract
Patient-based cancer models are essential tools for studying tumor biology and for the assessment of drug responses in a translational context. We report the establishment a large cohort of unique organoids and patient-derived orthotopic xenografts (PDOX) of various glioma subtypes, including gliomas with mutations in IDH1, and paired longitudinal PDOX from primary and recurrent tumors of the same patient. We show that glioma PDOXs enable long-term propagation of patient tumors and represent clinically relevant patient avatars that retain histopathological, genetic, epigenetic, and transcriptomic features of parental tumors. We find no evidence of mouse-specific clonal evolution in glioma PDOXs. Our cohort captures individual molecular genotypes for precision medicine including mutations in IDH1, ATRX, TP53, MDM2/4, amplification of EGFR, PDGFRA, MET, CDK4/6, MDM2/4, and deletion of CDKN2A/B, PTCH, and PTEN. Matched longitudinal PDOX recapitulate the limited genetic evolution of gliomas observed in patients following treatment. At the histological level, we observe increased vascularization in the rat host as compared to mice. PDOX-derived standardized glioma organoids are amenable to high-throughput drug screens that can be validated in mice. We show clinically relevant responses to temozolomide (TMZ) and to targeted treatments, such as EGFR and CDK4/6 inhibitors in (epi)genetically defined subgroups, according to MGMT promoter and EGFR/CDK status, respectively. Dianhydrogalactitol (VAL-083), a promising bifunctional alkylating agent in the current clinical trial, displayed high therapeutic efficacy, and was able to overcome TMZ resistance in glioblastoma. Our work underscores the clinical relevance of glioma organoids and PDOX models for translational research and personalized treatment studies and represents a unique publicly available resource for precision oncology.
Collapse
Affiliation(s)
- Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
| | - Ann-Christin Hau
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
| | - Anaïs Oudin
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
| | - Daniel Stieber
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
- National Center of Genetics, Laboratoire National de Santé, 3555, Dudelange, Luxembourg
| | - Yahaya A Yabo
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 4367, Belvaux, Luxembourg
| | - Virginie Baus
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
| | - Vanessa Barthelemy
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
| | - Eliane Klein
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
| | - Sébastien Bougnaud
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
| | - Olivier Keunen
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
- Quantitative Biology Unit, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - May Wantz
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
| | - Alessandro Michelucci
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
- Neuro-Immunology Group, Department of Oncology, Luxembourg Institute of Health, 1526, Luxembourg, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4367, Belvaux, Luxembourg
| | - Virginie Neirinckx
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
| | - Arnaud Muller
- Quantitative Biology Unit, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Tony Kaoma
- Quantitative Biology Unit, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Petr V Nazarov
- Quantitative Biology Unit, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Francisco Azuaje
- Quantitative Biology Unit, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Alfonso De Falco
- National Center of Genetics, Laboratoire National de Santé, 3555, Dudelange, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 4367, Belvaux, Luxembourg
- Luxembourg Center of Neuropathology, Luxembourg, Luxembourg
| | - Ben Flies
- National Center of Genetics, Laboratoire National de Santé, 3555, Dudelange, Luxembourg
| | - Lorraine Richart
- Faculty of Science, Technology and Medicine, University of Luxembourg, 4367, Belvaux, Luxembourg
- Luxembourg Center of Neuropathology, Luxembourg, Luxembourg
- National Center of Pathology, Laboratoire National de Santé, 3555, Dudelange, Luxembourg
- Department of Oncology, Luxembourg Institute of Health, 1526, Luxembourg, Luxembourg
| | - Suresh Poovathingal
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4367, Belvaux, Luxembourg
| | - Thais Arns
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4367, Belvaux, Luxembourg
| | - Kamil Grzyb
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4367, Belvaux, Luxembourg
| | - Andreas Mock
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, 69120, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, 69120, Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, 69120, Heidelberg, Germany
| | - Anne Steino
- DelMar Pharmaceuticals, Inc., Vancouver, BC, Canada
- DelMar Pharmaceuticals, Inc., Menlo Park, CA, USA
| | - Dennis Brown
- DelMar Pharmaceuticals, Inc., Vancouver, BC, Canada
- DelMar Pharmaceuticals, Inc., Menlo Park, CA, USA
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4367, Belvaux, Luxembourg
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, 5019, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Tathiane M Malta
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Houtan Noushmehr
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Yong-Jun Kwon
- Department of Oncology, Luxembourg Institute of Health, 1526, Luxembourg, Luxembourg
| | - Winnie Jahn
- German Cancer Consortium (DKTK), 01307, Dresden, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), 01307, Dresden, Germany
| | - Barbara Klink
- National Center of Genetics, Laboratoire National de Santé, 3555, Dudelange, Luxembourg
- Department of Oncology, Luxembourg Institute of Health, 1526, Luxembourg, Luxembourg
- German Cancer Consortium (DKTK), 01307, Dresden, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), 01307, Dresden, Germany
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Georgette Tanner
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - Lucy F Stead
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - Michel Mittelbronn
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4367, Belvaux, Luxembourg
- Luxembourg Center of Neuropathology, Luxembourg, Luxembourg
- National Center of Pathology, Laboratoire National de Santé, 3555, Dudelange, Luxembourg
- Department of Oncology, Luxembourg Institute of Health, 1526, Luxembourg, Luxembourg
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4367, Belvaux, Luxembourg
| | - Frank Hertel
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4367, Belvaux, Luxembourg
- Department of Neurosurgery, Centre Hospitalier Luxembourg, 1210, Luxembourg, Luxembourg
| | - Rolf Bjerkvig
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg
- Department of Biomedicine, University of Bergen, 5019, Bergen, Norway
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84, Val Fleuri, 1526, Luxembourg, Luxembourg.
- Department of Biomedicine, University of Bergen, 5019, Bergen, Norway.
| |
Collapse
|
13
|
Braun Y, Filipski K, Bernatz S, Baumgarten P, Roller B, Zinke J, Zeiner PS, Ilina E, Senft C, Ronellenfitsch MW, Plate KH, Bähr O, Hattingen E, Steinbach JP, Mittelbronn M, Harter PN. Linking epigenetic signature and metabolic phenotype in IDH mutant and IDH wildtype diffuse glioma. Neuropathol Appl Neurobiol 2020; 47:379-393. [PMID: 33080075 DOI: 10.1111/nan.12669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/23/2020] [Accepted: 10/14/2020] [Indexed: 01/17/2023]
Abstract
AIMS Changes in metabolism are known to contribute to tumour phenotypes. If and how metabolic alterations in brain tumours contribute to patient outcome is still poorly understood. Epigenetics impact metabolism and mitochondrial function. The aim of this study is a characterisation of metabolic features in molecular subgroups of isocitrate dehydrogenase mutant (IDHmut) and isocitrate dehydrogenase wildtype (IDHwt) gliomas. METHODS We employed DNA methylation pattern analyses with a special focus on metabolic genes, large-scale metabolism panel immunohistochemistry (IHC), qPCR-based determination of mitochondrial DNA copy number and immune cell content using IHC and deconvolution of DNA methylation data. We analysed molecularly characterised gliomas (n = 57) for in depth DNA methylation, a cohort of primary and recurrent gliomas (n = 22) for mitochondrial copy number and validated these results in a large glioma cohort (n = 293). Finally, we investigated the potential of metabolic markers in Bevacizumab (Bev)-treated gliomas (n = 29). RESULTS DNA methylation patterns of metabolic genes successfully distinguished the molecular subtypes of IDHmut and IDHwt gliomas. Promoter methylation of lactate dehydrogenase A negatively correlated with protein expression and was associated with IDHmut gliomas. Mitochondrial DNA copy number was increased in IDHmut tumours and did not change in recurrent tumours. Hierarchical clustering based on metabolism panel IHC revealed distinct subclasses of IDHmut and IDHwt gliomas with an impact on patient outcome. Further quantification of these markers allowed for the prediction of survival under anti-angiogenic therapy. CONCLUSION A mitochondrial signature was associated with increased survival in all analyses, which could indicate tumour subgroups with specific metabolic vulnerabilities.
Collapse
Affiliation(s)
- Yannick Braun
- Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Katharina Filipski
- Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany.,German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Simon Bernatz
- Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Peter Baumgarten
- Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany.,Department of Neurosurgery, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Bastian Roller
- Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Jenny Zinke
- Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Pia S Zeiner
- Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany.,Dr. Senckenberg Institute for Neurooncology, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Elena Ilina
- Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Christian Senft
- Department of Neurosurgery, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Michael W Ronellenfitsch
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Centre (DKFZ), Heidelberg, Germany.,Dr. Senckenberg Institute for Neurooncology, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany.,Frankfurt Cancer Institute (FCI), Frankfurt, Germany
| | - Karl H Plate
- Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany.,German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Centre (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Frankfurt, Germany
| | - Oliver Bähr
- Dr. Senckenberg Institute for Neurooncology, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Elke Hattingen
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany.,Department of Neuroradiology, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Joachim P Steinbach
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Centre (DKFZ), Heidelberg, Germany.,Dr. Senckenberg Institute for Neurooncology, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany.,Frankfurt Cancer Institute (FCI), Frankfurt, Germany
| | - Michel Mittelbronn
- Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany.,Luxembourg Centre of Neuropathology (LCNP), Luxembourg.,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg.,National Centre of Pathology (NCP), Laboratoire national de santé (LNS), Luxembourg.,Department of Oncology (DONC), Luxembourg Institute of Health (LIH), Luxembourg
| | - Patrick N Harter
- Neurological Institute (Edinger Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany.,German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Centre (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Frankfurt, Germany
| |
Collapse
|
14
|
Yetkin-Arik B, Kastelein AW, Klaassen I, Jansen CHJR, Latul YP, Vittori M, Biri A, Kahraman K, Griffioen AW, Amant F, Lok CAR, Schlingemann RO, van Noorden CJF. Angiogenesis in gynecological cancers and the options for anti-angiogenesis therapy. Biochim Biophys Acta Rev Cancer 2020; 1875:188446. [PMID: 33058997 DOI: 10.1016/j.bbcan.2020.188446] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023]
Abstract
Angiogenesis is required in cancer, including gynecological cancers, for the growth of primary tumors and secondary metastases. Development of anti-angiogenesis therapy in gynecological cancers and improvement of its efficacy have been a major focus of fundamental and clinical research. However, survival benefits of current anti-angiogenic agents, such as bevacizumab, in patients with gynecological cancer, are modest. Therefore, a better understanding of angiogenesis and the tumor microenvironment in gynecological cancers is urgently needed to develop more effective anti-angiogenic therapies, either or not in combination with other therapeutic approaches. We describe the molecular aspects of (tumor) blood vessel formation and the tumor microenvironment and provide an extensive clinical overview of current anti-angiogenic therapies for gynecological cancers. We discuss the different phenotypes of angiogenic endothelial cells as potential therapeutic targets, strategies aimed at intervention in their metabolism, and approaches targeting their (inflammatory) tumor microenvironment.
Collapse
Affiliation(s)
- Bahar Yetkin-Arik
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands; Department of Medical Biology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Arnoud W Kastelein
- Department of Obstetrics and Gynaecology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands.
