1
|
Adamiak K, Gaida VA, Schäfer J, Bosse L, Diemer C, Reiter RJ, Slominski AT, Steinbrink K, Sionkowska A, Kleszczyński K. Melatonin/Sericin Wound Healing Patches: Implications for Melanoma Therapy. Int J Mol Sci 2024; 25:4858. [PMID: 38732075 PMCID: PMC11084828 DOI: 10.3390/ijms25094858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Melatonin and sericin exhibit antioxidant properties and may be useful in topical wound healing patches by maintaining redox balance, cell integrity, and regulating the inflammatory response. In human skin, melatonin suppresses damage caused by ultraviolet radiation (UVR) which involves numerous mechanisms associated with reactive oxygen species/reactive nitrogen species (ROS/RNS) generation and enhancing apoptosis. Sericin is a protein mainly composed of glycine, serine, aspartic acid, and threonine amino acids removed from the silkworm cocoon (particularly Bombyx mori and other species). It is of interest because of its biodegradability, anti-oxidative, and anti-bacterial properties. Sericin inhibits tyrosinase activity and promotes cell proliferation that can be supportive and useful in melanoma treatment. In recent years, wound healing patches containing sericin and melatonin individually have attracted significant attention by the scientific community. In this review, we summarize the state of innovation of such patches during 2021-2023. To date, melatonin/sericin-polymer patches for application in post-operational wound healing treatment has been only sparingly investigated and it is an imperative to consider these materials as a promising approach targeting for skin tissue engineering or regenerative dermatology.
Collapse
Affiliation(s)
- Katarzyna Adamiak
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland; (K.A.); (A.S.)
| | - Vivian A. Gaida
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Jasmin Schäfer
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Lina Bosse
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Clara Diemer
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health, San Antonio, TX 78229, USA;
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL 35294, USA
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland; (K.A.); (A.S.)
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| |
Collapse
|
2
|
Byram PK, Mukherjee M, Rahaman M, Bora H, Kaushal M, Dhara S, Chakravorty N. Bioactive self-assembling silk fibroin-sericin films for skin tissue engineering. Biomed Mater 2024; 19:025009. [PMID: 38194702 DOI: 10.1088/1748-605x/ad1c9d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
The quest for an ideal wound dressing material has been a strong motivation for researchers to explore novel biomaterials for this purpose. Such explorations have led to the extensive use of silk fibroin (SF) as a suitable polymer for several applications over the years. Unfortunately, another major silk protein-sericin has not received its due attention yet in spite of having favorable biological properties. In this study, we report an approach of blending SF and silk sericin (SS) without the usage of chemical crosslinkers is made possible by the usage of formic acid which evaporates to induceβ-sheets formation to form cytocompatible films. Raman spectroscopy confirms the presence of SF/SS components in blend and formation ofβ-sheet in films.In situ, gelation kinetics studies were conducted to understand the change in gelation properties with addition of sericin into SF. Methyl thiazolyl tetrazolium and live/dead assays were performed to study cellular attachment, viability and proliferation on SF/SS films. The antibacterial properties of SF/SS films were tested using Gram-negative and Gram-positive bacteria. The re-structured SF/SS films were stable, transparent, show good mechanical properties, antibacterial activity and cytocompatibility, therefore can serve as suitable biomaterial candidates for skin regeneration applications.
Collapse
Affiliation(s)
- Prasanna Kumar Byram
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| | - Mandrita Mukherjee
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| | - Motiur Rahaman
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| | - Hema Bora
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| | - Manish Kaushal
- Department of Chemical Engineering, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| | - Santanu Dhara
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| | - Nishant Chakravorty
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
3
|
Yu B, Li Y, Lin Y, Zhu Y, Hao T, Wu Y, Sun Z, Yang X, Xu H. Research progress of natural silk fibroin and the appplication for drug delivery in chemotherapies. Front Pharmacol 2023; 13:1071868. [PMID: 36686706 PMCID: PMC9845586 DOI: 10.3389/fphar.2022.1071868] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Silk fibroin has been widely used in biological fields due to its biocompatibility, mechanical properties, biodegradability, and safety. Recently, silk fibroin as a drug carrier was developed rapidly and achieved remarkable progress in cancer treatment. The silk fibroin-based delivery system could effectively kill tumor cells without significant side effects and drug resistance. However, few studies have been reported on silk fibroin delivery systems for antitumor therapy. The advancement of silk fibroin-based drug delivery systems research and its applications in cancer therapy are highlighted in this study. The properties, applications, private opinions, and future prospects of silk fibroin carriers are discussed to understand better the development of anti-cancer drug delivery systems, which may also contribute to advancing silk fibroin innovation.
Collapse
Affiliation(s)
- Bin Yu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Yanli Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China,Department of Pharmacy, Binzhou Hospital of Traditional Chinese Medicine, Binzhou, China
| | - Yuxian Lin
- Department of Pharmacy, Wenzhou People’s Hospital of The Third Affiliated Hospital of Shanghai University, The Third Clinical Institute Affiliated To Wenzhou Medical University, Wenzhou, China
| | - Yuanying Zhu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Teng Hao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Yan Wu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Zheng Sun
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, China,*Correspondence: Xin Yang, ; Hui Xu,
| | - Hui Xu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China,*Correspondence: Xin Yang, ; Hui Xu,
| |
Collapse
|
4
|
Kim SI, Jeon GY, Kim SE, Choe SH, Kim SJ, Seo JS, Kang TW, Song JE, Khang G. Injectable Hydrogel Based on Gellan Gum/Silk Sericin for Application as a Retinal Pigment Epithelium Cell Carrier. ACS OMEGA 2022; 7:41331-41340. [PMID: 36406493 PMCID: PMC9670284 DOI: 10.1021/acsomega.2c05113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The damage to retinal pigment epithelium (RPE) cells can lead to vision loss and permanent blindness. Therefore, an effective therapeutic strategy has emerged to replace damaged cells through RPE cell delivery. In this study, we fabricated injectable gellan gum (GG)/silk sericin (SS) hydrogels as a cell carrier by blending GG and SS. To determine the appropriate concentration of SS for human RPE ARPE-19, 0, 0.05, 0.1, and 0.5% (w/v) of SS solution were blended in 1% (w/v) GG solution (GG/SS 0%, GG/SS 0.05%, GG/SS 0.1%, and GG/SS 0.5%, respectively). The physical and chemical properties were measured through Fourier-transform infrared spectroscopy, scanning electron microscopy, mass swelling, and weight loss. Also, viscosity, injection force, and compressive tests were used to evaluate mechanical characteristics. Cell proliferation and differentiation of ARPE-19 were evaluated using quantitative dsDNA analysis and real-time polymerase chain reaction, respectively. The addition of SS gave GG/SS hydrogels a compressive strength similar to that of natural RPE tissue, which may well support the growth of RPE and enhance cell proliferation and differentiation. In particular, the GG/SS 0.5% hydrogel showed the most similar compressive strength (about 10 kPa) and exhibited the highest gene expression related to ARPE-19 cell proliferation. These results indicate that GG/SS 0.5% hydrogels can be a promising biomaterial for cell delivery in retina tissue engineering.
