1
|
Martínez-Esquivias F, Guzmán-Flores JM, Pech-Santiago EO, Guerrero-Barrera AL, Delgadillo-Aguirre CK, Anaya-Esparza LM. Therapeutic Role of Quercetin in Prostate Cancer: A Study of Network Pharmacology, Molecular Docking, and Dynamics Simulation. Cell Biochem Biophys 2025:10.1007/s12013-025-01697-3. [PMID: 39966335 DOI: 10.1007/s12013-025-01697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 02/20/2025]
Abstract
Prostate cancer (PCa) is a major cause of cancer-related mortality in men. This study explores the anticancer potential of Quercetin, a polyphenolic compound with antioxidant and anti-inflammatory properties, by network pharmacology, molecular docking, and molecular dynamics simulation approaches. Target genes for Quercetin and PCa were identified from the bioinformatics databases MalaCards, Comparative Toxicogenomics Databases, SwissTargetPrediction, and Traditional Chinese Medicine Systems Pharmacology, and the obtained genes were matched using the Venny platform to find out the common genes. We obtained 11 preliminary genes and analyzed them in ShinyGO-0.77 databases to obtain genetic otology data. Then, we constructed a protein-protein interaction network in STRING, which enabled us to identify six hub genes AKT1, EGFR, MMP2, MMP9, PARP1, and ABCG2. Hub genes were analyzed in the TISIDB database for immune cell infiltration. Furthermore, a molecular docking study between the target proteins and Quercetin was performed in the SwissDock databases. Subsequently, we corroborated the docking with molecular dynamics studies using GROMACS software. Gene Ontology and KEGG pathway analyses revealed that Quercetin influences oxidative stress, mitochondrial function, and metalloproteinase activity. Immune cell infiltration analysis highlighted correlations between key genes and specific immune responses, suggesting a modulatory role of Quercetin in the tumor microenvironment. Finally, docking and molecular dynamics analysis showed that Quercetin has a stable interaction with the hub genes. In conclusion, these findings underline the potential of Quercetin to induce apoptosis, inhibit angiogenesis, and suppress metastasis, proposing it as a promising therapeutic tool for the treatment of PCa. However, additional experimental studies are required to translate these findings into clinical practice.
Collapse
Affiliation(s)
- Fernando Martínez-Esquivias
- Departamento de Ciencias de la Salud, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, México.
| | - Juan Manuel Guzmán-Flores
- Departamento de Ciencias de la Salud, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, México
| | - Edar O Pech-Santiago
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional: Ciudad de México, Mexico City, México
| | - Alma Lilian Guerrero-Barrera
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, CP, 20100, México
| | - Claudia Karina Delgadillo-Aguirre
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, CP, 20100, México
| | - Luis Miguel Anaya-Esparza
- Centro de Estudios para la Agricultura, la Alimentación y la Crisis Climática, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, 47620, México
| |
Collapse
|
2
|
Hossain MR, Tareq MMI, Biswas P, Tauhida SJ, Bibi S, Zilani MNH, Albadrani GM, Al‐Ghadi MQ, Abdel‐Daim MM, Hasan MN. Identification of molecular targets and small drug candidates for Huntington's disease via bioinformatics and a network-based screening approach. J Cell Mol Med 2024; 28:e18588. [PMID: 39153206 PMCID: PMC11330274 DOI: 10.1111/jcmm.18588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/07/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
Huntington's disease (HD) is a gradually severe neurodegenerative ailment characterised by an increase of a specific trinucleotide repeat sequence (cytosine-adenine-guanine, CAG). It is passed down as a dominant characteristic that worsens over time, creating a significant risk. Despite being monogenetic, the underlying mechanisms as well as biomarkers remain poorly understood. Furthermore, early detection of HD is challenging, and the available diagnostic procedures have low precision and accuracy. The research was conducted to provide knowledge of the biomarkers, pathways and therapeutic targets involved in the molecular processes of HD using informatic based analysis and applying network-based systems biology approaches. The gene expression profile datasets GSE97100 and GSE74201 relevant to HD were studied. As a consequence, 46 differentially expressed genes (DEGs) were identified. 10 hub genes (TPM1, EIF2S3, CCN2, ACTN1, ACTG2, CCN1, CSRP1, EIF1AX, BEX2 and TCEAL5) were further differentiated in the protein-protein interaction (PPI) network. These hub genes were typically down-regulated. Additionally, DEGs-transcription factors (TFs) connections (e.g. GATA2, YY1 and FOXC1), DEG-microRNA (miRNA) interactions (e.g. hsa-miR-124-3p and has-miR-26b-5p) were also comprehensively forecast. Additionally, related gene ontology concepts (e.g. sequence-specific DNA binding and TF activity) connected to DEGs in HD were identified using gene set enrichment analysis (GSEA). Finally, in silico drug design was employed to find candidate drugs for the treatment HD, and while the possible modest therapeutic compounds (e.g. cortistatin A, 13,16-Epoxy-25-hydroxy-17-cheilanthen-19,25-olide, Hecogenin) against HD were expected. Consequently, the results from this study may give researchers useful resources for the experimental validation of Huntington's diagnosis and therapeutic approaches.
Collapse
Affiliation(s)
- Md Ridoy Hossain
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and BiotechnologyJashore University of Science and TechnologyJessoreBangladesh
| | - Md. Mohaimenul Islam Tareq
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and BiotechnologyJashore University of Science and TechnologyJessoreBangladesh
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and BiotechnologyJashore University of Science and TechnologyJessoreBangladesh
| | - Sadia Jannat Tauhida
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and BiotechnologyJashore University of Science and TechnologyJessoreBangladesh
| | - Shabana Bibi
- Department of BiosciencesShifa Tameer‐e‐Millat UniversityIslamabadPakistan
- Department of Health SciencesNovel Global Community Educational FoundationHebershamNew South WalesAustralia
| | | | - Ghadeer M. Albadrani
- Department of Biology, College of SciencePrincess Nourah bint Abdulrahman UniversityRiyadhSaudi Arabia
| | - Muath Q. Al‐Ghadi
- Department of Zoology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Mohamed M. Abdel‐Daim
- Department of Pharmaceutical Sciences, Pharmacy ProgramBatterjee Medical CollegeJeddahSaudi Arabia
- Pharmacology Department, Faculty of Veterinary MedicineSuez Canal UniversityIsmailiaEgypt
| | - Md. Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and BiotechnologyJashore University of Science and TechnologyJessoreBangladesh
| |
Collapse
|
3
|
Márquez-Flores YK, Martínez-Galero E, Correa-Basurto J, Sixto-López Y, Villegas I, Rosillo MÁ, Cárdeno A, Alarcón-de-la-Lastra C. Daidzein and Equol: Ex Vivo and In Silico Approaches Targeting COX-2, iNOS, and the Canonical Inflammasome Signaling Pathway. Pharmaceuticals (Basel) 2024; 17:647. [PMID: 38794217 PMCID: PMC11124169 DOI: 10.3390/ph17050647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/22/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND The inflammasome is a cytosolic multiprotein complex associated with multiple autoimmune diseases. Phytochemical compounds in soy (Glycine max) foods, such as isoflavones, have been reported for their anti-inflammatory properties. AIM the anti-inflammatory activity of DZ (daidzein) and EQ (equol) were investigated in an ex vivo model of LPS-stimulated murine peritoneal macrophages and by molecular docking correlation. METHODS Cells were pre-treated with DZ (25, 50, and 100 µM) or EQ (5, 10, and 25 µM), followed by LPS stimulation. The levels of PGE2, NO, TNF-α, IL-6, and IL-1β were analyzed by ELISA, whereas the expressions of COX-2, iNOS, NLRP3, ASC, caspase 1, and IL-18 were measured by Western blotting. Also, the potential for transcriptional modulation by targeting NF-κB, COX-2, iNOS, NLRP3, ASC, and caspase 1 was investigated by molecular docking. RESULTS The anti-inflammatory responses observed may be due to the modulation of NF-κB due to the binding of DZ or EQ, which is translated into decreased TNF-α, COX-2, iNOS, NLRP3, and ASC levels. CONCLUSION This study establishes that DZ and EQ inhibit LPS-induced inflammatory responses in peritoneal murine macrophages via down-regulation of NO and PGE2 generation, as well as the inhibition of the canonical inflammasome pathway, regulating NLRP3, and consequently decreasing IL-1β and IL-18 activation.
Collapse
Affiliation(s)
- Yazmín K. Márquez-Flores
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Campus Zacatenco, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n Col. Zacatenco, Mexico City C.P. 07738, Mexico;
| | - Elizdath Martínez-Galero
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Campus Zacatenco, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n Col. Zacatenco, Mexico City C.P. 07738, Mexico;
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomas, Mexico City C.P. 11340, Mexico; (J.C.-B.); (Y.S.-L.)
| | - Yudibeth Sixto-López
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomas, Mexico City C.P. 11340, Mexico; (J.C.-B.); (Y.S.-L.)