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands; Department of Medical Biology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Charlotte H J R Jansen
- Department of Obstetrics and Gynaecology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Yani P Latul
- Department of Obstetrics and Gynaecology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Miloš Vittori
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Aydan Biri
- Department of Obstetrics and Gynecology, Koru Ankara Hospital, Ankara, Turkey
| | - Korhan Kahraman
- Department of Obstetrics and Gynecology, Bahcesehir University School of Medicine, Istanbul, Turkey
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Frederic Amant
- Department of Oncology, KU Leuven, Leuven, Belgium; Center for Gynaecological Oncology, Antoni van Leeuwenhoek, Amsterdam, the Netherlands; Center for Gynaecological Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Center for Gynaecological Oncology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Christianne A R Lok
- Center for Gynaecological Oncology, Antoni van Leeuwenhoek, Amsterdam, the Netherlands
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands; Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Cornelis J F van Noorden
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands; Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
15
|
Jiang L, Zhu X, Yang H, Chen T, Lv K. Bioinformatics Analysis Discovers Microtubular Tubulin Beta 6 Class V (TUBB6) as a Potential Therapeutic Target in Glioblastoma. Front Genet 2020; 11:566579. [PMID: 33193654 PMCID: PMC7531581 DOI: 10.3389/fgene.2020.566579] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) has long been a major clinical research challenge to scientists. The pivotal role of the mitochondria related gene family in the promotion of GBM tumorigenesis is not clear. We detected that microtubular tubulin beta 6 class V (TUBB6) was one of 33 differentially expressed mitochondrial-focused genes (DEMFGs) in GBM, and considered that TUBB6 is a potential therapeutic target in GBM. TUBB6 was vital for GBM and marked as the key prognostic gene in primary GBM. Mutations of TUBB6 in GBM were rare. Only four TUBB6 co-expressed hub genes (ANXA2, S100A11, FLNA, and MSN) exhibited poorer overall survival rates in higher expression groups (p-value < 0.05). We have confirmed the up-regulation of TUBB6 and its partners, ANXA2 and S100A11 in GBM and validated their importance as prognostic factors in primary GBM. TUBB6 was significantly correlated with stromal score in GBM samples (p-value = 6.99E-04). This study aimed to assess the importance of novel hub genes by analyzing the expression, potential function and prognostic impact of TUBB6 in human primary GBM cancer.
Collapse
Affiliation(s)
- Lan Jiang
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xiaolong Zhu
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Hui Yang
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Tianbing Chen
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Kun Lv
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Yijishan Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
16
|
Zeng W, Tang Z, Li Y, Yin G, Liu Z, Gao J, Chen Y, Chen F. Patient-derived xenografts of different grade gliomas retain the heterogeneous histological and genetic features of human gliomas. Cancer Cell Int 2020; 20:1. [PMID: 31908598 PMCID: PMC6941273 DOI: 10.1186/s12935-019-1086-5] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/23/2019] [Indexed: 01/10/2023] Open
Abstract
Background Gliomas account for the major part of primary brain tumors. Based on their histology and molecular alternations, adult gliomas have been classified into four grades, each with distinct biology and outcome. Previous studies have focused on cell-line-based models and patient-derived xenografts (PDXs) from patient-derived glioma cultures for grade IV glioblastoma. However, the PDX of lower grade diffuse gliomas, particularly those harboring the endogenous IDH mutation, are scarce due to the difficulty growing glioma cells in vitro and in vivo. The purpose of this study was to develop a panel of patient-derived subcutaneous xenografts of different grade gliomas that represented the heterogeneous histopathologic and genetic features of human gliomas. Methods Tumor pieces from surgical specimens were subcutaneously implanted into flanks of NOD-Prkdcscid ll2rgnull mice. Then, we analyzed the association between the success rate of implantation with clinical parameters using the Chi square test and resemblance to the patient’s original tumor using immunohistochemistry, immunofluorescence, short tandem repeat analysis, quantitative real-time polymerase chain reaction, and whole-exome sequencing. Results A total of 11 subcutaneous xenografts were successfully established from 16 surgical specimens. An increased success rate of implantation in gliomas with wild type isocitrate dehydrogenase (IDH) and high Ki67 expression was observed compared to gliomas with mutant IDH and low Ki67 expression. Recurrent and distant aggressive xenografts were present near the primary implanted tumor fragments from WHO grades II to IV. The xenografts histologically represented the corresponding patient tumor and reconstituted the heterogeneity of different grade gliomas. However, increased Ki67 expression was found in propagated xenografts. Endothelial cells from mice in patient-derived xenografts over several generations replaced the corresponding human tumor blood vessels. Short tandem repeat and whole-exome sequencing analyses indicated that the glioma PDX tumors maintained their genomic features during engraftments over several generations. Conclusions The panel of patient-derived glioma xenografts in this study reproduced the diverse heterogeneity of different grade gliomas, thereby allowing the study of the growth characteristics of various glioma types and the identification of tumor-specific molecular markers, which has applications in drug discovery and patient-tailored therapy.
Collapse
Affiliation(s)
- Wenxin Zeng
- 1Laboratory Animal Center, Chongqing Medical University, Yixueyuan Road 1, Yuzhong District, Chongqing, 400016 People's Republic of China
| | - Zhaohua Tang
- 2Neurosurgery Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yongguo Li
- 3Forensic Medicine Department, Chongqing Medical University, Chongqing, People's Republic of China
| | - Guangnian Yin
- 1Laboratory Animal Center, Chongqing Medical University, Yixueyuan Road 1, Yuzhong District, Chongqing, 400016 People's Republic of China
| | - Zili Liu
- 2Neurosurgery Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jie Gao
- 1Laboratory Animal Center, Chongqing Medical University, Yixueyuan Road 1, Yuzhong District, Chongqing, 400016 People's Republic of China
| | - Yan Chen
- 4Pharmaceutical College, Chongqing Medical and Pharmaceutical College, Chongqing, People's Republic of China
| | - Feilan Chen
- 1Laboratory Animal Center, Chongqing Medical University, Yixueyuan Road 1, Yuzhong District, Chongqing, 400016 People's Republic of China
| |
Collapse
|
17
|
Bhavya B, Anand CR, Madhusoodanan UK, Rajalakshmi P, Krishnakumar K, Easwer HV, Deepti AN, Gopala S. To be Wild or Mutant: Role of Isocitrate Dehydrogenase 1 (IDH1) and 2-Hydroxy Glutarate (2-HG) in Gliomagenesis and Treatment Outcome in Glioma. Cell Mol Neurobiol 2020; 40:53-63. [PMID: 31485826 DOI: 10.1007/s10571-019-00730-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/23/2019] [Indexed: 12/20/2022]
Abstract
Molecular and clinical research based on isocitrate dehydrogenase (IDH) mutations is much sought after in glioma research since a decade of its discovery in 2008. IDH enzyme normally catalyzes isocitrate to α-keto-glutarate (α-KG), but once the gene is mutated it produces an 'oncometabolite', 2-hydroxyglutarate (2-HG). 2-HG is proposed to inhibit α-KG-dependent dioxygenases and also blocks cellular differentiation. Here, we discuss the role of the IDH1 mutation in gliomagenesis. The review also focuses on the effect of 2-HG on glioma epigenetics, the cellular signaling involved in IDH1 mutant glioma cells and the therapeutic response seen in mutant IDH1(mIDH1) harboring glioma patients in comparison to the patients with wild-type IDH1. The review encompasses the debatable impacts of the mutation on immune microenvironment a propos of various mIDH1 inhibitors in practice or in trials. Recent studies revealing the relation of IDH mutation with the immune microenvironment and inflammatory status in untreated versus treated glioblastoma patients are highlighted with respect to prospective therapeutic targets. Also at the molecular level, the association of mIDH1/2-HG with the intracellular components such as mitochondria and other neighboring cells is discussed.
Collapse
Affiliation(s)
- Bharathan Bhavya
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695011, India
| | - C R Anand
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695011, India
| | - U K Madhusoodanan
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695011, India
| | - P Rajalakshmi
- Department of Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695011, India
| | - K Krishnakumar
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695011, India
| | - H V Easwer
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695011, India
| | - A N Deepti
- Department of Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695011, India
| | - Srinivas Gopala
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, 695011, India.
| |
Collapse
|
18
|
Biedermann J, Preussler M, Conde M, Peitzsch M, Richter S, Wiedemuth R, Abou-El-Ardat K, Krüger A, Meinhardt M, Schackert G, Leenders WP, Herold-Mende C, Niclou SP, Bjerkvig R, Eisenhofer G, Temme A, Seifert M, Kunz-Schughart LA, Schröck E, Klink B. Mutant IDH1 Differently Affects Redox State and Metabolism in Glial Cells of Normal and Tumor Origin. Cancers (Basel) 2019; 11:cancers11122028. [PMID: 31888244 PMCID: PMC6966450 DOI: 10.3390/cancers11122028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/13/2019] [Accepted: 12/05/2019] [Indexed: 01/07/2023] Open
Abstract
IDH1R132H (isocitrate dehydrogenase 1) mutations play a key role in the development of low-grade gliomas. IDH1wt converts isocitrate to α-ketoglutarate while reducing nicotinamide adenine dinucleotide phosphate (NADP+), whereas IDH1R132H uses α-ketoglutarate and NADPH to generate the oncometabolite 2-hydroxyglutarate (2-HG). While the effects of 2-HG have been the subject of intense research, the 2-HG independent effects of IDH1R132H are still ambiguous. The present study demonstrates that IDH1R132H expression but not 2-HG alone leads to significantly decreased tricarboxylic acid (TCA) cycle metabolites, reduced proliferation, and enhanced sensitivity to irradiation in both glioblastoma cells and astrocytes in vitro. Glioblastoma cells, but not astrocytes, showed decreased NADPH and NAD+ levels upon IDH1R132H transduction. However, in astrocytes IDH1R132H led to elevated expression of the NAD-synthesizing enzyme nicotinamide phosphoribosyltransferase (NAMPT). These effects were not 2-HG mediated. This suggests that IDH1R132H cells utilize NAD+ to restore NADP pools, which only astrocytes could compensate via induction of NAMPT. We found that the expression of NAMPT is lower in patient-derived IDH1-mutant glioma cells and xenografts compared to IDH1-wildtype models. The Cancer Genome Atlas (TCGA) data analysis confirmed lower NAMPT expression in IDH1-mutant versus IDH1-wildtype gliomas. We show that the IDH1 mutation directly affects the energy homeostasis and redox state in a cell-type dependent manner. Targeting the impairments in metabolism and redox state might open up new avenues for treating IDH1-mutant gliomas.
Collapse
Affiliation(s)
- Julia Biedermann
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (J.B.); (M.P.); (K.A.-E.-A.); (A.K.); (E.S.)
| | - Matthias Preussler
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (J.B.); (M.P.); (K.A.-E.-A.); (A.K.); (E.S.)
| | - Marina Conde
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.C.); (R.W.); (G.S.); (A.T.)
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.P.); (S.R.); (G.E.)
| | - Susan Richter
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.P.); (S.R.); (G.E.)
| | - Ralf Wiedemuth
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.C.); (R.W.); (G.S.); (A.T.)
| | - Khalil Abou-El-Ardat
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (J.B.); (M.P.); (K.A.-E.-A.); (A.K.); (E.S.)
| | - Alexander Krüger
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (J.B.); (M.P.); (K.A.-E.-A.); (A.K.); (E.S.)
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany;
- National Center for Tumor Diseases (NCT), Partner site Dresden, 01307 Dresden, Germany;
- German Cancer Consortium (DKTK), Dresden, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Matthias Meinhardt
- Institute for Pathology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Gabriele Schackert
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.C.); (R.W.); (G.S.); (A.T.)
- National Center for Tumor Diseases (NCT), Partner site Dresden, 01307 Dresden, Germany;
- German Cancer Consortium (DKTK), Dresden, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - William P. Leenders
- Department of Biochemistry, Radboud University Medical Center, 6525 Nijmegen, The Netherlands;
| | - Christel Herold-Mende
- Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Simone P. Niclou
- Department of Oncology, NorLux Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg; (S.P.N.); (R.B.)
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - Rolf Bjerkvig
- Department of Oncology, NorLux Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg; (S.P.N.); (R.B.)