Collapse
Affiliation(s)
- Soo in Kim
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
| | - Ga Yeong Jeon
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
| | - Se Eun Kim
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
| | - Seung Ho Choe
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
| | - Seung Jae Kim
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
| | - Jin Sol Seo
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
| | - Tae Woong Kang
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
| | - Jeong Eun Song
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
| | - Gilson Khang
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
- Department
of PolymerNano Science & Technology and Polymer Materials Fusion
Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
- Department
of Orthopaedic & Traumatology, Airlangga
University, Jl. Airlangga
No. 4−6, Airlangga, Kec. Gubeng, Kota
SBY, Jawa Timur60115, Indonesia
| |
Collapse
|
5
|
Composite silk fibroin hydrogel scaffolds for cartilage tissue regeneration. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Suzuki S, Sakiragaoglu O, Chirila TV. Study of the Antioxidative Effects of Bombyx mori Silk Sericin in Cultures of Murine Retinal Photoreceptor Cells. Molecules 2022; 27:4635. [PMID: 35889503 PMCID: PMC9315601 DOI: 10.3390/molecules27144635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
The availability of natural substances able to fulfill the role of antioxidants in a physiologic environment is important for the development of therapies against diseases associated with excessive production of reactive oxygen species and ensuing oxidative stress. Antioxidant properties have been reported episodically for sericin, a proteinaceous constituent of the silk thread in the cocoons generated by the larvae of the Lepidoptera order. We investigated the sericin fractions isolated from the cocoons spun by the domesticated (Bombyx mori) silkworm. Three fractions were isolated and evaluated, including two peptidoid fractions, the crude sericin and the purified (dialyzed) sericin, and the non-peptidoid methanolic extract of the crude fraction. When subjected to Trolox equivalent antioxidant capacity (TEAC) assay, the extract showed much higher antioxidant capacity as compared to the crude or purified sericin fractions. The three fractions were also evaluated in cultures of murine retinal photoreceptor cells (661 W), a cell line that is highly susceptible to oxidants and is crucially involved in the retinopathies primarily caused by oxidative stress. The extract displayed a significant dose-dependent protective effect on the cultured cells exposed to hydrogen peroxide. In identical conditions, the crude sericin showed a certain level of antioxidative activity at a higher concentration, while the purified sericin did not show any activity. We concluded that the non-peptidoid components accompanying sericin were chiefly responsible for the previously reported antioxidant capacity associated with sericin fractions, a conclusion supported by the qualitative detection of flavonoids in the extract but not in the purified sericin fraction.
Collapse
Affiliation(s)
- Shuko Suzuki
- Queensland Eye Institute, South Brisbane, QLD 4101, Australia; (S.S.); (O.S.)
| | - Onur Sakiragaoglu
- Queensland Eye Institute, South Brisbane, QLD 4101, Australia; (S.S.); (O.S.)
| | - Traian V. Chirila
- Queensland Eye Institute, South Brisbane, QLD 4101, Australia; (S.S.); (O.S.)
- School of Chemistry & Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Australian Institute of Bioengineering & Nanotechnology (AIBN), University of Queensland, St Lucia, QLD 4072, Australia
- Faculty of Medicine, University of Queensland, Herston, QLD 4006, Australia
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
- Faculty of Medicine, George E. Palade University of Medicine, Pharmacy, Science and Technology, 540139 Târgu Mures, Romania
| |
Collapse
|
7
|
Șerban MV, Nazarie (Ignat) SR, Dinescu S, Radu IC, Zaharia C, Istrătoiu EA, Tănasă E, Herman H, Gharbia S, Baltă C, Hermenean A, Costache M. Silk ProteinsEnriched Nanocomposite Hydrogels Based on Modified MMT Clay and Poly(2-hydroxyethyl methacrylate-co-2-acrylamido-2-methylpropane Sulfonic Acid) Display Favorable Properties for Soft Tissue Engineering. NANOMATERIALS 2022; 12:nano12030503. [PMID: 35159848 PMCID: PMC8839072 DOI: 10.3390/nano12030503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023]
Abstract
Due to their remarkable structures and properties, three-dimensional hydrogels and nanostructured clay particles have been extensively studied and have shown a high potential for tissue engineering as solutions for tissue defects. In this study, four types of 2-hydroxyethyl methacrylate/2-acrylamido-2-methylpropane sulfonic acid/montmorillonite (HEMA/AMPSA/MMT) hydrogels enriched with sericin, and fibroin were prepared and studied in the context of regenerative medicine for soft tissue regenerative medicine. Our aim was to obtain crosslinked hydrogel structures using modified montmorillonite clay as a crosslinking agent. In order to improve the in vitro and in vivo biocompatibility, silk proteins were further incorporated within the hydrogel matrix. Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) were performed to prove the chemical structures of the modified MMT and nanocomposite hydrogels. Swelling and rheological measurements showed the good elastic behavior of the hydrogels due to this unique network structure in which modified MMT acts as a crosslinking agent. Hydrogel biocompatibility was assessed by MTT, LDH and LIVE/DEAD assays. The hydrogels were evaluated for their potential to support adipogenesis in vitro and human stem cells isolated from adipose tissue were seeded in them and induced to differentiate. The progress was assessed by evaluation of expression of adipogenic markers (ppar-γ2, perilipin) evaluated by qPCR. The potential of the materials to support tissue regeneration was further evaluated on animal models in vivo. All materials proved to be biocompatible, with better results on the 95% HEMA 5% AMPSA enriched with sericin and fibroin material. This composition promoted a better development of adipogenesis compared to the other compositions studied, due the addition of sericin and fibroin. The results were confirmed in vivo as well, with a better progress of soft tissue regeneration after implantation in mice. Therefore, hydrogel 95% HEMA 5% AMPSA enriched with sericin as well as fibroin showed the best results that recommend it for future soft tissue engineering application.
Collapse
Affiliation(s)
- Mirela Violeta Șerban
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050663 Bucharest, Romania; (M.V.Ș.); (S.-R.N.); (M.C.)
| | - Simona-Rebeca Nazarie (Ignat)
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050663 Bucharest, Romania; (M.V.Ș.); (S.-R.N.); (M.C.)
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050663 Bucharest, Romania; (M.V.Ș.); (S.-R.N.); (M.C.)
- The Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050663 Bucharest, Romania
- Correspondence: (S.D.); (A.H.)
| | - Ionuț-Cristian Radu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (I.-C.R.); (C.Z.); (E.-A.I.); (E.T.)
| | - Cătălin Zaharia
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (I.-C.R.); (C.Z.); (E.-A.I.); (E.T.)
| | - Elena-Alexandra Istrătoiu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (I.-C.R.); (C.Z.); (E.-A.I.); (E.T.)
| | - Eugenia Tănasă
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (I.-C.R.); (C.Z.); (E.-A.I.); (E.T.)
| | - Hildegard Herman
- “Aurel Ardelean” Institute of Life Sciences, ”Vasile Goldiș” Western University of Arad, 310025 Arad, Romania; (H.H.); (S.G.); (C.B.)
| | - Sami Gharbia
- “Aurel Ardelean” Institute of Life Sciences, ”Vasile Goldiș” Western University of Arad, 310025 Arad, Romania; (H.H.); (S.G.); (C.B.)
| | - Cornel Baltă
- “Aurel Ardelean” Institute of Life Sciences, ”Vasile Goldiș” Western University of Arad, 310025 Arad, Romania; (H.H.); (S.G.); (C.B.)
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, ”Vasile Goldiș” Western University of Arad, 310025 Arad, Romania; (H.H.); (S.G.); (C.B.)
- Correspondence: (S.D.); (A.H.)
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050663 Bucharest, Romania; (M.V.Ș.); (S.-R.N.); (M.C.)
- The Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050663 Bucharest, Romania
| |
Collapse
|
8
|
Phuagkhaopong S, Mendes L, Müller K, Wobus M, Bornhäuser M, Carswell HVO, Duarte IF, Seib FP. Silk Hydrogel Substrate Stress Relaxation Primes Mesenchymal Stem Cell Behavior in 2D. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30420-30433. [PMID: 34170674 PMCID: PMC8289244 DOI: 10.1021/acsami.1c09071] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/08/2021] [Indexed: 05/03/2023]
Abstract
Tissue-mimetic silk hydrogels are being explored for diverse healthcare applications, including stem cell delivery. However, the impact of stress relaxation of silk hydrogels on human mesenchymal stem cell (MSC) biology is poorly defined. The aim of this study was to fabricate silk hydrogels with tuned mechanical properties that allowed the regulation of MSC biology in two dimensions. The silk content and stiffness of both elastic and viscoelastic silk hydrogels were kept constant to permit direct comparisons. Gene expression of IL-1β, IL-6, LIF, BMP-6, BMP-7, and protein tyrosine phosphatase receptor type C were substantially higher in MSCs cultured on elastic hydrogels than those on viscoelastic hydrogels, whereas this pattern was reversed for insulin, HNF-1A, and SOX-2. Protein expression was also mechanosensitive and the elastic cultures showed strong activation of IL-1β signaling in response to hydrogel mechanics. An elastic substrate also induced higher consumption of glucose and aspartate, coupled with a higher secretion of lactate, than was observed in MSCs grown on viscoelastic substrate. However, both silk hydrogels changed the magnitude of consumption of glucose, pyruvate, glutamine, and aspartate, and also metabolite secretion, resulting in an overall lower metabolic activity than that found in control cells. Together, these findings describe how stress relaxation impacts the overall biology of MSCs cultured on silk hydrogels.
Collapse
Affiliation(s)
- Suttinee Phuagkhaopong
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K.
| | - Luís Mendes
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Katrin Müller
- University
Hospital Carl Gustav Carus, Technical University Dresden, Dresden 01307, Germany
| | - Manja Wobus
- University
Hospital Carl Gustav Carus, Technical University Dresden, Dresden 01307, Germany
| | - Martin Bornhäuser
- University
Hospital Carl Gustav Carus, Technical University Dresden, Dresden 01307, Germany
- Center
for Regenerative Therapies Dresden (CRTD), Technical University Dresden, Dresden 01307, Germany
| | - Hilary V. O. Carswell
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K.
| | - Iola F. Duarte
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - F. Philipp Seib
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K.
- EPSRC
Future Manufacturing Research Hub for Continuous Manufacturing and
Advanced Crystallisation (CMAC), University
of Strathclyde, Technology and Innovation Centre, Glasgow G1 1RD, U.K.
- Leibniz
Institute of Polymer Research Dresden, Max
Bergmann Center of Biomaterials Dresden, Dresden 01069, Germany
| |
Collapse
|
9
|
Divya Nataraj, Saripalla DD, Kamath A, Aramwit P, Reddy N. Extraction and Characterization of Proteins from Castor Oil Meal for Medical Applications. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x21040064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
In Vitro Interaction of Doxorubicin-Loaded Silk Sericin Nanocarriers with MCF-7 Breast Cancer Cells Leads to DNA Damage. Polymers (Basel) 2021; 13:polym13132047. [PMID: 34206674 PMCID: PMC8271558 DOI: 10.3390/polym13132047] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/15/2022] Open
Abstract
In this paper, Bombyx mori silk sericin nanocarriers with a very low size range were obtained by nanoprecipitation. Sericin nanoparticles were loaded with doxorubicin, and they were considered a promising tool for breast cancer therapy. The chemistry, structure, morphology, and size distribution of nanocarriers were investigated by Fourier transformed infrared spectroscopy (FTIR–ATR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and dynamic light scattering (DLS). Morphological investigation and DLS showed the formation of sericin nanoparticles in the 25–40 nm range. FTIR chemical characterization showed specific interactions of protein–doxorubicin–enzymes with a high influence on the drug delivery process and release behavior. The biological investigation via breast cancer cell line revealed a high activity of nanocarriers in cancer cells by inducing significant DNA damage.
Collapse
|
11
|
Three-Dimensional Printing of Hydroxyapatite Composites for Biomedical Application. CRYSTALS 2021. [DOI: 10.3390/cryst11040353] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydroxyapatite (HA) and HA-based nanocomposites have been recognized as ideal biomaterials in hard tissue engineering because of their compositional similarity to bioapatite. However, the traditional HA-based nanocomposites fabrication techniques still limit the utilization of HA in bone, cartilage, dental, applications, and other fields. In recent years, three-dimensional (3D) printing has been shown to provide a fast, precise, controllable, and scalable fabrication approach for the synthesis of HA-based scaffolds. This review therefore explores available 3D printing technologies for the preparation of porous HA-based nanocomposites. In the present review, different 3D printed HA-based scaffolds composited with natural polymers and/or synthetic polymers are discussed. Furthermore, the desired properties of HA-based composites via 3D printing such as porosity, mechanical properties, biodegradability, and antibacterial properties are extensively explored. Lastly, the applications and the next generation of HA-based nanocomposites for tissue engineering are discussed.
Collapse
|
12
|
Guérin LP, Le-Bel G, Desjardins P, Couture C, Gillard E, Boisselier É, Bazin R, Germain L, Guérin SL. The Human Tissue-Engineered Cornea (hTEC): Recent Progress. Int J Mol Sci 2021; 22:ijms22031291. [PMID: 33525484 PMCID: PMC7865732 DOI: 10.3390/ijms22031291] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Each day, about 2000 U.S. workers have a job-related eye injury requiring medical treatment. Corneal diseases are the fifth cause of blindness worldwide. Most of these diseases can be cured using one form or another of corneal transplantation, which is the most successful transplantation in humans. In 2012, it was estimated that 12.7 million people were waiting for a corneal transplantation worldwide. Unfortunately, only 1 in 70 patients received a corneal graft that same year. In order to provide alternatives to the shortage of graftable corneas, considerable progress has been achieved in the development of living corneal substitutes produced by tissue engineering and designed to mimic their in vivo counterpart in terms of cell phenotype and tissue architecture. Most of these substitutes use synthetic biomaterials combined with immortalized cells, which makes them dissimilar from the native cornea. However, studies have emerged that describe the production of tridimensional (3D) tissue-engineered corneas using untransformed human corneal epithelial cells grown on a totally natural stroma synthesized by living corneal fibroblasts, that also show appropriate histology and expression of both extracellular matrix (ECM) components and integrins. This review highlights contributions from laboratories working on the production of human tissue-engineered corneas (hTECs) as future substitutes for grafting purposes. It overviews alternative models to the grafting of cadaveric corneas where cell organization is provided by the substrate, and then focuses on their 3D counterparts that are closer to the native human corneal architecture because of their tissue development and cell arrangement properties. These completely biological hTECs are therefore very promising as models that may help understand many aspects of the molecular and cellular mechanistic response of the cornea toward different types of diseases or wounds, as well as assist in the development of novel drugs that might be promising for therapeutic purposes.
Collapse
Affiliation(s)
- Louis-Philippe Guérin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Gaëtan Le-Bel
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Pascale Desjardins
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Camille Couture
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Elodie Gillard
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Élodie Boisselier
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Richard Bazin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Lucie Germain
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Sylvain L. Guérin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-682-7565
| |
Collapse
|
13
|
Boonpavanitchakul K, Bast LK, Bruns N, Magaraphan R. Silk Sericin-Polylactide Protein-Polymer Conjugates as Biodegradable Amphiphilic Materials and Their Application in Drug Release Systems. Bioconjug Chem 2020; 31:2312-2324. [PMID: 32927943 DOI: 10.1021/acs.bioconjchem.0c00399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Silk sericin (SS) is a byproduct of silk production. In order to transform it into value-added products, sericin can be used as a biodegradable and pH-responsive building block in drug delivery materials. To this end, amphiphilic substances were synthesized via the conjugation of hydrophobic polylactide (PLA) to the hydrophilic sericin using a bis-aryl hydrazone linker. PLA was esterified with a terephthalaldehydic acid to obtain aromatic aldehyde terminated PLA (PLA-CHO). In addition, lysine groups of SS were modified with the linker succinimidyl-6-hydrazino-nicotinamide (S-HyNic). Then, both macromolecules were mixed to form the amphipilic protein-polymer conjugate in buffer-DMF solution. The formation of bis-aryl hydrazone linkages was confirmed and quantified by UV-vis spectroscopy. SS-PLA conjugates self-assembled in water into spherical multicompartment micelles with a diameter of around 100 nm. Doxorubicin (DOX) was selected as a model drug for studying the pH-dependent drug release from SS-PLA nanoparticles. The release rate of the encapsulated drug was slower than that of the free drug and dependent on pH, faster at pH 5.0, and it resulted in a larger cumulative amount of drug released than at physiological pH of 7.4. The SS-PLA conjugate of high PLA branches showed smaller particle size and lower loading capacity than the one with low PLA branches. Both SS-PLA conjugates had negligible cytotoxicity, whereas after loading with DOX, the SS-PLA micelles were highly toxic for the human liver carcinoma immortalized cell line HepG2. Therefore, the SS-based biodegradable amphiphilic material showed great potential as a drug carrier for cancer therapy.
Collapse
Affiliation(s)
| | - Livia K Bast
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland.,Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Nico Bruns
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland.,Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Rathanawan Magaraphan
- The Petroleum and Petrochemical College, Chulalongkorn University, Phayathai, Bangkok, 10330, Thailand.,Polymer Processing and Polymer Nanomaterials Research Unit, Chulalongkorn University, Phayathai, Bangkok, 10330. Thailand.,Green Materials for Industrial Application Research Unit, Faculty of Science, Chulalongkorn University, Phayathai, Bangkok, 10330, Thailand
| |
Collapse
|
14
|
Hybrid Spider Silk with Inorganic Nanomaterials. NANOMATERIALS 2020; 10:nano10091853. [PMID: 32947954 PMCID: PMC7559941 DOI: 10.3390/nano10091853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 11/17/2022]
Abstract
High-performance functional biomaterials are becoming increasingly requested. Numerous natural and artificial polymers have already demonstrated their ability to serve as a basis for bio-composites. Spider silk offers a unique combination of desirable aspects such as biocompatibility, extraordinary mechanical properties, and tunable biodegradability, which are superior to those of most natural and engineered materials. Modifying spider silk with various inorganic nanomaterials with specific properties has led to the development of the hybrid materials with improved functionality. The purpose of using these inorganic nanomaterials is primarily due to their chemical nature, enhanced by large surface areas and quantum size phenomena. Functional properties of nanoparticles can be implemented to macro-scale components to produce silk-based hybrid materials, while spider silk fibers can serve as a matrix to combine the benefits of the functional components. Therefore, it is not surprising that hybrid materials based on spider silk and inorganic nanomaterials are considered extremely promising for potentially attractive applications in various fields, from optics and photonics to tissue regeneration. This review summarizes and discusses evidence of the use of various kinds of inorganic compounds in spider silk modification intended for a multitude of applications. It also provides an insight into approaches for obtaining hybrid silk-based materials via 3D printing.
Collapse
|
15
|
Sahoo JK, Choi J, Hasturk O, Laubach I, Descoteaux ML, Mosurkal S, Wang B, Zhang N, Kaplan DL. Silk degumming time controls horseradish peroxidase-catalyzed hydrogel properties. Biomater Sci 2020; 8:4176-4185. [PMID: 32608410 PMCID: PMC7390697 DOI: 10.1039/d0bm00512f] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydrogels provide promising applications in tissue engineering and regenerative medicine, with silk fibroin (SF) offering biocompatibility, biodegradability and tunable mechanical properties. The molecular weight (MW) distribution of SF chains varies from ∼80 to 400 kDa depending on the extraction and purification process utilized to prepare the protein polymer. Here, we report a fundamental study on the effect of different silk degumming (extraction) time (DT) on biomaterial properties of enzymatically crosslinked hydrogels, including secondary structure, mechanical stiffness, in vitro degradation, swelling/contraction, optical transparency and cell behaviour. The results indicate that DT plays a crucial role in determining material properties of the hydrogel; decrease in DT increases β-sheet (crystal) formation and mechanical stiffness while decreasing degradation rate and optical transparency. The findings on the relationships between properties of silk hydrogels and DT should facilitate the more rational design of silk-based hydrogel biomaterials to match properties needed for diverse purpose in biomedical engineering.
Collapse
Affiliation(s)
- Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - Jaewon Choi
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - Onur Hasturk
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - Isabel Laubach
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - Marc L Descoteaux
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - Shreyas Mosurkal
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - Boyang Wang
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - Nina Zhang
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| |
Collapse
|
16
|
Development, characterization and evaluation of the biocompatibility of catechol crosslinked horsegram protein films. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Siavashani AZ, Mohammadi J, Rottmar M, Senturk B, Nourmohammadi J, Sadeghi B, Huber L, Maniura-Weber K. Silk fibroin/sericin 3D sponges: The effect of sericin on structural and biological properties of fibroin. Int J Biol Macromol 2020; 153:317-326. [DOI: 10.1016/j.ijbiomac.2020.02.316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/16/2020] [Accepted: 02/26/2020] [Indexed: 12/19/2022]
|
18
|
Gallo N, Lunetti P, Bettini S, Barca A, Madaghiele M, Valli L, Capobianco L, Sannino A, Salvatore L. Assessment of physico-chemical and biological properties of sericin-collagen substrates for PNS regeneration. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1725755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Paola Lunetti
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Simona Bettini
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Amilcare Barca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Marta Madaghiele
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Ludovico Valli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Luca Salvatore
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| |
Collapse
|
19
|
Miguel GA, Álvarez-López C. Extraction and antioxidant activity of sericin, a protein from silk. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2020. [DOI: 10.1590/1981-6723.05819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Abstract Sericin is a globular protein that represents 20% to 30% of the silk fiber from Bombyx mori silkworm cocoon. This protein is usually removed from the raw fiber and discarded by silk producers, a process known as degumming. However, sericin possesses significant biological properties that allows its application in various fields. The antioxidant activity is one of its most relevant benefits. Several authors have reported its anti-tyrosinase activity, lipid peroxidation inhibition and free radical neutralization. The antioxidant potential of sericin protein varies according to the extraction method used. Even though a wide variety of extraction techniques have been studied, simple technics including water at high temperature have exhibited efficient results. Furthermore, this method does not interfere with the safety of sericin for subsequent applications in food.
Collapse
|
20
|
Frydrych M, Greenhalgh A, Vollrath F. Artificial spinning of natural silk threads. Sci Rep 2019; 9:15428. [PMID: 31659185 PMCID: PMC6817873 DOI: 10.1038/s41598-019-51589-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/27/2019] [Indexed: 01/28/2023] Open
Abstract
Silk producing arthropods spin solid fibres from an aqueous protein feedstock apparently relying on the complex structure of the silk protein and its controlled aggregation by shear forces, alongside biochemical changes. This flow-induced phase-transition of the stored native silk molecules is irreversible, environmentally sound and remarkably energy efficient. The process seemingly relies on a self-assembling, fibrillation process. Here we test this hypothesis by biomimetically spinning a native-based silk feedstock, extracted by custom processes, into silk fibres that equal their natural models' mechanical properties. Importantly, these filaments, which featured cross-section morphologies ranged from large crescent-like to small ribbon-like shapes, also had the slender cross-sectional areas of native fibres and their hierarchical nanofibrillar structures. The modulation of the post-draw conditions directly affected mechanical properties, correlated with the extent of fibre crystallinity, i.e. degree of molecular order. We believe our study contributes significantly to the understanding and development of artificial silks by demonstrating successful biomimetic spinning relies on appropriately designed feedstock properties. In addition, our study provides inspiration for low-energy routes to novel synthetic polymers.
Collapse
Affiliation(s)
- Martin Frydrych
- Department of Zoology, University of Oxford, Mansfield Road, Oxford, OX1 3SZ, United Kingdom
| | - Alexander Greenhalgh
- Department of Zoology, University of Oxford, Mansfield Road, Oxford, OX1 3SZ, United Kingdom
| | - Fritz Vollrath
- Department of Zoology, University of Oxford, Mansfield Road, Oxford, OX1 3SZ, United Kingdom.
| |
Collapse
|
21
|
Chen Z, You J, Liu X, Cooper S, Hodge C, Sutton G, Crook JM, Wallace GG. Biomaterials for corneal bioengineering. ACTA ACUST UNITED AC 2018; 13:032002. [PMID: 29021411 DOI: 10.1088/1748-605x/aa92d2] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Corneal transplantation is an important surgical treatment for many common corneal diseases. However, a worldwide shortage of tissue from suitable corneal donors has meant that many people are not able to receive sight-restoring operations. In addition, rejection is a major cause of corneal transplant failure. Bioengineering corneal tissue has recently gained widespread attention. In order to facilitate corneal regeneration, a range of materials is currently being investigated. The ideal substrate requires sufficient tectonic durability, biocompatibility with cultured cellular elements, transparency, and perhaps biodegradability and clinical compliance. This review considers the anatomy and function of the native cornea as a precursor to evaluating a variety of biomaterials for corneal regeneration including key characteristics for optimal material form and function. The integration of appropriate cells with the most appropriate biomaterials is also discussed. Taken together, the information provided offers insight into the requirements for fabricating synthetic and semisynthetic corneas for in vitro modeling of tissue development and disease, pharmaceutical screening, and in vivo application for regenerative medicine.
Collapse
Affiliation(s)
- Zhi Chen
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, New South Wales 2519, Australia
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Silk Fibroin-Based Scaffold for Bone Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1077:371-387. [PMID: 30357699 DOI: 10.1007/978-981-13-0947-2_20] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Regeneration of diseased or damaged skeletal tissues is one of the challenge that needs to be solved. Although there have been many bone tissue engineering developed, scaffold-based tissue engineering complement the conventional treatment for large bone by completing biological and functional environment. Among many materials, silk fibroin (SF) is one of the favorable material for applications in bone tissue engineering scaffolding. SF is a fibrous protein mainly extracted from Bombyx mori. and spiders. SF has been used as a biomaterial for bone graft by its unique mechanical properties, controllable biodegradation rate and high biocompatibility. Moreover, SF can be processed using conventional and advanced biofabrication methods to form various scaffold types such as sponges, mats, hydrogels and films. This review discusses about recent application and advancement of SF as a biomaterial.
Collapse
|
23
|
Rocha LK, Favaro LI, Rios AC, Silva EC, Silva WF, Stigliani TP, Guilger M, Lima R, Oliveira JM, Aranha N, Tubino M, Vila MM, Balcão VM. Sericin from Bombyx mori cocoons. Part I: Extraction and physicochemical-biological characterization for biopharmaceutical applications. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.06.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Chirila TV, Suzuki S, Papolla C. A comparative investigation of Bombyx mori silk fibroin hydrogels generated by chemical and enzymatic cross-linking. Biotechnol Appl Biochem 2017; 64:771-781. [PMID: 28220960 DOI: 10.1002/bab.1552] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/24/2016] [Indexed: 11/05/2022]
Abstract
Fibroin, the major proteinaceous component of the silk fiber produced by larvae of the domesticated silk moth (Bombyx mori), has been widely investigated as a biomaterial for potential applications in tissue engineering and regenerative medicine. Following sol-gel transition, silk fibroin solutions can generate hydrogels that present certain advantages when employed as biomaterials, especially if they are cross-linked. The subject of this study was the self-cross-linking of silk fibroin through a process induced by the enzyme horseradish peroxidase (HRP) in the presence of hydrogen peroxide, a method only recently proposed and scarcely reported. The hydrogels were prepared either by physical cross-linking, by cross-linking with a natural compound (genipin), or by enzymatic cross-linking. The products were comparatively characterized in regard to their synthesis and background chemical aspects, physical and optical properties, mechanical properties, secondary structure, swelling/deswelling behavior, enzymatic degradation, and compatibility as substrates for cell adhesion and proliferation. The study confirmed the advantages of the HRP-induced cross-linking, which included considerably shorter gelation times, enhanced elasticity of the resulting hydrogels, and improved cytocompatibility. Discrepancies between certain results of this investigation and those reported previously were discussed in detail.
Collapse
Affiliation(s)
- Traian V Chirila
- Queensland Eye Institute, South Brisbane, Australia.,Science & Engineering Faculty, Queensland University of Technology, Brisbane, Australia.,Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, St Lucia, Australia.,Faculty of Medicine & Biomedical Sciences, The University of Queensland, Herston, Australia.,Faculty of Science, The University of Western Australia, Crawley, Australia
| | - Shuko Suzuki
- Queensland Eye Institute, South Brisbane, Australia
| | - Chloé Papolla
- Polytech Marseille, Department of Biomedical Engineering, Aix-Marseille University, Site Luminy, Marseille, France
| |
Collapse
|
25
|
Abstract
The study aimed to investigate the effects of silk fibroin in a mouse model of dry eye. The experimental dry eye mouse model was developed using more than twelve-weeks-old NOD.B10.H2b mice exposing them to 30–40% ambient humidity and injecting them with scopolamine hydrobromide for 10 days. Tear production and corneal irregularity score were measured by the instillation of phosphate buffered saline or silk fibroin. Corneal detachment and conjunctival goblet cell density were observed by hematoxylin and eosin or periodic acid Schiff staining in the cornea or conjunctiva. The expression of inflammatory markers was detected by immunohistochemistry in the lacrimal gland. The silk group tear production was increased, and corneal smoothness was improved. The corneal epithelial cells and conjunctival goblet cells were recovered in the silk groups. The expression of inflammatory factors was inhibited in the lacrimal gland of the silk group. These results show that silk fibroin improved the cornea, conjunctiva, and lacrimal gland in the mouse model of dry eye. These findings suggest that silk fibroin has anti-inflammatory effects in the experimental models of dry eye.
Collapse
|
26
|
Suzuki S, Chirila TV, Edwards GA. Characterization of Bombyx mori and Antheraea pernyi silk fibroins and their blends as potential biomaterials. Prog Biomater 2016; 5:193-198. [PMID: 27995586 PMCID: PMC5301461 DOI: 10.1007/s40204-016-0057-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/17/2016] [Indexed: 01/26/2023] Open
Abstract
Fibroin proteins isolated from the cocoons of certain silk-producing insects have been widely investigated as biomaterials for tissue engineering applications. In this study, fibroins were isolated from cocoons of domesticated Bombyx mori (BM) and wild Antheraea pernyi (AP) silkworms following a degumming process. The object of this study was to obtain an assessment on certain properties of these fibroins in order that a concept might be had regarding the feasibility of using their blends as biomaterials. Membranes, 10–20 μm thick, which are water-insoluble, flexible and transparent, were prepared from pure fibroins and from their blends, and subjected to water vapor annealing in vacuum, with the aim of providing materials sufficiently strong for manipulation. The resulting materials were characterized by electrophoretic analysis and infrared spectrometry. The tensile properties of the membranes were measured and correlated with the results of infrared analysis. At low concentrations of any of the two fibroins, the mechanical characteristics of the membranes appeared to be adequate for surgical manipulation, as the modulus and strength surpassed those of BM silk fibroin alone. It was noticed that high concentrations of AP silk fibroin led to a significant reduction in the elasticity of membranes.
Collapse
Affiliation(s)
- Shuko Suzuki
- Queensland Eye Institute, South Brisbane, QLD, 4101, Australia
| | - Traian V Chirila
- Queensland Eye Institute, South Brisbane, QLD, 4101, Australia. .,Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia. .,Faculty of Medicine and Biomedical Sciences, The University of Queensland (UQ), Herston, QLD, 4029, Australia. .,Australian Institute of Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), St Lucia, QLD, 4072, Australia. .,Faculty of Science, The University of Western Australia (UWA), Crawley, WA, 6009, Australia.
| | - Grant A Edwards
- Australian Institute of Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), St Lucia, QLD, 4072, Australia
| |
Collapse
|
27
|
Further development of silk sericin as a biomaterial: comparative investigation of the procedures for its isolation from Bombyx mori silk cocoons. Prog Biomater 2016; 5:135-145. [PMID: 27525204 PMCID: PMC4965490 DOI: 10.1007/s40204-016-0052-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/13/2016] [Indexed: 12/12/2022] Open
Abstract
There is significant research dedicated to fibroin and sericin, the two major proteinaceous components of the silk threads produced by the domesticated silkworm, Bombyx mori. While fibroin is accepted as an established biomaterial, sericin (BMSS) has been largely neglected in this respect on the account of a hypothetical allergenic activity. Research over the past decade, including our previous study (Prog Biomater 2:14, 2013), demonstrated the biocompatibility of sericin and feasibility of its use as a biomaterial. However, the current procedures for isolating BMSS from the raw silk cocoons can only provide degraded proteins, where the size and distribution of their molecular masses are significantly altered. Based on the plausible assumption that such effects can have a negative impact on the properties of sericin as a biomaterial, in this study we investigated comparatively four different extraction procedures in order to find the method that would cause the least hydrothermal degradation of BMSS. The products resulting from commonly used procedures (extraction in boiling water, alkaline extraction, and extraction in autoclave) were compared to those resulting from aqueous extraction in mild conditions as described a long time ago by Anderlini. The molecular mass distribution in BMSS resulting from each procedure was examined by electrophoretic analysis performed on sodium dodecyl sulphate-polyacrylamide gel (SDS-PAGE), while the conformational changes pertaining to secondary structure of BMSS were evaluated by Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectrometry. The electrophoretograms indicated that the aqueous extraction in mild conditions conducted at 50 °C for durations up to 4 weeks, with/without stirring, afforded the least degraded BMSS. The infrared spectrometric analysis showed that BMSS resulting from the mild extraction method contained predominantly β-sheet conformations, while the more degradative methods (alkaline, autoclave) led to BMSS where the random-coil conformations were preferential. The long-duration aqueous extraction at 50 °C (but not at 60 °C) appeared as a valid option for obtaining BMSS products where the hydrothermally induced fragmentation of the polypeptidic components is minimized.
Collapse
|
28
|
Chomachayi MD, Solouk A, Mirzadeh H. Electrospun silk-based nanofibrous scaffolds: fiber diameter and oxygen transfer. Prog Biomater 2016; 5:71-80. [PMID: 26949594 PMCID: PMC4764634 DOI: 10.1007/s40204-016-0046-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/07/2016] [Indexed: 01/19/2023] Open
Abstract
In this study, silk fibroin was extracted from cocoons of silkworms and fabricated into nonwoven mats by electrospinning method. A new model based on the group method of data handling (GMDH) and artificial neural network (ANN) was developed for estimation of the average diameter of electrospun silk fibroin nanofibers. In this regard, concentration, flow rate, voltage, distance, and speed of collector were used as input parameters and average diameter of the fibers was considered as output parameter. Two models were capable to estimate average diameter of fibers with good accuracy. The average absolute relative deviation for GMDH and ANN models was equal to 3.56 and 2.28 %, respectively. Furthermore, due to importance of oxygen delivery to site of injury to promote wound healing, continuity equation for mass transport was employed for prediction of oxygen profile in the system containing wound dressing and skin. The result showed that our prepared wound dressing is capable to pass the oxygen completely to the skin layer and is not acting as a barrier for oxygen delivery to wound site. Since average nanofibers diameter can influence the mat physical, mechanical and biological properties then this model may serve as a useful guide to obtain tailor made and uniform silk nanofibers at various combinations of process variables.
Collapse
Affiliation(s)
- Masoud Dadras Chomachayi
- Polymer Engineering and Color Technology Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Atefeh Solouk
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Hamid Mirzadeh
- Polymer Engineering and Color Technology Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
29
|
Melke J, Midha S, Ghosh S, Ito K, Hofmann S. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater 2016; 31:1-16. [PMID: 26360593 DOI: 10.1016/j.actbio.2015.09.005] [Citation(s) in RCA: 456] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/24/2015] [Accepted: 09/06/2015] [Indexed: 01/08/2023]
Abstract
Silk fibroin (SF) is a fibrous protein which is produced mainly by silkworms and spiders. Its unique mechanical properties, tunable biodegradation rate and the ability to support the differentiation of mesenchymal stem cells along the osteogenic lineage, have made SF a favorable scaffold material for bone tissue engineering. SF can be processed into various scaffold forms, combined synergistically with other biomaterials to form composites and chemically modified, which provides an impressive toolbox and allows SF scaffolds to be tailored to specific applications. This review discusses and summarizes recent advancements in processing SF, focusing on different fabrication and functionalization methods and their application to grow bone tissue in vitro and in vivo. Potential areas for future research, current challenges, uncertainties and gaps in knowledge are highlighted. STATEMENT OF SIGNIFICANCE Silk fibroin is a natural biomaterial with remarkable biomedical and mechanical properties which make it favorable for a broad range of bone tissue engineering applications. It can be processed into different scaffold forms, combined synergistically with other biomaterials to form composites and chemically modified which provides a unique toolbox and allows silk fibroin scaffolds to be tailored to specific applications. This review discusses and summarizes recent advancements in processing silk fibroin, focusing on different fabrication and functionalization methods and their application to grow bone tissue in vitro and in vivo. Potential areas for future research, current challenges, uncertainties and gaps in knowledge are highlighted.
Collapse
|
30
|
Partlow BP, Tabatabai AP, Leisk GG, Cebe P, Blair DL, Kaplan DL. Silk Fibroin Degradation Related to Rheological and Mechanical Properties. Macromol Biosci 2016; 16:666-75. [DOI: 10.1002/mabi.201500370] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/29/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Benjamin P. Partlow
- Department of Biomedical Engineering; Tufts University; 4 Colby St. Medford MA 02155 USA
| | - A. Pasha Tabatabai
- Department of Physics Institute for Soft Matter Synthesis and Metrology; Georgetown University; 506 Reiss Science Building 37th and O Streets N. W. Washington, D.C. 20057 USA
| | - Gary G. Leisk
- Department of Mechanical Engineering; Tufts University; 200 College Ave. Medford MA 02155 USA
| | - Peggy Cebe
- Department of Physics and Astronomy; Tufts University; 574 Boston Ave. Medford MA 02155 USA
| | - Daniel L. Blair
- Department of Physics Institute for Soft Matter Synthesis and Metrology; Georgetown University; 506 Reiss Science Building 37th and O Streets N. W. Washington, D.C. 20057 USA
| | - David L. Kaplan
- Department of Biomedical Engineering; Tufts University; 4 Colby St. Medford MA 02155 USA
| |
Collapse
|
31
|
Biazar E, Baradaran-Rafii A, Heidari-keshel S, Tavakolifard S. Oriented nanofibrous silk as a natural scaffold for ocular epithelial regeneration. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:1139-51. [DOI: 10.1080/09205063.2015.1078930] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Suzuki S, Dawson RA, Chirila TV, Shadforth AMA, Hogerheyde TA, Edwards GA, Harkin DG. Treatment of Silk Fibroin with Poly(ethylene glycol) for the Enhancement of Corneal Epithelial Cell Growth. J Funct Biomater 2015; 6:345-66. [PMID: 26034883 PMCID: PMC4493516 DOI: 10.3390/jfb6020345] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/26/2015] [Accepted: 05/26/2015] [Indexed: 12/14/2022] Open
Abstract
A silk protein, fibroin, was isolated from the cocoons of the domesticated silkworm (Bombyx mori) and cast into membranes to serve as freestanding templates for tissue-engineered corneal cell constructs to be used in ocular surface reconstruction. In this study, we sought to enhance the attachment and proliferation of corneal epithelial cells by increasing the permeability of the fibroin membranes and the topographic roughness of their surface. By mixing the fibroin solution with poly(ethylene glycol) (PEG) of molecular weight 300 Da, membranes were produced with increased permeability and with topographic patterns generated on their surface. In order to enhance their mechanical stability, some PEG-treated membranes were also crosslinked with genipin. The resulting membranes were thoroughly characterized and compared to the non-treated membranes. The PEG-treated membranes were similar in tensile strength to the non-treated ones, but their elastic modulus was higher and elongation lower, indicating enhanced rigidity. The crosslinking with genipin did not induce a significant improvement in mechanical properties. In cultures of a human-derived corneal epithelial cell line (HCE-T), the PEG treatment of the substratum did not improve the attachment of cells and it enhanced only slightly the cell proliferation in the longer term. Likewise, primary cultures of human limbal epithelial cells grew equally well on both non-treated and PEG-treated membranes, and the stratification of cultures was consistently improved in the presence of an underlying culture of irradiated 3T3 feeder cells, irrespectively of PEG-treatment. Nevertheless, the cultures grown on the PEG-treated membranes in the presence of feeder cells did display a higher nuclear-to-cytoplasmic ratio suggesting a more proliferative phenotype. We concluded that while the treatment with PEG had a significant effect on some structural properties of the B. mori silk fibroin (BMSF) membranes, there were minimal gains in the performance of these materials as a substratum for corneal epithelial cell growth. The reduced mechanical stability of freestanding PEG-treated membranes makes them a less viable choice than the non-treated membranes.
Collapse
Affiliation(s)
- Shuko Suzuki
- Queensland Eye Institute, South Brisbane, Queensland 4101, Australia.
| | - Rebecca A Dawson
- Queensland Eye Institute, South Brisbane, Queensland 4101, Australia.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4001, Australia.
| | - Traian V Chirila
- Queensland Eye Institute, South Brisbane, Queensland 4101, Australia.
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia.
- Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, Queensland 4029, Australia.
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.
- Faculty of Science, University of Western Australia, Crawley, Western Australia 6009, Australia.
| | - Audra M A Shadforth
- Queensland Eye Institute, South Brisbane, Queensland 4101, Australia.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4001, Australia.
| | - Thomas A Hogerheyde
- Queensland Eye Institute, South Brisbane, Queensland 4101, Australia.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4001, Australia.
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland 4059, Australia.
| | - Grant A Edwards
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Damien G Harkin
- Queensland Eye Institute, South Brisbane, Queensland 4101, Australia.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4001, Australia.
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland 4059, Australia.
| |
Collapse
|
33
|
Kola VSR, Renuka P, Madhav MS, Mangrauthia SK. Key enzymes and proteins of crop insects as candidate for RNAi based gene silencing. Front Physiol 2015; 6:119. [PMID: 25954206 PMCID: PMC4406143 DOI: 10.3389/fphys.2015.00119] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/31/2015] [Indexed: 11/23/2022] Open
Abstract
RNA interference (RNAi) is a mechanism of homology dependent gene silencing present in plants and animals. It operates through 21-24 nucleotides small RNAs which are processed through a set of core enzymatic machinery that involves Dicer and Argonaute proteins. In recent past, the technology has been well appreciated toward the control of plant pathogens and insects through suppression of key genes/proteins of infecting organisms. The genes encoding key enzymes/proteins with the great potential for developing an effective insect control by RNAi approach are actylcholinesterase, cytochrome P450 enzymes, amino peptidase N, allatostatin, allatotropin, tryptophan oxygenase, arginine kinase, vacuolar ATPase, chitin synthase, glutathione-S-transferase, catalase, trehalose phosphate synthase, vitellogenin, hydroxy-3-methylglutaryl coenzyme A reductase, and hormone receptor genes. Through various studies, it is demonstrated that RNAi is a reliable molecular tool which offers great promises in meeting the challenges imposed by crop insects with careful selection of key enzymes/proteins. Utilization of RNAi tool to target some of these key proteins of crop insects through various approaches is described here. The major challenges of RNAi based insect control such as identifying potential targets, delivery methods of silencing trigger, off target effects, and complexity of insect biology are very well illustrated. Further, required efforts to address these challenges are also discussed.
Collapse
Affiliation(s)
| | | | - Maganti Sheshu Madhav
- Department of Biotechnology, Directorate of Rice Research, ICAR-Indian Institute of Rice ResearchHyderabad, India
| | - Satendra K. Mangrauthia
- Department of Biotechnology, Directorate of Rice Research, ICAR-Indian Institute of Rice ResearchHyderabad, India
| |
Collapse
|
34
|
Kim SY, Wong AHM, Abou Neel EA, Chrzanowski W, Chan HK. The future perspectives of natural materials for pulmonary drug delivery and lung tissue engineering. Expert Opin Drug Deliv 2014; 12:869-87. [DOI: 10.1517/17425247.2015.993314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|