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Campus de Cartuja, Universidad de Granada, 18071 Granada, Spain
| | - Isabel Villegas
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Professor García González Street 2, 41012 Seville, Spain; (I.V.); (A.C.); (C.A.-d.-l.-L.)
| | - María Á. Rosillo
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Professor García González Street 2, 41012 Seville, Spain; (I.V.); (A.C.); (C.A.-d.-l.-L.)
| | - Ana Cárdeno
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Professor García González Street 2, 41012 Seville, Spain; (I.V.); (A.C.); (C.A.-d.-l.-L.)
| | - Catalina Alarcón-de-la-Lastra
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Professor García González Street 2, 41012 Seville, Spain; (I.V.); (A.C.); (C.A.-d.-l.-L.)
| |
Collapse
|
4
|
Cecerska-Heryć E, Wiśniewska Z, Serwin N, Polikowska A, Goszka M, Engwert W, Michałów J, Pękała M, Budkowska M, Michalczyk A, Dołęgowska B. Can Compounds of Natural Origin Be Important in Chemoprevention? Anticancer Properties of Quercetin, Resveratrol, and Curcumin-A Comprehensive Review. Int J Mol Sci 2024; 25:4505. [PMID: 38674092 PMCID: PMC11050349 DOI: 10.3390/ijms25084505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Malignant tumors are the second most common cause of death worldwide. More attention is being paid to the link between the body's impaired oxidoreductive balance and cancer incidence. Much attention is being paid to polyphenols derived from plants, as one of their properties is an antioxidant character: the ability to eliminate reactive oxygen and nitrogen species, chelate specific metal ions, modulate signaling pathways affecting inflammation, and raise the level and activity of antioxidant enzymes while lowering those with oxidative effects. The following three compounds, resveratrol, quercetin, and curcumin, are polyphenols modulating multiple molecular targets, or increasing pro-apoptotic protein expression levels and decreasing anti-apoptotic protein expression levels. Experiments conducted in vitro and in vivo on animals and humans suggest using them as chemopreventive agents based on antioxidant properties. The advantage of these natural polyphenols is low toxicity and weak adverse effects at higher doses. However, the compounds discussed are characterized by low bioavailability and solubility, which may make achieving the blood concentrations needed for the desired effect challenging. The solution may lie in derivatives of naturally occurring polyphenols subjected to structural modifications that enhance their beneficial effects or work on implementing new ways of delivering antioxidants that improve their solubility and bioavailability.
Collapse
Affiliation(s)
- Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Zofia Wiśniewska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Natalia Serwin
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Aleksandra Polikowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Małgorzata Goszka
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Weronika Engwert
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Jaśmina Michałów
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Maja Pękała
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University of Szczecin, Broniewskiego 26, 71-460 Szczecin, Poland;
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| |
Collapse
|
5
|
Srivastava S, Jain P. Computational Approaches: A New Frontier in Cancer Research. Comb Chem High Throughput Screen 2024; 27:1861-1876. [PMID: 38031782 DOI: 10.2174/0113862073265604231106112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 09/21/2023] [Indexed: 12/01/2023]
Abstract
Cancer is a broad category of disease that can start in virtually any organ or tissue of the body when aberrant cells assault surrounding organs and proliferate uncontrollably. According to the most recent statistics, cancer will be the cause of 10 million deaths worldwide in 2020, accounting for one death out of every six worldwide. The typical approach used in anti-cancer research is highly time-consuming and expensive, and the outcomes are not particularly encouraging. Computational techniques have been employed in anti-cancer research to advance our understanding. Recent years have seen a significant and exceptional impact on anticancer research due to the rapid development of computational tools for novel drug discovery, drug design, genetic studies, genome characterization, cancer imaging and detection, radiotherapy, cancer metabolomics, and novel therapeutic approaches. In this paper, we examined the various subfields of contemporary computational techniques, including molecular docking, artificial intelligence, bioinformatics, virtual screening, and QSAR, and their applications in the study of cancer.
Collapse
Affiliation(s)
- Shubham Srivastava
- Department of Pharmacy, IIMT College of Pharmacy, Uttar Pradesh, 201310, India
| | - Pushpendra Jain
- Department of Pharmacy, IIMT College of Pharmacy, Uttar Pradesh, 201310, India
| |
Collapse
|
6
|
Pavlović N, Milošević Sopta N, Mitrović D, Zaklan D, Tomas Petrović A, Stilinović N, Vukmirović S. Principal Component Analysis (PCA) of Molecular Descriptors for Improving Permeation through the Blood-Brain Barrier of Quercetin Analogues. Int J Mol Sci 2023; 25:192. [PMID: 38203364 PMCID: PMC10778702 DOI: 10.3390/ijms25010192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Despite its beneficial pharmacological effects in the brain, partly by modulating inositol phosphate multikinase (IPMK) activity, the therapeutic use of quercetin is limited due to its poor solubility, low oral bioavailability, and low permeability through the blood-brain barrier (BBB). We aimed to identify quercetin analogues with improved BBB permeability and preserved binding affinities towards IPMK and to identify the molecular characteristics required for them to permeate the BBB. Binding affinities of quercetin analogues towards IPMK were determined by molecular docking. Principal component analysis (PCA) was applied to identify the molecular descriptors contributing to efficient permeation through the BBB. Among 34 quercetin analogues, 19 compounds were found to form more stable complexes with IPMK, and the vast majority were found to be more lipophilic than quercetin. Using two distinct in silico techniques, insufficient BBB permeation was determined for all quercetin analogues. However, using the PCA method, the descriptors related to intrinsic solubility and lipophilicity (logP) were identified as mainly responsible for clustering four quercetin analogues (trihydroxyflavones) with the highest BBB permeability. The application of PCA revealed that quercetin analogues could be classified with respect to their structural characteristics, which may be utilized in further analogue syntheses and lead optimization of BBB-penetrating IPMK modulators as neuroprotective agents.
Collapse
Affiliation(s)
- Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (D.M.); (D.Z.)
| | | | - Darko Mitrović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (D.M.); (D.Z.)
- Accelsiors CRO, Háros Street 103, 1222 Budapest, Hungary;
| | - Dragana Zaklan
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (D.M.); (D.Z.)
| | - Ana Tomas Petrović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (A.T.P.); (N.S.); (S.V.)
| | - Nebojša Stilinović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (A.T.P.); (N.S.); (S.V.)
| | - Saša Vukmirović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (A.T.P.); (N.S.); (S.V.)
| |
Collapse
|
7
|
Ibrahim A, Ipinloju N, Aiyelabegan AO, Alfa-Ibrahim AA, Muhammad SA, Oyeneyin OE. Discovery of Potential Phytochemicals from Carica papaya Targeting BRCA-1 in Breast Cancer Treatment. Appl Biochem Biotechnol 2023; 195:7159-7175. [PMID: 36988843 DOI: 10.1007/s12010-023-04473-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
The BRCA1 and BRCA2 are genes that encode a protein that ensures the integrity of DNA and prevents the unregulated cells from proliferating. Mutations in the sequence of these genes are associated with the birth of inherited breast cancers. The research for possible human breast cancer treatment remains a vital step in the drug development process. In this study, in silico investigations involving a computational method for the discovery of active phytochemicals from Carica papaya against the BRCA-1 gene were carried out. The in silico studies for these phytochemicals datasets as BRCA-1 breast cancer therapeutic agents showed promising results through pharmacokinetics and pharmacodynamics studies. The Carica papaya compounds were found to follow the rule of five and have good bioavailability. The ADMET and drug-likeness screening score of the identified ligands also recognized their potential as a promising drug candidate against BRCA-1 while the DFT also confirm better biological and chemical reactivity of Carica papaya compounds with excellent intra-molecular charge transfer between electron donor and electron acceptor site. The results of the molecular docking provided useful information on possible target-lead interactions, demonstrating that the newly developed leads showed a high affinity for BRCA-1 targets and might be investigated for further research.
Collapse
Affiliation(s)
- Abdulwasiu Ibrahim
- Drosophila Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, Oyo State, Nigeria.