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.P.); (S.R.); (G.E.)
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Achim Temme
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.C.); (R.W.); (G.S.); (A.T.)
- National Center for Tumor Diseases (NCT), Partner site Dresden, 01307 Dresden, Germany;
- German Cancer Consortium (DKTK), Dresden, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michael Seifert
- National Center for Tumor Diseases (NCT), Partner site Dresden, 01307 Dresden, Germany;
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Leoni A. Kunz-Schughart
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany;
- National Center for Tumor Diseases (NCT), Partner site Dresden, 01307 Dresden, Germany;
| | - Evelin Schröck
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (J.B.); (M.P.); (K.A.-E.-A.); (A.K.); (E.S.)
- National Center for Tumor Diseases (NCT), Partner site Dresden, 01307 Dresden, Germany;
- German Cancer Consortium (DKTK), Dresden, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Barbara Klink
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (J.B.); (M.P.); (K.A.-E.-A.); (A.K.); (E.S.)
- National Center for Tumor Diseases (NCT), Partner site Dresden, 01307 Dresden, Germany;
- German Cancer Consortium (DKTK), Dresden, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- National Center of Genetics (NCG), Laboratoire national de santé (LNS), L-3555 Dudelange, Luxembourg
- Correspondence: ; Tel.: +352-28100-418; Fax: +352-28100-441
| |
Collapse
|
19
|
The role of glycolysis and mitochondrial respiration in the formation and functioning of endothelial tip cells during angiogenesis. Sci Rep 2019; 9:12608. [PMID: 31471554 PMCID: PMC6717205 DOI: 10.1038/s41598-019-48676-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
During sprouting angiogenesis, an individual endothelial tip cell grows out from a pre-existing vascular network and guides following and proliferating stalk cells to form a new vessel. Metabolic pathways such as glycolysis and mitochondrial respiration as the major sources of adenosine 5'-triphosphate (ATP) for energy production are differentially activated in these types of endothelial cells (ECs) during angiogenesis. Therefore, we studied energy metabolism during angiogenesis in more detail in tip cell and non-tip cell human umbilical vein ECs. Small interfering RNA was used to inhibit transcription of glycolytic enzymes PFKFB3 or LDHA and mitochondrial enzyme PDHA1 to test whether inhibition of these specific pathways affects tip cell differentiation and sprouting angiogenesis in vitro and in vivo. We show that glycolysis is essential for tip cell differentiation, whereas both glycolysis and mitochondrial respiration occur during proliferation of non-tip cells and in sprouting angiogenesis in vitro and in vivo. Finally, we demonstrate that inhibition of mitochondrial respiration causes adaptation of EC metabolism by increasing glycolysis and vice versa. In conclusion, our studies show a complex but flexible role of the different metabolic pathways to produce ATP in the regulation of tip cell and non-tip cell differentiation and functioning during sprouting angiogenesis.
Collapse
|
20
|
Exner ND, Valenzuela JAC, Abou-El-Ardat K, Miletic H, Huszthy PC, Radehaus PM, Schröck E, Bjerkvig R, Kaderali L, Klink B, Nigro JM. Deep sequencing of a recurrent oligodendroglioma and the derived xenografts reveals new insights into the evolution of human oligodendroglioma and candidate driver genes. Oncotarget 2019; 10:3641-3653. [PMID: 31217899 PMCID: PMC6557204 DOI: 10.18632/oncotarget.26950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/04/2019] [Indexed: 12/23/2022] Open
Abstract
We previously reported the establishment of a rare xenograft derived from a recurrent oligodendroglioma with 1p/19q codeletion. Here, we analyzed in detail the exome sequencing datasets from the recurrent oligodendroglioma (WHO grade III, recurrent O2010) and the first-generation xenograft (xenograft1). Somatic SNVs and small InDels (n = 80) with potential effects at the protein level in recurrent O2010 included variants in IDH1 (NM_005896:c.395G>A; p. Arg132His), FUBP1 (NM_003902:c.1307_1310delTAGA; p.Ile436fs), and CIC (NM_015125:c.4421T>G; p.Val1474Gly). All but 2 of these 80 variants were also present in xenograft1, along with 7 new variants. Deep sequencing of the 87 SNVs and InDels in the original tumor (WHO grade III, primary O2005) and in a second-generation xenograft (xenograft2) revealed that only 11 variants, including IDH1 (NM_005896:c.395G>A; p. Arg132His), PSKH1 (NM_006742.2:c.650G>A; p.Arg217Gln), and SNX12 (NM_001256188:c.470G>A; p.Arg157His), along with a variant in the TERT promoter (C250T, NM_198253.2: c.-146G>A), were already present in primary O2005. Allele frequencies of the 11 variants were calculated to assess their potential as putative driver genes. A missense change in NDST4 (NM_022569:c.2392C>G; p.Leu798Val) on 4q exhibited an increasing allele frequency (~ 20%, primary O2005, 80%, recurrent O2010 and 100%, xenograft1), consistent with a selection event. Sequencing of NDST4 in a cohort of 15 oligodendrogliomas, however, revealed no additional cases with potential protein disrupting variants. Our analysis illuminated a tumor evolutionary series of events, which included 1p/19q codeletion, IDH1 R132H, and TERT C250T as early events, followed by loss of function of NDST4 and mutations in FUBP1 and CIC as late events.
Collapse
Affiliation(s)
- Nadin D Exner
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,University of Applied Sciences Mittweida, Department of Applied Informatics & Biosciences, Mittweida, Germany
| | - Jaime Alberto Campos Valenzuela
- Institut für Medizinische Informatik und Biometrie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Khalil Abou-El-Ardat
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Hrvoje Miletic
- Department of Pathology, Haukeland University Hospital, Bergen, Norway.,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Peter C Huszthy
- Oslo University Hospital-Rikshospitalet, Department of Immunology, Oslo, Norway
| | - Petra M Radehaus
- University of Applied Sciences Mittweida, Department of Applied Informatics & Biosciences, Mittweida, Germany
| | - Evelin Schröck
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Molecular Tumor Diagnostics, National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Oncology Department, Luxembourg Institute of Health, Val Fleuri, Luxembourg
| | - Lars Kaderali
- University Medicine Greifswald, Institute of Bioinformatics, Greifswald, Germany
| | - Barbara Klink
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Molecular Tumor Diagnostics, National Center for Tumor Diseases (NCT), Dresden, Germany.,Centre national de Génétique, Laboratoire National de Santé, Dudelange, Luxembourg.,Co-senior authors
| | - Janice M Nigro
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Co-senior authors
| |
Collapse
|
21
|
Peeters TH, Lenting K, Breukels V, van Lith SAM, van den Heuvel CNAM, Molenaar R, van Rooij A, Wevers R, Span PN, Heerschap A, Leenders WPJ. Isocitrate dehydrogenase 1-mutated cancers are sensitive to the green tea polyphenol epigallocatechin-3-gallate. Cancer Metab 2019; 7:4. [PMID: 31139406 PMCID: PMC6526618 DOI: 10.1186/s40170-019-0198-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/09/2019] [Indexed: 01/09/2023] Open
Abstract
Background Mutations in isocitrate dehydrogenase 1 (IDH1) occur in various types of cancer and induce metabolic alterations resulting from the neomorphic activity that causes production of D-2-hydroxyglutarate (D-2-HG) at the expense of α-ketoglutarate (α-KG) and NADPH. To overcome metabolic stress induced by these alterations, IDH-mutated (IDHmut) cancers utilize rescue mechanisms comprising pathways in which glutaminase and glutamate dehydrogenase (GLUD) are involved. We hypothesized that inhibition of glutamate processing with the pleiotropic GLUD-inhibitor epigallocatechin-3-gallate (EGCG) would not only hamper D-2-HG production, but also decrease NAD(P)H and α-KG synthesis in IDHmut cancers, resulting in increased metabolic stress and increased sensitivity to radiotherapy. Methods We performed 13C-tracing studies to show that HCT116 colorectal cancer cells with an IDH1R132H knock-in allele depend more on glutaminolysis than on glycolysis for the production of D-2-HG. We treated HCT116 cells, HCT116-IDH1R132H cells, and HT1080 cells (carrying an IDH1R132C mutation) with EGCG and evaluated D-2-HG production, cell proliferation rates, and sensitivity to radiotherapy. Results Significant amounts of 13C from glutamate accumulate in D-2-HG in HCT116-IDH1wt/R132H but not in HCT116-IDH1wt/wt. Preventing glutamate processing in HCT116-IDH1wt/R132H cells with EGCG resulted in reduction of D-2-HG production. In addition, EGCG treatment decreased proliferation rates of IDH1mut cells and at high doses sensitized cancer cells to ionizing radiation. Effects of EGCG in IDH-mutated cell lines were diminished by treatment with the IDH1mut inhibitor AGI-5198. Conclusions This work shows that glutamate can be directly processed into D-2-HG and that reduction of glutamatolysis may be an effective and promising new treatment option for IDHmut cancers. Electronic supplementary material The online version of this article (10.1186/s40170-019-0198-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tom H Peeters
- 1Department of Radiology and Nuclear Medicine, Radboud university medical center, PO Box 9101, 6500 Nijmegen, HB The Netherlands
| | - Krissie Lenting
- 2Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 26, 6525 Nijmegen, GA The Netherlands
| | - Vincent Breukels
- 1Department of Radiology and Nuclear Medicine, Radboud university medical center, PO Box 9101, 6500 Nijmegen, HB The Netherlands
| | - Sanne A M van Lith
- 1Department of Radiology and Nuclear Medicine, Radboud university medical center, PO Box 9101, 6500 Nijmegen, HB The Netherlands
| | - Corina N A M van den Heuvel
- 2Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 26, 6525 Nijmegen, GA The Netherlands
| | - Remco Molenaar
- 3Department of Medical Biology, Cancer Center Amsterdam at the Academic Medical Center, Meibergdreef 15, 1105 Amsterdam, AZ The Netherlands
| | - Arno van Rooij
- 4Department of Laboratory Medicine, Radboud university medical center, PO Box 9101, 6500 Nijmegen, HB The Netherlands
| | - Ron Wevers
- 4Department of Laboratory Medicine, Radboud university medical center, PO Box 9101, 6500 Nijmegen, HB The Netherlands
| | - Paul N Span
- 5Department of Radiation Oncology, Radiotherapy and OncoImmunology Laboratory, Radboud university medical center, PO Box 9101, 6500 Nijmegen, HB The Netherlands
| | - Arend Heerschap
- 1Department of Radiology and Nuclear Medicine, Radboud university medical center, PO Box 9101, 6500 Nijmegen, HB The Netherlands
| | - William P J Leenders
- 2Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 26, 6525 Nijmegen, GA The Netherlands
| |
Collapse
|
22
|
Peeters TH, Kobus T, Breukels V, Lenting K, Veltien A, Heerschap A, Scheenen TWJ. Imaging Hyperpolarized Pyruvate and Lactate after Blood-Brain Barrier Disruption with Focused Ultrasound. ACS Chem Neurosci 2019; 10:2591-2601. [PMID: 30873831 PMCID: PMC6523999 DOI: 10.1021/acschemneuro.9b00085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
![]()
Imaging of hyperpolarized 13C-labeled substrates has
emerged as an important magnetic resonance (MR) technique to study
metabolic pathways in real time in vivo. Even though
this technique has found its way to clinical trials, in vivo dynamic nuclear polarization is still mostly applied in preclinical
models. Its tremendous increase in signal-to-noise ratio (SNR) overcomes
the intrinsically low MR sensitivity of the 13C nucleus
and allows real-time metabolic imaging in small structures like the
mouse brain. However, applications in brain research are limited as
delivery of hyperpolarized compounds is restrained by the blood–brain
barrier (BBB). A local noninvasive disruption of the BBB could facilitate
delivery of hyperpolarized substrates and create opportunities to
study metabolic pathways in the brain that are generally not within
reach. In this work, we designed a setup to apply BBB disruption in
the mouse brain by MR-guided focused ultrasound (FUS) prior to MR
imaging of 13C-enriched hyperpolarized [1-13C]-pyruvate and its conversion to [1-13C]-lactate. To
overcome partial volume issues, we optimized a fast multigradient-echo
imaging method (temporal resolution of 2.4 s) with an in-plane spatial
resolution of 1.6 × 1.6 mm2, without the need of processing
large amounts of spectroscopic data. We demonstrated the feasibility
to apply 13C imaging in less than 1 h after FUS treatment
and showed a locally disrupted BBB during the time window of the whole
experiment. From detected hyperpolarized pyruvate and lactate signals
in both FUS-treated and untreated mice, we conclude that even at high
spatial resolution, signals from the blood compartment dominate in
the 13C images, leaving the interpretation of hyperpolarized
signals in the mouse brain challenging.
