1
|
Aschner M, Skalny AV, Santamaria A, Rocha JBT, Mansouri B, Tizabi Y, Madeddu R, Lu R, Lee E, Tinkov AA. Epigenetic Mechanisms of Aluminum-Induced Neurotoxicity and Alzheimer's Disease: A Focus on Non-Coding RNAs. Neurochem Res 2024; 49:2988-3005. [PMID: 39060769 DOI: 10.1007/s11064-024-04214-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/16/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Aluminum (Al) is known to induce neurotoxic effects, potentially contributing to Alzheimer's disease (AD) pathogenesis. Recent studies suggest that epigenetic modification may contribute to Al neurotoxicity, although the mechanisms are still debatable. Therefore, the objective of the present study was to summarize existing data on the involvement of epigenetic mechanisms in Al-induced neurotoxicity, especially AD-type pathology. Existing data demonstrate that Al exposure induces disruption in DNA methylation, histone modifications, and non-coding RNA expression in brains. Alterations in DNA methylation following Al exposure were shown to be mediated by changes in expression and activity of DNA methyltransferases (DNMTs) and ten-eleven translocation proteins (TETs). Al exposure was shown to reduce histone acetylation by up-regulating expression of histone deacetylases (HDACs) and impair histone methylation, ultimately contributing to down-regulation of brain-derived neurotrophic factor (BDNF) expression and activation of nuclear factor κB (NF-κB) signaling. Neurotoxic effects of Al exposure were also associated with aberrant expression of non-coding RNAs, especially microRNAs (miR). Al-induced patterns of miR expression were involved in development of AD-type pathology by increasing amyloid β (Aβ) production through up-regulation of Aβ precursor protein (APP) and β secretase (BACE1) expression (down-regulation of miR-29a/b, miR-101, miR-124, and Let-7c expression), increasing in neuroinflammation through NF-κB signaling (up-regulation of miR-9, miR-125b, miR-128, and 146a), as well as modulating other signaling pathways. Furthermore, reduced global DNA methylation, altered histone modification, and aberrant miRNA expression were associated with cognitive decline in Al-exposed subjects. However, further studies are required to evaluate the contribution of epigenetic mechanisms to Al-induced neurotoxicity and/or AD development.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Anatoly V Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Sovetskaya Str. 14, Yaroslavl, 150000, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow, 119146, Russia
| | - Abel Santamaria
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, 04960, Mexico
| | - Joao B T Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Borhan Mansouri
- Substance Abuse Prevention Research Center, Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, 20059, USA
| | - Roberto Madeddu
- Department of Biomedical Sciences-Histology, University of Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy
| | - Rongzu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Alexey A Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Sovetskaya Str. 14, Yaroslavl, 150000, Russia.
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow, 119146, Russia.
| |
Collapse
|
2
|
Doke R, Lamkhade GJ, Vinchurkar K, Singh S. Demystifying the Role of Neuroinflammatory Mediators as Biomarkers for Diagnosis, Prognosis, and Treatment of Alzheimer's Disease: A Review. ACS Pharmacol Transl Sci 2024; 7:2987-3003. [PMID: 39416969 PMCID: PMC11475310 DOI: 10.1021/acsptsci.4c00457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Neuroinflammatory mediators play a pivotal role in the pathogenesis of Alzheimer's Disease (AD), influencing its onset, progression, and severity. The precise mechanisms behind AD are still not fully understood, leading current treatments to focus mainly on managing symptoms rather than preventing or curing the condition. The amyloid and tau hypotheses are the most widely accepted explanations for AD pathology; however, they do not completely account for the neuronal degeneration observed in AD. Growing evidence underscores the crucial role of neuroinflammation in the pathology of AD. The neuroinflammatory hypothesis presents a promising new approach to understanding the mechanisms driving AD. This review examines the importance of neuroinflammatory biomarkers in the diagnosis, prognosis, and treatment of AD. It delves into the mechanisms underlying neuroinflammation in AD, highlighting the involvement of various mediators such as cytokines, chemokines, and ROS. Additionally, this review discusses the potential of neuroinflammatory biomarkers as diagnostic tools, prognostic indicators, and therapeutic targets for AD management. By understanding the intricate interplay between neuroinflammation and AD pathology, this review aims to help in the development of efficient diagnostic and treatment plans to fight this debilitating neurological condition. Furthermore, it elaborates recent advancements in neuroimaging techniques and biofluid analysis for the identification and monitoring of neuroinflammatory biomarkers in AD patients.
Collapse
Affiliation(s)
- Rohit
R. Doke
- Jaihind
College of Pharmacy, Vadgaon Sahani, Pune, Maharashtra 412401, India
| | | | - Kuldeep Vinchurkar
- Krishna
School of Pharmacy, Kiran and Pallavi Patel
Global University, Vadodara, Gujarat 391243, India
| | - Sudarshan Singh
- Office
of Research Administration, Chiang Mai University, Chaing Mai 50200, Thailand
- Faculty
of Pharmacy, Chiang Mai University, Chaing Mai 50200, Thailand
| |
Collapse
|
3
|
Ibacache JA, Espinoza M, Basualto-Díaz P, Pinto V, Modak B, Zapata P, Valenzuela B. Synthesis of 6-bromo-7-arylaminoisoquinoline-5,8-quinones and its effects on Piscirickettsia salmonis infection in vitro. JOURNAL OF FISH DISEASES 2024:e14014. [PMID: 39244704 DOI: 10.1111/jfd.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Among the most important aquaculture resources for our country, salmon and trout stand out. Their production has increased significantly in recent decades, making them two of the most valuable resources in economic terms. However, high aquaculture production has allowed many pathogens to proliferate, causing infectious diseases and significant production losses. Piscirickettsia salmonis is a gram-negative, facultative intracellular bacterium that is responsible for causing severe disease in a variety of salmonid fish species. Despite the significant impact of P. salmonis on aquaculture, effective treatments for this disease remain limited. Current prevention and control strategies often include antibiotics and vaccines. However, these treatments have shown varying degrees of efficacy. A promising approach involves synthesizing bioactive analog compounds with antibacterial properties. Quinones, secondary metabolites that are abundant in nature, have become a focal point of interest due to their diverse physiological activities, including antibiotic, insecticidal, antifungal, and anticancer properties. In this study, it is shown the synthesis of series 6-bromo-7-arylaminoisoquinoline-5,8-quinones, the characterization of these compounds using classical spectroscopic methods such as one-dimensional nuclear magnetic resonance (NMR), FT-IR (infrared), mass spectrometry, and the biological activity against Piscirickettsia salmonis. The brominated derivative compounds showed no cytotoxicity at any concentration evaluated. Furthermore, the infectivity of P. salmonis after treatment with the analog compounds indicated that derivatives methyl 6-bromo-7-((4-methoxyphenyl)amino)-1,3-dimethy-5,8-dioxo-5,8-dihydroisoquinoline-4-carboxylate (4b) and methyl 7-((4'-amino-[1,1'-biphenyl]-4-yl)amino)-6-bromo-1,3-dimethy-5,8-dioxo-5,8-dihydroisoquinoline-4-carboxylate (4g) reduced the bacterial load at 25 μg/mL concentration.
Collapse
Affiliation(s)
- Juana A Ibacache
- Organic Synthesis Laboratory, Environmental Sciences Department, Chemistry and Biology Faculty, University of Santiago of Chile, Santiago, Chile
| | - Mario Espinoza
- Organic Synthesis Laboratory, Environmental Sciences Department, Chemistry and Biology Faculty, University of Santiago of Chile, Santiago, Chile
| | - Paz Basualto-Díaz
- Biology Department, Aquatic Biotechnology Center, Chemistry and Biology Faculty, University of Santiago of Chile, Santiago, Chile
| | - Victoria Pinto
- Biology Department, Aquatic Biotechnology Center, Chemistry and Biology Faculty, University of Santiago of Chile, Santiago, Chile
| | - Brenda Modak
- Biology Department, Aquatic Biotechnology Center, Chemistry and Biology Faculty, University of Santiago of Chile, Santiago, Chile
| | - Paula Zapata
- Polymer Group, Environmental Sciences Department, Chemistry and Biology Faculty, University of Santiago of Chile, Santiago, Chile
| | - Beatriz Valenzuela
- Escuela de Tecnología Médica, Universidad Santo Tomás, Viña del Mar, Chile
| |
Collapse
|
4
|
Caradonna E, Nemni R, Bifone A, Gandolfo P, Costantino L, Giordano L, Mormone E, Macula A, Cuomo M, Difruscolo R, Vanoli C, Vanoli E, Ferrara F. The Brain-Gut Axis, an Important Player in Alzheimer and Parkinson Disease: A Narrative Review. J Clin Med 2024; 13:4130. [PMID: 39064171 PMCID: PMC11278248 DOI: 10.3390/jcm13144130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), are severe age-related disorders with complex and multifactorial causes. Recent research suggests a critical link between neurodegeneration and the gut microbiome, via the gut-brain communication pathway. This review examines the role of trimethylamine N-oxide (TMAO), a gut microbiota-derived metabolite, in the development of AD and PD, and investigates its interaction with microRNAs (miRNAs) along this bidirectional pathway. TMAO, which is produced from dietary metabolites like choline and carnitine, has been linked to increased neuroinflammation, protein misfolding, and cognitive decline. In AD, elevated TMAO levels are associated with amyloid-beta and tau pathologies, blood-brain barrier disruption, and neuronal death. TMAO can cross the blood-brain barrier and promote the aggregation of amyloid and tau proteins. Similarly, TMAO affects alpha-synuclein conformation and aggregation, a hallmark of PD. TMAO also activates pro-inflammatory pathways such as NF-kB signaling, exacerbating neuroinflammation further. Moreover, TMAO modulates the expression of various miRNAs that are involved in neurodegenerative processes. Thus, the gut microbiome-miRNA-brain axis represents a newly discovered mechanistic link between gut dysbiosis and neurodegeneration. MiRNAs regulate the key pathways involved in neuroinflammation, oxidative stress, and neuronal death, contributing to disease progression. As a direct consequence, specific miRNA signatures may serve as potential biomarkers for the early detection and monitoring of AD and PD progression. This review aims to elucidate the complex interrelationships between the gut microbiota, trimethylamine-N-oxide (TMAO), microRNAs (miRNAs), and the central nervous system, and the implications of these connections in neurodegenerative diseases. In this context, an overview of the current neuroradiology techniques available for studying neuroinflammation and of the animal models used to investigate these intricate pathologies will also be provided. In summary, a bulk of evidence supports the concept that modulating the gut-brain communication pathway through dietary changes, the manipulation of the microbiome, and/or miRNA-based therapies may offer novel approaches for implementing the treatment of debilitating neurological disorders.