- Drosophila Research and Training Centre, Ibadan, Oyo State, Nigeria.
| | - Nureni Ipinloju
- Theoretical and Computational Chemistry Unit, Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, Ondo State, Nigeria
| | | | | | | | - Oluwatoba Emmanuel Oyeneyin
- Theoretical and Computational Chemistry Unit, Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, Ondo State, Nigeria
| |
Collapse
|
8
|
Raut B, Upadhyaya SR, Bashyal J, Parajuli N. In Silico and In Vitro Analyses to Repurpose Quercetin as a Human Pancreatic α-Amylase Inhibitor. ACS OMEGA 2023; 8:43617-43631. [PMID: 38027372 PMCID: PMC10666247 DOI: 10.1021/acsomega.3c05082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Human pancreatic α-amylase (HPA), situated at the apex of the starch digestion hierarchy, is an attractive therapeutic approach to precisely regulate blood glucose levels, thereby efficiently managing diabetes. Polyphenols offer a natural and multifaceted approach to moderate postprandial sugar spikes, with their slight modulation in carbohydrate digestion and potential secondary benefits, such as antioxidant and anti-inflammatory effects. Taking into consideration the unfavorable side effects of currently available commercial medications, we aimed to study a library of polyphenols attributed to their remarkable antidiabetic properties and screened the most potent HPA inhibitor via a comprehensive in silico study encompassing molecular docking, molecular mechanics with generalized Born and surface area solvation (MM/GBSA) calculation, molecular dynamics (MD) simulation, density functional theory (DFT) study, and pharmacokinetic properties followed by an in vitro assay. Significant hydrogen bonding with the catalytic triad residues of HPA, prominent MM/GBSA binding energy of -27.03 kcal/mol, and the stable nature of the protein-ligand complex with regard to 100 ns MD simulation screened quercetin as the best HPA inhibitor. Additionally, quercetin showed strong reactivity in the substrate-binding pocket of HPA and exhibited favorable pharmacokinetic properties with a considerable inhibitory concentration (IC50) of 57.37 ± 0.9 μg/mL against α-amylase. This study holds prospects for HPA inhibition and suggests quercetin as an approach to therapy for diabetes; however, it is imperative to conduct further research.
Collapse
Affiliation(s)
- Bimal
K. Raut
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal
| | - Siddha Raj Upadhyaya
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal
| | - Jyoti Bashyal
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal
| | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal
| |
Collapse
|
9
|
Kalungi F, Nsubuga A, Anywar G. Network analysis and molecular docking studies of quercetin as a potential treatment for prostate cancer. In Silico Pharmacol 2023; 11:24. [PMID: 37736110 PMCID: PMC10509105 DOI: 10.1007/s40203-023-00162-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/23/2023] Open
Abstract
Globally, the prevalence of prostate cancer is only the second to lung cancer. In Africa however, the commonest cancer among men is cancer of the prostate. The use of natural compounds from plants such as quercetin is being explored as a potential cure. Quercetin is a plant-based flavonoid that has anti-inflammatory, antioxidant and anticancer properties. Although quercetin has been extensively studied, its chemo preventive mode of action is not well-understood. The molecular targets and potential mechanisms underlying the action of quercetin against prostate cancer were identified and validated using network pharmacology and molecular docking methods. The biological targets of quercetin and targets associated with prostate cancer were obtained through database mining. Overlapping targets associated with quercetin and prostate cancer were identified and used to construct a compound-disease target (C-D) network and the targets were subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and protein-protein interaction analysis (PPI). A disease target- pathway network was constructed and then merged with C-D network to form a compound-disease_target-pathway (C-D-P) network. Hub targets were obtained from the C-D-P and PPI networks. The binding affinities between quercetin and the retrieved hub targets were identified. Pathway enrichment analysis showed that prostate cancer associated quercetin targets were mainly linked with pathways such as the cancer signaling pathways (HIF-1 and ErbB) and hepatitis B. Basing on the PPI and C-D-P network analysis STAT3, TP53, MAPK1, MAPK3 and KRAS were identified as the main targets and were subjected to molecular docking. The results showed quercetin's ability to stably bind to the key targets. In conclusion, this study showed the potential molecular targets and mode of action of quercetin in prostate cancer treatment. This can potentially inform the future use of quercetin in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Frank Kalungi
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Anthony Nsubuga
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Godwin Anywar
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
10
|
Islam MA, Huq Atanu MS, Siraj MA, Acharyya RN, Ahmed KS, Dev S, Uddin SJ, Das AK. Supplementation of syringic acid-rich Phrynium pubinerve leaves imparts protection against allergic inflammatory responses by downregulating iNOS, COX-2, and NF-κB expressions. Heliyon 2023; 9:e13343. [PMID: 36816283 PMCID: PMC9932742 DOI: 10.1016/j.heliyon.2023.e13343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 12/24/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Background The present study was designed to characterize the role of ethanolic leaf extract of Phrynium pubinerve Blume (EPP) supplement in attenuating allergic inflammation, encouraged by the presence of syringic acid in it, as this phenolic acid is reportedly promising in suppressing serum immunoglobulin E (IgE) and inflammatory cytokine levels. Materials and methods HPLC-DAD dereplication analysis was performed to determine the presence of the vital polyphenolic metabolites. The efficacy of EPP against lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 cells was evaluated by measuring its inhibitory effects on NO and ROS/RNS production. The expressions of major inflammation-associated molecules (iNOS, COX-2, NF-κB, IL-6, and TNF-α) in RAW 264.7 cells were assessed through Western blot. Physiological and behavioral changes, BMI, and different biochemical parameters in mice blood serum were investigated in the toxicological assays. Formaldehyde-induced paw edema test in mice was conducted using established animal model. TDI-induced allergic model in mice was carried out to determine different allergy-like symptoms, and differential white blood cell (WBC) counts in blood and bronchoalveolar lavage (BAL) fluid. The intermolecular interaction analysis of the identified major metabolite of EPP with H1R and iNOS was studied by molecular docking. Results HPLC-DAD analysis showed the presence of syringic acid (89.19 mg/100 g EPP) and a few other compounds. LPS-induced NO generation was reduced by EPP in a concentration-dependent manner, showing IC50 of 28.20 ± 0.27 μg/mL. EPP exhibited a similar inhibitory effect on ROS/RNS production with IC50 of 29.47 ± 2.19 μg/mL. Western blotting revealed that EPP significantly downregulated the expressions of iNOS, COX-2, NF-κB, IL-6, and TNF-α in RAW 264.7 cells when challenged with LPS. The toxicological assays confirmed the dosage and organ-specific safety of EPP. In the formaldehyde-induced paw edema test, EPP caused a 66.41% reduction in mice paw volume at 500 mg/kg dose. It ameliorated TDI-induced allergy-like symptoms and decreased different inflammatory WBCs in mice's blood and BAL fluid in a dose-dependent manner. Finally, syringic acid demonstrated mentionable intermolecular binding affinity towards H1R (-6.6 Kcal/moL) and iNOS (-6.7 Kcal/moL). Conclusions Collectively, considerable scientific reasoning was obtained in favor of the suppressive potential of EPP against allergic inflammatory responses that are proposed to be exerted via the downregulation of iNOS, COX-2, and NF-κB expressions, H1R antagonism and suppression of cytokines, such as IL-6, and TNF-α.
Collapse
Affiliation(s)
- Md Arman Islam
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | | | - Md Afjalus Siraj
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
- Department of Pharmacy, Gono Bishwabidyalay, Savar, Dhaka 1344, Bangladesh
| | | | - Khondoker Shahin Ahmed
- Chemical Research Division, BCSIR Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Shrabanti Dev
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Asish Kumar Das
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| |
Collapse
|
11
|
Boulebd H. Structure-activity relationship of antioxidant prenylated (iso)flavonoid-type compounds: quantum chemistry and molecular docking studies. J Biomol Struct Dyn 2022; 40:10373-10382. [PMID: 34176432 DOI: 10.1080/07391102.2021.1943529] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prenylated (iso)flavonoid-type compounds are a subclass of natural flavonoids that have been reported to exhibit good antioxidant properties. In the present paper, the structure-activity relationship of three typical prenylated (iso)flavonoids namely 8-prenyldaidzein (Per), Licoflavone (Lic), and erysubin F (Ery) have been determined using DFT (density functional theory)-based calculations and molecular docking studies. As result, the CH bond of the prenyl substituent was found to be the most thermodynamically favorable site for trapping free radicals in the gas phase and lipid physiological environments. While the OH bond of the B-ring seems to be more reactive in water. HAT (hydrogen atom transfer) and SPLET (sequential proton loss electron transfer) play a decisive role in the antiradical activity of the studied compounds in lipid and polar physiological environments, respectively. All of the studied compounds exhibit strong binding affinity to both xanthine oxidase and inducible nitric oxide synthase enzymes by forming several hydrogen bonds and hydrophobic interactions with their respective catalytic sites. These results suggest that (iso)flavonoid-type compounds are promising radical scavengers and antioxidants. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Houssem Boulebd
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine, Algeria
| |
Collapse
|
12
|
Ayele TT, Gurmessa GT, Abdissa Z, Melaku Y, Garg A, Bedane KG, Abdissa N. Furoquinoline and bisindole alkaloids from the roots of Teclea nobilis and their in-silico molecular docking analysis. Z NATURFORSCH C 2022; 78:217-227. [PMID: 36367257 DOI: 10.1515/znc-2022-0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022]
Abstract
Abstract
Teclea nobilis is a medicinal plant widely used to treat oral pathogens, gonorrhea, fever, analgesics, asthma, joint pains, pneumonia, and intestinal worms in Ethiopia. Anticipated by these claims, column chromatographic separation of the roots extract of T. nobilis led to the isolation of eight alkaloids (1–8). The structures of the isolated compounds were identified based on their NMR (1D and 2D) spectral data analysis and comparison with reported literature data. In-silico molecular docking analysis of the isolated compounds were performed against Staphylococcus aureus DNA Gyrase (PDB ID: 2XCT) and human topoisomerase IIβ DNA (PDB ID: 3QX3) by using AutoDock Vina. ADMET analysis were performed by SwissADME, PreADMET, and OSIRIS Property predictions. The study revealed that the isolated compounds exhibited promising binding affinity to DNA gyrase, especially with compound 5 forms a stable drug-protein complex. Whereas the ADME and drug-likeness analysis revealed that compound 5 is less absorbed from the gastrointestinal tract, crossblood brain barrier and a P-glycoprotein substrate. This indicated that compound 5 could be a good candidate as anticancer agent provided that in vivo analysis done for more confirmation.