Collapse
Affiliation(s)
- Tom H. Peeters
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Thiele Kobus
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Vincent Breukels
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Krissie Lenting
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Andor Veltien
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Tom W. J. Scheenen
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Tateishi K, Nakamura T, Juratli TA, Williams EA, Matsushita Y, Miyake S, Nishi M, Miller JJ, Tummala SS, Fink AL, Lelic N, Koerner MVA, Miyake Y, Sasame J, Fujimoto K, Tanaka T, Minamimoto R, Matsunaga S, Mukaihara S, Shuto T, Taguchi H, Udaka N, Murata H, Ryo A, Yamanaka S, Curry WT, Dias-Santagata D, Yamamoto T, Ichimura K, Batchelor TT, Chi AS, Iafrate AJ, Wakimoto H, Cahill DP. PI3K/AKT/mTOR Pathway Alterations Promote Malignant Progression and Xenograft Formation in Oligodendroglial Tumors. Clin Cancer Res 2019; 25:4375-4387. [PMID: 30975663 DOI: 10.1158/1078-0432.ccr-18-4144] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/14/2019] [Accepted: 04/08/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Oligodendroglioma has a relatively favorable prognosis, however, often undergoes malignant progression. We hypothesized that preclinical models of oligodendroglioma could facilitate identification of therapeutic targets in progressive oligodendroglioma. We established multiple oligodendroglioma xenografts to determine if the PI3K/AKT/mTOR signaling pathway drives tumor progression. EXPERIMENTAL DESIGN Two anatomically distinct tumor samples from a patient who developed progressive anaplastic oligodendroglioma (AOD) were collected for orthotopic transplantation in mice. We additionally implanted 13 tumors to investigate the relationship between PI3K/AKT/mTOR pathway alterations and oligodendroglioma xenograft formation. Pharmacologic vulnerabilities were tested in newly developed AOD models in vitro and in vivo. RESULTS A specimen from the tumor site that subsequently manifested rapid clinical progression contained a PIK3CA mutation E542K, and yielded propagating xenografts that retained the OD/AOD-defining genomic alterations (IDH1 R132H and 1p/19q codeletion) and PIK3CA E542K, and displayed characteristic sensitivity to alkylating chemotherapeutic agents. In contrast, a xenograft did not engraft from the region that was clinically stable and had wild-type PIK3CA. In our panel of OD/AOD xenografts, the presence of activating mutations in the PI3K/AKT/mTOR pathway was consistently associated with xenograft establishment (6/6, 100%). OD/AOD that failed to generate xenografts did not have activating PI3K/AKT/mTOR alterations (0/9, P < 0.0001). Importantly, mutant PIK3CA oligodendroglioma xenografts were vulnerable to PI3K/AKT/mTOR pathway inhibitors in vitro and in vivo-evidence that mutant PIK3CA is a tumorigenic driver in oligodendroglioma. CONCLUSIONS Activation of the PI3K/AKT/mTOR pathway is an oncogenic driver and is associated with xenograft formation in oligodendrogliomas. These findings have implications for therapeutic targeting of PI3K/AKT/mTOR pathway activation in progressive oligodendrogliomas.
Collapse
Affiliation(s)
- Kensuke Tateishi
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan. .,Division of Brain Tumor Translational Research, National Cancer Center Institute, Tokyo, Japan.,Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Taishi Nakamura
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Tareq A Juratli
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Erik A Williams
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Yuko Matsushita
- Division of Brain Tumor Translational Research, National Cancer Center Institute, Tokyo, Japan
| | - Shigeta Miyake
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Mayuko Nishi
- Department of Microbiology, Yokohama City University Hospital, Yokohama, Japan
| | - Julie J Miller
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Stephen E. and Catherine Pappas Center for Neuro-Oncology, Department of Neurology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Shilpa S Tummala
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alexandria L Fink
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nina Lelic
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mara V A Koerner
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yohei Miyake
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Jo Sasame
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Kenji Fujimoto
- Division of Brain Tumor Translational Research, National Cancer Center Institute, Tokyo, Japan
| | - Takahiro Tanaka
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryogo Minamimoto
- Department of Radiology, Division of Nuclear Medicine, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shigeo Matsunaga
- Department of Neurosurgery, Yokohama Rosai Hospital, Yokohama, Japan
| | - Shigeo Mukaihara
- Department of Neurosurgery, Fujisawa Municipal Hospital, Fujisawa, Japan
| | - Takashi Shuto
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Neurosurgery, Yokohama Rosai Hospital, Yokohama, Japan
| | - Hiroki Taguchi
- Department of Neurosurgery, Taguchi Neurosurgery Clinic, Yokohama, Japan
| | - Naoko Udaka
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Hidetoshi Murata
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University Hospital, Yokohama, Japan
| | - Shoji Yamanaka
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - William T Curry
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dora Dias-Santagata
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Institute, Tokyo, Japan
| | - Tracy T Batchelor
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Stephen E. and Catherine Pappas Center for Neuro-Oncology, Department of Neurology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Andrew S Chi
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York University, New York, New York
| | - A John Iafrate
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Hiroaki Wakimoto
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts. .,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel P Cahill
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts. .,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
24
|
D-2-Hydroxyglutarate and L-2-Hydroxyglutarate Inhibit IL-12 Secretion by Human Monocyte-Derived Dendritic Cells. Int J Mol Sci 2019; 20:ijms20030742. [PMID: 30744183 PMCID: PMC6387367 DOI: 10.3390/ijms20030742] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 12/22/2022] Open
Abstract
Mutations in isocitrate dehydrogenase (IDH) or a reduced expression of L-2-hydroxyglutarate (HG)-dehydrogenase result in accumulation of D-2-HG or L-2-HG, respectively, in tumor tissues. D-2-HG and L-2-HG have been shown to affect T-cell differentiation and activation; however, effects on human myeloid cells have not been investigated so far. In this study we analyzed the impact of D-2-HG and L-2-HG on activation and maturation of human monocyte-derived dendritic cells (DCs). 2-HG was taken up by DCs and had no impact on cell viability but diminished CD83 expression after Lipopolysaccharides (LPS) stimulation. Furthermore, D-2-HG and L-2-HG significantly reduced IL-12 secretion but had no impact on other cytokines such as IL-6, IL-10 or TNF. Gene expression analyses of the IL-12 subunits p35/IL-12A and p40/IL-12B in DCs revealed decreased expression of both subunits. Signaling pathways involved in LPS-induced cytokine expression (NFkB, Akt, p38) were not altered by D-2-HG. However, 2-HG reprogrammed LPS-induced metabolic changes in DCs and increased oxygen consumption. Addition of the ATP synthase inhibitor oligomycin to DC cultures increased IL-12 secretion and was able to partially revert the effect of 2-HG. Our data show that both enantiomers of 2-HG can limit activation of DCs in the tumor environment.
Collapse
|
25
|
Hujber Z, Horváth G, Petővári G, Krencz I, Dankó T, Mészáros K, Rajnai H, Szoboszlai N, Leenders WPJ, Jeney A, Tretter L, Sebestyén A. GABA, glutamine, glutamate oxidation and succinic semialdehyde dehydrogenase expression in human gliomas. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:271. [PMID: 30404651 PMCID: PMC6223071 DOI: 10.1186/s13046-018-0946-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022]
Abstract
Background Bioenergetic characterisation of malignant tissues revealed that different tumour cells can catabolise multiple substrates as salvage pathways, in response to metabolic stress. Altered metabolism in gliomas has received a lot of attention, especially in relation to IDH mutations, and the associated oncometabolite D-2-hydroxyglutarate (2-HG) that impact on metabolism, epigenetics and redox status. Astrocytomas and oligodendrogliomas, collectively called diffuse gliomas, are derived from astrocytes and oligodendrocytes that are in metabolic symbiosis with neurons; astrocytes can catabolise neuron-derived glutamate and gamma-aminobutyric acid (GABA) for supporting and regulating neuronal functions. Methods Metabolic characteristics of human glioma cell models – including mitochondrial function, glycolytic pathway and energy substrate oxidation – in relation to IDH mutation status and after 2-HG incubation were studied to understand the Janus-faced role of IDH1 mutations in the progression of gliomas/astrocytomas. The metabolic and bioenergetic features were identified in glioma cells using wild-type and genetically engineered IDH1-mutant glioblastoma cell lines by metabolic analyses with Seahorse, protein expression studies and liquid chromatography-mass spectrometry. Results U251 glioma cells were characterised by high levels of glutamine, glutamate and GABA oxidation. Succinic semialdehyde dehydrogenase (SSADH) expression was correlated to GABA oxidation. GABA addition to glioma cells increased proliferation rates. Expression of mutated IDH1 and treatment with 2-HG reduced glutamine and GABA oxidation, diminished the pro-proliferative effect of GABA in SSADH expressing cells. SSADH protein overexpression was found in almost all studied human cases with no significant association between SSADH expression and clinicopathological parameters (e.g. IDH mutation). Conclusions Our findings demonstrate that SSADH expression may participate in the oxidation and/or consumption of GABA in gliomas, furthermore, GABA oxidation capacity may contribute to proliferation and worse prognosis of gliomas. Moreover, IDH mutation and 2-HG production inhibit GABA oxidation in glioma cells. Based on these data, GABA oxidation and SSADH activity could be additional therapeutic targets in gliomas/glioblastomas. Electronic supplementary material The online version of this article (10.1186/s13046-018-0946-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zoltán Hujber
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Gergő Horváth
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1444, Hungary
| | - Gábor Petővári
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Ildikó Krencz
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Titanilla Dankó
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Katalin Mészáros
- Hungarian Academy of Sciences - Momentum Hereditary Endocrine Tumours Research Group, Semmelweis University - National Bionics Program, Budapest, 1088, Hungary
| | - Hajnalka Rajnai
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Norbert Szoboszlai
- Laboratory of Environmental Chemistry and Bioanalytics, Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, 1518, Hungary
| | - William P J Leenders
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - András Jeney
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - László Tretter
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1444, Hungary
| | - Anna Sebestyén
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary.
| |
Collapse
|
26
|
IDH1 R132H is intrinsically tumor-suppressive but functionally attenuated by the glutamate-rich cerebral environment. Oncotarget 2018; 9:35100-35113. [PMID: 30416682 PMCID: PMC6205547 DOI: 10.18632/oncotarget.26203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/21/2018] [Indexed: 12/15/2022] Open
Abstract
Recurrent heterozygous mutation of isocitrate dehydrogenase 1 gene (IDH1), predominantly resulting in histidine substitution at arginine 132, was first identified in glioma. The biological significance of IDH1R132H, however, has been controversial, and its prevalent association with glioma remains enigmatic. Although recent studies indicate that IDH1R132H is nonessential to tumor growth or even anti-tumor growth, whether IDH1R132H initiates gliomagenesis remains obscure. In this study, we report that IDH1R132H is intrinsically tumor-suppressive but the activity can be attenuated by glutamate—the cerebral neurotransmitter. We observed that IDH1R132H was highly suppressive of subcutaneous tumor growth driven by platelet-derived growth factor B (PDGFB), but IDH1R132H tumor growth and glioma penetrance were virtually indistinguishable from those of IDH1-wildtype tumors in orthotopic models. In vitro, addition of glutamate compromised IDH1R132H inhibition of neurosphere genesis, indicating glutamate promotion of oncogenic dominance. Furthermore, we observed that IDH1R132H expression was markedly decreased in tumors but became more permissible upon the deletion of tumor-suppressor gene Cdkn2a. To provide direct evidence for the opposing effect of IDH1R132H on PDGFB-driven glioma development, we explored tandem expression of the two molecules from a single transcript to preclude selection against IDH1R132H expression. Our results demonstrate that when juxtaposed with oncogenic PDGFB, IDH1R132H overrides the oncogenic activity and obliterates neurosphere genesis and gliomagenesis even in the glutamate-rich microenvironment. We propose therefore that IDH1R132H is intrinsically suppressive of glioma initiation and growth but such tumor-suppressive activity is compromised by the glutamate-rich cerebral cortex, thereby offering a unifying hypothesis for the perplexing role of IDH1R132H in glioma initiation and growth.