Collapse
Affiliation(s)
- Eugenio Caradonna
- Integrated Laboratory Medicine Services, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (E.C.); (F.F.)
| | - Raffaello Nemni
- Unit of Neurology, Centro Diagnostico Italiano S.p.A., Milan Fondazione Crespi Spano, 20011 Milan, Italy;
- Nuclear Medicine Unit, Imaging Department, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (P.G.); (M.C.)
| | - Angelo Bifone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10124 Torino, Italy;
| | - Patrizia Gandolfo
- Nuclear Medicine Unit, Imaging Department, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (P.G.); (M.C.)
| | - Lucy Costantino
- Laboratory of Medical Genetics, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (L.C.); (L.G.)
| | - Luca Giordano
- Laboratory of Medical Genetics, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (L.C.); (L.G.)
| | - Elisabetta Mormone
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Anna Macula
- Centro Ricerche Bracco, Bracco Imaging S.p.A., Colleretto Giacosa, 10010 Turin, Italy;
- Department of Physics, University of Torino, 10124 Torino, Italy
| | - Mariarosa Cuomo
- Nuclear Medicine Unit, Imaging Department, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (P.G.); (M.C.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | | | - Camilla Vanoli
- Department of Clinical Psychology, Antioch University Los Angeles, Culver City, CA 90230, USA
| | - Emilio Vanoli
- School of Nursing, Cardiovascular Diseases, University of Pavia, 27100 Pavia, Italy;
| | - Fulvio Ferrara
- Integrated Laboratory Medicine Services, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (E.C.); (F.F.)
| |
Collapse
|
5
|
Bougea A, Angelopoulou E, Vasilopoulos E, Gourzis P, Papageorgiou S. Emerging Therapeutic Potential of Fluoxetine on Cognitive Decline in Alzheimer's Disease: Systematic Review. Int J Mol Sci 2024; 25:6542. [PMID: 38928248 PMCID: PMC11203451 DOI: 10.3390/ijms25126542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Fluoxetine, a commonly prescribed medication for depression, has been studied in Alzheimer's disease (AD) patients for its effectiveness on cognitive symptoms. The aim of this systematic review is to investigate the therapeutic potential of fluoxetine in cognitive decline in AD, focusing on its anti-degenerative mechanisms of action and clinical implications. According to PRISMA, we searched MEDLINE, up to 1 April 2024, for animal and human studies examining the efficacy of fluoxetine with regard to the recovery of cognitive function in AD. Methodological quality was evaluated using the ARRIVE tool for animal AD studies and the Cochrane tool for clinical trials. In total, 22 studies were analyzed (19 animal AD studies and 3 clinical studies). Fluoxetine promoted neurogenesis and enhanced synaptic plasticity in preclinical models of AD, through a decrease in Aβ pathology and increase in BDNF, by activating diverse pathways (such as the DAF-16-mediated, TGF-beta1, ILK-AKT-GSK3beta, and CREB/p-CREB/BDNF). In addition, fluoxetine has anti-inflammatory properties/antioxidant effects via targeting antioxidant Nrf2/HO-1 and hindering TLR4/NLRP3 inflammasome. Only three clinical studies showed that fluoxetine ameliorated the cognitive performance of people with AD; however, several methodological issues limited the generalizability of these results. Overall, the high-quality preclinical evidence suggests that fluoxetine may have neuroprotective, antioxidant, and anti-inflammatory effects in AD animal models. While more high-quality clinical research is needed to fully understand the mechanisms underlying these effects, fluoxetine is a promising potential treatment for AD patients. If future clinical trials confirm its anti-degenerative and neuroprotective effects, fluoxetine could offer a new therapeutic approach for slowing down the progression of AD.
Collapse
Affiliation(s)
- Anastasia Bougea
- 1st Department of Neurology, “Aiginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (S.P.)
| | - Efthalia Angelopoulou
- 1st Department of Neurology, “Aiginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (S.P.)
| | - Efthimios Vasilopoulos
- First Department of Psychiatry, “Aiginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.V.); (P.G.)
| | - Philippos Gourzis
- First Department of Psychiatry, “Aiginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.V.); (P.G.)
- Department of Psychiatry, University of Patras, 26504 Patras, Greece
| | - Sokratis Papageorgiou
- 1st Department of Neurology, “Aiginition” Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (S.P.)
| |
Collapse
|
6
|
Zhong S, Zhou Q, Yang J, Zhang Z, Zhang X, Liu J, Chang X, Wang H. Relationship between the cGAS-STING and NF-κB pathways-role in neurotoxicity. Biomed Pharmacother 2024; 175:116698. [PMID: 38713946 DOI: 10.1016/j.biopha.2024.116698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024] Open
Abstract
Neurotoxicity can cause a range of symptoms and disorders in humans, including neurodegenerative diseases, neurodevelopmental disorders, nerve conduction abnormalities, neuroinflammation, autoimmune disorders, and cognitive deficits. The cyclic guanosine-adenosine synthase (cGAS)-stimulator of interferon genes (STING) pathway and NF-κB pathway are two important signaling pathways involved in the innate immune response. The cGAS-STING pathway is activated by the recognition of intracellular DNA, which triggers the production of type I interferons and pro-inflammatory cytokines, such as tumor necrosis factor, IL-1β, and IL-6. These cytokines play a role in oxidative stress and mitochondrial dysfunction in neurons. The NF-κB pathway is activated by various stimuli, such as bacterial lipopolysaccharide, viral particle components, and neurotoxins. NF-κB activation may lead to the production of pro-inflammatory cytokines, which promote neuroinflammation and cause neuronal damage. A potential interaction exists between the cGAS-STING and NF-κB pathways, and NF-κB activation blocks STING degradation by inhibiting microtubule-mediated STING transport. This review examines the progress of research on the roles of these pathways in neurotoxicity and their interrelationships. Understanding the mechanisms of these pathways will provide valuable therapeutic insights for preventing and controlling neurotoxicity.
Collapse
Affiliation(s)
- Shiyin Zhong
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Qiongli Zhou
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Jirui Yang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Zhimin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Xin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Jingjing Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China.
| |
Collapse
|
7
|
Kazemi S, Safari S, Komaki S, Karimi SA, Golipoor Z, Komaki A. The effects of carvacrol and p-cymene on Aβ 1-42 -induced long-term potentiation deficit in male rats. CNS Neurosci Ther 2024; 30:e14459. [PMID: 37727020 PMCID: PMC10916422 DOI: 10.1111/cns.14459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/04/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
AIMS Alzheimer's disease (AD) is the most common type of dementia in which oxidative stress plays an important role. In this disease, learning and memory and the cellular mechanism associated with it, long-term potentiation (LTP), are impaired. Considering the beneficial effects of carvacrol (CAR) and p-cymene against AD, their effect was assessed on in vivo hippocampal LTP in the perforant pathway (PP)-dentate gyrus (DG) pathway in an Aβ1-42 -induced rat model of AD. METHODS Male Wistar rats were randomly assigned to five groups: sham: intracerebroventricular (ICV) injection of phosphate-buffered saline, Aβ: ICV Aβ1-42 injections, Aβ + CAR (50 mg/kg), Aβ + p-cymene (50 mg/kg), and Aβ + CAR + p-cymene. Administration of CAR and p-cymene was done by gavage daily 4 weeks before and 4 weeks after the Aβ injection. The population spike (PS) amplitude and field excitatory postsynaptic potentials (fEPSP) slope were determined in DG against the applied stimulation to the PP. RESULTS Aβ-treated rats exhibited impaired LTP induction in the PP-DG synapses, resulting in significant reduction in both fEPSP slope and PS amplitude compared to the sham animals. Aβ-treated rats consumed either CAR or p-cymene separately (but not their combination), and showed an enhancement in fEPSP slope and PS amplitude of the DG granular cells. CONCLUSIONS These data indicate that CAR or p-cymene can ameliorate Aβ-associated changes in synaptic plasticity. Surprisingly, the combination of CAR and p-cymene did not yield the same effect, suggesting a potential interaction between the two substances.
Collapse
Affiliation(s)
- Sahifeh Kazemi
- Department of Neuroscience, School of Science and Advanced Technologies in MedicineHamadan University of Medical SciencesHamadanIran
| | - Samaneh Safari
- Department of Neuroscience, School of Science and Advanced Technologies in MedicineHamadan University of Medical SciencesHamadanIran
- Student Research CommitteeHamadan University of Medical SciencesHamadanIran
| | - Somayeh Komaki
- Department of Physiology, School of MedicineHamadan University of Medical SciencesHamadanIran
| | - Seyed Asaad Karimi
- Department of Neuroscience, School of Science and Advanced Technologies in MedicineHamadan University of Medical SciencesHamadanIran
- Department of Physiology, School of MedicineHamadan University of Medical SciencesHamadanIran
| | - Zoleikha Golipoor
- Cellular and Molecular Research Center, Faculty of MedicineGuilan University of Medical SciencesRashtIran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in MedicineHamadan University of Medical SciencesHamadanIran
- Department of Physiology, School of MedicineHamadan University of Medical SciencesHamadanIran
| |
Collapse
|
8
|
Mohammed OA, Elballal MS, El-Husseiny AA, Khidr EG, El Tabaa MM, Elazazy O, Abd-Elmawla MA, Elesawy AE, Ibrahim HM, Abulsoud AI, El-Dakroury WA, Abdel Mageed SS, Elrebehy MA, Nomier Y, Abdel-Reheim MA, El-Husseiny HM, Mahmoud AMA, Saber S, Doghish AS. Unraveling the role of miRNAs in the diagnosis, progression, and therapeutic intervention of Parkinson's disease. Pathol Res Pract 2024; 253:155023. [PMID: 38081104 DOI: 10.1016/j.prp.2023.155023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurological disorder characterized by the impairment of the motor system, resulting in symptoms such as resting tremor, cogwheel rigidity, bradykinesia, difficulty with gait, and postural instability. The occurrence of striatal dopamine insufficiency can be attributed to a notable decline in dopaminergic neurons inside the substantia nigra pars compacta. Additionally, the development of Lewy bodies serves as a pathological hallmark of PD. While current therapy approaches for PD aim to preserve dopaminergic neurons or replenish dopamine levels in the brain, it is important to acknowledge that achieving complete remission of the condition remains elusive. MicroRNAs (miRNAs, miR) are a class of small, non-coding ribonucleic acids involved in regulating gene expression at the post-transcriptional level. The miRNAs play a crucial part in the underlying pathogenic mechanisms of several neurodegenerative illnesses, including PD. The aim of this review is to explore the role of miRNAs in regulating genes associated with the onset and progression of PD, investigate the potential of miRNAs as a diagnostic tool, assess the effectiveness of targeting specific miRNAs as an alternative therapeutic strategy to impede disease advancement, and discuss the utilization of newly developed nanoparticles for delivering miRNAs as neurodegenerative therapies.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897 Menoufia, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Henwa M Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Oman
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Abdulla M A Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
9
|
Lukiw WJ. MicroRNA (miRNA) Complexity in Alzheimer's Disease (AD). BIOLOGY 2023; 12:788. [PMID: 37372073 DOI: 10.3390/biology12060788] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023]
Abstract
AD is a complex, progressive, age-related neurodegenerative disorder representing the most common cause of senile dementia and neurological dysfunction in our elderly domestic population. The widely observed heterogeneity of AD is a reflection of the complexity of the AD process itself and the altered molecular-genetic mechanisms operating in the diseased human brain and CNS. One of the key players in this complex regulation of gene expression in human pathological neurobiology are microRNAs (miRNAs) that, through their actions, shape the transcriptome of brain cells that normally associate with very high rates of genetic activity, gene transcription and messenger RNA (mRNA) generation. The analysis of miRNA populations and the characterization of their abundance, speciation and complexity can further provide valuable clues to our molecular-genetic understanding of the AD process, especially in the sporadic forms of this common brain disorder. Current in-depth analyses of high-quality AD and age- and gender-matched control brain tissues are providing pathophysiological miRNA-based signatures of AD that can serve as a basis for expanding our mechanistic understanding of this disorder and the future design of miRNA- and related RNA-based therapeutics. This focused review will consolidate the findings from multiple laboratories as to which are the most abundant miRNA species, both free and exosome-bound in the human brain and CNS, which miRNA species appear to be the most prominently affected by the AD process and review recent developments and advancements in our understanding of the complexity of miRNA signaling in the hippocampal CA1 region of AD-affected brains.