Collapse
Affiliation(s)
- Tamrat Tesfaye Ayele
- Department of Chemistry , College of Natural and Computational Sciences, Wallaga University , Nekemte , Ethiopia
| | - Getahun Tadesse Gurmessa
- Department of Chemistry , College of Natural and Computational Sciences, Wallaga University , Nekemte , Ethiopia
| | - Zelalem Abdissa
- Department of Chemistry , College of Natural and Computational Sciences, Wallaga University , Nekemte , Ethiopia
| | - Yadessa Melaku
- Department of Applied Chemistry , School of Applied Natural Science, Adama Science and Technology University , Adama , Ethiopia
| | - Ankita Garg
- Department of Applied Chemistry , School of Applied Natural Science, Adama Science and Technology University , Adama , Ethiopia
| | - Kibrom Gebreheiwot Bedane
- Department of Chemistry , College of Computational and Natural Sciences, Addis Ababa University , Addis Ababa , Ethiopia
| | - Negera Abdissa
- Department of Chemistry , College of Natural and Computational Sciences, Wallaga University , Nekemte , Ethiopia
| |
Collapse
|
13
|
Molecular interplay promotes amelioration by quercetin during experimental hepatic inflammation in rodents. Int J Biol Macromol 2022; 222:2936-2947. [DOI: 10.1016/j.ijbiomac.2022.10.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
|
14
|
Srivastava U, Nataraj BH, Kumari M, Kadyan S, Puniya AK, Behare PV, Nagpal R. Antioxidant and immunomodulatory potency of Lacticaseibacillus rhamnosus NCDC24 fermented milk-derived peptides: A computationally guided in-vitro and ex-vivo investigation. Peptides 2022; 155:170843. [PMID: 35878657 DOI: 10.1016/j.peptides.2022.170843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 10/17/2022]
Abstract
Infections of microbial and non-microbial origins have been associated with significant immunological manifestations, thereby underscoring the need for a thorough understanding and investigation of novel immunomodulatory and antioxidant molecules that could prevent these incidences. To this end, we herein aim to identify fermented milk peptides with antioxidant and immunomodulatory properties that could be exploited for specific future applications. Our computational prediction models indicate that these peptides are non-toxic and possess considerable hydrophobicity (19.82-38.96 %) and functionality. Further analyses reveal that two of the four peptides, i.e., Pep 1 (AGWNIPM) and Pep 4 (YLGYLEQLLR), possess higher in-vitro antioxidant activity. The immunomodulatory potential of these two peptides (Pep 1 and Pep 4) is further demonstrated by using a combination of molecular simulation trajectory and ex-vivo approaches. Both peptides demonstrate ability to control the production of pro- inflammatory (TNF-α, IL-1, and IL-6) and anti-inflammatory (IL-10) cytokines as well as nitric oxide release in LPS-stimulated murine peritoneal macrophages. Similarly, peptide interferences also lead to significant (P < 0.05) improvement in macrophage phagocytic capacity. Taken together, these findings highlight the antioxidant and immunomodulatory properties of fermented milk peptides (Pep 1 and Pep 4) within the cellular environment and should facilitate prospective studies exploring such bioactive peptides and related functional molecules mediating the benefits of fermented milk products on human health.
Collapse
Affiliation(s)
- Umang Srivastava
- Techno-functional Starters Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, India
| | - Basavaprabhu H Nataraj
- Techno-functional Starters Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, India
| | - Manorama Kumari
- Techno-functional Starters Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, India
| | - Saurabh Kadyan
- Techno-functional Starters Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, India; Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Anil K Puniya
- Anaerobic Microbiology Lab, Dairy Microbiology Division, National Dairy Research Institute, Karnal 132001, India
| | - Pradip V Behare
- Techno-functional Starters Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, India.
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
15
|
Umar HI, Saliu TP, Josiah SS, Ajayi A, Danjuma JB. In silico studies of bioactive compounds from selected African plants with inhibitory activity against nitric oxide synthase and arginase implicated in asthma. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00175-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Abstract
Background
It is a known fact that arginine is a common substrate for arginase and nitric oxide synthase (NOS). However, an imbalance between both enzymes could lead to a change in airway responses. Reports suggest that increased activities of both enzymes could lead to airway hyper-responsiveness. Thus, the requests for NOS inhibitors that can also inhibit arginase as the elevated activities of both enzymes have detrimental consequence on airways in asthma. Bioactive compounds from Azadirachta indica, Crinum glaucum, and Mangifera indica are documented for anti-inflammatory, immunomodulatory, anti-histaminic, smooth-muscle relaxants, and anti-allergic potentials. However, the mechanisms of action of these bioactive compounds in conferring the aforementioned protections are not well characterized. The objective of this present study is to assess in silico inhibitory potentials of these bioactive compounds against NOS and arginase via binding at their active sites. The crystal structures of NOS and arginase were retrieved from the protein database, while the bioactive compounds were retrieved from PubChem. Drug-likeness of the selected bioactive compounds was assessed using DruLiTo software. The successful compounds were docked with active sites of enzymes using AutoDock Vina docking software, and the docked complexes were analyzed using LigPlot and protein-ligand profiler web server.
Results
The findings of the study revealed that the bioactive compounds from A. indica, C. glaucum, and M. indica were able to interact with the active sites of NOS and arginase with the exception of gallic acid (from M. indica) and nimbandiol (from A. indica); these compounds showed differential binding energies (kcal/mol) and a number of them had higher binding energies than l-arginine when docked with NOS.
Conclusion
Conclusively, the in silico analysis proposes that these compounds could prove to be probable anti-asthmatic drugs.
Collapse
|
16
|
Khallaf ISA, Bayoumi SAL, Malak LG, Hussein AMR, Mohammed AF, El-Mokhtar MA, Farag SF. The inhibition of inducible nitric oxide production in lipopolysaccharide-stimulated rat macrophages and in silico studies by flavonoids from Iris spuria L. rhizomes. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114311. [PMID: 34111536 DOI: 10.1016/j.jep.2021.114311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 05/01/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Iris is the largest genus in the family Iridaceae. Iris plants are distributed in tropical regions of the world. They are used as ornamentals and traditionally used to treat a variety of ailments. AIM This study aimed to evaluate the anti-inflammatory effect of flavonoids isolated from Iris spuria L. MATERIALS AND METHODS The isolated flavonoids (1-4) were identified on the basis of different spectroscopic methods (1D- and 2D-NMR) and co-TLC with authentic samples. The anti-inflammatory effect was tested on lipopolysaccharide (LPS)-induced nitric oxide (NO) production from rat-isolated peritoneal macrophages. Modeling and docking simulations of the compounds were performed using Molecular Operating Environment software and the crystal structure of the murine inducible nitric oxide synthase (iNOS). RESULTS Four flavonoids (1-4) had been isolated from the rhizomes of Iris spuria L. (Hocka Hoona) for the first time. They were characterized as 5,7,2'-trihydroxy-6-methoxyflavanone (1), tectorigenin 7-O-β-D-glucopyranoside (2), tectorigenin 4'-O-β-D-glucopyranoside (3), and tectorigenin 4'-O-[β-D-glucopyranosyl(1 → 6)-β-D-glucopyranoside] (4). The selective inducible NO synthase inhibitor; aminoguanidine was used as a positive control. The production of nitric oxide (NO) was inhibited in a dose-dependent manner of the isolated compounds along with isoflavonoids (5-9) previously isolated from Iris spuria L. (Calizona). A concentration of 60 μg/ml of all tested compounds showed a significant inhibitory effect compared to media with LPS. Molecular modeling experiments supported the obtained biological data. CONCLUSION Our results reveal that flavonoids isolated from I. spuria L. (Hocka Hoona) and I. spuria L. (Calizona) appear to have a potential anti-inflammatory effect via inhibition of iNOS.