Collapse
|
27
|
Lenting K, Khurshed M, Peeters TH, van den Heuvel CNAM, van Lith SAM, de Bitter T, Hendriks W, Span PN, Molenaar RJ, Botman D, Verrijp K, Heerschap A, Ter Laan M, Kusters B, van Ewijk A, Huynen MA, van Noorden CJF, Leenders WPJ. Isocitrate dehydrogenase 1-mutated human gliomas depend on lactate and glutamate to alleviate metabolic stress. FASEB J 2018; 33:557-571. [PMID: 30001166 DOI: 10.1096/fj.201800907rr] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diffuse gliomas often carry point mutations in isocitrate dehydrogenase ( IDH1mut), resulting in metabolic stress. Although IDHmut gliomas are difficult to culture in vitro, they thrive in the brain via diffuse infiltration, suggesting brain-specific tumor-stroma interactions that can compensate for IDH-1 deficits. To elucidate the metabolic adjustments in clinical IDHmut gliomas that contribute to their malignancy, we applied a recently developed method of targeted quantitative RNA next-generation sequencing to 66 clinical gliomas and relevant orthotopic glioma xenografts, with and without the endogenous IDH-1R132H mutation. Datasets were analyzed in R using Manhattan plots to calculate distance between expression profiles, Ward's method to perform unsupervised agglomerative clustering, and the Mann Whitney U test and Fisher's exact tests for supervised group analyses. The significance of transcriptome data was investigated by protein analysis, in situ enzymatic activity mapping, and in vivo magnetic resonance spectroscopy of orthotopic IDH1mut- and IDHwt-glioma xenografts. Gene set enrichment analyses of clinical IDH1mut gliomas strongly suggest a role for catabolism of lactate and the neurotransmitter glutamate, whereas, in IDHwt gliomas, processing of glucose and glutamine are the predominant metabolic pathways. Further evidence of the differential metabolic activity in these cancers comes from in situ enzymatic mapping studies and preclinical in vivo magnetic resonance spectroscopy imaging. Our data support an evolutionary model in which IDHmut glioma cells exist in symbiosis with supportive neuronal cells and astrocytes as suppliers of glutamate and lactate, possibly explaining the diffuse nature of these cancers. The dependency on glutamate and lactate opens the way for novel approaches in the treatment of IDHmut gliomas.-Lenting, K., Khurshed, M., Peeters, T. H., van den Heuvel, C. N. A. M., van Lith, S. A. M., de Bitter, T., Hendriks, W., Span, P. N., Molenaar, R. J., Botman, D., Verrijp, K., Heerschap, A., ter Laan, M., Kusters, B., van Ewijk, A., Huynen, M. A., van Noorden, C. J. F., Leenders, W. P. J. Isocitrate dehydrogenase 1-mutated human gliomas depend on lactate and glutamate to alleviate metabolic stress.
Collapse
Affiliation(s)
- Krissie Lenting
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mohammed Khurshed
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Centre, Amsterdam, The Netherlands
| | - Tom H Peeters
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Corina N A M van den Heuvel
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sanne A M van Lith
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tessa de Bitter
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wiljan Hendriks
- Department of Cell Biology, Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands
| | - Paul N Span
- Radiotherapy and Oncoimmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Remco J Molenaar
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Centre, Amsterdam, The Netherlands
| | - Dennis Botman
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Centre, Amsterdam, The Netherlands
| | - Kiek Verrijp
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mark Ter Laan
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands; and
| | - Benno Kusters
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anne van Ewijk
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Martijn A Huynen
- Center for Molecular and Biomolecular Informatics, Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands
| | - Cornelis J F van Noorden
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Centre, Amsterdam, The Netherlands
| | - William P J Leenders
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
28
|
Khurshed M, Aarnoudse N, Hulsbos R, Hira VVV, van Laarhoven HWM, Wilmink JW, Molenaar RJ, van Noorden CJF. IDH1-mutant cancer cells are sensitive to cisplatin and an IDH1-mutant inhibitor counteracts this sensitivity. FASEB J 2018; 32:fj201800547R. [PMID: 29879375 PMCID: PMC6181637 DOI: 10.1096/fj.201800547r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022]
Abstract
Isocitrate dehydrogenase ( IDH1)-1 is mutated in various types of human cancer, and the presence of this mutation is associated with improved responses to irradiation and chemotherapy in solid tumor cells. Mutated IDH1 (IDH1MUT) enzymes consume NADPH to produce d-2-hydroxyglutarate (d-2HG) resulting in the decreased reducing power needed for detoxification of reactive oxygen species (ROS), for example. The objective of the current study was to investigate the mechanism behind the chemosensitivity of the widely used anticancer agent cisplatin in IDH1MUT cancer cells. Oxidative stress, DNA damage, and mitochondrial dysfunction caused by cisplatin treatment were monitored in IDH1MUT HCT116 colorectal cancer cells and U251 glioma cells. We found that exposure to cisplatin induced higher levels of ROS, DNA double-strand breaks (DSBs), and cell death in IDH1MUT cancer cells, as compared with IDH1 wild-type ( IDH1WT) cells. Mechanistic investigations revealed that cisplatin treatment dose dependently reduced oxidative respiration in IDH1MUT cells, which was accompanied by disturbed mitochondrial proteostasis, indicative of impaired mitochondrial activity. These effects were abolished by the IDH1MUT inhibitor AGI-5198 and were restored by treatment with d-2HG. Thus, our study shows that altered oxidative stress responses and a vulnerable oxidative metabolism underlie the sensitivity of IDH1MUT cancer cells to cisplatin.-Khurshed, M., Aarnoudse, N., Hulsbos, R., Hira, V. V. V., van Laarhoven, H. W. M., Wilmink, J. W., Molenaar, R. J., van Noorden, C. J. F. IDH1-mutant cancer cells are sensitive to cisplatin and an IDH1-mutant inhibitor counteracts this sensitivity.
Collapse
Affiliation(s)
- Mohammed Khurshed
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands, and
| | - Niels Aarnoudse
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Renske Hulsbos
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Vashendriya V. V. Hira
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hanneke W. M. van Laarhoven
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands, and
| | - Johanna W. Wilmink
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands, and
| | - Remco J. Molenaar
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands, and
| | - Cornelis J. F. van Noorden
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
29
|
Molenaar RJ, Maciejewski JP, Wilmink JW, van Noorden CJF. Wild-type and mutated IDH1/2 enzymes and therapy responses. Oncogene 2018; 37:1949-1960. [PMID: 29367755 PMCID: PMC5895605 DOI: 10.1038/s41388-017-0077-z] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022]
Abstract
Isocitrate dehydrogenase 1 and 2 (IDH1/2) are key enzymes in cellular metabolism, epigenetic regulation, redox states, and DNA repair. IDH1/2 mutations are causal in the development and/or progression of various types of cancer due to supraphysiological production of d-2-hydroxyglutarate. In various tumor types, IDH1/2-mutated cancers predict for improved responses to treatment with irradiation or chemotherapy. The present review discusses the molecular basis of the sensitivity of IDH1/2-mutated cancers with respect to the function of mutated IDH1/2 in cellular processes and their interactions with novel IDH1/2-mutant inhibitors. Finally, lessons learned from IDH1/2 mutations for future clinical applications in IDH1/2 wild-type cancers are discussed.
Collapse
Affiliation(s)
- Remco J Molenaar
- Cancer Center Amsterdam, Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands. .,Cancer Center Amsterdam, Department of Medical Oncology, Academic Medical Center, Amsterdam, The Netherlands. .,Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA.
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - Johanna W Wilmink
- Cancer Center Amsterdam, Department of Medical Oncology, Academic Medical Center, Amsterdam, The Netherlands
| | - Cornelis J F van Noorden
- Cancer Center Amsterdam, Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Fack F, Tardito S, Hochart G, Oudin A, Zheng L, Fritah S, Golebiewska A, Nazarov PV, Bernard A, Hau AC, Keunen O, Leenders W, Lund-Johansen M, Stauber J, Gottlieb E, Bjerkvig R, Niclou SP. Altered metabolic landscape in IDH-mutant gliomas affects phospholipid, energy, and oxidative stress pathways. EMBO Mol Med 2017; 9:1681-1695. [PMID: 29054837 PMCID: PMC5709746 DOI: 10.15252/emmm.201707729] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 09/10/2017] [Accepted: 09/12/2017] [Indexed: 01/22/2023] Open
Abstract
Heterozygous mutations in NADP-dependent isocitrate dehydrogenases (IDH) define the large majority of diffuse gliomas and are associated with hypermethylation of DNA and chromatin. The metabolic dysregulations imposed by these mutations, whether dependent or not on the oncometabolite D-2-hydroxyglutarate (D2HG), are less well understood. Here, we applied mass spectrometry imaging on intracranial patient-derived xenografts of IDH-mutant versus IDH wild-type glioma to profile the distribution of metabolites at high anatomical resolution in situ This approach was complemented by in vivo tracing of labeled nutrients followed by liquid chromatography-mass spectrometry (LC-MS) analysis. Selected metabolites were verified on clinical specimen. Our data identify remarkable differences in the phospholipid composition of gliomas harboring the IDH1 mutation. Moreover, we show that these tumors are characterized by reduced glucose turnover and a lower energy potential, correlating with their reduced aggressivity. Despite these differences, our data also show that D2HG overproduction does not result in a global aberration of the central carbon metabolism, indicating strong adaptive mechanisms at hand. Intriguingly, D2HG shows no quantitatively important glucose-derived label in IDH-mutant tumors, which suggests that the synthesis of this oncometabolite may rely on alternative carbon sources. Despite a reduction in NADPH, glutathione levels are maintained. We found that genes coding for key enzymes in de novo glutathione synthesis are highly expressed in IDH-mutant gliomas and the expression of cystathionine-β-synthase (CBS) correlates with patient survival in the oligodendroglial subtype. This study provides a detailed and clinically relevant insight into the in vivo metabolism of IDH1-mutant gliomas and points to novel metabolic vulnerabilities in these tumors.
