1
|
Dubé MO, Ingwersen KG, Roy JS, Desmeules F, Lewis J, Juul-Kristensen B, Vobbe J, Jensen SL, McCreesh K. Do therapeutic exercises impact supraspinatus tendon thickness? Secondary analyses of the combined dataset from two randomized controlled trials in patients with rotator cuff-related shoulder pain. J Shoulder Elbow Surg 2024; 33:1918-1927. [PMID: 38762149 DOI: 10.1016/j.jse.2024.03.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/03/2024] [Accepted: 03/25/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND The mechanistic response of rotator cuff tendons to exercises within the context of rotator cuff-related shoulder pain (RCRSP) remains a significant gap in current research. A greater understanding of this response can shed light on why individuals exhibit varying responses to exercise interventions. It can also provide information on the influence of certain types of exercise on tendons. The primary aim of this article is to explore if changes in supraspinatus tendon thickness (SSTT) ratio differ between exercise interventions (high load vs. low load). The secondary aims are to explore if changes in SSTT ratio differ between ultrasonographic tendinopathy subgroups (reactive vs. degenerative) and if there are associations between tendinopathy subgroups, changes in tendon thickness ratio, and clinical outcomes (disability). METHODS This study comprises secondary analyses of the combined dataset from two randomized controlled trials that compared high and low-load exercises in patients with RCRSP. In those trials, different exercise interventions were compared: 1) progressive high-load strengthening exercises and 2) low-load strengthening with or without motor control exercises. In 1 trial, there was also a third group that was not allocated to exercises (education only). Ultrasound-assessed SSTT ratio, derived from comparing symptomatic and asymptomatic sides, served as the primary measure in categorizing participants into tendinopathy subgroups (reactive, normal and degenerative) at baseline. RESULTS Data from 159 participants were analyzed. Two-way repeated measures ANOVAs revealed significant Group (P < .001) and Group × Time interaction (P < .001) effects for the SSTT ratio in different tendinopathy subgroups, but no Time effect (P = .63). Following the interventions, SSTT ratio increased in the "Degenerative" subgroup (0.14 [95% confidence interval {CI}: 0.09-0.19]), decreased in the "Reactive" subgroup (-0.11 [95% CI: -0.16 to -0.06]), and remained unchanged in the "Normal" subgroup (-0.01 [95% CI: -0.04 to 0.02]). There was no Time (P = .21), Group (P = .61), or Group × Time interaction (P = .66) effect for the SSTT ratio based on intervention allocation. Results of the linear regression did not highlight any significant association between the tendinopathy subgroup (P = .25) or change in SSTT ratio (P = .40) and change in disability score. CONCLUSION Findings from this study suggest that, over time, SSTT in individuals with RCRSP tends to normalize, compared to the contralateral side, regardless of the exercise intervention. Different subgroups of symptomatic tendons behave differently, emphasizing the need to potentially consider tendinopathy subtypes in RCRSP research. Future adequately powered studies should investigate how those different tendinopathy subgroups may predict long-term clinical outcomes.
Collapse
Affiliation(s)
- Marc-Olivier Dubé
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Quebec City, Quebec, Canada; School of Rehabilitation Sciences, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada; La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Melbourne, Victoria, Australia.
| | - Kim Gordon Ingwersen
- Research Unit in Physio - and Occupational Therapy, Department of Physio- and Occupational Therapy, Lillebaelt Hospital - Vejle, Vejle, Denmark
| | - Jean-Sébastien Roy
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Quebec City, Quebec, Canada; School of Rehabilitation Sciences, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - François Desmeules
- Orthopaedic Clinical Research Unit, Maisonneuve-Rosemont Hospital Research Center, University of Montreal Affiliated Research Center, Montreal, Canada; School of Rehabilitation, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Jeremy Lewis
- Therapy Department, Central London Community Healthcare National Health Service Trust, Finchley Memorial Hospital, London, UK; School of Health Sciences, University of Nottingham, Nottingham, UK; School of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus; Clinical Therapies, University of Limerick, Limerick, Ireland
| | - Birgit Juul-Kristensen
- Research Unit of Musculoskeletal Function and Physiotherapy, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Jette Vobbe
- Orthopaedic Department, Shoulder Unit, Lillebaelt Hospital, Vejle Hospital, Vejle, Denmark
| | - Steen Lund Jensen
- Orthopaedic Department, Shoulder Unit, Aalborg University Hospital and Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Karen McCreesh
- School of Allied Health, Faculty of Education and Health Sciences, University of Limerick, Limerick, Ireland; Ageing Research Centre, Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
2
|
Bontemps B, Gruet M, Louis J, Owens DJ, Miríc S, Vercruyssen F, Erskine RM. Patellar Tendon Adaptations to Downhill Running Training and Their Relationships With Changes in Mechanical Stress and Loading History. J Strength Cond Res 2024; 38:21-29. [PMID: 38085619 DOI: 10.1519/jsc.0000000000004617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
ABSTRACT Bontemps, B, Gruet, M, Louis, J, Owens, DJ, Miríc, S, Vercruyssen, F, and Erskine, RM. Patellar tendon adaptations to downhill running training and their relationships with changes in mechanical stress and loading history. J Strength Cond Res 38(1): 21-29, 2024-It is unclear whether human tendon adapts to moderate-intensity, high-volume long-term eccentric exercise, e.g., downhill running (DR) training. This study aimed to investigate the time course of patellar tendon (PT) adaptation to short-term DR training and to determine whether changes in PT properties were related to changes in mechanical stress or loading history. Twelve untrained, young, healthy adults (5 women and 7 men) took part in 4 weeks' DR training, comprising 10 sessions. Running speed was equivalent to 60-65% V̇O2max, and session duration increased gradually (15-30 minutes) throughout training. Isometric knee extensor maximal voluntary torque (MVT), vastus lateralis (VL) muscle physiological cross-sectional area (PCSA) and volume, and PT CSA, stiffness, and Young's modulus were assessed at weeks 0, 2, and 4 using ultrasound and isokinetic dynamometry. Patellar tendon stiffness (+6.4 ± 7.4%), Young's modulus (+6.9 ± 8.8%), isometric MVT (+7.5 ± 12.3%), VL volume (+6.6 ± 3.2%), and PCSA (+3.8 ± 3.3%) increased after 4 weeks' DR (p < 0.05), with no change in PT CSA. Changes in VL PCSA correlated with changes in PT stiffness (r = 0.70; p = 0.02) and Young's modulus (r = 0.63; p = 0.04) from 0 to 4 weeks, whereas changes in MVT did not correlate with changes in PT stiffness and Young's modulus at any time point (p > 0.05). To conclude, 4 weeks' DR training promoted substantial changes in PT stiffness and Young's modulus that are typically observed after high-intensity, low-volume resistance training. These tendon adaptations seemed to be driven primarily by loading history (represented by VL muscle hypertrophy), whereas increased mechanical stress throughout the training period did not seem to contribute to changes in PT stiffness or Young's modulus.
Collapse
Affiliation(s)
- Bastien Bontemps
- Université de Toulon, Laboratoire IAPS (n°201723207F), Toulon, France
- Université Côte d'Azur, LAMHESS, Nice, France
| | - Mathieu Gruet
- Université de Toulon, Laboratoire IAPS (n°201723207F), Toulon, France
| | - Julien Louis
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; and
| | - Daniel J Owens
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; and
| | - Stella Miríc
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; and
| | | | - Robert M Erskine
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; and
- Institute of Sport, Exercise and Health, University College London, London, United Kingdom
| |
Collapse
|
3
|
Hendriks FK, Weijzen MEG, Goessens JPB, Zorenc AHG, Gijsen AP, Kramer IF, van den Bergh JPW, Poeze M, Blokhuis TJ, van Loon LJC. Trabecular, but not cortical, bone tissue protein synthesis rates are lower in the femoral head when compared to the proximal femur following an intracapsular hip fracture. Bone 2023; 177:116921. [PMID: 37769955 DOI: 10.1016/j.bone.2023.116921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND All musculoskeletal tissues are in a constant state of turnover, with a dynamic equilibrium between tissue protein synthesis and breakdown rates. The synthesis of protein allows musculoskeletal tissues to heal following injury. Yet, impaired tissue healing is observed following certain injuries, such as geriatric hip fractures. It is assumed that the regenerative properties of femoral head bone tissue are compromised following an intracapsular hip fracture and therefore hip replacement surgery is normally performed. However, the actual impact on in vivo bone protein synthesis rates has never been determined. DESIGN In the present study, 10 patients (age: 79 ± 10 y, BMI: 24 ± 4 kg/m2) with an acute (<24 h) intracapsular hip fracture received a primed continuous intravenous infusion of L-[ring-13C6]-phenylalanine before and throughout their hip replacement surgery. Trabecular and cortical bone tissue from both the femoral head and proximal femur were sampled during surgery to assess protein synthesis rates of affected (femoral head) and unaffected (proximal femur) bone tissue, respectively. In addition, tissue samples of gluteus maximus muscle, synovium, ligamentum teres, and femoral head cartilage were collected. Tissue-specific protein synthesis rates were assessed by measuring L-[ring-13C6]-phenylalanine incorporation in tissue protein. RESULTS Femoral head trabecular bone protein synthesis rates (0.056 [0.024-0.086] %/h) were lower when compared to proximal femur trabecular bone protein synthesis rates (0.081 [0.056-0.118] %/h; P = 0.043). Cortical bone protein synthesis rates did not differ between the femoral head and proximal femur (0.041 [0.021-0.078] and 0.045 [0.028-0.073] %/h, respectively; P > 0.05). Skeletal muscle, synovium, ligamentum teres, and femoral head cartilage protein synthesis rates averaged 0.080 [0.048-0.089], 0.093 [0.051-0.130], 0.121 [0.110-0.167], and 0.023 [0.015-0.039] %/h, respectively. CONCLUSION In contrast to the general assumption that the femoral head is avital after an intracapsular displaced hip fracture in the elderly, our data show that bone protein synthesis is still ongoing in femoral head bone tissue during the early stages following an intracapsular hip fracture in older patients. Nonetheless, trabecular bone protein synthesis rates are lower in the femoral head when compared to the proximal femur in older patients following an acute intracapsular hip fracture. Trial register no: NL9036.
Collapse
Affiliation(s)
- Floris K Hendriks
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Michelle E G Weijzen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Joy P B Goessens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Antoine H G Zorenc
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Annemie P Gijsen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Irene Fleur Kramer
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands; Department of Surgery, division of Trauma Surgery Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Joop P W van den Bergh
- Department of Internal Medicine, VieCuri Medical Center, Venlo, the Netherlands; Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Martijn Poeze
- Department of Surgery, division of Trauma Surgery Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Taco J Blokhuis
- Department of Surgery, division of Trauma Surgery Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
4
|
Saini K, Cho S, Tewari M, Jalil AR, Wang M, Kasznel AJ, Yamamoto K, Chenoweth DM, Discher DE. Pan-tissue scaling of stiffness versus fibrillar collagen reflects contractility-driven strain that inhibits fibril degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559759. [PMID: 37808742 PMCID: PMC10557712 DOI: 10.1101/2023.09.27.559759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Polymer network properties such as stiffness often exhibit characteristic power laws in polymer density and other parameters. However, it remains unclear whether diverse animal tissues, composed of many distinct polymers, exhibit such scaling. Here, we examined many diverse tissues from adult mouse and embryonic chick to determine if stiffness ( E tissue ) follows a power law in relation to the most abundant animal protein, Collagen-I, even with molecular perturbations. We quantified fibrillar collagen in intact tissue by second harmonic generation (SHG) imaging and from tissue extracts by mass spectrometry (MS), and collagenase-mediated decreases were also tracked. Pan-tissue power laws for tissue stiffness versus Collagen-I levels measured by SHG or MS exhibit sub-linear scaling that aligns with results from cellularized gels of Collagen-I but not acellular gels. Inhibition of cellular myosin-II based contraction fits the scaling, and combination with inhibitors of matrix metalloproteinases (MMPs) show collagenase activity is strain - not stress- suppressed in tissues, consistent with past studies of gels and fibrils. Beating embryonic hearts and tendons, which differ in both collagen levels and stiffness by >1000-fold, similarly suppressed collagenases at physiological strains of ∼5%, with fiber-orientation regulating degradation. Scaling of E tissue based on 'use-it-or-lose-it' kinetics provides insight into scaling of organ size, microgravity effects, and regeneration processes while suggesting contractility-driven therapeutics.
Collapse
|
5
|
Cramer A, Højfeldt G, Schjerling P, Agergaard J, van Hall G, Olsen J, Hölmich P, Kjaer M, Barfod KW. Achilles Tendon Tissue Turnover Before and Immediately After an Acute Rupture. Am J Sports Med 2023; 51:2396-2403. [PMID: 37313851 DOI: 10.1177/03635465231177890] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND An Achilles tendon rupture (ATR) is a frequent injury and results in the activation of tendon cells and collagen expression, but it is unknown to what extent turnover of the tendon matrix is altered before or after a rupture. PURPOSE/HYPOTHESIS The purpose of this study was to characterize tendon tissue turnover before and immediately after an acute rupture in patients. It was hypothesized that a rupture would result in pronounced collagen synthesis in the early phase (first 2 weeks) after the injury. STUDY DESIGN Cross-sectional study; Level of evidence, 3. METHODS The study included patients (N = 18) eligible for surgery after an ATR. At the time of inclusion, the patients ingested deuterium oxide (2H2O) orally, and on the day of surgery (within 14 days of the injury), they received a 3-hour flood-primed infusion of an 15N-proline tracer. During surgery, the patients had 1 biopsy specimen taken from the ruptured part of the Achilles tendon and 1 that was 3 to 5 cm proximal to the rupture as a control. The biopsy specimens were analyzed for carbon-14 (14C) levels in the tissue to calculate long-term turnover (years), incorporation of 2H-alanine (from 2H2O) into the tissue to calculate the fractional synthesis rate (FSR) of proteins in the short term (days), and incorporation of 15N-proline into the tissue to calculate the acute FSR (hours). RESULTS Both the rupture and the control samples showed consistently lower levels of 14C compared with the predicted level of 14C in a healthy tendon, which indicated increased tendon turnover in a fraction (48% newly synthesized) of the Achilles tendon already for a prolonged period before the rupture. Over the first days after the rupture, the synthesis rate for collagen was relatively constant, and the average synthesis rate on the day of surgery (2-14 days after the rupture) was 0.025% per hour, irrespective of the length of time after a rupture and the site of sampling (rupture vs control). No differences were found in the FSR between the rupture and control samples in the days after the rupture. CONCLUSION Higher than normal tissue turnover in the Achilles tendon before a rupture indicated that changes in the tendon tissue preceded the injury. In addition, we observed no increase in tendon collagen tissue turnover in the first 2 weeks after an ATR. This favors the view that an increase in the formation of new tendon collagen is not an immediate phenomenon during the regeneration of ruptured tendons in patients. REGISTRATION NCT03931486 (ClinicalTrials.gov identifier).
Collapse
Affiliation(s)
- Allan Cramer
- Sports Orthopedic Research Center-Copenhagen, Department of Orthopedic Surgery, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | - Grith Højfeldt
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Agergaard
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gerrit van Hall
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Metabolomics Core Facility, Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Olsen
- Aarhus AMS Centre, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Per Hölmich
- Sports Orthopedic Research Center-Copenhagen, Department of Orthopedic Surgery, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer Weisskirchner Barfod
- Sports Orthopedic Research Center-Copenhagen, Department of Orthopedic Surgery, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| |
Collapse
|
6
|
Matsubayashi Y. Dynamic movement and turnover of extracellular matrices during tissue development and maintenance. Fly (Austin) 2022; 16:248-274. [PMID: 35856387 PMCID: PMC9302511 DOI: 10.1080/19336934.2022.2076539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 01/05/2023] Open
Abstract
Extracellular matrices (ECMs) are essential for the architecture and function of animal tissues. ECMs have been thought to be highly stable structures; however, too much stability of ECMs would hamper tissue remodelling required for organ development and maintenance. Regarding this conundrum, this article reviews multiple lines of evidence that ECMs are in fact rapidly moving and replacing components in diverse organisms including hydra, worms, flies, and vertebrates. Also discussed are how cells behave on/in such dynamic ECMs, how ECM dynamics contributes to embryogenesis and adult tissue homoeostasis, and what molecular mechanisms exist behind the dynamics. In addition, it is highlighted how cutting-edge technologies such as genome engineering, live imaging, and mathematical modelling have contributed to reveal the previously invisible dynamics of ECMs. The idea that ECMs are unchanging is to be changed, and ECM dynamics is emerging as a hitherto unrecognized critical factor for tissue development and maintenance.
Collapse
Affiliation(s)
- Yutaka Matsubayashi
- Department of Life and Environmental Sciences, Bournemouth University, Talbot Campus, Dorset, Poole, Dorset, UK
| |
Collapse
|
7
|
Ramires LC, Jeyaraman M, Muthu S, Shankar A N, Santos GS, da Fonseca LF, Lana JF, Rajendran RL, Gangadaran P, Jogalekar MP, Cardoso AA, Eickhoff A. Application of Orthobiologics in Achilles Tendinopathy: A Review. Life (Basel) 2022; 12:life12030399. [PMID: 35330150 PMCID: PMC8954398 DOI: 10.3390/life12030399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
Orthobiologics are biological materials that are intended for the regeneration of bone, cartilage, and soft tissues. In this review, we discuss the application of orthobiologics in Achilles tendinopathy, more specifically. We explain the concepts and definitions of each orthobiologic and the literature regarding its use in tendon disorders. The biological potential of these materials can be harnessed and administered into injured tissues, particularly in areas where standard healing is disrupted, a typical feature of Achilles tendinopathy. These products contain a wide variety of cell populations, cytokines, and growth factors, which have been shown to modulate many other cells at local and distal sites in the body. Collectively, they can shift the state of escalated inflammation and degeneration to reestablish tissue homeostasis. The typical features of Achilles tendinopathy are failed healing responses, persistent inflammation, and predominant catabolic reactions. Therefore, the application of orthobiologic tools represents a viable solution, considering their demonstrated efficacy, safety, and relatively easy manipulation. Perhaps a synergistic approach regarding the combination of these orthobiologics may promote more significant clinical outcomes rather than individual application. Although numerous optimistic results have been registered in the literature, additional studies and clinical trials are still highly desired to further illuminate the clinical utility and efficacy of these therapeutic strategies in the management of tendinopathies.
Collapse
Affiliation(s)
- Luciano C. Ramires
- Department of Orthopaedics and Sports Medicine, Centro Clínico Mãe de Deus, Porto Alegre 90110-270, Brazil;
| | - Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine—Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, India;
- Department of Orthopaedics, Apollo Hospitals, Greams Road, Chennai 600006, India;
| | - Sathish Muthu
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624304, India
- Correspondence: (S.M.); (G.S.S.); (P.G.)
| | - Navaladi Shankar A
- Department of Orthopaedics, Apollo Hospitals, Greams Road, Chennai 600006, India;
| | - Gabriel Silva Santos
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, Brazil; (L.F.d.F.); (J.F.L.)
- Correspondence: (S.M.); (G.S.S.); (P.G.)
| | - Lucas Furtado da Fonseca
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, Brazil; (L.F.d.F.); (J.F.L.)
- Department of Orthopaedics, The Federal University of São Paulo, São Paulo 04024-002, Brazil
| | - José Fábio Lana
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, Brazil; (L.F.d.F.); (J.F.L.)
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (S.M.); (G.S.S.); (P.G.)
| | - Manasi P. Jogalekar
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA;
| | - Alfredo A. Cardoso
- Department of Oncology-Integrative Medicine-Pain Care, IAC—Instituto Ana Cardoso de Práticas Integrativas e Medicina Regenerative, Gramado 95670-000, Brazil;
| | - Alex Eickhoff
- Department of Orthopaedics, Centro Ortopédico Eickhoff, Três de Maio 98910-000, Brazil;
| |
Collapse
|
8
|
Holwerda AM, van Loon LJC. The impact of collagen protein ingestion on musculoskeletal connective tissue remodeling: a narrative review. Nutr Rev 2021; 80:1497-1514. [PMID: 34605901 PMCID: PMC9086765 DOI: 10.1093/nutrit/nuab083] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Collagen is the central structural component of extracellular connective tissue, which provides elastic qualities to tissues. For skeletal muscle, extracellular connective tissue transmits contractile force to the tendons and bones. Connective tissue proteins are in a constant state of remodeling and have been shown to express a high level of plasticity. Dietary-protein ingestion increases muscle protein synthesis rates. High-quality, rapidly digestible proteins are generally considered the preferred protein source to maximally stimulate myofibrillar (contractile) protein synthesis rates. In contrast, recent evidence demonstrates that protein ingestion does not increase muscle connective tissue protein synthesis. The absence of an increase in muscle connective tissue protein synthesis after protein ingestion may be explained by insufficient provision of glycine and/or proline. Dietary collagen contains large amounts of glycine and proline and, therefore, has been proposed to provide the precursors required to facilitate connective tissue protein synthesis. This literature review provides a comprehensive evaluation of the current knowledge on the proposed benefits of dietary collagen consumption to stimulate connective tissue remodeling to improve health and functional performance.
Collapse
Affiliation(s)
- Andrew M Holwerda
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
9
|
Siadat SM, Zamboulis DE, Thorpe CT, Ruberti JW, Connizzo BK. Tendon Extracellular Matrix Assembly, Maintenance and Dysregulation Throughout Life. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:45-103. [PMID: 34807415 DOI: 10.1007/978-3-030-80614-9_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In his Lissner Award medal lecture in 2000, Stephen Cowin asked the question: "How is a tissue built?" It is not a new question, but it remains as relevant today as it did when it was asked 20 years ago. In fact, research on the organization and development of tissue structure has been a primary focus of tendon and ligament research for over two centuries. The tendon extracellular matrix (ECM) is critical to overall tissue function; it gives the tissue its unique mechanical properties, exhibiting complex non-linear responses, viscoelasticity and flow mechanisms, excellent energy storage and fatigue resistance. This matrix also creates a unique microenvironment for resident cells, allowing cells to maintain their phenotype and translate mechanical and chemical signals into biological responses. Importantly, this architecture is constantly remodeled by local cell populations in response to changing biochemical (systemic and local disease or injury) and mechanical (exercise, disuse, and overuse) stimuli. Here, we review the current understanding of matrix remodeling throughout life, focusing on formation and assembly during the postnatal period, maintenance and homeostasis during adulthood, and changes to homeostasis in natural aging. We also discuss advances in model systems and novel tools for studying collagen and non-collagenous matrix remodeling throughout life, and finally conclude by identifying key questions that have yet to be answered.
Collapse
Affiliation(s)
| | - Danae E Zamboulis
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Chavaunne T Thorpe
- Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| | - Jeffrey W Ruberti
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Brianne K Connizzo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
10
|
Liu H, Gao F, Liang X, Chen X, Qu Y, Wang L. Pathogenesis and Development of Patellar Tendon Fibrosis in a Rabbit Overuse Model. Am J Sports Med 2020; 48:1141-1150. [PMID: 32074471 DOI: 10.1177/0363546520902447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The pathogenesis of patellar tendon fibrosis caused by overuse remains unclear. In an effort to further investigate effective treatments for patellar tendon fibrosis attributed to overuse, it is necessary to construct a reliable animal model. PURPOSE A rabbit patellar tendon fibrosis model was developed with the use of electrical stimulation to induce jumping. The pathogenesis and development of patellar tendon fibrosis were subsequently investigated with this model. STUDY DESIGN Controlled laboratory study. METHODS A total of 32 New Zealand White rabbits were randomly divided into a jumping group and a control group. Rabbits in the control group did not receive any treatment, while those in the jumping group jumped 150 times daily, 5 days per week. At 2, 4, 6, and 8 weeks after the initiation of treatment, the patellar tendons of 4 rabbits from each group were harvested and subjected to hematoxylin and eosin staining, immunohistochemical staining, and real-time polymerase chain reaction. The influence of jumping training on the expressions of histology- and fibrosis-related factors in the patellar tendon was assessed. RESULTS The histological changes of patellar tendon fibrosis in the jumping group were most pronounced at 4 weeks. When compared with the control group at corresponding time points, the mRNA and protein expressions of TGF-β1, CTGF, COL-I, and COL-III were upregulated significantly in the patellar tendon after jumping training for 4 weeks (P < .05). Intragroup comparison at different time points indicated that the mRNA and protein expressions of TGF-β1, COL-I, and COL-III were the highest at 4 weeks in the jumping group (P < .01). CONCLUSION It was found that patellar tendon fibrosis occurred because of overuse and the peak changes occurred at 4 weeks. Jumping load increased the secretions of TGF-β1 and Smad3 in the patellar tendon, with CTGF upregulation and higher synthesis of COL-I and COL-III, which were considered the pathogenesis of fibrosis. CLINICAL RELEVANCE This study simulated the effects of jumping load on tendon fibrosis at different time points. Moreover, the time course relationship between jumping training and patellar tendon fibrosis in the rabbit model was determined, which provided a new animal model for the study of patellar tendon fibrosis.
Collapse
Affiliation(s)
- Haitao Liu
- School of Physical Education, Henan University, Kaifeng, China.,School of Sports Medicine and Physical Therapy, Beijing Sports University, Beijing, China
| | - Feng Gao
- National Institute of Sports Medicine, Beijing, China
| | | | - Xiaolan Chen
- School of Sports Medicine and Physical Therapy, Beijing Sports University, Beijing, China
| | - Yi Qu
- Nanjing Tiyi Sports Health Management Co, Ltd, Nanjing, China
| | - Lin Wang
- School of Sports Medicine and Physical Therapy, Beijing Sports University, Beijing, China
| |
Collapse
|
11
|
Circadian control of the secretory pathway maintains collagen homeostasis. Nat Cell Biol 2020; 22:74-86. [DOI: 10.1038/s41556-019-0441-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 11/22/2019] [Indexed: 12/30/2022]
|
12
|
Smeets JSJ, Horstman AMH, Vles GF, Emans PJ, Goessens JPB, Gijsen AP, van Kranenburg JMX, van Loon LJC. Protein synthesis rates of muscle, tendon, ligament, cartilage, and bone tissue in vivo in humans. PLoS One 2019; 14:e0224745. [PMID: 31697717 PMCID: PMC6837426 DOI: 10.1371/journal.pone.0224745] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle plasticity is reflected by a dynamic balance between protein synthesis and breakdown, with basal muscle tissue protein synthesis rates ranging between 0.02 and 0.09%/h. Though it is evident that other musculoskeletal tissues should also express some level of plasticity, data on protein synthesis rates of most of these tissues in vivo in humans is limited. Six otherwise healthy patients (62±3 y), scheduled to undergo unilateral total knee arthroplasty, were subjected to primed continuous intravenous infusions with L-[ring-13C6]-Phenylalanine throughout the surgical procedure. Tissue samples obtained during surgery included muscle, tendon, cruciate ligaments, cartilage, bone, menisci, fat, and synovium. Tissue-specific fractional protein synthesis rates (%/h) were assessed by measuring the incorporation of L-[ring-13C6]-Phenylalanine in tissue protein and were compared with muscle tissue protein synthesis rates using a paired t test. Tendon, bone, cartilage, Hoffa’s fat pad, anterior and posterior cruciate ligament, and menisci tissue protein synthesis rates averaged 0.06±0.01, 0.03±0.01, 0.04±0.01, 0.11±0.03, 0.07±0.02, 0.04±0.01, and 0.04±0.01%/h, respectively, and did not significantly differ from skeletal muscle protein synthesis rates (0.04±0.01%/h; P>0.05). Synovium derived protein (0.13±0.03%/h) and intercondylar notch bone tissue protein synthesis rates (0.03±0.01%/h) were respectively higher and lower compared to skeletal muscle protein synthesis rates (P<0.05 and P<0.01, respectively). Basal protein synthesis rates in various musculoskeletal tissues are within the same range of skeletal muscle protein synthesis rates, with fractional muscle, tendon, bone, cartilage, ligament, menisci, fat, and synovium protein synthesis rates ranging between 0.02 and 0.13% per hour in vivo in humans. Clinical trial registration: NTR5147
Collapse
Affiliation(s)
- Joey S J Smeets
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Astrid M H Horstman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Georges F Vles
- Department of Orthopedic Surgery, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Pieter J Emans
- Department of Orthopedic Surgery, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joy P B Goessens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Annemie P Gijsen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Janneau M X van Kranenburg
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
13
|
Holm L, Dideriksen K, Nielsen RH, Doessing S, Bechshoeft RL, Højfeldt G, Moberg M, Blomstrand E, Reitelseder S, van Hall G. An exploration of the methods to determine the protein-specific synthesis and breakdown rates in vivo in humans. Physiol Rep 2019; 7:e14143. [PMID: 31496135 PMCID: PMC6732504 DOI: 10.14814/phy2.14143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 01/02/2023] Open
Abstract
The present study explores the methods to determine human in vivo protein-specific myofibrillar and collagenous connective tissue protein fractional synthesis and breakdown rates. We found that in human myofibrillar proteins, the protein-bound tracer disappearance method to determine the protein fractional breakdown rate (FBR) (via 2 H2 O ingestion, endogenous labeling of 2 H-alanine that is incorporated into proteins, and FBR quantified by its disappearance from these proteins) has a comparable intrasubject reproducibility (range: 0.09-53.5%) as the established direct-essential amino acid, here L-ring-13 C6 -phenylalanine, incorporation method to determine the muscle protein fractional synthesis rate (FSR) (range: 2.8-56.2%). Further, the determination of the protein breakdown in a protein structure with complex post-translational processing and maturation, exemplified by human tendon tissue, was not achieved in this experimentation, but more investigation is encouraged to reveal the possibility. Finally, we found that muscle protein FBR measured with an essential amino acid tracer prelabeling is inappropriate presumably because of significant and prolonged intracellular recycling, which also may become a significant limitation for determination of the myofibrillar FSR when repeated infusion trials are completed in the same participants.
Collapse
Affiliation(s)
- Lars Holm
- Institute of Sports Medicine and Department of Orthopedic Surgery MBispebjerg HospitalCopenhagenDenmark
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUnited Kingdom
| | - Kasper Dideriksen
- Institute of Sports Medicine and Department of Orthopedic Surgery MBispebjerg HospitalCopenhagenDenmark
| | - Rie H. Nielsen
- Institute of Sports Medicine and Department of Orthopedic Surgery MBispebjerg HospitalCopenhagenDenmark
| | - Simon Doessing
- Institute of Sports Medicine and Department of Orthopedic Surgery MBispebjerg HospitalCopenhagenDenmark
| | - Rasmus L. Bechshoeft
- Institute of Sports Medicine and Department of Orthopedic Surgery MBispebjerg HospitalCopenhagenDenmark
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Grith Højfeldt
- Institute of Sports Medicine and Department of Orthopedic Surgery MBispebjerg HospitalCopenhagenDenmark
| | - Marcus Moberg
- Aastrand LaboratorySwedish School of Sport and Health SciencesStockholmSweden
| | - Eva Blomstrand
- Aastrand LaboratorySwedish School of Sport and Health SciencesStockholmSweden
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Søren Reitelseder
- Institute of Sports Medicine and Department of Orthopedic Surgery MBispebjerg HospitalCopenhagenDenmark
| | - Gerrit van Hall
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Clinical Metabolomics Core FacilityDepartment of Clinical Biochemistry, RigshospitaletCopenhagenDenmark
| |
Collapse
|
14
|
Massey GJ, Balshaw TG, Maden-Wilkinson TM, Tillin NA, Folland JP. Tendinous Tissue Adaptation to Explosive- vs. Sustained-Contraction Strength Training. Front Physiol 2018; 9:1170. [PMID: 30233387 PMCID: PMC6131493 DOI: 10.3389/fphys.2018.01170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 08/03/2018] [Indexed: 01/06/2023] Open
Abstract
The effect of different strength training regimes, and in particular training utilizing brief explosive contractions, on tendinous tissue properties is poorly understood. This study compared the efficacy of 12 weeks of knee extensor explosive-contraction (ECT; n = 14) vs. sustained-contraction (SCT; n = 15) strength training vs. a non-training control (n = 13) to induce changes in patellar tendon and knee extensor tendon-aponeurosis stiffness and size (patellar tendon, vastus-lateralis aponeurosis, quadriceps femoris muscle) in healthy young men. Training involved 40 isometric knee extension contractions (three times/week): gradually increasing to 75% of maximum voluntary torque (MVT) before holding for 3 s (SCT), or briefly contracting as fast as possible to ∼80% MVT (ECT). Changes in patellar tendon stiffness and Young's modulus, tendon-aponeurosis complex stiffness, as well as quadriceps femoris muscle volume, vastus-lateralis aponeurosis area and patellar tendon cross-sectional area were quantified with ultrasonography, dynamometry, and magnetic resonance imaging. ECT and SCT similarly increased patellar tendon stiffness (20% vs. 16%, both p < 0.05 vs. control) and Young's modulus (22% vs. 16%, both p < 0.05 vs. control). Tendon-aponeurosis complex high-force stiffness increased only after SCT (21%; p < 0.02), while ECT resulted in greater overall elongation of the tendon-aponeurosis complex. Quadriceps muscle volume only increased after sustained-contraction training (8%; p = 0.001), with unclear effects of strength training on aponeurosis area. The changes in patellar tendon cross-sectional area after strength training were not appreciably different to control. Our results suggest brief high force muscle contractions can induce increased free tendon stiffness, though SCT is needed to increase tendon-aponeurosis complex stiffness and muscle hypertrophy.
Collapse
Affiliation(s)
- Garry J Massey
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Loughborough University, Loughborough, United Kingdom.,School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Thomas G Balshaw
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Loughborough University, Loughborough, United Kingdom.,School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Thomas M Maden-Wilkinson
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom.,Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
| | - Neale A Tillin
- Department of Life Sciences, University of Roehampton, London, United Kingdom
| | - Jonathan P Folland
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Loughborough University, Loughborough, United Kingdom.,School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
15
|
Magnusson SP, Kjaer M. The impact of loading, unloading, ageing and injury on the human tendon. J Physiol 2018; 597:1283-1298. [PMID: 29920664 DOI: 10.1113/jp275450] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/30/2018] [Indexed: 12/28/2022] Open
Abstract
A tendon transfers force from the contracting muscle to the skeletal system to produce movement and is therefore a crucial component of the entire muscle-tendon complex and its function. However, tendon research has for some time focused on mechanical properties without any major appreciation of potential cellular and molecular changes. At the same time, methodological developments have permitted determination of the mechanical properties of human tendons in vivo, which was previously not possible. Here we review the current understanding of how tendons respond to loading, unloading, ageing and injury from cellular, molecular and mechanical points of view. A mechanistic understanding of tendon tissue adaptation will be vital for development of adequate guidelines in physical training and rehabilitation, as well as for optimal injury treatment.
Collapse
Affiliation(s)
- S Peter Magnusson
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, NV.,Department of Physical and Occupational Therapy Bispebjerg Hospital, Copenhagen, NV.,Center for Healthy Aging, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, NV.,Center for Healthy Aging, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
16
|
Massey GJ, Balshaw TG, Maden-Wilkinson TM, Folland JP. Tendinous tissue properties after short- and long-term functional overload: Differences between controls, 12 weeks and 4 years of resistance training. Acta Physiol (Oxf) 2018; 222:e13019. [PMID: 29253326 DOI: 10.1111/apha.13019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/27/2017] [Accepted: 12/08/2017] [Indexed: 01/20/2023]
Abstract
AIM The potential for tendinous tissues to adapt to functional overload, especially after several years of exposure to heavy-resistance training, is largely unexplored. This study compared the morphological and mechanical characteristics of the patellar tendon and knee extensor tendon-aponeurosis complex between young men exposed to long-term (4 years; n = 16), short-term (12 weeks; n = 15) and no (untrained controls; n = 39) functional overload in the form of heavy-resistance training. METHODS Patellar tendon cross-sectional area, vastus lateralis aponeurosis area and quadriceps femoris volume, plus patellar tendon stiffness and Young's modulus, and tendon-aponeurosis complex stiffness, were quantified with MRI, dynamometry and ultrasonography. RESULTS As expected, long-term trained had greater muscle strength and volume (+58% and +56% vs untrained, both P < .001), as well as a greater aponeurosis area (+17% vs untrained, P < .01), but tendon cross-sectional area (mean and regional) was not different between groups. Only long-term trained had reduced patellar tendon elongation/strain over the whole force/stress range, whilst both short-term and long-term overload groups had similarly greater stiffness/Young's modulus at high force/stress (short-term +25/22%, and long-term +17/23% vs untrained; all P < .05). Tendon-aponeurosis complex stiffness was not different between groups (ANOVA, P = .149). CONCLUSION Despite large differences in muscle strength and size, years of resistance training did not induce tendon hypertrophy. Both short-term and long-term overload demonstrated similar increases in high-force mechanical and material stiffness, but reduced elongation/strain over the whole force/stress range occurred only after years of overload, indicating a force/strain specific time-course to these adaptations.
Collapse
Affiliation(s)
- G. J. Massey
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis; Loughborough University; Leicestershire UK
- School of Sport, Exercise, and Health Sciences; Loughborough University; Leicestershire UK
| | - T. G. Balshaw
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis; Loughborough University; Leicestershire UK
- School of Sport, Exercise, and Health Sciences; Loughborough University; Leicestershire UK
| | - T. M. Maden-Wilkinson
- School of Sport, Exercise, and Health Sciences; Loughborough University; Leicestershire UK
- Faculty of Health and Wellbeing; Sheffield Hallam University; Sheffield UK
| | - J. P. Folland
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis; Loughborough University; Leicestershire UK
- School of Sport, Exercise, and Health Sciences; Loughborough University; Leicestershire UK
| |
Collapse
|
17
|
McCreesh KM, Purtill H, Donnelly AE, Lewis JS. Increased supraspinatus tendon thickness following fatigue loading in rotator cuff tendinopathy: potential implications for exercise therapy. BMJ Open Sport Exerc Med 2017; 3:e000279. [PMID: 29333279 PMCID: PMC5759726 DOI: 10.1136/bmjsem-2017-000279] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2017] [Indexed: 12/29/2022] Open
Abstract
Background/aim Exercise imparts a load on tendon tissue that leads to changes in tendon properties. Studies suggest that loading immediately reduces tendon thickness, with a loss of this response in symptomatic tendinopathy. No studies investigating the response of tendon dimensions to load for the rotator cuff tendons exist. This study aimed to examine the short-term effect of loading on the thickness of the supraspinatus tendon and acromiohumeral distance those with and without rotator cuff tendinopathy. Methods Participants were 20 painfree controls, and 23 people with painful rotator cuff tendinopathy. Supraspinatus tendon thickness and acromiohumeral distance were measured using ultrasound scans before, and at three time points after loading (1, 6 and 24 hours). Loading involved isokinetic eccentric and concentric external rotation and abduction. Results There was a significant increase in supraspinatus tendon thickness in the pain group at 1 (7%, ∆=0.38, 95% CI 0.19 to 0.57) and 6 hours (11%, ∆=0.53, 95% CI 0.34 to 0.71), although only the 6 hours difference exceeded minimal detectable difference. In contrast, there was a small non-significant reduction in thickness in controls. The acromiohumeral distance reduced significantly in both groups at 1 hour (controls: ∆=0.64, 95% CI 0.38 to 0.90; pain: ∆=1.1, 95% CI 0.85 to 1.33), with a larger change from baseline in the pain group. Conclusion Those diagnosed with painful supraspinatus tendinopathy demonstrated increased thickening with delayed return to baseline following loading. Rehabilitation professionals may need to take into account the impact of loading to fatigue when planning rehabilitation programmes.
Collapse
Affiliation(s)
- Karen M McCreesh
- Department of Clinical Therapies, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - Helen Purtill
- Health Research Institute, University of Limerick, Limerick, Ireland.,Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland
| | - Alan E Donnelly
- Health Research Institute, University of Limerick, Limerick, Ireland.,Department of Physical Education and Sports Sciences, University of Limerick, Limerick, Ireland
| | - Jeremy S Lewis
- Department of Clinical Therapies, University of Limerick, Limerick, Ireland.,Department of Musculoskeletal Services, Central London Community Healthcare NHS Trust, London, UK.,Department of Allied Health Professions, School of Health and Social Work, University of Hertfordshire, Hatfield, UK
| |
Collapse
|
18
|
Peña J, Moreno-Doutres D, Borràs X, Altarriba A, Baiget E, Caparrós A, Buscà B. Patellar Tendinopathy in Team Sports: Preventive Exercises. Strength Cond J 2017. [DOI: 10.1519/ssc.0000000000000303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Svensson RB, Heinemeier KM, Couppé C, Kjaer M, Magnusson SP. Effect of aging and exercise on the tendon. J Appl Physiol (1985) 2016; 121:1237-1246. [DOI: 10.1152/japplphysiol.00328.2016] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/29/2016] [Indexed: 12/27/2022] Open
Abstract
Here, we review the literature on how tendons respond and adapt to ageing and exercise. With respect to aging, there are considerable changes early in life, but this seems to be maturation rather than aging per se. In vitro data indicate that aging is associated with a decreased potential for cell proliferation and a reduction in the number of stem/progenitor-like cells. Further, there is persuasive evidence that turnover in the core of the tendon after maturity is very slow or absent. Tendon fibril diameter, collagen content, and whole tendon size appear to be largely unchanged with aging, while glycation-derived cross-links increase substantially. Mechanically, aging appears to be associated with a reduction in modulus and strength. With respect to exercise, tendon cells respond by producing growth factors, and there is some support for a loading-induced increase in tendon collagen synthesis in humans, which likely reflects synthesis at the very periphery of the tendon rather than the core. Average collagen fibril diameter is largely unaffected by exercise, while there can be some hypertrophy of the whole tendon. In addition, it seems that resistance training can yield increased stiffness and modulus of the tendon and may reduce the amount of glycation. Exercise thereby tends to counteract the effects of aging.
Collapse
Affiliation(s)
- Rene B. Svensson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Katja Maria Heinemeier
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Department of Biomedical Sciences, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; and
| | - Christian Couppé
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Musculoskeletal Rehabilitation Research Unit, Bispebjerg Hospital, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Department of Biomedical Sciences, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; and
| | - S. Peter Magnusson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Department of Biomedical Sciences, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; and
- Musculoskeletal Rehabilitation Research Unit, Bispebjerg Hospital, Denmark
| |
Collapse
|
20
|
Collagen Homeostasis and Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 920:11-25. [DOI: 10.1007/978-3-319-33943-6_2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Exercise and Regulation of Bone and Collagen Tissue Biology. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 135:259-91. [DOI: 10.1016/bs.pmbts.2015.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Zhang Y, Lin Z, Foolen J, Schoen I, Santoro A, Zenobi-Wong M, Vogel V. Disentangling the multifactorial contributions of fibronectin, collagen and cyclic strain on MMP expression and extracellular matrix remodeling by fibroblasts. Matrix Biol 2014; 40:62-72. [PMID: 25217861 DOI: 10.1016/j.matbio.2014.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 01/06/2023]
Abstract
Early wound healing is associated with fibroblasts assembling a provisional fibronectin-rich extracellular matrix (ECM), which is subsequently remodeled and interlaced by type I collagen. This exposes fibroblasts to time-variant sets of matrices during different stages of wound healing. Our goal was thus to gain insight into the ECM-driven functional regulation of human foreskin fibroblasts (HFFs) being either anchored to a fibronectin (Fn) or to a collagen-decorated matrix, in the absence or presence of cyclic mechanical strain. While the cells reoriented in response to the onset of uniaxial cyclic strain, cells assembled exogenously added Fn with a preferential Fn-fiber alignment along their new orientation. Exposure of HFFs to exogenous Fn resulted in an increase in matrix metalloproteinase (MMP) expression levels, i.e. MMP-15 (RT-qPCR), and MMP-9 activity (zymography), while subsequent exposure to collagen slightly reduced MMP-15 expression and MMP-9 activity compared to Fn-exposure alone. Cyclic strain upregulated Fn fibrillogenesis and actin stress fiber formation, but had comparatively little effect on MMP activity. We thus propose that the appearance of collagen might start to steer HFFs towards homeostasis, as it decreased both MMP secretion and the tension of Fn matrix fibrils as assessed by Fluorescence Resonance Energy Transfer. These results suggest that HFFs might have a high ECM remodeling or repair capacity in contact with Fn alone (early event), which is reduced in the presence of Col1 (later event), thereby down-tuning HFF activity, a processes which would be required in a tissue repair process to finally reach tissue homeostasis.
Collapse
Affiliation(s)
- Yang Zhang
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Zhe Lin
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Jasper Foolen
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Ingmar Schoen
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Alberto Santoro
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Marcy Zenobi-Wong
- Cartilage Engineering+Regeneration, Department of Health Sciences and Technology, ETH Zurich, Otto-Stern-Weg 7, CH-8093 Zurich, Switzerland
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland.
| |
Collapse
|
23
|
Kjaer M, Heinemeier KM. Eccentric exercise: acute and chronic effects on healthy and diseased tendons. J Appl Physiol (1985) 2014; 116:1435-8. [DOI: 10.1152/japplphysiol.01044.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Eccentric exercise can influence tendon mechanical properties and matrix protein synthesis. mRNA for collagen and regulatory factors thereof are upregulated in animal tendons, independent of muscular contraction type, supporting the view that tendon, compared with skeletal muscle, is less sensitive to differences in type and/or amount of mechanical stimulus with regard to expression of collagen, regulatory factors for collagen, and cross-link regulators. In overused (tendinopathic) human tendon, eccentric exercise training has a beneficial effect, but the mechanism by which this is elicited is unknown, and slow concentric loading appears to have similar beneficial effects. It may be that tendinopathic regions, as long as they are subjected to a certain magnitude of load at a slow speed, independent of whether this is eccentric or concentric in nature, can reestablish their normal tendon fibril alignment and cell morphology.
Collapse
Affiliation(s)
- Michael Kjaer
- Institute of Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital, and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katja M. Heinemeier
- Institute of Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital, and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Abstract
The extracellular matrix network of skeletal muscle and tendon connective tissue is primarily composed of collagen and connects the muscle contractile protein to the bones in the human body. The mechanical properties of the connective tissue are important for the effectiveness of which the muscle force is transformed into movement. Periods of unloading and exercise affect the synthesis rate of connective tissue collagen protein, whereas only sparse information exits regarding collagen protein degradation. It is likely, though, that changes in both collagen protein synthesis and degradation are required for remodeling of the connective tissue internal structure that ultimately results in altered mechanical properties of the connective tissue. Both unloading and exercise lead to increased production of growth factors and inflammatory mediators that are involved in connective tissue remodeling. Despite the fact that non-steroidal anti-inflammatory drugs seem to inhibit the healing process of connective tissue and the stimulating effect of exercise on connective tissue protein synthesis, these drugs are often consumed in relation to connective tissue injury and soreness. However, the potential effect of non-steroidal anti-inflammatory drugs on connective tissue needs further investigation.
Collapse
Affiliation(s)
- Kasper Dideriksen
- Department of Orthopaedic Surgery M 81, Bispebjerg Hospital, Institute of Sports Medicine Copenhagen , Copenhagen , Denmark and
| |
Collapse
|