Collapse
Affiliation(s)
- Iman S A Khallaf
- Pharmacognosy Department, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Soad A L Bayoumi
- Pharmacognosy Department, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| | - Lourin G Malak
- Pharmacognosy Department, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Abeer M R Hussein
- Pharmacology Department, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt
| | - Anber F Mohammed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Mohamed A El-Mokhtar
- Medical Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt
| | - Salwa F Farag
- Pharmacognosy Department, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt; Pharmacognosy Department, College of Pharmacy, Taif University, Taif, Saudi Arabia
| |
Collapse
|
17
|
Pavlović N, Milošević N, Đjanić M, Goločorbin-Kon S, Stanimirov B, Stankov K, Mikov M. Antimetastatic Potential of Quercetin Analogues with Improved Pharmacokinetic Profile: Pharmacoinformatic Preliminary Study. Anticancer Agents Med Chem 2021; 22:1407-1413. [PMID: 34102994 DOI: 10.2174/1871520621666210608102452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/13/2021] [Accepted: 05/02/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Urokinase-type plasminogen activator (uPA) system is a crucial pathway for tumor invasion and metastasis. Recently, multiple anticancer effects of quercetin have been described, including inhibitory activity against uPA. However, the clinical use of this flavonoid has been limited due to its low oral bioavailability. OBJECTIVE The objectives of the study were to assess the antimetastatic potential of quercetin analogues by analyzing their binding affinity for uPA and to select the compounds with improved pharmacological profiles. METHODS Binding affinities of structural analogues of quercetin to uPA receptor were determined by molecular docking analysis using Molegro Virtual Docker software, and molecular descriptors relevant for estimating pharmacological profile were calculated from ligand structures using computational models. RESULTS Among 44 quercetin analogues, only one quercetin analogue (3,6,2',4',5'-pentahydroxyflavone) was found to possess both higher aqueous solubility and membrane permeability, and a stronger affinity for uPA than quercetin, which makes it the potential lead compound for anticancer drug development. Like quercetin, this compound has five hydroxyl groups but is arranged differently, which contributes to the higher aqueous solubility and higher amphiphilic moment compared to quercetin. Since membrane permeability is not recognized as the limiting factor for quercetin absorption, analogues with higher aqueous solubility and retained or stronger uPA inhibitory activity should also be further experimentally validated for potential therapeutic use. CONCLUSION Identified quercetin analogues with better physicochemical and pharmacological properties have a high potential to succeed in later stages of research in biological systems as potential anticancer agents with antimetastatic activity.
Collapse
Affiliation(s)
- Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad. Serbia
| | - Nastasija Milošević
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad. Serbia
| | - Maja Đjanić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad. Serbia
| | | | - Bojan Stanimirov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad. Serbia
| | - Karmen Stankov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad. Serbia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad. Serbia
| |
Collapse
|
18
|
Umar HI, Josiah SS, Saliu TP, Jimoh TO, Ajayi A, Danjuma JB. In-silico analysis of the inhibition of the SARS-CoV-2 main protease by some active compounds from selected African plants. J Taibah Univ Med Sci 2021; 16:162-176. [PMID: 33437230 PMCID: PMC7787523 DOI: 10.1016/j.jtumed.2020.12.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/28/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Over the years, Azadirachta indica, Mangifera indica, and Moringa oleifera have been shown to possess some antiviral characteristics. This study applies molecular docking techniques to assess inhibitory effects of some bioactive compounds from the plants mentioned above against the main protease (Mpro), a key protein involved in SARS-CoV-2 replication. Furthermore, adsorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles for screened compounds were predicted in silico. METHODS The crystal structure of Mpro was retrieved from the Protein Data Bank, while the plant bioactive compounds were retrieved from Pubchem. Drug-likeness of the selected compounds and a control drug (hydroxychloroquine) were assessed, and the compounds that satisfied the drug-likeness rule were docked against Mpro. The docked complexes were analyzed using LigPlot and the protein-ligand profiler server. The top five compound hits were subjected to ADMET screening using the ADMETSar server. RESULTS A total of 17 out of 22 screened compounds passed Lipinski's assessment. Additionally, the most active compounds from the investigated plants exhibited relative inhibitory potentials against Mpro compared with hydroxychloroquine, which alludes to their possible involvement in inhibiting the SARS-CoV-2 main protease replication process. CONCLUSIONS In our study, most of the active phytocomponents of the investigated plants exhibited relative inhibitory potentials against Mpro of SARS-CoV-2 and preferred pharmacological features when compared with hydroxychloroquine. These findings indicate these compounds are potentially antiviral candidates against SARS-CoV-2.
Collapse
Affiliation(s)
- Haruna I. Umar
- Department of Biochemistry, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Sunday S. Josiah
- Department of Biochemistry, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Tolulope P. Saliu
- Department of Biochemistry, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Tajudeen O. Jimoh
- Faculty of Pharmaceutical Sciences, Department of Pharmacognosy and Pharmaceutical Botany, Chulalongkorn University, Bangkok, Thailand
| | - Adeola Ajayi
- Department of Biochemistry, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Jamilu B. Danjuma
- Department of Biochemistry and Molecular Biology, Federal University, Birnin Kebbi, Kebbi State, Nigeria
| |
Collapse
|
19
|
Nafie MS, Awad NM, Tag HM, Abd El-Salam IM, Diab MK, El-Shatoury SA. Micromonospora species from rarely-exploited Egyptian habitats: chemical profile, antimicrobial, and antitumor activities through antioxidant property. Appl Microbiol Biotechnol 2021; 105:2427-2439. [PMID: 33625546 DOI: 10.1007/s00253-021-11177-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 01/14/2023]
Abstract
The development of new anticancer agents with a selective action mechanism has become a significant scientific challenge, especially as cancers remain the world's leading cause of death. Actinobacteria and its bioactive compounds have recently become a promising perspective alternative to cancer therapy. In this study, some extracted metabolites of Micromonospora exhibited potent antimicrobial with microbial inhibition zone ≥ 7 mm, and cytotoxic activities against MCF-7 and HepG2 cell lines with promising activities ≥ 85%. Additionally, treatment of DENA/CCl4 rats with the strain Micromonospora sp1 has induced a substantial amelioration of the liver functions, enhancing liver architecture near normal and antioxidant properties through elevation of antioxidant enzyme levels. So that these preliminary results can provide metabolites from Micromonospora sp1 as an anti-liver cancer therapy. Finally, we introduced the chemical profiling of Micromonospora sp1 metabolic extract by LC-QTOF-MS-MS technique, where eight compounds with reported antioxidant property anti-liver cancer activity were targeted, validated as iNOS inhibitor through molecular docking studies. The findings in this study can be a significant step towards studying natural bioactive products produced by Micromonospora spp. as agents for anti-liver cancer. KEY POINTS: • Metabolites of Micromonospora strain from unexploited Egyptian habitats were investigated with LC/MS library-based chemical profile and molecular docking studies as iNOS inhibitors. • Some Micromonospora strains exhibited potent antimicrobial with microbial inhibition zone ≥ 7 mm, and cytotoxic activities against MCF-7 and HepG2 cell lines with promising activities ≥ 85%. • Micromonospora extract exhibited anti-liver cancer activity in vivo through the antioxidant property by inhibiting the liver cancer biomarkers (LDH and AFP) and enhancing other biochemical parameters.
Collapse
Affiliation(s)
- Mohamed S Nafie
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt.
| | - Noha M Awad
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Hend M Tag
- Zoology Department, Faculty of Sciences, Suez Canal University, Ismailia, 41522, Egypt
| | | | - Mohamed K Diab
- Pest Physiology Department, Plant Protection Research Institute, Agricultural Research Center, Zagazig, 12311, Egypt
| | - Sahar A El-Shatoury
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
20
|
Abdullahi M, Adeniji SE. In-silico Molecular Docking and ADME/Pharmacokinetic Prediction Studies of Some Novel Carboxamide Derivatives as Anti-tubercular Agents. CHEMISTRY AFRICA 2020. [DOI: 10.1007/s42250-020-00162-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractMolecular docking simulation of thirty-five (35) molecules of N-(2-phenoxy)ethyl imidazo[1,2-a]pyridine-3-carboxamide (IPA) with Mycobacterium tuberculosis target (DNA gyrase) was carried out so as to evaluate their theoretical binding affinities. The chemical structure of the molecules was accurately drawn using ChemDraw Ultra software, then optimized at density functional theory (DFT) using Becke’s three-parameter Lee–Yang–Parr hybrid functional (B3LYP/6-311**) basis set in a vacuum of Spartan 14 software. Subsequently, the docking operation was carried out using PyRx virtual screening software. Molecule 35 (M35) with the highest binding affinity of − 7.2 kcal/mol was selected as the lead molecule for structural modification which led to the development of four (4) newly hypothetical molecules D1, D2, D3 and D4. In addition, the D4 molecule with the highest binding affinity value of − 9.4 kcal/mol formed more H-bond interactions signifying better orientation of the ligand in the binding site compared to M35 and isoniazid standard drug. In-silico ADME and drug-likeness prediction of the molecules showed good pharmacokinetic properties having high gastrointestinal absorption, orally bioavailable, and less toxic. The outcome of the present research strengthens the relevance of these compounds as promising lead candidates for the treatment of multidrug-resistant tuberculosis which could help the medicinal chemists and pharmaceutical professionals in further designing and synthesis of more potent drug candidates. Moreover, the research also encouraged the in vivo and in vitro evaluation study for the proposed designed compounds to validate the computational findings.
Collapse
|
21
|
Mabrouk N, Ghione S, Laurens V, Plenchette S, Bettaieb A, Paul C. Senescence and Cancer: Role of Nitric Oxide (NO) in SASP. Cancers (Basel) 2020; 12:cancers12051145. [PMID: 32370259 PMCID: PMC7281185 DOI: 10.3390/cancers12051145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a cell state involved in both physiological and pathological processes such as age-related diseases and cancer. While the mechanism of senescence is now well known, its role in tumorigenesis still remains very controversial. The positive and negative effects of senescence on tumorigenesis depend largely on the diversity of the senescent phenotypes and, more precisely, on the senescence-associated secretory phenotype (SASP). In this review, we discuss the modulatory effect of nitric oxide (NO) in SASP and the possible benefits of the use of NO donors or iNOS inducers in combination with senotherapy in cancer treatment.
Collapse
Affiliation(s)
- Nesrine Mabrouk
- Laboratory of Immunology and Immunotherapy of Cancers, EPHE, PSL Research University, 75000 Paris, France; (N.M.); (S.G.); (V.L.); (S.P.); (A.B.)
- Laboratory of Immunology and Immunotherapy of Cancers (LIIC), EA7269, University of Burgundy Franche-Comté, 21000 Dijon, France
| | - Silvia Ghione
- Laboratory of Immunology and Immunotherapy of Cancers, EPHE, PSL Research University, 75000 Paris, France; (N.M.); (S.G.); (V.L.); (S.P.); (A.B.)
- Laboratory of Immunology and Immunotherapy of Cancers (LIIC), EA7269, University of Burgundy Franche-Comté, 21000 Dijon, France
| | - Véronique Laurens
- Laboratory of Immunology and Immunotherapy of Cancers, EPHE, PSL Research University, 75000 Paris, France; (N.M.); (S.G.); (V.L.); (S.P.); (A.B.)
- Laboratory of Immunology and Immunotherapy of Cancers (LIIC), EA7269, University of Burgundy Franche-Comté, 21000 Dijon, France
| | - Stéphanie Plenchette
- Laboratory of Immunology and Immunotherapy of Cancers, EPHE, PSL Research University, 75000 Paris, France; (N.M.); (S.G.); (V.L.); (S.P.); (A.B.)
- Laboratory of Immunology and Immunotherapy of Cancers (LIIC), EA7269, University of Burgundy Franche-Comté, 21000 Dijon, France
| | - Ali Bettaieb
- Laboratory of Immunology and Immunotherapy of Cancers, EPHE, PSL Research University, 75000 Paris, France; (N.M.); (S.G.); (V.L.); (S.P.); (A.B.)
- Laboratory of Immunology and Immunotherapy of Cancers (LIIC), EA7269, University of Burgundy Franche-Comté, 21000 Dijon, France
| | - Catherine Paul
- Laboratory of Immunology and Immunotherapy of Cancers, EPHE, PSL Research University, 75000 Paris, France; (N.M.); (S.G.); (V.L.); (S.P.); (A.B.)
- Laboratory of Immunology and Immunotherapy of Cancers (LIIC), EA7269, University of Burgundy Franche-Comté, 21000 Dijon, France
- Correspondence: or ; Tel.: +33-3-80-39-33-51
| |
Collapse
|
22
|
Pinto GP, Vavra O, Filipovic J, Stourac J, Bednar D, Damborsky J. Fast Screening of Inhibitor Binding/Unbinding Using Novel Software Tool CaverDock. Front Chem 2019; 7:709. [PMID: 31737596 PMCID: PMC6828983 DOI: 10.3389/fchem.2019.00709] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 10/09/2019] [Indexed: 11/20/2022] Open
Abstract
Protein tunnels and channels are attractive targets for drug design. Drug molecules that block the access of substrates or release of products can be efficient modulators of biological activity. Here, we demonstrate the applicability of a newly developed software tool CaverDock for screening databases of drugs against pharmacologically relevant targets. First, we evaluated the effect of rigid and flexible side chains on sets of substrates and inhibitors of seven different proteins. In order to assess the accuracy of our software, we compared the results obtained from CaverDock calculation with experimental data previously collected with heat shock protein 90α. Finally, we tested the virtual screening capabilities of CaverDock with a set of oncological and anti-inflammatory FDA-approved drugs with two molecular targets—cytochrome P450 17A1 and leukotriene A4 hydrolase/aminopeptidase. Calculation of rigid trajectories using four processors took on average 53 min per molecule with 90% successfully calculated cases. The screening identified functional tunnels based on the profile of potential energies of binding and unbinding trajectories. We concluded that CaverDock is a sufficiently fast, robust, and accurate tool for screening binding/unbinding processes of pharmacologically important targets with buried functional sites. The standalone version of CaverDock is available freely at https://loschmidt.chemi.muni.cz/caverdock/ and the web version at https://loschmidt.chemi.muni.cz/caverweb/.
Collapse
Affiliation(s)
- Gaspar P Pinto
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czechia.,International Centre for Clinical Research, St. Anne's University Hospital Brno, Brno, Czechia
| | - Ondrej Vavra
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czechia.,International Centre for Clinical Research, St. Anne's University Hospital Brno, Brno, Czechia
| | - Jiri Filipovic
- Institute of Computer Science, Masaryk University, Brno, Czechia
| | - Jan Stourac
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czechia.,International Centre for Clinical Research, St. Anne's University Hospital Brno, Brno, Czechia
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czechia.,International Centre for Clinical Research, St. Anne's University Hospital Brno, Brno, Czechia
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czechia.,International Centre for Clinical Research, St. Anne's University Hospital Brno, Brno, Czechia
| |
Collapse
|
23
|
Kilari B, Netala VR, Penchalaneni J, Kotakadi VS, Tartte V. Structural elucidation, in vitro cytotoxicity evaluation and mechansim study of newly secluded bioactive compound from the leaf extracts of Basella rubra L. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Rudrapal M, Chetia D, Singh V. Novel series of 1,2,4-trioxane derivatives as antimalarial agents. J Enzyme Inhib Med Chem 2017; 32:1159-1173. [PMID: 28870093 PMCID: PMC6009891 DOI: 10.1080/14756366.2017.1363742] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Among three series of 1,2,4-trioxane derivatives, five compounds showed good in vitro antimalarial activity, three compounds of which exhibited better activity against P. falciparum resistant (RKL9) strain than the sensitive (3D7) one. Two best compounds were one from aryl series and the other from heteroaryl series with IC50 values of 1.24 µM and 1.24 µM and 1.06 µM and 1.17 µM, against sensitive and resistant strains, respectively. Further, trioxane derivatives exhibited good binding affinity for the P. falciparum cysteine protease falcipain 2 receptor (PDB id: 3BPF) with well defined drug-like and pharmacokinetic properties based on Lipinski's rule of five with additional physicochemical and ADMET parameters. In view of having antimalarial potential, 1,2,4-trioxane derivative(s) reported herein may be useful as novel antimalarial lead(s) in the discovery and development of future antimalarial drug candidates as P. falciparum falcipain 2 inhibitors against resistant malaria.
Collapse
Affiliation(s)
- Mithun Rudrapal
- a Department of Pharmaceutical Sciences , Dibrugarh University , Dibrugarh , India
| | - Dipak Chetia
- a Department of Pharmaceutical Sciences , Dibrugarh University , Dibrugarh , India
| | - Vineeta Singh
- b Parasite Bank, National Institute of Malaria Research (ICMR) , Sector 8 , Dwarka , New Delhi , India
| |
Collapse
|
25
|
Khosronezhad N, Colagar AH, Jorsarayi SGA. T26248G-transversion mutation in exon7 of the putative methyltransferase Nsun7 gene causes a change in protein folding associated with reduced sperm motility in asthenospermic men. Reprod Fertil Dev 2017; 27:471-80. [PMID: 24384068 DOI: 10.1071/rd13371] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/02/2013] [Indexed: 11/23/2022] Open
Abstract
The NOP2/Sun domain family, member 7 (Nsun7) gene, which encodes putative methyltransferase Nsun7, has a role in sperm motility in mice. In humans, this gene is located on chromosome 4 with 12 exons. The aim of the present study was to investigate mutations of exon 7 in the normospermic and asthenospermic men. Semen samples were collected from the Fatemezahra IVF centre (Babol, Iran) and analysed on the basis of World Health Organization (WHO) guidelines using general phenol-chloroform DNA extraction methods. Exon 7 was amplified using Sun7-F and Sun7-R primers. Bands on samples from asthenospermic men that exhibited different patterns of movement on single-strand conformation polymorphism gels compared with normal samples were identified and subjected to sequencing for further identification of possible mutations. Direct sequencing of polymerase chain reaction (PCR) products, along with their analysis, confirmed C26232T-transition and T26248G-transversion mutations in asthenospermic men. Comparison of normal and mutant protein structures of Nsun7 indicated that the amino acid serine was converted to alanine, the structure of the helix, coil and strand was changed, and the protein folding and ligand binding sites were changed in samples from asthenospermic men with a transversion mutation in exon 7, indicating impairment of protein function. Because Nsun7 gene products have a role in sperm motility, if an impairment occurs in exon 7 of this gene, it may lead to infertility. The transversion mutation in exon 7 of the Nsun7 gene can be used as an infertility marker in asthenospermic men.
Collapse
Affiliation(s)
- Nahid Khosronezhad
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Abasalt Hosseinzadeh Colagar
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Syed Golam Ali Jorsarayi
- Fateme Zahra Infertility and Health Reproductive Research Center, Babol University of Medical Sciences, Babol, 47745-47176, Iran
| |
Collapse
|
26
|
Kaur G, Balamurugan P, Uma Maheswari C, Anitha A, Princy SA. Combinatorial Effects of Aromatic 1,3-Disubstituted Ureas and Fluoride on In vitro Inhibition of Streptococcus mutans Biofilm Formation. Front Microbiol 2016; 7:861. [PMID: 27375583 PMCID: PMC4893485 DOI: 10.3389/fmicb.2016.00861] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/23/2016] [Indexed: 01/11/2023] Open
Abstract
Dental caries occur as a result of disequilibrium between acid producing pathogenic bacteria and alkali generating commensal bacteria within a dental biofilm (dental plaque). Streptococcus mutans has been reported as a primary cariogenic pathogen associated with dental caries. Emergence of multidrug resistant as well as fluoride resistant strains of S. mutans due to over use of various antibiotics are a rising problem and prompted the researchers worldwide to search for alternative therapies. In this perspective, the present study was aimed to screen selective inhibitors against ComA, a bacteriocin associated ABC transporter, involved in the quorum sensing of S. mutans. In light of our present in silico findings, 1,3-disubstituted urea derivatives which had better affinity to ComA were chemically synthesized in the present study for in vitro evaluation of S. mutans biofilm inhibition. The results revealed that 1,3-disubstituted urea derivatives showed good biofilm inhibition. In addition, synthesized compounds exhibited potent synergy with a very low concentration of fluoride (31.25-62.5 ppm) in inhibiting the biofilm formation of S. mutans without affecting the bacterial growth. Further, the results were supported by confocal laser scanning microscopy. On the whole, from our experimental results we conclude that the combinatorial application of fluoride and disubstituted ureas has a potential synergistic effect which has a promising approach in combating multidrug resistant and fluoride resistant S. mutans in dental caries management.
Collapse
Affiliation(s)
- Gurmeet Kaur
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - P. Balamurugan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - C. Uma Maheswari
- Organic Synthesis Group, Department of Chemistry, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - A. Anitha
- Organic Synthesis Group, Department of Chemistry, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - S. Adline Princy
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| |
Collapse
|
27
|
Antony P, Vijayan R. Acetogenins from Annona muricata as potential inhibitors of antiapoptotic proteins: a molecular modeling study. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:1399-410. [PMID: 27110097 PMCID: PMC4835113 DOI: 10.2147/dddt.s103216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Apoptosis is a highly regulated process crucial for maintaining cellular homeostasis and development. The B-cell lymphoma 2 (Bcl-2) family of proteins play a crucial role in regulating apoptosis. Overexpressed Bcl-2 proteins are associated with the development and progression of several human cancers. Annona muricata is a tropical plant that belongs to the Annonaceae family and is well known for its anticancer properties. In this study, molecular docking and simulations were performed to investigate the inhibitory potential of phytochemicals present in A. muricata against antiapoptotic proteins of the Bcl-2 family including Bcl-2, B-cell lymphoma extra-large (Bcl-Xl), and Mcl-1. Docking results revealed that the acetogenins, such as annomuricin A, annohexocin, muricatocin A, annomuricin-D-one, and muricatetrocin A/B, exhibited strong binding interactions with Bcl-Xl when compared to Bcl-2 and Mcl-1. Binding score and interactions of these acetogenins were notably better than those of currently available synthetic and natural inhibitors. Molecular dynamics simulations of the top-scoring lead molecules established that these molecules could bind strongly and consistently in the active site of Bcl-Xl. These results suggest that acetogenins could be explored as selective natural inhibitors of Bcl-Xl that could assist in promoting the intrinsic pathway of apoptosis.
Collapse
Affiliation(s)
- Priya Antony
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| |
Collapse
|
28
|
Narayanaswamy R, Isha A, Wai LK, Ismail IS. Molecular Docking Analysis of Selected Clinacanthus nutans Constituents as Xanthine Oxidase, Nitric Oxide Synthase, Human Neutrophil Elastase, Matrix Metalloproteinase 2, Matrix Metalloproteinase 9 and Squalene Synthase Inhibitors. Pharmacogn Mag 2016; 12:S21-6. [PMID: 27041853 PMCID: PMC4791994 DOI: 10.4103/0973-1296.176111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background: Clinacanthus nutans (Burm. f.) Lindau has gained popularity among Malaysians as a traditional plant for anti-inflammatory activity. Objective: This prompted us to carry out the present study on a selected 11 constituents of C. nutans which are clinacoside A–C, cycloclinacoside A1, shaftoside, vitexin, orientin, isovitexin, isoorientin, lupeol and β-sitosterol. Materials and Methods: Selected 11 constituents of C. nutans were evaluated on the docking behavior of xanthine oxidase (XO), nitric oxide synthase (NOS), human neutrophil elastase (HNE), matrix metalloproteinase (MMP 2 and 9), and squalene synthase (SQS) using Discovery Studio Version 3.1. Also, molecular physicochemical, bioactivity, absorption, distribution, metabolism, excretion, and toxicity (ADMET), and toxicity prediction by computer assisted technology analyzes were also carried out. Results: The molecular physicochemical analysis revealed that four ligands, namely clinacoside A–C and cycloclinacoside A1 showed nil violations and complied with Lipinski's rule of five. As for the analysis of bioactivity, all the 11 selected constituents of C. nutans exhibited active score (>0) toward enzyme inhibitors descriptor. ADMET analysis showed that the ligands except orientin and isoorientin were predicted to have Cytochrome P4502D6 inhibition effect. Docking studies and binding free energy calculations revealed that clinacoside B exhibited the least binding energy for the target enzymes except for XO and SQS. Isovitexin and isoorientin showed the potentials in the docking and binding with all of the six targeted enzymes, whereas vitexin and orientin docked and bound with only NOS and HNE. Conclusion: This present study has paved a new insight in understanding these 11 C. nutans ligands as potential inhibitors against XO, NOS, HNE, MMP 2, MMP 9, and SQS. SUMMARY Isovitexin and isoorientin (Clinacanthus nutans constituent) showed potentials in the docking and binding with all of the six targeted enzymes (xanthine oxidase [XO], nitric oxide synthase [NOS], human neutrophil elastase [HNE], matrix metalloproteinase [MMP 2 and 9], and squalene synthase [SQS]) Moreover, clinacoside B (C. nutans constituent) exhibited the least binding energy for the target enzymes except for XO and SQS Interestingly, all of the selected ligands from C. nutans showed the potential to dock and bind with HNE.
Abbreviations used: C. nutans: Clinacanthus nutans, XO: Xanthine oxidase, NOS: Nitric oxide synthase, HNE: Human neutrophil elastase, MMP: Matrix metalloproteinase, SQS: Squalene synthase, ADMET: Absorption, Distribution, Metabolism, Excretion, and Toxicity, TOPKAT: Toxicity prediction by the computer assisted technology
Collapse
Affiliation(s)
- Radhakrishnan Narayanaswamy
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Azizul Isha
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Lam Kok Wai
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Intan Safinar Ismail
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
29
|
Domitrović R, Potočnjak I. A comprehensive overview of hepatoprotective natural compounds: mechanism of action and clinical perspectives. Arch Toxicol 2015; 90:39-79. [DOI: 10.1007/s00204-015-1580-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/11/2015] [Indexed: 12/22/2022]
|
30
|
Binding Mode Investigation of Polyphenols fromScrophulariaTargeting Human Aldose Reductase Using Molecular Docking and Molecular Dynamics Simulations. J CHEM-NY 2015. [DOI: 10.1155/2015/434256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Aldose reductase (ALR2), a vital enzyme involved in polyol pathway, has befitted as a novel drug target in antidiabetes drug discovery process. In the present study, the binding mode and pharmacokinetic properties of potential polyphenolic compounds with reported aldose reductase inhibitory activity from the genusScrophulariahave been investigated. The human ALR2 enzyme (PDB ID: 2FZD) acted as the receptor in the current study. Among the compounds investigated, acacetin, a methoxy flavonoid, displayed the stable binding to the active site of ALR2 with least binding energy value. Molecular interaction analysis revealed that acacetin interrupts the proton donation mechanism, necessary for the catalytic activity of ALR2, by forming H-bond with Tyr48 (proton donor). In addition, acacetin also possessed favorable ADME properties and complies with Lipinski’s rule of 5 representing the possible drug-like nature compared to other polyphenols. Interestingly, the biological activity predictions also ranked acacetin with higher probability score for aldose reductase inhibition activity. Moreover, the molecular dynamics simulation of ALR2-acacetin complex was validated for the stability of ligand binding and the refined complex was used for generation of receptor-ligand pharmacophore model. Thus, the molecular insights of receptor-ligand interactions gained from the present study can be utilized for the development of novel aldose reductase inhibitors fromScrophularia.
Collapse
|
31
|
Narayanaswamy R, Shymatak M, Chatterjee S, Wai LK, Arumugam G. Inhibition of Angiogenesis and Nitric Oxide Synthase (NOS), by Embelin & Vilangin Using in vitro, in vivo & in Silico Studies. Adv Pharm Bull 2014; 4:543-8. [PMID: 25671187 DOI: 10.5681/apb.2014.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/24/2014] [Accepted: 07/27/2014] [Indexed: 11/17/2022] Open
Abstract
PURPOSE In recent year's anti-angiogenesis agents have been recognized as effective drugs for the treatment of solid tumors, this prompted us to conduct the present study. METHODS The anti-angiogenic activity of dimeric form of embelin (vilangin) was evaluated using endothelial cell (in vitro) and chorioallantoic membrane (CAM) egg yolk angiogenesis model (in vivo) and in addition the docking behaviour of human nitric oxide synthases (NOS) with four different ligands was evaluated along with their putative binding sites using Discovery Studio Version 3.1 (in silico) compared with the parent compound (embelin). RESULTS Vilangin exhibits 50% cytotoxic at 92 ± 1 µg/ml concentration level with reference to ECV 304 endothelial cells. Both vilangin and embelin, showed inhibitory effects on wound healing, single cell migration, nitric oxide production, and endothelial ring formation at 0.1 and 1.0 µg/ml concentration level. Similarly, CAM assay also showed inhibitory effect of vilangin and embelin with respect their reduction in length, size and junctions of blood capillaries compared to untreated egg yolk. Docking studies and binding free energy calculations revealed that vilangin has maximum interaction energy (-74.6 kcal/mol) as compared to the other investigated ligands. CONCLUSION The results suggest that both vilangin and embelin attenuates angiogenesis in similar manner.
Collapse
Affiliation(s)
- Radhakrishnan Narayanaswamy
- Microbiology Division, Central Leather Research Institute (CLRI), Chennai, India. ; Laboratory of Natural Products, Institute of Bioscience (IBS), Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - Majumder Shymatak
- Vascular Biology Laboratory, AU-KBC Research Centre, Anna University, Chennai, India
| | - Suvro Chatterjee
- Vascular Biology Laboratory, AU-KBC Research Centre, Anna University, Chennai, India
| | - Lam Kok Wai
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Gnanamani Arumugam
- Microbiology Division, Central Leather Research Institute (CLRI), Chennai, India
| |
Collapse
|
32
|
Usha T, Middha SK, Goyal AK, Karthik M, Manoj DA, Faizan S, Goyal P, Prashanth HP, Pande V. Molecular docking studies of anti-cancerous candidates in Hippophae rhamnoides and Hippophae salicifolia. J Biomed Res 2014; 28:406-15. [PMID: 25332713 PMCID: PMC4197392 DOI: 10.7555/jbr.28.20130110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/13/2013] [Accepted: 03/22/2014] [Indexed: 01/05/2023] Open
Abstract
Actinorhizal plants contain numerous antioxidants that may play a crucial role in preventing the formation of tumors. H-Ras p21, a member of the Ras-GTPase family, is a promising target to treat various kinds of cancers. An in silico docking study was carried out to identify the inhibitory potential of compounds of these plants against H-Ras by using Discovery Studio 3.5 and by using Autodock 4.2. Docking studies revealed that four compounds, isorhamnetin-7-rhamnoside, quercetin-3-glucoside-7-rhamnoside (present in H. rhamnoides), zeaxanthin, and translutein (present in H. salicifolia) significantly bind with binding energies -17.1534, -14.7936, -10.2105 and -17.2217 Kcal/mol, respectively, even though they slightly deviate from Lipinski's rule. Absorption, distribution, metabolism, excretion and toxicity (ADME/tox) analyses of these compounds and their stereoisomers showed that they were less toxic and non-mutagenic. Amongst them, isorhamntein-7-rhamnoside showed hepatotoxicity. Hence, these compounds can be further investigated in vivo to optimize their formulation and concentration and to develop potential chemical entities for the prevention and treatment of cancers.
Collapse
Affiliation(s)
- Talambedu Usha
- Department of Biochemistry and Biotechnology, Maharani Lakshmi Ammanni College For Women, Bangalore, India.
| | - Sushil Kumar Middha
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, India.
| | | | - Mahesh Karthik
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bangalore, Karanataka, India.
| | - DA Manoj
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bangalore, Karanataka, India.
| | - Syed Faizan
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bangalore, Karanataka, India.
| | - Peyush Goyal
- Department of Biotechnology, Govt. of India, New Delhi, India.
| | - HP Prashanth
- Department of Biotechnology, Sapthagiri College of Engineering, Bangalore, India.
| | - Veena Pande
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, India.
| |
Collapse
|
33
|
Pharmacophore Modeling and Molecular Docking Studies on Pinus roxburghii as a Target for Diabetes Mellitus. Adv Bioinformatics 2014; 2014:903246. [PMID: 25114678 PMCID: PMC4120483 DOI: 10.1155/2014/903246] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/07/2014] [Accepted: 05/07/2014] [Indexed: 12/04/2022] Open
Abstract
The present study attempts to establish a relationship between ethnopharmacological claims and bioactive constituents present in Pinus roxburghii against all possible targets for diabetes through molecular docking and to develop a pharmacophore model for the active target. The process of molecular docking involves study of different bonding modes of one ligand with active cavities of target receptors protein tyrosine phosphatase 1-beta (PTP-1β), dipeptidyl peptidase-IV (DPP-IV), aldose reductase (AR), and insulin receptor (IR) with help of docking software Molegro virtual docker (MVD). From the results of docking score values on different receptors for antidiabetic activity, it is observed that constituents, namely, secoisoresinol, pinoresinol, and cedeodarin, showed the best docking results on almost all the receptors, while the most significant results were observed on AR. Then, LigandScout was applied to develop a pharmacophore model for active target. LigandScout revealed that 2 hydrogen bond donors pointing towards Tyr 48 and His 110 are a major requirement of the pharmacophore generated. In our molecular docking studies, the active constituent, secoisoresinol, has also shown hydrogen bonding with His 110 residue which is a part of the pharmacophore. The docking results have given better insights into the development of better aldose reductase inhibitor so as to treat diabetes related secondary complications.
Collapse
|
34
|
Singh SP, Gogoi D, Bezbaruah RL, Bordoloi MJ, Barua NC. Virtual screening on potential neuraminidase inhibitors of influenza A virus H1N1. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.dit.2013.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|