Collapse
Affiliation(s)
- Fred Fack
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Saverio Tardito
- Cancer Metabolism Research Unit, Cancer Research UK, Beatson Institute, Glasgow, UK
| | | | - Anais Oudin
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Liang Zheng
- Cancer Metabolism Research Unit, Cancer Research UK, Beatson Institute, Glasgow, UK
| | - Sabrina Fritah
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Anna Golebiewska
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Petr V Nazarov
- Genomics and Proteomics Research Unit, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Amandine Bernard
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Ann-Christin Hau
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Olivier Keunen
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - William Leenders
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Morten Lund-Johansen
- Haukeland Hospital, University of Bergen, Bergen, Norway
- Kristian Gerhard Jebsen Brain Tumor Research Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Eyal Gottlieb
- Cancer Metabolism Research Unit, Cancer Research UK, Beatson Institute, Glasgow, UK
| | - Rolf Bjerkvig
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
- Kristian Gerhard Jebsen Brain Tumor Research Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Simone P Niclou
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
- Kristian Gerhard Jebsen Brain Tumor Research Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
31
|
Talasila KM, Røsland GV, Hagland HR, Eskilsson E, Flønes IH, Fritah S, Azuaje F, Atai N, Harter PN, Mittelbronn M, Andersen M, Joseph JV, Hossain JA, Vallar L, Noorden CJFV, Niclou SP, Thorsen F, Tronstad KJ, Tzoulis C, Bjerkvig R, Miletic H. The angiogenic switch leads to a metabolic shift in human glioblastoma. Neuro Oncol 2017; 19:383-393. [PMID: 27591677 DOI: 10.1093/neuonc/now175] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 07/09/2016] [Indexed: 12/23/2022] Open
Abstract
Background Invasion and angiogenesis are major hallmarks of glioblastoma (GBM) growth. While invasive tumor cells grow adjacent to blood vessels in normal brain tissue, tumor cells within neovascularized regions exhibit hypoxic stress and promote angiogenesis. The distinct microenvironments likely differentially affect metabolic processes within the tumor cells. Methods In the present study, we analyzed gene expression and metabolic changes in a human GBM xenograft model that displayed invasive and angiogenic phenotypes. In addition, we used glioma patient biopsies to confirm the results from the xenograft model. Results We demonstrate that the angiogenic switch in our xenograft model is linked to a proneural-to-mesenchymal transition that is associated with upregulation of the transcription factors BHLHE40, CEBPB, and STAT3. Metabolic analyses revealed that angiogenic xenografts employed higher rates of glycolysis compared with invasive xenografts. Likewise, patient biopsies exhibited higher expression of the glycolytic enzyme lactate dehydrogenase A and glucose transporter 1 in hypoxic areas compared with the invasive edge and lower-grade tumors. Analysis of the mitochondrial respiratory chain showed reduction of complex I in angiogenic xenografts and hypoxic regions of GBM samples compared with invasive xenografts, nonhypoxic GBM regions, and lower-grade tumors. In vitro hypoxia experiments additionally revealed metabolic adaptation of invasive tumor cells, which increased lactate production under long-term hypoxia. Conclusions The use of glycolysis versus mitochondrial respiration for energy production within human GBM tumors is highly dependent on the specific microenvironment. The metabolic adaptability of GBM cells highlights the difficulty of targeting one specific metabolic pathway for effective therapeutic intervention.
Collapse
Affiliation(s)
- Krishna M Talasila
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Brain Tumor Research Centre, University of Bergen, Norway
| | - Gro V Røsland
- Department of Biomedicine, University of Bergen, Norway
| | | | - Eskil Eskilsson
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Irene H Flønes
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Sabrina Fritah
- NorLux Neuro-oncology Laboratory, Luxembourg Institute of Health, Luxembourg
| | - Francisco Azuaje
- NorLux Neuro-oncology Laboratory, Luxembourg Institute of Health, Luxembourg
| | - Nadia Atai
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Patrick N Harter
- Institute of Neurology (Edinger Institute), Goethe University, Frankfurt, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michel Mittelbronn
- Institute of Neurology (Edinger Institute), Goethe University, Frankfurt, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Andersen
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Justin V Joseph
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Brain Tumor Research Centre, University of Bergen, Norway
| | - Jubayer Al Hossain
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Brain Tumor Research Centre, University of Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Laurent Vallar
- Department of Oncology, Luxembourg Institute of Health, Luxembourg
| | - Cornelis J F van Noorden
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Simone P Niclou
- KG Jebsen Brain Tumor Research Centre, University of Bergen, Norway.,NorLux Neuro-oncology Laboratory, Luxembourg Institute of Health, Luxembourg
| | - Frits Thorsen
- KG Jebsen Brain Tumor Research Centre, University of Bergen, Norway.,Molecular Imaging Center, Department of Biomedicine, University of Bergen, Norway
| | | | | | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Brain Tumor Research Centre, University of Bergen, Norway.,Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Brain Tumor Research Centre, University of Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
32
|
Profiling of the metabolic transcriptome via single molecule molecular inversion probes. Sci Rep 2017; 7:11402. [PMID: 28900252 PMCID: PMC5595890 DOI: 10.1038/s41598-017-11035-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/18/2017] [Indexed: 12/20/2022] Open
Abstract
Cancer-specific metabolic alterations are of high interest as therapeutic targets. These alterations vary between tumor types, and to employ metabolic targeting to its fullest potential there is a need for robust methods that identify candidate targetable metabolic pathways in individual cancers. Currently, such methods include 13C-tracing studies and mass spectrometry/ magnetic resonance spectroscopic imaging. Due to high cost and complexity, such studies are restricted to a research setting. We here present the validation of a novel technique of metabolic profiling, based on multiplex targeted next generation sequencing of RNA with single molecule molecular inversion probes (smMIPs), designed to measure activity of and mutations in genes that encode metabolic enzymes. We here profiled an isogenic pair of cell lines, differing in expression of the Von Hippel Lindau protein, an important regulator of hypoxia-inducible genes. We show that smMIP-profiling provides relevant information on active metabolic pathways. Because smMIP-based targeted RNAseq is cost-effective and can be applied in a medium high-throughput setting (200 samples can be profiled simultaneously in one next generation sequencing run) it is a highly interesting approach for profiling of the activity of genes of interest, including those regulating metabolism, in a routine patient care setting.
Collapse
|
33
|
Applications of Mass Spectrometry Imaging for Safety Evaluation. Methods Mol Biol 2017. [PMID: 28748461 DOI: 10.1007/978-1-4939-7172-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Mass spectrometry imaging (MSI) was first derived from techniques used in physics, which were then incorporated into chemistry followed by application in biology. Developed over 50 years ago, and with different principles to detect and map compounds on a sample surface, MSI supports modern biology questions by detecting biological compounds within tissue sections. MALDI (matrix-assisted laser desorption/ionization) imaging trend analysis in this field shows an important increase in the number of publications since 2005, especially with the development of the MALDI imaging technique and its applications in biomarker discovery and drug distribution. With recent improvements of statistical tools, absolute and relative quantification protocols, as well as quality and reproducibility evaluations, MALDI imaging has become one of the most reliable MSI techniques to support drug discovery and development phases. MSI allows to potentially address important questions in drug development such as "What is the localization of the drug and its metabolites in the tissues?", "What is the pharmacological effect of the drug in this particular region of interest?", or "Is the drug and its metabolites related to an atypical finding?" However, prior to addressing these questions using MSI techniques, expertise needs to be developed to become proficient at histological procedures (tissue preparation with frozen of fixed tissues), analytical chemistry, matrix application, instrumentation, informatics, and mathematics for data analysis and interpretation.
Collapse
|
34
|
Lenting K, Verhaak R, Ter Laan M, Wesseling P, Leenders W. Glioma: experimental models and reality. Acta Neuropathol 2017; 133:263-282. [PMID: 28074274 PMCID: PMC5250671 DOI: 10.1007/s00401-017-1671-4] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 12/12/2022]
Abstract
In theory, in vitro and in vivo models for human gliomas have great potential to not only enhance our understanding of glioma biology, but also to facilitate the development of novel treatment strategies for these tumors. For reliable prediction and validation of the effects of different therapeutic modalities, however, glioma models need to comply with specific and more strict demands than other models of cancer, and these demands are directly related to the combination of genetic aberrations and the specific brain micro-environment gliomas grow in. This review starts with a brief introduction on the pathological and molecular characteristics of gliomas, followed by an overview of the models that have been used in the last decades in glioma research. Next, we will discuss how these models may play a role in better understanding glioma development and especially in how they can aid in the design and optimization of novel therapies. The strengths and weaknesses of the different models will be discussed in light of genotypic, phenotypic and metabolic characteristics of human gliomas. The last part of this review provides some examples of how therapy experiments using glioma models can lead to deceptive results when such characteristics are not properly taken into account.
Collapse
Affiliation(s)
- Krissie Lenting
- Department of Pathology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Roel Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Mark Ter Laan
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pieter Wesseling
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
- Department of Pathology, Princess Máxima Center for Pediatric Oncology and University Medical Center Utrecht, Utrecht, The Netherlands
| | - William Leenders
- Department of Pathology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
35
|
Bourgonje AM, Verrijp K, Schepens JTG, Navis AC, Piepers JAF, Palmen CBC, van den Eijnden M, Hooft van Huijsduijnen R, Wesseling P, Leenders WPJ, Hendriks WJAJ. Comprehensive protein tyrosine phosphatase mRNA profiling identifies new regulators in the progression of glioma. Acta Neuropathol Commun 2016; 4:96. [PMID: 27586084 PMCID: PMC5009684 DOI: 10.1186/s40478-016-0372-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022] Open
Abstract
The infiltrative behavior of diffuse gliomas severely reduces therapeutic potential of surgical resection and radiotherapy, and urges for the identification of new drug-targets affecting glioma growth and migration. To address the potential role of protein tyrosine phosphatases (PTPs), we performed mRNA expression profiling for 91 of the 109 known human PTP genes on a series of clinical diffuse glioma samples of different grades and compared our findings with in silico knowledge from REMBRANDT and TCGA databases. Overall PTP family expression levels appeared independent of characteristic genetic aberrations associated with lower grade or high grade gliomas. Notably, seven PTP genes (DUSP26, MTMR4, PTEN, PTPRM, PTPRN2, PTPRT and PTPRZ1) were differentially expressed between grade II-III gliomas and (grade IV) glioblastomas. For DUSP26, PTEN, PTPRM and PTPRT, lower expression levels correlated with poor prognosis, and overexpression of DUSP26 or PTPRT in E98 glioblastoma cells reduced tumorigenicity. Our study represents the first in-depth analysis of PTP family expression in diffuse glioma subtypes and warrants further investigations into PTP-dependent signaling events as new entry points for improved therapy.
Collapse
|
36
|
van Lith SAM, Navis AC, Lenting K, Verrijp K, Schepens JTG, Hendriks WJAJ, Schubert NA, Venselaar H, Wevers RA, van Rooij A, Wesseling P, Molenaar RJ, van Noorden CJF, Pusch S, Tops B, Leenders WPJ. Identification of a novel inactivating mutation in Isocitrate Dehydrogenase 1 (IDH1-R314C) in a high grade astrocytoma. Sci Rep 2016; 6:30486. [PMID: 27460417 PMCID: PMC4962051 DOI: 10.1038/srep30486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/06/2016] [Indexed: 12/16/2022] Open
Abstract
The majority of low-grade and secondary high-grade gliomas carry heterozygous hotspot mutations in cytosolic isocitrate dehydrogenase 1 (IDH1) or the mitochondrial variant IDH2. These mutations mostly involve Arg132 in IDH1, and Arg172 or Arg140 in IDH2. Whereas IDHs convert isocitrate to alpha-ketoglutarate (α-KG) with simultaneous reduction of NADP+ to NADPH, these IDH mutants reduce α-KG to D-2-hydroxyglutarate (D-2-HG) while oxidizing NADPH. D-2-HG is a proposed oncometabolite, acting via competitive inhibition of α-KG-dependent enzymes that are involved in metabolism and epigenetic regulation. However, much less is known about the implications of the metabolic stress, imposed by decreased α-KG and NADPH production, for tumor biology. We here present a novel heterozygous IDH1 mutation, IDH1R314C, which was identified by targeted next generation sequencing of a high grade glioma from which a mouse xenograft model and a cell line were generated. IDH1R314C lacks isocitrate-to-α-KG conversion activity due to reduced affinity for NADP+, and differs from the IDH1R132 mutants in that it does not produce D-2-HG. Because IDH1R314C is defective in producing α-KG and NADPH, without concomitant production of the D-2-HG, it represents a valuable tool to study the effects of IDH1-dysfunction on cellular metabolism in the absence of this oncometabolite.
Collapse
Affiliation(s)
| | - Anna C Navis
- Department of Pathology, Radboudumc, Nijmegen, The Netherlands
| | - Krissie Lenting
- Department of Pathology, Radboudumc, Nijmegen, The Netherlands
| | - Kiek Verrijp
- Department of Pathology, Radboudumc, Nijmegen, The Netherlands
| | - Jan T G Schepens
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, The Netherlands
| | - Wiljan J A J Hendriks
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, The Netherlands
| | - Nil A Schubert
- Department of Pathology, Radboudumc, Nijmegen, The Netherlands
| | - Hanka Venselaar
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, The Netherlands
| | - Ron A Wevers
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Arno van Rooij
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Pieter Wesseling
- Department of Pathology, Radboudumc, Nijmegen, The Netherlands.,Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Remco J Molenaar
- Department of Cell Biology and Histology, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Stefan Pusch
- Clinical Cooperation Unit Neuropathology, German Cancer Center (DKFZ), Heidelberg, Germany
| | - Bastiaan Tops
- Department of Pathology, Radboudumc, Nijmegen, The Netherlands
| | | |
Collapse
|
37
|
An Z, Ganji SK, Tiwari V, Pinho MC, Patel T, Barnett S, Pan E, Mickey BE, Maher EA, Choi C. Detection of 2-hydroxyglutarate in brain tumors by triple-refocusing MR spectroscopy at 3T in vivo. Magn Reson Med 2016; 78:40-48. [PMID: 27454352 DOI: 10.1002/mrm.26347] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/26/2016] [Accepted: 06/27/2016] [Indexed: 12/25/2022]
Abstract
PURPOSE To test the efficacy of triple-refocusing MR spectroscopy (MRS) for improved detection of 2-hydroxyglutarate (2HG) in brain tumors at 3T in vivo. METHODS The triple-refocusing sequence parameters were tailored at 3T, with density-matrix simulations and phantom validation, for enhancing the 2HG 2.25-ppm signal selectivity with respect to the adjacent resonances of glutamate (Glu), glutamine (Gln), and gamma-aminobutyric acid (GABA). In vivo MRS data were acquired from 15 glioma patients and analyzed with LCModel using calculated basis spectra. Metabolites were quantified with reference to water. RESULTS A triple-refocusing sequence (echo time = 137 ms) was obtained for 2HG detection. The 2HG 2.25-ppm signal was large and narrow while the Glu and Gln signals between 2.2 and 2.3 ppm were minimal. The optimized triple refocusing offered improved separation of 2HG from Glu, Gln and GABA when compared with published MRS methods. 2HG was detected in all 15 patients, the estimated 2HG concentrations ranging from 2.4 to 15.0 mM, with Cramer-Rao lower bounds of 2%-11%. The 2HG estimates did not show significant correlation with total choline. CONCLUSION The optimized triple refocusing provides excellent 2HG signal discrimination from adjacent resonances and may confer reliable in vivo measurement of 2HG at relatively low concentrations. Magn Reson Med 78:40-48, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Zhongxu An
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sandeep K Ganji
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Vivek Tiwari
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Marco C Pinho
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Toral Patel
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Samuel Barnett
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Otolaryngology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Edward Pan
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bruce E Mickey
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Annette Strauss Center for Neuro-Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Elizabeth A Maher
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Annette Strauss Center for Neuro-Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Changho Choi
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
38
|
Iron-induced epigenetic abnormalities of mouse bone marrow through aberrant activation of aconitase and isocitrate dehydrogenase. Int J Hematol 2016; 104:491-501. [DOI: 10.1007/s12185-016-2054-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 12/19/2022]
|
39
|
Cuyàs E, Fernández-Arroyo S, Corominas-Faja B, Rodríguez-Gallego E, Bosch-Barrera J, Martin-Castillo B, De Llorens R, Joven J, Menendez JA. Oncometabolic mutation IDH1 R132H confers a metformin-hypersensitive phenotype. Oncotarget 2016; 6:12279-96. [PMID: 25980580 PMCID: PMC4494938 DOI: 10.18632/oncotarget.3733] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 03/11/2015] [Indexed: 02/07/2023] Open
Abstract
Metabolic flexibility might be particularly constrained in tumors bearing mutations in isocitrate dehydrogenase 1 (IDH1) leading to the production of the oncometabolite 2-hydroxygluratate (2HG). To test the hypothesis that IDH1 mutations could generate metabolic vulnerabilities for therapeutic intervention, we utilized an MCF10A cell line engineered with an arginine-to-histidine conversion at position 132 (R132H) in the catalytic site of IDH1, which equips the enzyme with a neomorphic α-ketoglutarate to 2HG reducing activity in an otherwise isogenic background. IDH1 R132H/+ and isogenic IDH1 +/+ parental cells were screened for their ability to generate energy-rich NADH when cultured in a standardized high-throughput Phenotype MicroArrayplatform comprising >300 nutrients. A radical remodeling of the metabotype occurred in cells carrying the R132H mutation since they presented a markedly altered ability to utilize numerous carbon catabolic fuels. A mitochondria toxicity-screening modality confirmed a severe inability of IDH1-mutated cells to use various carbon substrates that are fed into the electron transport chain at different points. The mitochondrial biguanide poisons, metformin and phenformin, further impaired the intrinsic weakness of IDH1-mutant cells to use certain carbon-energy sources. Additionally, metabolic reprogramming of IDH1-mutant cells increased their sensitivity to metformin in assays of cell proliferation, clonogenic potential, and mammosphere formation. Targeted metabolomics studies revealed that the ability of metformin to interfere with the anaplerotic entry of glutamine into the tricarboxylic acid cycle could explain the hypersensitivity of IDH1-mutant cells to biguanides. Moreover, synergistic interactions occurred when metformin treatment was combined with the selective R132H-IDH1 inhibitor AGI-5198. Together, these results suggest that therapy involving the simultaneous targeting of metabolic vulnerabilities with metformin, and 2HG overproduction with mutant-selective inhibitors (AGI-5198-related AG-120 [Agios]), might represent a worthwhile avenue of exploration in the treatment of IDH1-mutated tumors.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain
| | - Salvador Fernández-Arroyo
- Unitat de Recerca Biomèdica (URB-CRB), Institut d'Investigació Sanitaria Pere i Virgili (IISPV), Universitat Rovira i Virgili, Reus, Catalonia. Spain
| | - Bruna Corominas-Faja
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain
| | - Esther Rodríguez-Gallego
- Unitat de Recerca Biomèdica (URB-CRB), Institut d'Investigació Sanitaria Pere i Virgili (IISPV), Universitat Rovira i Virgili, Reus, Catalonia. Spain
| | - Joaquim Bosch-Barrera
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain.,Medical Oncology, Catalan Institute of Oncology (ICO), Girona, Catalonia, Spain
| | - Begoña Martin-Castillo
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain.,Clinical Research Unit, Catalan Institute of Oncology (ICO), Girona, Catalonia, Spain
| | - Rafael De Llorens
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Catalonia, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica (URB-CRB), Institut d'Investigació Sanitaria Pere i Virgili (IISPV), Universitat Rovira i Virgili, Reus, Catalonia. Spain
| | - Javier A Menendez
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain
| |
Collapse
|
40
|
Reznik E, Miller ML, Şenbabaoğlu Y, Riaz N, Sarungbam J, Tickoo SK, Al-Ahmadie HA, Lee W, Seshan VE, Hakimi AA, Sander C. Mitochondrial DNA copy number variation across human cancers. eLife 2016; 5:e10769. [PMID: 26901439 PMCID: PMC4775221 DOI: 10.7554/elife.10769] [Citation(s) in RCA: 355] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/08/2016] [Indexed: 12/18/2022] Open
Abstract
Mutations, deletions, and changes in copy number of mitochondrial DNA (mtDNA), are observed throughout cancers. Here, we survey mtDNA copy number variation across 22 tumor types profiled by The Cancer Genome Atlas project. We observe a tendency for some cancers, especially of the bladder, breast, and kidney, to be depleted of mtDNA, relative to matched normal tissue. Analysis of genetic context reveals an association between incidence of several somatic alterations, including IDH1 mutations in gliomas, and mtDNA content. In some but not all cancer types, mtDNA content is correlated with the expression of respiratory genes, and anti-correlated to the expression of immune response and cell-cycle genes. In tandem with immunohistochemical evidence, we find that some tumors may compensate for mtDNA depletion to sustain levels of respiratory proteins. Our results highlight the extent of mtDNA copy number variation in tumors and point to related therapeutic opportunities.
Collapse
Affiliation(s)
- Ed Reznik
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Martin L Miller
- Cancer Research UK, Cambridge Institute, Cambridge, United Kingdom
| | - Yasin Şenbabaoğlu
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Judy Sarungbam
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Satish K Tickoo
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Hikmat A Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, United States
| | - William Lee
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Venkatraman E Seshan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, United States
| | - A Ari Hakimi
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Chris Sander
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
41
|
Rovigatti U. Cancer modelling in the NGS era - Part I: Emerging technology and initial modelling. Crit Rev Oncol Hematol 2015; 96:274-307. [PMID: 26427785 DOI: 10.1016/j.critrevonc.2015.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 04/14/2015] [Accepted: 05/19/2015] [Indexed: 02/07/2023] Open
Abstract
It is today indisputable that great progresses have been made in our molecular understanding of cancer cells, but an effective implementation of such knowledge into dramatic cancer-cures is still belated and yet desperately needed. This review gives a snapshot at where we stand today in this search for cancer understanding and definitive treatments, how far we have progressed and what are the major obstacles we will have to overcome both technologically and for disease modelling. In the first part, promising 3rd/4th Generation Sequencing Technologies will be summarized (particularly IonTorrent and OxfordNanopore technologies). Cancer modelling will be then reviewed from its origin in XIX Century Germany to today's NGS applications for cancer understanding and therapeutic interventions. Developments after Molecular Biology revolution (1953) are discussed as successions of three phases. The first, PH1, labelled "Clonal Outgrowth" (from 1960s to mid 1980s) was characterized by discoveries in cytogenetics (Nowell, Rowley) and viral oncology (Dulbecco, Bishop, Varmus), which demonstrated clonality. Treatments were consequently dominated by a "cytotoxic eradication" strategy with chemotherapeutic agents. In PH2, (from the mid 1980s to our days) the description of cancer as "Gene Networks" led to targeted-gene-therapies (TGTs). TGTs are the focus of Section 3: in view of their apparent failing (Ephemeral Therapies), alternative strategies will be discussed in review part II (particularly cancer immunotherapy, CIT). Additional Pitfalls impinge on the concepts of tumour heterogeneity (inter/intra; ITH). The described pitfalls set the basis for a new phase, PH3, which is called "NGS Era" and will be also discussed with ten emerging cancer models in the Review 2nd part.
Collapse
Affiliation(s)
- Ugo Rovigatti
- University of Pisa Medical School, Oncology Department, via Roma 55, 56127 Pisa, Italy.
| |
Collapse
|
42
|
Borodovsky A, Meeker AK, Kirkness EF, Zhao Q, Eberhart CG, Gallia GL, Riggins GJ. A model of a patient-derived IDH1 mutant anaplastic astrocytoma with alternative lengthening of telomeres. J Neurooncol 2014; 121:479-87. [PMID: 25471051 DOI: 10.1007/s11060-014-1672-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 11/23/2014] [Indexed: 12/12/2022]
Abstract
Mutations in isocitrate dehydrogenase 1 (IDH1) have been found in the vast majority of low grade and progressive infiltrating gliomas and are characterized by the production of 2-hydroxyglutarate from α-ketoglutarate. Recent investigations of malignant gliomas have identified additional genetic and chromosomal abnormalities which cluster with IDH1 mutations into two distinct subgroups. The astrocytic subgroup was found to have frequent mutations in ATRX, TP53 and displays alternative lengthening of telomeres. The second subgroup with oligodendrocytic morphology has frequent mutations in CIC or FUBP1, and is linked to co-deletion of the 1p/19q arms. These mutations reflect the development of two distinct molecular pathways representing the majority of IDH1 mutant gliomas. Unfortunately, due to the scarcity of endogenously derived IDH1 mutant models, there is a lack of accurate models to study mechanism and develop new therapy. Here we report the generation of an endogenous IDH1 anaplastic astrocytoma in vivo model with concurrent mutations in TP53, CDKN2A and ATRX. The model has a similar phenotype and histopathology as the original patient tumor, expresses the IDH1 (R132H) mutant protein and exhibits an alternative lengthening of telomeres phenotype. The JHH-273 model is characteristic of anaplastic astrocytoma and represents a valuable tool for investigating the pathogenesis of this distinct molecular subset of gliomas and for preclinical testing of compounds targeting IDH1 mutations or alternative lengthening of telomeres.
Collapse
Affiliation(s)
- Alexandra Borodovsky
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, 1550 Orleans Street, Room 257 CRB2, Baltimore, MD, 21231, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Towards imaging metabolic pathways in tissues. Anal Bioanal Chem 2014; 407:2167-76. [DOI: 10.1007/s00216-014-8305-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/24/2014] [Accepted: 10/28/2014] [Indexed: 12/21/2022]
|
44
|
Abstract
Somatic mutation of isocitrate dehydrogenase 1 (IDH1) is now recognized as the most common initiating event for secondary glioblastoma, a brain tumor type arising with high frequency in the frontal lobe. A puzzling feature of IDH1 mutation is the selective manifestation of glioma as the only neoplasm frequently associated with early postzygotic occurrence of this genomic alteration. We report here that IDH1(R132H) exhibits a growth-inhibitory effect that is abrogated in the presence of glutamate dehydrogenase 2 (GLUD2), a hominoid-specific enzyme purportedly optimized to facilitate glutamate turnover in human forebrain. Using murine glioma progenitor cells, we demonstrate that IDH1(R132H) exerts a growth-inhibitory effect that is paralleled by deficiency in metabolic flux from glucose and glutamine to lipids. Examining human gliomas, we find that glutamate dehydrogenase 1 (GLUD1) and GLUD2 are overexpressed in IDH1-mutant tumors and that orthotopic growth of an IDH1-mutant glioma line is inhibited by knockdown of GLUD1/2. Strikingly, introduction of GLUD2 into murine glioma progenitor cells reverses deleterious effects of IDH1 mutation on metabolic flux and tumor growth. Further, we report that glutamate, a substrate of GLUD2 and a neurotransmitter abundant in mammalian neocortex, can support growth of glioma progenitor cells irrespective of IDH1 mutation status. These findings suggest that specialization of human neocortex for high glutamate neurotransmitter flux creates a metabolic niche conducive to growth of IDH1 mutant tumors.
Collapse
|
45
|
Esmaeili M, Hamans BC, Navis AC, van Horssen R, Bathen TF, Gribbestad IS, Leenders WP, Heerschap A. IDH1 R132H mutation generates a distinct phospholipid metabolite profile in glioma. Cancer Res 2014; 74:4898-907. [PMID: 25005896 DOI: 10.1158/0008-5472.can-14-0008] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many patients with glioma harbor specific mutations in the isocitrate dehydrogenase gene IDH1 that associate with a relatively better prognosis. IDH1-mutated tumors produce the oncometabolite 2-hydroxyglutarate. Because IDH1 also regulates several pathways leading to lipid synthesis, we hypothesized that IDH1-mutant tumors have an altered phospholipid metabolite profile that would impinge on tumor pathobiology. To investigate this hypothesis, we performed (31)P-MRS imaging in mouse xenograft models of four human gliomas, one of which harbored the IDH1-R132H mutation. (31)P-MR spectra from the IDH1-mutant tumor displayed a pattern distinct from that of the three IDH1 wild-type tumors, characterized by decreased levels of phosphoethanolamine and increased levels of glycerophosphocholine. This spectral profile was confirmed by ex vivo analysis of tumor extracts, and it was also observed in human surgical biopsies of IDH1-mutated tumors by (31)P high-resolution magic angle spinning spectroscopy. The specificity of this profile for the IDH1-R132H mutation was established by in vitro (31)P-NMR of extracts of cells overexpressing IDH1 or IDH1-R132H. Overall, our results provide evidence that the IDH1-R132H mutation alters phospholipid metabolism in gliomas involving phosphoethanolamine and glycerophosphocholine. These new noninvasive biomarkers can assist in the identification of the mutation and in research toward novel treatments that target aberrant metabolism in IDH1-mutant glioma.
Collapse
Affiliation(s)
- Morteza Esmaeili
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Bob C Hamans
- Department of Radiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anna C Navis
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Remco van Horssen
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands. Department of Clinical Chemistry and Hematology, St. Elisabeth Hospital, Tilburg, the Netherlands
| | - Tone F Bathen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ingrid S Gribbestad
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - William P Leenders
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Arend Heerschap
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway. Department of Radiology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
46
|
Intraoperative mass spectrometry mapping of an onco-metabolite to guide brain tumor surgery. Proc Natl Acad Sci U S A 2014; 111:11121-6. [PMID: 24982150 DOI: 10.1073/pnas.1404724111] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
For many intraoperative decisions surgeons depend on frozen section pathology, a technique developed over 150 y ago. Technical innovations that permit rapid molecular characterization of tissue samples at the time of surgery are needed. Here, using desorption electrospray ionization (DESI) MS, we rapidly detect the tumor metabolite 2-hydroxyglutarate (2-HG) from tissue sections of surgically resected gliomas, under ambient conditions and without complex or time-consuming preparation. With DESI MS, we identify isocitrate dehydrogenase 1-mutant tumors with both high sensitivity and specificity within minutes, immediately providing critical diagnostic, prognostic, and predictive information. Imaging tissue sections with DESI MS shows that the 2-HG signal overlaps with areas of tumor and that 2-HG levels correlate with tumor content, thereby indicating tumor margins. Mapping the 2-HG signal onto 3D MRI reconstructions of tumors allows the integration of molecular and radiologic information for enhanced clinical decision making. We also validate the methodology and its deployment in the operating room: We have installed a mass spectrometer in our Advanced Multimodality Image Guided Operating (AMIGO) suite and demonstrate the molecular analysis of surgical tissue during brain surgery. This work indicates that metabolite-imaging MS could transform many aspects of surgical care.
Collapse
|
47
|
Molenaar RJ, Radivoyevitch T, Maciejewski JP, van Noorden CJF, Bleeker FE. The driver and passenger effects of isocitrate dehydrogenase 1 and 2 mutations in oncogenesis and survival prolongation. Biochim Biophys Acta Rev Cancer 2014; 1846:326-41. [PMID: 24880135 DOI: 10.1016/j.bbcan.2014.05.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/30/2014] [Accepted: 05/22/2014] [Indexed: 01/06/2023]
Abstract
Mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are key events in the development of glioma, acute myeloid leukemia (AML), chondrosarcoma, intrahepatic cholangiocarcinoma (ICC), and angioimmunoblastic T-cell lymphoma. They also cause D-2-hydroxyglutaric aciduria and Ollier and Maffucci syndromes. IDH1/2 mutations are associated with prolonged survival in glioma and in ICC, but not in AML. The reason for this is unknown. In their wild-type forms, IDH1 and IDH2 convert isocitrate and NADP(+) to α-ketoglutarate (αKG) and NADPH. Missense mutations in the active sites of these enzymes induce a neo-enzymatic reaction wherein NADPH reduces αKG to D-2-hydroxyglutarate (D-2HG). The resulting D-2HG accumulation leads to hypoxia-inducible factor 1α degradation, and changes in epigenetics and extracellular matrix homeostasis. Such mutations also imply less NADPH production capacity. Each of these effects could play a role in cancer formation. Here, we provide an overview of the literature and discuss which downstream molecular effects are likely to be the drivers of the oncogenic and survival-prolonging properties of IDH1/2 mutations. We discuss interactions between mutant IDH1/2 inhibitors and conventional therapies. Understanding of the biochemical consequences of IDH1/2 mutations in oncogenesis and survival prolongation will yield valuable information for rational therapy design: it will tell us which oncogenic processes should be blocked and which "survivalogenic" effects should be retained.
Collapse
Affiliation(s)
- Remco J Molenaar
- Department of Cell Biology & Histology, Academic Medical Center, University of Amsterdam, The Netherlands.
| | - Tomas Radivoyevitch
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Cornelis J F van Noorden
- Department of Cell Biology & Histology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Fonnet E Bleeker
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, The Netherlands
| |
Collapse
|
48
|
Van Noorden CJF. The NADP+-dependent IDH1 mutation and its relevance for glioblastoma patient survival. Cancer Metab 2014. [PMCID: PMC4073009 DOI: 10.1186/2049-3002-2-s1-p79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
49
|
Glutamate as chemotactic fuel for diffuse glioma cells: are they glutamate suckers? Biochim Biophys Acta Rev Cancer 2014; 1846:66-74. [PMID: 24747768 DOI: 10.1016/j.bbcan.2014.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 11/21/2022]
Abstract
Diffuse gliomas comprise a group of primary brain tumors that originate from glial (precursor) cells and present as a variety of malignancy grades which have in common that they grow by diffuse infiltration. This phenotype complicates treatment enormously as it precludes curative surgery and radiotherapy. Furthermore, diffusely infiltrating glioma cells often hide behind a functional blood-brain barrier, hampering delivery of systemically administered therapeutic and diagnostic compounds to the tumor cells. The present review addresses the biological mechanisms that underlie the diffuse infiltrative phenotype, knowledge of which may improve treatment strategies for this disastrous tumor type. The invasive phenotype is specific for glioma: most other brain tumor types, both primary and metastatic, grow as delineated lesions. Differences between the genetic make-up of glioma and that of other tumor types may therefore help to unravel molecular pathways, involved in diffuse infiltrative growth. One such difference concerns mutations in the NADP(+)-dependent isocitrate dehydrogenase (IDH1 and IDH2) genes, which occur in >80% of cases of low grade glioma and secondary glioblastoma. In this review we present a novel hypothesis which links IDH1 and IDH2 mutations to glutamate metabolism, possibly explaining the specific biological behavior of diffuse glioma.
Collapse
|
50
|
Van Noorden C. Imaging enzymes at work: metabolic mapping by enzyme histochemistry to study functional mechanisms of the isocitrate dehydrogenase IDH1 mutation in glioblastoma (59.3). FASEB J 2014. [DOI: 10.1096/fasebj.28.1_supplement.59.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|