Collapse
Affiliation(s)
- Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
- Alchem Biotech Research, Toronto, ON M5S 1A8, Canada
- Department of Ophthalmology, LSU Health Science Center, New Orleans, LA 70112, USA
- Department Neurology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| |
Collapse
|
10
|
Zhang B, Zhao Y, Guo K, Tian H, Wang C, Wang R, Chen Y, Chen X, Zheng H, Gao B, Shen J, Tian W. Macromolecular nanoparticles to attenuate both reactive oxygen species and inflammatory damage for treating Alzheimer's disease. Bioeng Transl Med 2023; 8:e10459. [PMID: 37206236 PMCID: PMC10189435 DOI: 10.1002/btm2.10459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
Prevention and early intervention are the current focus of treatment for Alzheimer's disease (AD). An increase in reactive oxygen species (ROS) is a feature of the early stages of AD, thus suggesting that the removal of excess ROS can be a viable method of improving AD. Natural polyphenols are able to scavenge ROS and thus promising for treating AD. However, some issues need to be addressed. Among them, important are that most polyphenols are hydrophobic, have low bioavailability in the body, are easily degraded, and that single polyphenols have insufficient antioxidant capacity. In this study, we employed two polyphenols, resveratrol (RES) and oligomeric proanthocyanidin (OPC), and creatively grafted them with hyaluronic acid (HA) to form nanoparticles to address the aforementioned issues. Meanwhile, we strategically grafted the nanoparticles with the B6 peptide, enabling the nanoparticles to cross the blood-brain barrier (BBB) and enter the brain for AD treatment. Our results illustrate that B6-RES-OPC-HA nanoparticles can significantly scavenge ROS, reduce brain inflammation, and improve learning and memory ability in AD mice. B6-RES-OPC-HA nanoparticles have the potential to prevent and alleviate early AD.
Collapse
Affiliation(s)
- Bosong Zhang
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Yufang Zhao
- Laboratory for Space Environment and Physical SciencesHarbin Institute of TechnologyHarbinChina
| | - Kai Guo
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Hui Tian
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Cao Wang
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Ruiqi Wang
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Yue Chen
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Xiongbiao Chen
- Department of Mechanical Engineering, College of EngineeringUniversity of SaskatchewanSaskatoonCanada
- Division of Biomedical Engineering, College of EngineeringUniversity of SaskatchewanSaskatoonCanada
| | | | - Bingxin Gao
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Jieyi Shen
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Weiming Tian
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| |
Collapse
|
11
|
A Data-Mining Approach to Identify NF-kB-Responsive microRNAs in Tissues Involved in Inflammatory Processes: Potential Relevance in Age-Related Diseases. Int J Mol Sci 2023; 24:ijms24065123. [PMID: 36982191 PMCID: PMC10049099 DOI: 10.3390/ijms24065123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
The nuclear factor NF-kB is the master transcription factor in the inflammatory process by modulating the expression of pro-inflammatory genes. However, an additional level of complexity is the ability to promote the transcriptional activation of post-transcriptional modulators of gene expression as non-coding RNA (i.e., miRNAs). While NF-kB’s role in inflammation-associated gene expression has been extensively investigated, the interplay between NF-kB and genes coding for miRNAs still deserves investigation. To identify miRNAs with potential NF-kB binding sites in their transcription start site, we predicted miRNA promoters by an in silico analysis using the PROmiRNA software, which allowed us to score the genomic region’s propensity to be miRNA cis-regulatory elements. A list of 722 human miRNAs was generated, of which 399 were expressed in at least one tissue involved in the inflammatory processes. The selection of “high-confidence” hairpins in miRbase identified 68 mature miRNAs, most of them previously identified as inflammamiRs. The identification of targeted pathways/diseases highlighted their involvement in the most common age-related diseases. Overall, our results reinforce the hypothesis that persistent activation of NF-kB could unbalance the transcription of specific inflammamiRNAs. The identification of such miRNAs could be of diagnostic/prognostic/therapeutic relevance for the most common inflammatory-related and age-related diseases.
Collapse
|
12
|
Al-Kuraishy HM, Al-Gareeb AI, Alsayegh AA, Hakami ZH, Khamjan NA, Saad HM, Batiha GES, De Waard M. A Potential Link Between Visceral Obesity and Risk of Alzheimer's Disease. Neurochem Res 2023; 48:745-766. [PMID: 36409447 DOI: 10.1007/s11064-022-03817-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia characterized by the deposition of amyloid beta (Aβ) plaques and tau-neurofibrillary tangles in the brain. Visceral obesity (VO) is usually associated with low-grade inflammation due to higher expression of pro-inflammatory cytokines by adipose tissue. The objective of the present review was to evaluate the potential link between VO and the development of AD. Tissue hypoxia in obesity promotes tissue injury, production of adipocytokines, and release of pro-inflammatory cytokines leading to an oxidative-inflammatory loop with induction of insulin resistance. Importantly, brain insulin signaling is involved in the pathogenesis of AD and lower cognitive function. Obesity and enlargement of visceral adipose tissue are associated with the deposition of Aβ. All of this is consonant with VO increasing the risk of AD through the dysregulation of adipocytokines which affect the development of AD. The activated nuclear factor kappa B (NF-κB) pathway in VO might be a potential link in the development of AD. Likewise, the higher concentration of advanced glycation end-products in VO could be implicated in the pathogenesis of AD. Taken together, different inflammatory signaling pathways are activated in VO that all have a negative impact on the cognitive function and progression of AD except hypoxia-inducible factor 1 which has beneficial and neuroprotective effects in mitigating the progression of AD. In addition, VO-mediated hypoadiponectinemia and leptin resistance may promote the progression of Aβ formation and tau phosphorylation with the development of AD. In conclusion, VO-induced AD is mainly mediated through the induction of oxidative stress, inflammatory changes, leptin resistance, and hypoadiponectinemia that collectively trigger Aβ formation and neuroinflammation. Thus, early recognition of VO by visceral adiposity index with appropriate management could be a preventive measure against the development of AD in patients with VO.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Abdulrahman A Alsayegh
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan, 82817, Saudi Arabia
| | - Zaki H Hakami
- Medical Laboratory Technology Department Applied Medical Sciences College, Jazan University, Jazan, 82817, Saudi Arabia
| | - Nizar A Khamjan
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, 38120, Saint-Egrève, France.,L'institut du thorax, INSERM, CNRS, UNIV NANTES, 44007, Nantes, France.,LabEx «Ion Channels, Science & Therapeutics», Université de Nice Sophia-Antipolis, 06560, Valbonne, France
| |
Collapse
|
13
|
The Pivotal Role of NF-kB in the Pathogenesis and Therapeutics of Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms23168972. [PMID: 36012242 PMCID: PMC9408758 DOI: 10.3390/ijms23168972] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s Disease (AD) is the most common neurodegenerative disease worldwide, with a high prevalence that is expected to double every 20 years. Besides the formation of Aβ plaques and neurofibrillary tangles, neuroinflammation is one the major phenotypes that worsens AD progression. Indeed, the nuclear factor-κB (NF-κB) is a well-established inflammatory transcription factor that fuels neurodegeneration. Thus, in this review, we provide an overview of the NF-κB role in the pathogenesis of AD, including its interaction with various molecular factors in AD mice models, neurons, and glial cells. Some of these cell types and molecules include reactive microglia and astrocytes, β-secretase, APOE, glutamate, miRNA, and tau protein, among others. Due to the multifactorial nature of AD development and the failure of many drugs designed to dampen AD progression, the pursuit of novel targets for AD therapeutics, including the NF-κB signaling pathway, is rising. Herein, we provide a synopsis of the drug development landscape for AD treatment, offering the perspective that NF-κB inhibitors may generate widespread interest in AD research in the future. Ultimately, the additional investigation of compounds and small molecules that target NF-κB signaling and the complete understanding of NF-κB mechanistic activation in different cell types will broaden and provide more therapeutic options for AD patients.
Collapse
|
14
|
Nguyen HD, Kim MS. Exposure to a mixture of heavy metals induces cognitive impairment: Genes and microRNAs involved. Toxicology 2022; 471:153164. [PMID: 35346790 DOI: 10.1016/j.tox.2022.153164] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022]
Abstract
Converging evidence demonstrates that microRNAs (miRNAs) play an important role in the etiology of cognitive impairment. Thus, we aim to: (i) identify the molecular mechanisms of heavy metals, particularly miRNAs involved in the development of cognitive impairment; and (ii) generate miRNA sponges to prevent them from binding with their target messenger RNAs. The Comparative Toxicogenomics Database (CTD; http://ctd.mdibl.org), MicroRNA ENrichment TURned NETwork (MIENTURNET, http://userver.bio.uniroma1.it/apps/mienturnet/) and the microRNA sponge generator and tester (miRNAsong, http://www.med.muni.cz/histology/miRNAsong) were used as the core data-mining approaches in the current study. We observed that lead acetate, arsenic, gold, copper, iron, and aluminum, as well as their mixtures, had significant effects on the development of cognitive impairment. Although prevalent genes obtained from investigated heavy metals of cognitive impairment were different, the "PI3K-Akt signaling pathway", "pathways of neurodegeneration-multiple diseases", "apoptosis", "apoptosis-multiple species", "p53 signaling pathway", "NF-kappa B signaling pathway", and "Alzheimer's disease pathway" were highlighted. The mixed heavy metals altered the genes BAX, CASP3, BCL2, TNF, and IL-1B, indicating the significance of apoptosis and pro-inflammatory cytokines in the pathogenesis of cognitive impairment and the possibility of targeting these genes in future neuroprotective therapy. In addition, we used a network-based approach to identify key genes, miRNAs, pathways, and diseases related to the development of cognitive impairment. We also found 16 significant miRNAs related to cognitive impairment (hsa-miR-1-3p, hsa-let-7a-5p, hsa-miR-9-5p, hsa-miR-16-5p, hsa-miR-17-5p, hsa-miR-20a-5p, hsa-miR-26a-5p, hsa-miR-26b-5p, hsa-miR-34a-5p, hsa-miR-101-3p, hsa-miR-106a-5p, hsa-miR-128-3p, hsa-miR-144-3p, hsa-miR-199a-3p, hsa-miR-204-5p, and hsa-miR-335-5p). Finally, we created and evaluated miRNA sponge sequences for these miRNAs in silico. Further studies, including in vivo and in vitro, are needed to assess the link between these genes, miRNAs, pathways, and cognitive impairment.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
15
|
Amirloo B, Staroseletz Y, Yousaf S, Clarke DJ, Brown T, Aojula H, Zenkova MA, Bichenkova EV. "Bind, cleave and leave": multiple turnover catalysis of RNA cleavage by bulge-loop inducing supramolecular conjugates. Nucleic Acids Res 2021; 50:651-673. [PMID: 34967410 PMCID: PMC8789077 DOI: 10.1093/nar/gkab1273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
Abstract
Antisense sequence-specific knockdown of pathogenic RNA offers opportunities to find new solutions for therapeutic treatments. However, to gain a desired therapeutic effect, the multiple turnover catalysis is critical to inactivate many copies of emerging RNA sequences, which is difficult to achieve without sacrificing the sequence-specificity of cleavage. Here, engineering two or three catalytic peptides into the bulge-loop inducing molecular framework of antisense oligonucleotides achieved catalytic turnover of targeted RNA. Different supramolecular configurations revealed that cleavage of the RNA backbone upon sequence-specific hybridization with the catalyst accelerated with increase in the number of catalytic guanidinium groups, with almost complete demolition of target RNA in 24 h. Multiple sequence-specific cuts at different locations within and around the bulge-loop facilitated release of the catalyst for subsequent attacks of at least 10 further RNA substrate copies, such that delivery of only a few catalytic molecules could be sufficient to maintain knockdown of typical RNA copy numbers. We have developed fluorescent assay and kinetic simulation tools to characterise how the limited availability of different targets and catalysts had restrained catalytic reaction progress considerably, and to inform how to accelerate the catalytic destruction of shorter linear and larger RNAs even further.
Collapse
Affiliation(s)
- Bahareh Amirloo
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Yaroslav Staroseletz
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Laurentiev Avenue, 630090 Novosibirsk, Russian Federation
| | - Sameen Yousaf
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - David J Clarke
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Tom Brown
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Harmesh Aojula
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Laurentiev Avenue, 630090 Novosibirsk, Russian Federation
| | - Elena V Bichenkova
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
16
|
Nisa FY, Rahman MA, Hossen MA, Khan MF, Khan MAN, Majid M, Sultana F, Haque MA. Role of neurotoxicants in the pathogenesis of Alzheimer's disease: a mechanistic insight. Ann Med 2021; 53:1476-1501. [PMID: 34433343 PMCID: PMC8405119 DOI: 10.1080/07853890.2021.1966088] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most conspicuous chronic neurodegenerative syndrome, which has become a significant challenge for the global healthcare system. Multiple studies have corroborated a clear association of neurotoxicants with AD pathogenicity, such as Amyloid beta (Aβ) proteins and neurofibrillary tangles (NFTs), signalling pathway modifications, cellular stress, cognitive dysfunctions, neuronal apoptosis, neuroinflammation, epigenetic modification, and so on. This review, therefore, aimed to address several essential mechanisms and signalling cascades, including Wnt (wingless and int.) signalling pathway, autophagy, mammalian target of rapamycin (mTOR), protein kinase C (PKC) signalling cascades, cellular redox status, energy metabolism, glutamatergic neurotransmissions, immune cell stimulations (e.g. microglia, astrocytes) as well as an amyloid precursor protein (APP), presenilin-1 (PSEN1), presenilin-2 (PSEN2) and other AD-related gene expressions that have been pretentious and modulated by the various neurotoxicants. This review concluded that neurotoxicants play a momentous role in developing AD through modulating various signalling cascades. Nevertheless, comprehension of this risk agent-induced neurotoxicity is far too little. More in-depth epidemiological and systematic investigations are needed to understand the potential mechanisms better to address these neurotoxicants and improve approaches to their risk exposure that aid in AD pathogenesis.Key messagesInevitable cascade mechanisms of how Alzheimer's Disease-related (AD-related) gene expressions are modulated by neurotoxicants have been discussed.Involvement of the neurotoxicants-induced pathways caused an extended risk of AD is explicited.Integration of cell culture, animals and population-based analysis on the clinical severity of AD is addressed.
Collapse
Affiliation(s)
- Fatema Yasmin Nisa
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Md. Atiar Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Md. Amjad Hossen
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Mohammad Forhad Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Md. Asif Nadim Khan
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Mumtahina Majid
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Farjana Sultana
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Md. Areeful Haque
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Kron NS, Fieber LA. Aplysia Neurons as a Model of Alzheimer's Disease: Shared Genes and Differential Expression. J Mol Neurosci 2021; 72:287-302. [PMID: 34664226 PMCID: PMC8840921 DOI: 10.1007/s12031-021-01918-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/18/2021] [Indexed: 11/19/2022]
Abstract
Although Alzheimer’s disease (AD) is the most common form of dementia in the United States, development of therapeutics has proven difficult. Invertebrate alternatives to current mammalian AD models have been successfully employed to study the etiology of the molecular hallmarks of AD. The marine snail Aplysia californica offers a unique and underutilized system in which to study the physiological, behavioral, and molecular impacts of AD. Mapping of the Aplysia proteome to humans and cross-referencing with two databases of genes of interest in AD research identified 898 potential orthologs of interest in Aplysia. Included among these orthologs were alpha, beta and gamma secretases, amyloid-beta, and tau. Comparison of age-associated differential expression in Aplysia sensory neurons with that of late-onset AD in the frontal lobe identified 59 ortholog with concordant differential expression across data sets. The 21 concordantly upregulated genes suggested increased cellular stress and protein dyshomeostasis. The 47 concordantly downregulated genes included important components of diverse neuronal processes, including energy metabolism, mitochondrial homeostasis, synaptic signaling, Ca++ regulation, and cellular cargo transport. Compromised functions in these processes are known hallmarks of both human aging and AD, the ramifications of which are suggested to underpin cognitive declines in aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Nicholas S Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA.
| | - Lynne A Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| |
Collapse
|
18
|
Chandrasekaran AR, Halvorsen K. DNA-Based Smart Reagent for Detecting Alzheimer's Associated MicroRNAs. ACS Sens 2021; 6:3176-3181. [PMID: 34491722 DOI: 10.1021/acssensors.1c01567] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, with significant research efforts devoted to identifying new biomarkers for clinical diagnosis and treatment. MicroRNAs have emerged as likely disease regulators and biomarkers for AD, now implicated as having roles in several biological processes related to progression of the disease. In this work, we use the miRacles assay (microRNA activated conditional looping of engineered switches) for single-step detection of AD-related microRNAs. The technology is based on conformationally responsive DNA nanoswitches that loop upon recognition of a target microRNA and report their on/off status through an electrophoretic readout. Unlike many methods, our approach directly detects native microRNAs without amplification or labeling, eliminating the need for expensive enzymes, reagents, and equipment. For known AD-related microRNA miR-107, we demonstrated sensitivity of ∼8 fM, specificity among four similar microRNAs of the same family, and simultaneous multiplexed detection of those four microRNA targets. Toward clinical use, we screened 56 AD-related microRNAs and found four that showed detectable differences between total RNA extracts derived from human healthy and AD brain samples. In the context of AD, this "smart reagent" could facilitate biomarker discovery, accelerate efforts to understand the role of microRNAs in AD, and have clinical potential as a diagnostic or monitoring tool for validated biomarkers.
Collapse
Affiliation(s)
- Arun Richard Chandrasekaran
- The RNA Institute, University of Albany, State University of New York, Albany, New York 12222, United States
| | - Ken Halvorsen
- The RNA Institute, University of Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
19
|
Ullah R, Ali G, Subhan F, Khan A, Ahsan Halim S, Naveed M, Kalsoom S, Al-Harrasi A. Attenuation of spatial memory in 5xFAD mice by targeting cholinesterases, oxidative stress and inflammatory signaling using 2-(hydroxyl-(2-nitrophenyl)methyl)cyclopentanone. Int Immunopharmacol 2021; 100:108083. [PMID: 34478946 DOI: 10.1016/j.intimp.2021.108083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/07/2021] [Accepted: 08/17/2021] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is classified pathologically as a progressive neurological disorder associated with memory decline. The study was designed to assess the underlying molecular signaling involved in the neuroprotective effect of the 2-(hydroxyl-(2-nitrophenyl)methyl)cyclopentanone (2NCP) as a novel therapeutic agent for AD. In this connection, in vitro cholinesterases inhibitory and antioxidant activities were investigated. In vivo studies were carried out on a well-known 5xFAD mice model in different behavioural models such as light/dark box,balance beam, rotarod, elevated plus maze (EPM),novel object recognition (NOR), paddling Y-maze, and Morris water maze (MWM) tests. Hippocampus (HC) and frontal cortex (FC) homogenates were examined for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities, 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals, glutathione S-transferase (GST), glutathione (GSH), and catalase. Further, we examined the expression of inflammatory cytokines and Nrf2 in the HC and FC through RT-PCR. Computational studies were conducted to predict the binding mode of the 2NCP with target sites of nuclear factor-κB (NF-κB) and cholinesterases. The findings of in vitro assays revealed that the IC50 values of the 2NCP against AChE and BChE were 17 and 23 µg/ml respectively. DPPH antioxidant assay displayed an IC50 value for the 2NCP was 62 µg/ml. Whereas, theex vivo study depicted that the activities of AChE and BChEwere significantly reduced. Moreover, free radicals load, GSH level, catalase and GST activities were significantly declined. Furthermore, in vivostudies showed that the 2NCP treated animals exhibited gradual memory improvement and improved motor functions. RT-PCR study revealed that mRNA levels of the inflammatory mediators (IL-1β, IL-6, TNF-α) were significantly reduced, while the expression of antioxidant Nrf2 was significantly increased.The molecular docking studies further confirmed that the 2NCP showed excellent binding affinities for NF-κB and cholinesterases. Taken together, the 2NCP improves spatial memory and learning, short- and long-term memory,markedly inhibits cholinesterases, reduced neuroinflammation, and mitigated oxidative stress in the 5xFAD mice; hence the 2NCP may be a potential candidate for the management of AD.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan.
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; The Ken and Ruth Davee Department of Neurology and Clinical Neurosciences, Northwestern University Feinberg School of Medicine, Tarry Building, Room 13-715, 300 East Superior St., Chicago, IL 60611, United States.
| | - Fazal Subhan
- Department of Pharmacy, CECOS University of Science and technology, Peshawar, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Muhammad Naveed
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saima Kalsoom
- Center for Interdisciplinary Research in Basic Sciences (CIRBS), International Islamic University, Islamabad, Pakistan
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| |
Collapse
|
20
|
Hampel H, Nisticò R, Seyfried NT, Levey AI, Modeste E, Lemercier P, Baldacci F, Toschi N, Garaci F, Perry G, Emanuele E, Valenzuela PL, Lucia A, Urbani A, Sancesario GM, Mapstone M, Corbo M, Vergallo A, Lista S. Omics sciences for systems biology in Alzheimer's disease: State-of-the-art of the evidence. Ageing Res Rev 2021; 69:101346. [PMID: 33915266 DOI: 10.1016/j.arr.2021.101346] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 04/06/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is characterized by non-linear, genetic-driven pathophysiological dynamics with high heterogeneity in biological alterations and disease spatial-temporal progression. Human in-vivo and post-mortem studies point out a failure of multi-level biological networks underlying AD pathophysiology, including proteostasis (amyloid-β and tau), synaptic homeostasis, inflammatory and immune responses, lipid and energy metabolism, oxidative stress. Therefore, a holistic, systems-level approach is needed to fully capture AD multi-faceted pathophysiology. Omics sciences - genomics, epigenomics, transcriptomics, proteomics, metabolomics, lipidomics - embedded in the systems biology (SB) theoretical and computational framework can generate explainable readouts describing the entire biological continuum of a disease. Such path in Neurology is encouraged by the promising results of omics sciences and SB approaches in Oncology, where stage-driven pathway-based therapies have been developed in line with the precision medicine paradigm. Multi-omics data integrated in SB network approaches will help detect and chart AD upstream pathomechanistic alterations and downstream molecular effects occurring in preclinical stages. Finally, integrating omics and neuroimaging data - i.e., neuroimaging-omics - will identify multi-dimensional biological signatures essential to track the clinical-biological trajectories, at the subpopulation or even individual level.
Collapse
|
21
|
Salkov VN, Khudoerkov RM. [The role of aluminum and lead in the development of Alzheimer's and Parkinson's diseases]. Arkh Patol 2021; 83:56-61. [PMID: 34041898 DOI: 10.17116/patol20218303156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The article summarizes the data available in the literature on the toxic effects of aluminum and lead on the human brain and assesses the relationship of these effects to the etiopathogenesis of the most common neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. The accumulation of ions of these metals in the brain structures leads to chronic intoxication that is manifested by the morphological signs that are typical for Alzheimer's disease, such as deposits of β-amyloid and τ-protein mainly in the frontal and temporal regions of the cortex, and for Parkinson's disease, such as degeneration of dopamine neurons in the substantia nigra and their accumulation of α-synuclein. The most likely forms of participation of aluminum and lead ions in the mechanisms of neurodegeneration are the replacement of bivalent metal ions necessary for brain functioning, oxidative stress initiation, epigenetic modifications of histones, and increased expression of noncoding ribonucleic acids.
Collapse
Affiliation(s)
- V N Salkov
- Research Center of Neurology, Moscow, Russia
| | | |
Collapse
|
22
|
Seifi-Nahavandi B, Yaghmaei P, Ahmadian S, Ghobeh M, Ebrahim-Habibi A. Cymene consumption and physical activity effect in Alzheimer's disease model: an in vivo and in vitro study. J Diabetes Metab Disord 2021; 19:1381-1389. [PMID: 33520841 DOI: 10.1007/s40200-020-00658-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022]
Abstract
Purpose Alzheimer's disease (AD) is one of the most important neurodegenerative diseases and accompanied by the production of free radicals and inflammatory factors. Studies have shown that p-cymene has anti-inflammatory and anti-oxidant effects. Here, the effects of this compound were investigated on a rat model of AD. Methods In order to create Alzheimer's rat model, bilateral injection of Amyloid β1-42 (Aβ1-42) into rats hippocampus was performed. Both therapeutic (post-AD induction) and preventive effects of p-cymene consumption with doses of 50 and 100 mg/kg were investigated. In addition, the effects of adding short-term exercise to the process were also observed. In vitro, Aβ1-42 peptide was driven toward fibril formation and effect of p-cymene was observed on the resulting fibrils. Results Learning and memory indices in the AD rats were significantly reduced compared to the Sham group, while p-cymene consumption with both doses, as well as performing exercise counteracted AD consequences. Moreover, increased neurogenesis and reduced amyloid plaques counts were observed in treated rats. In vitro formed fibrils of Aβ1-42 were partially disaggregated in the presence of p-cymene. Discussion p-Cymene could act on this AD model via antioxidant and anti-inflammatory properties as well as direct anti-fibril effect. Conclusion p-cymene can improve AD-related disorders including memory impairment.
Collapse
Affiliation(s)
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahin Ahmadian
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Maryam Ghobeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azadeh Ebrahim-Habibi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Campora M, Francesconi V, Schenone S, Tasso B, Tonelli M. Journey on Naphthoquinone and Anthraquinone Derivatives: New Insights in Alzheimer's Disease. Pharmaceuticals (Basel) 2021; 14:33. [PMID: 33466332 PMCID: PMC7824805 DOI: 10.3390/ph14010033] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is characterized by memory loss, cognitive impairment, and functional decline leading to dementia and death. AD imposes neuronal death by the intricate interplay of different neurochemical factors, which continue to inspire the medicinal chemist as molecular targets for the development of new agents for the treatment of AD with diverse mechanisms of action, but also depict a more complex AD scenario. Within the wide variety of reported molecules, this review summarizes and offers a global overview of recent advancements on naphthoquinone (NQ) and anthraquinone (AQ) derivatives whose more relevant chemical features and structure-activity relationship studies will be discussed with a view to providing the perspective for the design of viable drugs for the treatment of AD. In particular, cholinesterases (ChEs), β-amyloid (Aβ) and tau proteins have been identified as key targets of these classes of compounds, where the NQ or AQ scaffold may contribute to the biological effect against AD as main unit or significant substructure. The multitarget directed ligand (MTDL) strategy will be described, as a chance for these molecules to exhibit significant potential on the road to therapeutics for AD.
Collapse
Affiliation(s)
| | | | | | | | - Michele Tonelli
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; (M.C.); (V.F.); (S.S.); (B.T.)
| |
Collapse
|
24
|
Varma-Doyle AV, Lukiw WJ, Zhao Y, Lovera J, Devier D. A hypothesis-generating scoping review of miRs identified in both multiple sclerosis and dementia, their protein targets, and miR signaling pathways. J Neurol Sci 2020; 420:117202. [PMID: 33183778 DOI: 10.1016/j.jns.2020.117202] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/26/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
Cognitive impairment (CI) is a frequent complication affecting people with multiple sclerosis (MS). The causes of CI in MS are not fully understood. Besides MRI measures, few other biomarkers exist to help us predict the development of CI and understand its biology. MicroRNAs (miRs) are relatively stable, non-coding RNA molecules about 22 nucleotides in length that can serve as biomarkers and possible therapeutic targets in several autoimmune and neurodegenerative diseases, including the dementias. In this review, we identify dysregulated miRs in MS that overlap with dysregulated miRs in cognitive disorders and dementia and explore how these overlapping miRs play a role in CI in MS. MiR-15, miR-21, miR-128, miR-132, miR-138, miR-142, miR-146a, miR-155, miR-181, miR-572, and let-7 are known to contribute to various forms of dementia and show abnormal expression in MS. These overlapping miRs are involved in pathways related to apoptosis, neuroinflammation, glutamate toxicity, astrocyte activation, microglial burst activity, synaptic dysfunction, and remyelination. The mechanisms of action suggest that these miRs may be related to CI in MS. From our review, we also delineated miRs that could be neuroprotective in MS, namely miR-23a, miR-219, miR-214, and miR-22. Further studies can help clarify if these miRs are responsible for CI in MS, leading to potential therapeutic targets.
Collapse
Affiliation(s)
- Aditi Vian Varma-Doyle
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America
| | - Walter J Lukiw
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America; Louisiana State University Health Sciences Center - New Orleans Neuroscience Center, United States of America; Louisiana State University Health Sciences Center - New Orleans Department of Ophthalmology, United States of America
| | - Yuhai Zhao
- Louisiana State University Health Sciences Center - New Orleans Department of Cell Biology and Anatomy, United States of America; Louisiana State University Health Sciences Center - New Orleans Neuroscience Center, United States of America
| | - Jesus Lovera
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America.
| | - Deidre Devier
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America; Louisiana State University Health Sciences Center - New Orleans Department of Cell Biology and Anatomy, United States of America.
| |
Collapse
|
25
|
Upadhyay P, Bhattacharjee M, Bhattacharya S, Ahir M, Adhikary A, Patra P. Silymarin-Loaded, Lactobionic Acid-Conjugated Porous PLGA Nanoparticles Induce Apoptosis in Liver Cancer Cells. ACS APPLIED BIO MATERIALS 2020; 3:7178-7192. [PMID: 35019376 DOI: 10.1021/acsabm.0c00987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
HepG2 cells (HCC), characterized by epithelial-like morphology, high proliferation rates, and nontumorigenicity, require cost-effective and efficient treatment. Silymarin, a flavonoid extract of Silybum marianum, is effective in the treatment of HCC. Here, we have reported a comparative anticancer study of the well-characterized nanoformulations of lactobionic acid-adorned porous PLGA-encapsulated silymarin (LA-PLGA-Sil) with only porous PLGA-encapsulated silymarin (PLGA-Sil) against HepG2 cells. Treatment of HepG2 cells with LA-PLGA-Sil produced a significant deterioration in cell viability at an essentially low dose as compared with PLGA-Sil, due to the adorned lactobionic acid moiety, which results in better targeting. p53, a tumor suppressor gene, essentially initiates apoptosis in cells procuring wild-type p53 (p53 +/+). In our report, treatment of HepG2 cells (p53 +/+) with LA-PLGA-Sil activated p53, which in turn inhibited the proliferation of cells by instigating cell-cycle arrest and apoptosis in a concentration-dependent manner and simultaneously stabilized the nuclear translocation of NFκB-p65. To explore the effect of LA-PLGA-Sil on the expression of microRNA, we observed that LA-PLGA-Sil markedly upregulated the miR-29b in human HCC cells. Reactivation of the p53 gene by miR-29b targeted Bcl-2 and triggered the sequential activation of mediators such as proapoptotic Bax protein, release of cytochrome c, and the activation of caspase proteins (caspase-3 and caspase-9). Furthermore, the overexpression of NFκB-p65 in HepG2 cells reversed the repression, and this stabilization effect of LA-PLGA-Sil on the nuclear translocation of p65 led to the significant downregulation of miR-29b and successively decreased the p53 expression in LA-PLGA-Sil-treated cells, thereby providing a survival mechanism to HepG2. In entirety, our study demonstrated the extensive potential of LA-PLGA-Sil to instigate the cell death of HepG2 cells via apoptosis by targeting the miR-29b/p53 axis through the stabilization of NFκB. It also impaired the migratory activity of HepG2 cells and thereby furnished a comprehensive way to HCC therapeutic treatment.
Collapse
Affiliation(s)
- Priyanka Upadhyay
- Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD2, Sector III, Salt Lake City, Kolkata 700106, India
| | - Mousumi Bhattacharjee
- Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD2, Sector III, Salt Lake City, Kolkata 700106, India
| | - Saurav Bhattacharya
- Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD2, Sector III, Salt Lake City, Kolkata 700106, India
| | - Manisha Ahir
- Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD2, Sector III, Salt Lake City, Kolkata 700106, India
| | - Arghya Adhikary
- Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD2, Sector III, Salt Lake City, Kolkata 700106, India
| | - Prasun Patra
- Amity Institute of Biotechnology, Amity University, Major Arterial Road (South-East), Action Area II, Newtown, Kolkata, West Bengal 700135, India
| |
Collapse
|
26
|
Morris G, Puri BK, Olive L, Carvalho A, Berk M, Walder K, Gustad LT, Maes M. Endothelial dysfunction in neuroprogressive disorders-causes and suggested treatments. BMC Med 2020; 18:305. [PMID: 33070778 PMCID: PMC7570030 DOI: 10.1186/s12916-020-01749-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/16/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Potential routes whereby systemic inflammation, oxidative stress and mitochondrial dysfunction may drive the development of endothelial dysfunction and atherosclerosis, even in an environment of low cholesterol, are examined. MAIN TEXT Key molecular players involved in the regulation of endothelial cell function are described, including PECAM-1, VE-cadherin, VEGFRs, SFK, Rho GEF TRIO, RAC-1, ITAM, SHP-2, MAPK/ERK, STAT-3, NF-κB, PI3K/AKT, eNOS, nitric oxide, miRNAs, KLF-4 and KLF-2. The key roles of platelet activation, xanthene oxidase and myeloperoxidase in the genesis of endothelial cell dysfunction and activation are detailed. The following roles of circulating reactive oxygen species (ROS), reactive nitrogen species and pro-inflammatory cytokines in the development of endothelial cell dysfunction are then described: paracrine signalling by circulating hydrogen peroxide, inhibition of eNOS and increased levels of mitochondrial ROS, including compromised mitochondrial dynamics, loss of calcium ion homeostasis and inactivation of SIRT-1-mediated signalling pathways. Next, loss of cellular redox homeostasis is considered, including further aspects of the roles of hydrogen peroxide signalling, the pathological consequences of elevated NF-κB, compromised S-nitrosylation and the development of hypernitrosylation and increased transcription of atherogenic miRNAs. These molecular aspects are then applied to neuroprogressive disorders by considering the following potential generators of endothelial dysfunction and activation in major depressive disorder, bipolar disorder and schizophrenia: NF-κB; platelet activation; atherogenic miRs; myeloperoxidase; xanthene oxidase and uric acid; and inflammation, oxidative stress, nitrosative stress and mitochondrial dysfunction. CONCLUSIONS Finally, on the basis of the above molecular mechanisms, details are given of potential treatment options for mitigating endothelial cell dysfunction and activation in neuroprogressive disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | | | - Lisa Olive
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- School of Psychology, Faculty of Health, Deakin University, Geelong, Australia
| | - Andre Carvalho
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Michael Berk
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia.
- Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.
| | - Ken Walder
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Lise Tuset Gustad
- Department of Circulation and medical imaging, Norwegian University of Technology and Science (NTNU), Trondheim, Norway
- Nord-Trøndelag Hospital Trust, Levanger Hospital, Levanger, Norway
| | - Michael Maes
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
27
|
Vasefi M, Ghaboolian-Zare E, Abedelwahab H, Osu A. Environmental toxins and Alzheimer's disease progression. Neurochem Int 2020; 141:104852. [PMID: 33010393 DOI: 10.1016/j.neuint.2020.104852] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/05/2020] [Accepted: 09/18/2020] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, which causes progressive memory loss and cognitive decline. Effective strategies to treat or prevent remains one of the most challenging undertakings in the medical field. AD is a complex and multifactorial disease that involves several risk factors. Aging and genetic factors both play important roles in the onset of the AD, however; certain environmental factors have been reported to increase the risk of AD. Chronic exposure to toxins has been seen as an environmental factor that may increase the risk of developing a neurodegenerative disease such as AD. Exposure to metals and biotoxins produced by bacteria, molds, and viruses may contribute to the cognitive decline and pathophysiology associated with AD. Toxins may contribute to the pathology of the disease through various mechanisms such as deposition of amyloid-beta (Aβ) plaques and tangles in the brain, induction of apoptosis, inflammation, or oxidative damage. Here, we will review how toxins affect brain physiology with a focus on mechanisms by which toxins may contribute to the development and progression of AD. A better understanding of these mechanisms may help contribute towards the development of an effective strategy to slow the progression of AD.
Collapse
Affiliation(s)
- Maryam Vasefi
- Department Biology, Lamar University, Beaumont, TX, United States.
| | | | | | - Anthony Osu
- Department Biology, Lamar University, Beaumont, TX, United States
| |
Collapse
|
28
|
Vesicular Transport of Encapsulated microRNA between Glial and Neuronal Cells. Int J Mol Sci 2020; 21:ijms21145078. [PMID: 32708414 PMCID: PMC7404393 DOI: 10.3390/ijms21145078] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Exosomes (EXs) and extracellular microvesicles (EMVs) represent a diverse assortment of plasma membrane-derived nanovesicles, 30–1000 nm in diameter, released by all cell lineages of the central nervous system (CNS). They are examples of a very active and dynamic form of extracellular communication and the conveyance of biological information transfer essential to maintain homeostatic neurological functions and contain complex molecular cargoes representative of the cytoplasm of their cells of origin. These molecular cargoes include various mixtures of proteins, lipids, proteolipids, cytokines, chemokines, carbohydrates, microRNAs (miRNA) and messenger RNAs (mRNA) and other components, including end-stage neurotoxic and pathogenic metabolic products, such as amyloid beta (Aβ) peptides. Brain microglia, for example, respond to both acute CNS injuries and degenerative diseases with complex reactions via the induction of a pro-inflammatory phenotype, and secrete EXs and EMVs enriched in selective pathogenic microRNAs (miRNAs) such as miRNA-34a, miRNA-125b, miRNA-146a, miRNA-155, and others that are known to promote neuro-inflammation, induce complement activation, disrupt innate–immune signaling and deregulate the expression of neuron-specific phosphoproteins involved in neurotropism and synaptic signaling. This communication will review our current understanding of the trafficking of miRNA-containing EXs and EMVs from astrocytes and “activated pro-inflammatory” microglia to target neurons in neurodegenerative diseases with an emphasis on Alzheimer’s disease wherever possible.
Collapse
|
29
|
Lukiw WJ. microRNA-146a Signaling in Alzheimer's Disease (AD) and Prion Disease (PrD). Front Neurol 2020; 11:462. [PMID: 32670176 PMCID: PMC7331828 DOI: 10.3389/fneur.2020.00462] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
The mouse- and human-brain-resident, nuclear factor kappa B (NF-κB)-regulated, micro RNA-146a-5p (miRNA-146a-5p) is an inducible, 22-nucleotide, single-stranded non-coding RNA (sncRNA) easily detected in several brain and immunological cell types, and an important epigenetic modulator of inflammatory signaling and the innate-immune response in several neurological disorders. Among all studied microRNAs, miRNA-146a-5p (typically referred to as just miRNA-146a) has been well characterized and its pathological function in progressive, age-related, and lethal human inflammatory neurodegenerative disease states is well documented. This communication will review our current understanding of miRNA-146a, its induction by the NF-kB-stimulating actions of inflammatory mediators, including the secretory products of certain microbial species such as viral vectors, and Gram-negative bacteria (such as Bacteroides fragilis) that are normal residents of the human gastrointestinal (GI) tract microbiome, and how miRNA-146a appears to contribute to neuro-pathological, neuro-inflammatory, and altered neuro-immunological aspects of both Alzheimer's disease (AD) and prion disease (PrD).
Collapse
Affiliation(s)
- Walter J Lukiw
- Bollinger Professor of Alzheimer's Disease, Louisiana State University School of Medicine, New Orleans, LA, United States.,LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Ophthalmology, LSUHSC, New Orleans, LA, United States.,Department of Neurology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
30
|
Hindam MO, Sayed RH, Skalicka-Woźniak K, Budzyńska B, El Sayed NS. Xanthotoxin and umbelliferone attenuate cognitive dysfunction in a streptozotocin-induced rat model of sporadic Alzheimer's disease: The role of JAK2/STAT3 and Nrf2/HO-1 signalling pathway modulation. Phytother Res 2020; 34:2351-2365. [PMID: 32250498 DOI: 10.1002/ptr.6686] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/05/2020] [Accepted: 03/14/2020] [Indexed: 12/18/2022]
Abstract
The aim of the present study was to assess the neuroprotective effects of xanthotoxin and umbelliferone in streptozotocin (STZ)-induced cognitive dysfunction in rats. Animals were injected intracerebroventricularly (ICV) with STZ (3 mg/kg) once to induce a sporadic Alzheimer's disease (SAD)-like condition. Xanthotoxin or umbelliferone (15 mg/kg, i.p.) were administered 5 hr after ICV-STZ and daily for 20 consecutive days. Xanthotoxin or umbelliferone prevented cognitive deficits in the Morris water maze and object recognition tests. In parallel, xanthotoxin or umbelliferone reduced hippocampal acetylcholinestrase activity and malondialdehyde level. Moreover, xanthotoxin or umbelliferone increased glutathione content. These coumarins also modulated neuronal cell death by reducing the level of proinflammatory cytokines (tumour necrosis factor-alpha and interleukin-6), inhibiting the overexpression of inflammatory markers (nuclear factor κB [NF-κB] and cyclooxygenase II), and upregulating the expression of NF-κB inhibitor (IκB-α). Interestingly, xanthotoxin diminished phosphorylated JAK2 and phosphorylated STAT3 protein expression, while umbelliferone markedly replenished nuclear factor erythroid-derived 2-like 2 (Nrf2) and haem oxygenase-1 (HO-1) levels. The current study provides evidence for the protective effect of xanthotoxin and umbelliferone in STZ-induced cognitive dysfunction in rats. This effect may be attributed, at least in part, to inhibiting acetylcholinestrase and attenuating oxidative stress, neuroinflammation and neuronal loss.
Collapse
Affiliation(s)
- Merhan O Hindam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Barbara Budzyńska
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Lublin, Poland
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
31
|
Jia R, Yan L, Guo J. Enhancing the immunogenicity of a DNA vaccine against Streptococcus mutans by attenuating the inhibition of endogenous miR-9. Vaccine 2020; 38:1424-1430. [DOI: 10.1016/j.vaccine.2019.11.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 11/10/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
|
32
|
Avsar B, Zhao Y, Li W, Lukiw WJ. Atropa belladonna Expresses a microRNA (aba-miRNA-9497) Highly Homologous to Homo sapiens miRNA-378 (hsa-miRNA-378); both miRNAs target the 3'-Untranslated Region (3'-UTR) of the mRNA Encoding the Neurologically Relevant, Zinc-Finger Transcription Factor ZNF-691. Cell Mol Neurobiol 2020; 40:179-188. [PMID: 31456135 DOI: 10.1007/s10571-019-00729-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
Abstract
Recent advances in ethnobotanical and neurological research indicate that ingested plants from our diet may not only be a source of nutrition but also a source of biologically relevant nucleic-acid-encoded genetic information. A major source of RNA-encoded information from plants has been shown to be derived from small non-coding RNAs (sncRNAs) such as microRNAs (miRNAs) that can transfer information horizontally between plants and humans. In human hosts, the 3'-untranslated region (3'-UTR) of messenger RNAs (mRNAs) is targeted by these miRNAs to effectively down-regulate expression of that mRNA target in the host CNS. In this paper, we provide evidence that the Atropa belladonna aba-miRNA-9497 (miRBase conserved ID: bdi-miRNA-9497) is highly homologous to the CNS-abundant Homo sapiens miRNA-378 (hsa-miRNA-378) and both target the zinc-finger transcription factor ZNF-691 mRNA 3'-UTR to down-regulate ZNF-691 mRNA abundance. We speculate that the potent neurotoxic actions of the multiple tropane alkaloids of Atropa belladonna may be supplemented by the neuroregulatory actions of aba-miRNA-9497 on ZNF-691, and this may be followed by the modulation in the expression of ZNF-691-sensitive genes. This is the first example of a human brain-enriched transcription factor, ZNF-691, targeted and down-regulated by a naturally occurring plant microRNA, with potential to modulate gene expression in the human CNS and thus contribute to the neurotoxicological-and-psychoactive properties of the Atropa belladonna species of the deadly nightshade Solanaceae family.
Collapse
Affiliation(s)
- Bihter Avsar
- Sabanci University SUNUM Nanotechnology Research Centre, Orhanlı, Tuzla, 34956, Istanbul, Turkey
- Faculty of Arts & Science, Department of Molecular Biology and Genetics, Uludag University, 16059, Bursa, Turkey
| | - Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA, 70112, USA
- Departments of Anatomy and Cell Biology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Wenhong Li
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA, 70112, USA
- Department of Pharmacology, School of Pharmacy, Jiangxi University of TCM, Nanchang, 330004, Jiangxi, China
| | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA, 70112, USA.
- Department of Neurology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
33
|
Chauhan NB. MicroRNA silencing: A promising therapy for Alzheimer's disease. THE NEUROSCIENCE CHRONICLES 2020; 1:11-15. [PMID: 35991586 PMCID: PMC9389881 DOI: 10.46439/neuroscience.1.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease (AD) is a global health crisis currently afflicting ~6 million Americans (and ~40 million people worldwide). By the middle of the century, these numbers will stagger by ~16 million Americans (and ~152 million people worldwide) suffering from AD, if breakthrough disease-modifying treatments are not discovered. Currently, there are no treatments to prevent, halt or cure the disease. Multiple independent studies on brain gene expression patterns have indicated that in AD about 1/3rd of the genes are upregulated while the rest 2/3rd of the genes are downregulated. In that regard, AD therapeutics focused on antagomiR-mediated silencing of"upregulated"microRNAs (miRs) may be more feasible since upregulated miRs in AD continue to increase with the disease progression, as opposed to agomiR-mediated overexpression of down-regulated miRs with unpredictable reduced presence and relative short-life of 1-3h under pathological conditions in AD brain. Studies reported thus far indicate that most of the upregulated pathogenic genes in AD are regulated by pro-inflammatory microRNAs (miRs). Given the precedence of chronic neuroinflammation in triggering AD-like neurodegeneration and multifactorial nature of AD, silencing inflammation-specific micro-RNAs using antisense-microRNAs may be an effective adjuvant therapeutic strategy to prevent, halt or cure AD.
Collapse
Affiliation(s)
- Neelima B. Chauhan
- Department of Pharmaceutical Sciences, School of Pharmacy, American University of Health Sciences, Signal Hill, CA 90755, United States
| |
Collapse
|
34
|
Sun Q, Kong W, Mou X, Wang S. Transcriptional Regulation Analysis of Alzheimer's Disease Based on FastNCA Algorithm. Curr Bioinform 2019. [DOI: 10.2174/1574893614666190919150411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background:
Understanding the relationship between genetic variation and gene expression
is a central issue in genetics. Although many studies have identified genetic variations associated
with gene expression, it is unclear how they perturb the underlying regulatory network of
gene expression.
Objective:
To explore how genetic variations perturb potential transcriptional regulation networks
of Alzheimer’s disease (AD) to paint a more complete picture of the complex landscape of transcription
regulation.
Methods:
Fast network component analysis (FastNCA), which can capture the genetic variations
in the form of single nucleotide polymorphisms (SNPs), is applied to analyse the expression activities
of TFs and their regulatory strengths on TGs using microarray and RNA-seq data of AD.
Then, multi-data fusion analysis was used to analyze the different TGs regulated by the same TFs
in the different data by constructing the transcriptional regulatory networks of differentially expressed
genes.
Results:
the common TF regulating TGs are not necessarily identical in different data, they may be
involved in the same pathways that are closely related to the pathogenesis of AD, such as immune
response, signal transduction and cytokine-cytokine receptor interaction pathways. Even if they are
involved in different pathways, these pathways are also confirmed to have a potential link with
AD.
Conclusion:
The study shows that the pathways of different TGs regulated by the same TFs in different
data are all closely related to AD. Multi-data fusion analysis can form a certain complement
to some extent and get more comprehensive results in the process of exploring the pathogenesis
of AD.
Collapse
Affiliation(s)
- Qianni Sun
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave., Shanghai 201306, China
| | - Wei Kong
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave., Shanghai 201306, China
| | - Xiaoyang Mou
- Department of Biochemistry, Rowan University and Guava Medicine, Glassboro, New Jersey 08028, United States
| | - Shuaiqun Wang
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave., Shanghai 201306, China
| |
Collapse
|
35
|
Nuzziello N, Liguori M. The MicroRNA Centrism in the Orchestration of Neuroinflammation in Neurodegenerative Diseases. Cells 2019; 8:cells8101193. [PMID: 31581723 PMCID: PMC6829202 DOI: 10.3390/cells8101193] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with a unique ability to regulate the transcriptomic profile by binding to complementary regulatory RNA sequences. The ability of miRNAs to enhance (proinflammatory miRNAs) or restrict (anti-inflammatory miRNAs) inflammatory signalling within the central nervous system is an area of ongoing research, particularly in the context of disorders that feature neuroinflammation, including neurodegenerative diseases (NDDs). Furthermore, the discovery of competing endogenous RNAs (ceRNAs) has led to an increase in the complexity of miRNA-mediated gene regulation, with a paradigm shift from a unidirectional to a bidirectional regulation, where miRNA acts as both a regulator and is regulated by ceRNAs. Increasing evidence has revealed that ceRNAs, including long non-coding RNAs, circular RNAs, and pseudogenes, can act as miRNA sponges to regulate neuroinflammation in NDDs within complex cross-talk regulatory machinery, which is referred to as ceRNA network (ceRNET). In this review, we discuss the role of miRNAs in neuroinflammatory regulation and the manner in which cellular and vesicular ceRNETs could influence neuroinflammatory dynamics in complex multifactorial diseases, such as NDDs.
Collapse
Affiliation(s)
- Nicoletta Nuzziello
- National Research Council, Institute of Biomedical Technologies, Bari Unit, 70126 Bari, Italy.
| | - Maria Liguori
- National Research Council, Institute of Biomedical Technologies, Bari Unit, 70126 Bari, Italy.
| |
Collapse
|
36
|
Almehmadi KA, Tsilioni I, Theoharides TC. Increased Expression of miR‐155p5 in Amygdala of Children With Autism Spectrum Disorder. Autism Res 2019; 13:18-23. [DOI: 10.1002/aur.2205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/19/2019] [Accepted: 08/24/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Khulood Abdullah Almehmadi
- Graduate Program in Pharmacology and Drug Development, Sackler School of Graduate Biomedical SciencesTufts University Boston Massachusetts
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of ImmunologyTufts University School of Medicine Boston Massachusetts
- Department of Pharmacology, Faculty of PharmacyKing Abdulaziz University Jeddah Saudi Arabia
| | - Irene Tsilioni
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of ImmunologyTufts University School of Medicine Boston Massachusetts
| | - Theoharis C. Theoharides
- Graduate Program in Pharmacology and Drug Development, Sackler School of Graduate Biomedical SciencesTufts University Boston Massachusetts
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of ImmunologyTufts University School of Medicine Boston Massachusetts
- Department of Internal MedicineTufts University School of Medicine and Tufts Medical Center Boston Massachusetts
| |
Collapse
|
37
|
Jaber VR, Zhao Y, Sharfman NM, Li W, Lukiw WJ. Addressing Alzheimer's Disease (AD) Neuropathology Using Anti-microRNA (AM) Strategies. Mol Neurobiol 2019; 56:8101-8108. [PMID: 31183807 DOI: 10.1007/s12035-019-1632-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/02/2019] [Indexed: 02/06/2023]
Abstract
Disruptions in multiple neurobiological pathways and neuromolecular processes have been widely implicated in the etiopathology of Alzheimer's disease (AD), a complex, progressive, and ultimately lethal neurological disorder whose current incidence, both domestically and globally, is reaching epidemic proportions. While only a few percent of all AD cases appear to have a strong genetic or familial component, the major form of this disease, known as idiopathic or sporadic AD, displays a multi-factorial pathology and represents one of the most complex and perplexing neurological disorders known. More effective and innovative pharmacological strategies for the successful intervention and management of AD might be expected: (i) to arise from strategic-treatments that simultaneously address multiple interrelated AD targets that are directed at the initiation, development, and/or propagation of this disease and (ii) those that target the "neuropathological core" of the AD process at early or upstream stages of AD. This "Perspectives paper" will review current research involving microRNA (miRNA)-mediated, messenger RNA (mRNA)-targeted gene expression pathways in sporadic AD and address the potential implementation of evolving anti-microRNA (AM) strategies in the amelioration and clinical management of AD. This novel-therapeutic approach: (i) incorporates a system involving the restoration of multiple miRNA-regulated mRNA-targets via the use of selectively-stabilized AM species; and (ii) that via implementation of synthetic AMs, the abundance of only relatively small-families of miRNAs need be modulated or neutralized to re-establish neural-homeostasis in the AD-affected brain. In doing so, these strategic approaches will jointly and interactively address multiple AD-associated processes such as the disruption of synaptic communication, defects in amyloid peptide clearance and amyloidogenesis, tau pathology, deficits in neurotrophic support, alterations in the innate immune response, and the proliferation of neuroinflammatory signaling.
Collapse
Affiliation(s)
- Vivian R Jaber
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.,Department of Anatomy and Cell Biology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Nathan M Sharfman
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Wenhong Li
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.,Department of Pharmacology, School of Pharmacy, Jiangxi University of TCM, Nanchang, 330004, Jiangxi, China
| | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA. .,Department of Neurology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA. .,Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
38
|
Esparza JL, Gómez M, Domingo JL. Role of Melatonin in Aluminum-Related Neurodegenerative Disorders: a Review. Biol Trace Elem Res 2019; 188:60-67. [PMID: 29732485 DOI: 10.1007/s12011-018-1372-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/30/2018] [Indexed: 01/23/2023]
Abstract
Aluminum (Al), a potentially neurotoxic element, provokes various adverse effects on human health such as dialysis dementia, osteomalacia, and microcytic anemia. It has been also associated with serious neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis, and Parkinsonism dementia of Guam. The "aluminum hypothesis" of AD assumes that the metal complexes can potentiate the rate of aggregation of amyloid-β (Aβ), enhancing the toxicity of this peptide, and being able of contributing to the pathogenesis of AD. It has been supported by a number of analytical, epidemiological, and neurotoxicological studies. On the other hand, melatonin (Mel) is a potent direct free radical scavenger and indirect antioxidant, which acts increasing the activity of important related antioxidant enzymes, and preventing oxidative stress and cell death of neurons exposed to Aβ-induced neurotoxicity. Therefore, Mel might be useful in the treatment of AD by reducing the Aβ generation and by inhibiting mitochondrial cell death pathways. The present review on the role of Mel in Al-related neurodegenerative disorders concludes that the protective effects of this hormone, together with its low toxicity, support the administration of Mel as a potential supplement in the treatment of neurological disorders, in which oxidative stress is involved.
Collapse
Affiliation(s)
- José L Esparza
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Mercedes Gómez
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain.
| |
Collapse
|
39
|
Qian Q, Zhang J, He FP, Bao WX, Zheng TT, Zhou DM, Pan HY, Zhang H, Zhang XQ, He X, Sun BG, Luo BY, Chen C, Peng GP. Down-regulated expression of microRNA-338-5p contributes to neuropathology in Alzheimer's disease. FASEB J 2018; 33:4404-4417. [PMID: 30576233 DOI: 10.1096/fj.201801846r] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alzheimer's disease (AD) is a leading cause of dementia. However, the mechanisms responsible for development of AD, especially for the sporadic variant, are still not clear. In our previous study, we discovered that a small noncoding RNA (miR-188-3p) targeting β-site amyloid precursor protein cleaving enzyme (BACE)-1, a key enzyme responsible for Aβ formation, plays an important role in the development of neuropathology in AD. In the present study, we identified that miR-338-5p, a new miRNA that also targets BACE1, contributes to AD neuropathology. We observed that expression of miR-338-5p was significantly down-regulated in the hippocampus of patients with AD and 5XFAD transgenic (TG) mice, an animal model of AD. Overexpression of miR-338-5p in the hippocampus of TG mice reduced BACE1 expression, Aβ formation, and neuroinflammation. Overexpression of miR-338-5p functionally prevented impairments in long-term synaptic plasticity, learning ability, and memory retention in TG mice. In addition, we provide evidence that down-regulated expression of miR-338-5p in AD is regulated through the NF-κB signaling pathway. Our results suggest that down-regulated expression of miR-338-5p plays an important role in the development of AD.-Qian, Q., Zhang, J., He, F.-P., Bao, W.-X., Zheng, T.-T., Zhou, D.-M., Pan, H.-Y., Zhang, H., Zhang, X.-Q., He, X., Sun, B.-G., Luo, B.-Y., Chen, C., Peng, G.-P. Down-regulated expression of microRNA-338-5p contributes to neuropathology in Alzheimer's disease.
Collapse
Affiliation(s)
- Qi Qian
- Department of Neurology, Center for Brain Sciences, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; and
| | - Jian Zhang
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Fang-Ping He
- Department of Neurology, Center for Brain Sciences, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wang-Xiao Bao
- Department of Neurology, Center for Brain Sciences, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting-Ting Zheng
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Dong-Ming Zhou
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong-Yu Pan
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Heng Zhang
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Qin Zhang
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao He
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing-Gui Sun
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ben-Yan Luo
- Department of Neurology, Center for Brain Sciences, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chu Chen
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Guo-Ping Peng
- Department of Neurology, Center for Brain Sciences, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
40
|
Cai M, Wang YW, Xu SH, Qiao S, Shu QF, Du JZ, Li YG, Liu XL. Regulatory effects of the long non‑coding RNA RP11‑543N12.1 and microRNA‑324‑3p axis on the neuronal apoptosis induced by the inflammatory reactions of microglia. Int J Mol Med 2018; 42:1741-1755. [PMID: 29956723 DOI: 10.3892/ijmm.2018.3736] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 06/15/2018] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to examine how the long non‑coding RNA (lncRNA) RP11‑543N12.1 interacted with microRNA (miR)‑324‑3p to modify microglials (MIs)‑induced neuroblastoma cell apoptosis, which may pose benefits to the treatment of Alzhemier's disease (AD). The cell model of AD was established by treating SH‑SY5Y cells with amyloid β (Aβ)25‑35, and MI were acquired using primary cell culture technology. The lncRNAs that were differentially expressed between SH‑SY5Y and control cells were screened through a microarray assay and confirmed via polymerase chain reaction. In addition, overexpression of RP11‑543N12.1 and miR‑324‑3p was established by transfection of SH‑SY5Y cells with pcDNA3.1(+)‑RP11‑543N12.1 and miR‑324‑3p mimics, respectively, while downregulation of RP11‑543N12.1 and miR‑324‑3p was achieved by transfection with RP11‑543N12.1‑small interfering RNA (siRNA) and miR‑324‑3p inhibitor, respectively. The interaction between RP11‑543N12.1 and miR‑324‑3p was confirmed with a dual‑luciferase reporter gene assay. The results revealed that the expression levels of total and phosphorylated tau in SH‑SY5Y cells were significantly elevated following Aβ25‑35 treatment (P<0.05), and RP11‑543N12.1 was found to be differentially expressed between the control and Aβ25‑35‑treated cells (P<0.05). Furthermore, the targeted association of RP11‑543N12.1 and miR‑324‑3p was predicted based on miRDB4.0 and PITA databases, and then validated via the dual‑luciferase reporter gene assay. SH‑SY5Y cells transfected with siRNA or inhibitor, and treated with Aβ25‑35 displayed cellular survival and apoptosis that were similar to the normal levels (P<0.05). Finally, co‑culture of MI and SH‑SY5Y cells transfected with RP11‑543N12.1‑siRNA/miR‑324‑3p inhibitor significantly enhanced cell apoptosis (P<0.05). In conclusion, RP11‑543N12.1 targeted miR‑324‑3p to suppress proliferation and promote apoptosis in the AD cell model, suggesting that RP11‑543N12.1 and miR‑324‑3p may be potential biomarkers and therapeutic targets for AD.
Collapse
Affiliation(s)
- Miao Cai
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Yan-Wen Wang
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Shan-Hu Xu
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Song Qiao
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Qin-Fen Shu
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Jian-Zong Du
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Ya-Guo Li
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Xiao-Li Liu
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| |
Collapse
|
41
|
Srinivasan M, Lahiri N, Thyagarajan A, