1
|
Lamar RT, Gralian J, Hockaday WC, Jerzykiewicz M, Monda H. Investigation into the role of carboxylic acid and phenolic hydroxyl groups in the plant biostimulant activity of a humic acid purified from an oxidized sub-bituminous coal. FRONTIERS IN PLANT SCIENCE 2024; 15:1328006. [PMID: 38751833 PMCID: PMC11095639 DOI: 10.3389/fpls.2024.1328006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/19/2024] [Indexed: 05/18/2024]
Abstract
Introduction Humic substances (HS) are increasingly being applied as crop plant biostimulants because they have been shown to increase plant productivity, especially under environmentally stressful conditions. There has been intense interest in elucidating the HS molecular structures responsible for eliciting the plant biostimulant response (PBR). The polar and weakly acidic carboxylic (COOH) and phenolic hydroxyl (ArOH) functional groups play major roles in the acid nature, pH dependent solubilities, conformation, and metal- and salt-binding capabilities of HS. Reports on the role played by these groups in the PBR of HS found growth parameters being both positively and negatively correlated with COOH and ArOH functionalities. Materials and methods To investigate the role of COOH and ArOH in HS biostimulant activity we used a humic acid (HA), purified from an oxidized sub bituminous coal to prepare HAs with COOH groups methylated (AHA), ArOH groups acetylated (OHA), and with both COOH and ArOH groups methylated (FHA). The original HA was designated (NHA). The four HAs were subjected to elemental, 13C-NMR, FTIR, and EPR analyses and their antioxidant properties were assessed using the trolox equivalents antioxidant capacity assay (TEAC). 13C-NMR and FTIR analysis revealed significant alkylation/acetylation. To determine the effects of alkylating/acetylating these functional groups on the HA elicited PBR, the HAs were evaluated in a plant bioassay on corn (Zea mays L.) seedling under nutrient and non-nutrient stressed conditions. Treatments consisted of the four HAs applied to the soil surface at a concentration of 80 mg C L-1, in 50 ml DI H2O with the control plants receiving 50ml DI H2O. Results The HA-treated plants, at both fertilization rates, were almost always significantly larger than their respective control plants. However, the differences produced under nutrient stress were always much greater than those produced under nutrient sufficiency, supporting previous reports that HA can reduce the effects of stress on plant growth. In addition, for the most part, the HAs with the alkylated/acetylated groups produced plants equal to or larger than plants treated with NHA. Conclusion These results suggests that COOH and ArOH groups play a limited or no role in the HA elicited PBR. Alternatively, the HA pro-oxidant to antioxidant ratio may play a role in the magnitude of the biostimulant response.
Collapse
Affiliation(s)
| | - Jason Gralian
- R&D Department, Huma, Inc., Gilbert, AZ, United States
| | | | | | - Hiarhi Monda
- R&D Department, Huma, Inc., Gilbert, AZ, United States
| |
Collapse
|
2
|
Lamar RT, Monda H, Sleighter R. Use of Ore-Derived Humic Acids With Diverse Chemistries to Elucidate Structure-Activity Relationships (SAR) of Humic Acids in Plant Phenotypic Expression. FRONTIERS IN PLANT SCIENCE 2021; 12:758424. [PMID: 34925408 DOI: 10.3389/fpls.2021.758424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/20/2021] [Indexed: 06/14/2023]
Abstract
For legal reasons, the publisher has withdrawn this article from public view. For additional information, please contact the publisher.
Collapse
Affiliation(s)
| | - Hiarhi Monda
- Bio Huma Netics, Inc., Gilbert, AZ, United States
| | | |
Collapse
|
3
|
Chaubey B, Singh P, Pal S. Solution-state NMR evaluation of molecular interaction between monoaromatic carboxylic acids and dissolved humic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17775-17788. [PMID: 33400107 DOI: 10.1007/s11356-020-12092-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Understanding the nature of interactions between the aromatic organic pollutants with dissolved humic acid (HA) is fundamental for the prediction of their environmental fate and subsequent development of efficient remediation methods. The present study employs solution-state 1H/19F NMR methods to investigate the non-covalent interaction between aqueous peat humic acid (Aldrich HA) and monoaromatic carboxylic acids (CA), viz., 2, 6 diflourobenzoic acid (DFBA) and its non-fluorinated analog, benzoic acid (BA). NMR self-diffusion measurement of HA protons confirmed micellar nature indicating possibility of encapsulation of small molecules through host-guest interaction. 19F-1H and 1H-1H saturation transfer difference (STD) experiments reveal the mode of insertion of CA into HA superstructure. The strength of interaction has been evaluated by analyzing T1/T2 relaxation times and self-diffusion coefficients of CA as a function of HA concentration. Association constants extracted for CA-HA complexes from NMR diffusion experiments reflected that the association between DFBA-HA (2.34 mM-1) is significantly higher than that of BA-HA (0.97 mM-1). The experimental outcome reiterated that substitution of -H with halogen atoms (-F in specific) to aromatic ring plays a dominant role in modulating the strength of association and mode of insertion of organic pollutants into HA superstructure. The present study emphasizes that AHA can be a potential remediating agent for organic contaminants due to its superior binding affinity compared to less humified extracted HA (EHA) from Karwar, Rajasthan, India.
Collapse
Affiliation(s)
- Bhawna Chaubey
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342037, India
| | - Pooja Singh
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342037, India
| | - Samanwita Pal
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342037, India.
| |
Collapse
|
4
|
Della Lucia MC, Bertoldo G, Broccanello C, Maretto L, Ravi S, Marinello F, Sartori L, Marsilio G, Baglieri A, Romano A, Colombo M, Magro F, Campagna G, Concheri G, Squartini A, Stevanato P. Novel Effects of Leonardite-Based Applications on Sugar Beet. FRONTIERS IN PLANT SCIENCE 2021; 12:646025. [PMID: 33815453 PMCID: PMC8013720 DOI: 10.3389/fpls.2021.646025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/08/2021] [Indexed: 05/09/2023]
Abstract
The present study aimed to explore the effects of foliar application of a leonardite-based product on sugar beet (Beta vulgaris L.) plants grown in the field. The approach concerned the evaluation of the community compositional structure of plant endophytic bacteria through a metabarcoding approach, the expression level of a gene panel related to hormonal metabolism and signaling, and the main sugar beet productivity traits. Results indicated that plants treated with leonardite (dosage of 2,000 ml ha-1, dilution 1:125, 4 mg C l-1) compared with untreated ones had a significant increase (p < 0.05) in (i) the abundance of Oxalicibacterium spp., recognized to be an endophyte bacterial genus with plant growth-promoting activity; (ii) the expression level of LAX2 gene, coding for auxin transport proteins; and (iii) sugar yield. This study represents a step forward to advance our understanding of the changes induced by leonardite-based biostimulant in sugar beet.
Collapse
Affiliation(s)
- Maria C. Della Lucia
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padua, Italy
| | - Giovanni Bertoldo
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padua, Italy
| | - Chiara Broccanello
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padua, Italy
| | - Laura Maretto
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padua, Italy
| | - Samathmika Ravi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padua, Italy
| | - Francesco Marinello
- Department of Landscape and Agro-Forestry Systems, Agripolis, University of Padova, Padua, Italy
| | - Luigi Sartori
- Department of Landscape and Agro-Forestry Systems, Agripolis, University of Padova, Padua, Italy
| | - Giovanni Marsilio
- Department of Landscape and Agro-Forestry Systems, Agripolis, University of Padova, Padua, Italy
| | - Andrea Baglieri
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Alessandro Romano
- Plant Protection and Certification Centre, Council for Agricultural Research and Economics, Lonigo, Italy
| | - Mauro Colombo
- Research Institute for Industrial Crops, Council for Agricultural Research and Agricultural Economics, Rovigo, Italy
| | | | | | - Giuseppe Concheri
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padua, Italy
| | - Andrea Squartini
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padua, Italy
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padua, Italy
| |
Collapse
|
5
|
Liu G, Dong B, Zhou J, Li J, Jin R, Wang J. Facilitated bioreduction of nitrobenzene by lignite acting as low-cost and efficient electron shuttle. CHEMOSPHERE 2020; 248:125978. [PMID: 31995734 DOI: 10.1016/j.chemosphere.2020.125978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/26/2019] [Accepted: 01/19/2020] [Indexed: 06/10/2023]
Abstract
The searching for efficient and economical redox mediators to promote the treatment of wastewater containing recalcitrant organic compounds is greatly needed. In this study, the redox mediator activities of four different lignite samples to facilitate the bioreduction of nitrobenzene by Shewanella oneidensis MR-1 were tested for the first time. The initial nitrobenzene reduction rate was increased by 40.4%-90.3% in the presence of 50 mg/L of different lignite samples. Lignite collected from Xinjiang (XJL) having more oxygenated groups performed better in enhancing nitrobenzene bioreduction. The stimulating effects increased with the increase of lignite dosage (0-200 mg/L) and the decrease of lignite particle size (150-0.1 μm). However, the pristine XJL samples with assorted sizes of particles exhibited better stimulating effects than size-fractionated ones, implying that different-sized XJL particles might have synergetic effects on the bioreduction process. When humic acid or iron was removed from XJL, its promoting effects were decreased, demonstrating the crucial roles of both components in lignite-enhanced nitrobenzene bioreduction. Nitric acid treatment could form more oxygenated moieties on lignite surface, which played vital roles in promoting nitrobenzene bioreduction. The initial nitrobenzene bioreduction rate in the presence of HNO3-treated XJL was 80.8% higher than that obtained with pristine XJL. This study proposed an effective and readily available redox mediator that could be applied to promote the bioreduction of recalcitrant electrophilic pollutants.
Collapse
Affiliation(s)
- Guangfei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Bin Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| | - Juanjuan Li
- Shanxi Academy for Environmental Planning, Taiyuan 030002, PR China
| | - Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
6
|
Řezáčová V, Conte P, Komendová R, Novák F, Repková M, Kučerík J. Factors influencing structural heat-induced structural relaxation of dissolved organic matter. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:422-428. [PMID: 30368135 DOI: 10.1016/j.ecoenv.2018.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/07/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
Physical and chemical structure affect properties of dissolved organic matter (DOM). Recent observations revealed that heating and cooling cycles at higher temperature amplitude lead to a change in DOM physical conformation assumingly followed by a slow structural relaxation. In this study, changes at lower temperature amplitudes and their relation to DOM composition were investigated using simultaneous measurements of density and ultrasonic velocity in order to evaluate the adiabatic compressibility, which is sensitive indicator of DOM structural microelasticity. Six fulvic acids (FAs) having various origins were analyzed at concentrations of 0.12, 0.6 and 1.2 g L-1 and at different temperature amplitudes. First, we validated that the used technique is sensitive to distinguish conclusively the structural changes upon heating and cooling of DOM with heating/cooling amplitude of ± 3 °C and higher. This amplitude was then applied to observe the relationship between change in adiabatic compressibility and chemical composition of FA. No correlation was observed with elemental composition and aromatic structures. Positive correlations were observed with content of alkyl moieties, carboxylic and carbonyl carbons and biological activity. Based on literature data, it was concluded that alkyl moieties undergo (re)crystalization during thermal fluctuation and their structural relaxation back is very slow (if occurs). The polar moieties form a flexible hydrogel responding to thermal fluctuation by moderate dissolution and re-aggregation. Negative correlation was observed in relation to the amount of peptide and O-alkyl systems, which can be attributed to very fast structural relaxation of proteinaceous materials, i.e. their larger content leads to lower difference between original and heat-induced compressibility. Last, the increase of the heating/cooling amplitude from ± 3 to ± 15 °C resulted in an increase of the change of the adiabatic compressibility and in the extension of the relaxation time needed for DOM structure to return to the equilibrium. We conclude that this increase is caused by the increase in inner energy, and DOM conformation can reach a cascade of energy minima, which may influence DOM reactivity and biodegradability.
Collapse
Affiliation(s)
- Veronika Řezáčová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200 Brno, Czech Republic
| | - Pellegrino Conte
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, v.le delle Scienze edificio 4, 90128 Palermo, Italy
| | - Renata Komendová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200 Brno, Czech Republic
| | - František Novák
- Technopark Kralupy, University of Chemistry and Technology Prague, Technická 1905, 166 28 Prague 6, Czech Republic
| | - Martina Repková
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200 Brno, Czech Republic
| | - Jiří Kučerík
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200 Brno, Czech Republic.
| |
Collapse
|
7
|
Construction of a molecular structure model of mild-oxidized Chinese lignite using Gaussian09 based on data from FTIR, solid state 13C-NMR. J Mol Model 2018; 24:135. [DOI: 10.1007/s00894-018-3677-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/14/2018] [Indexed: 11/27/2022]
|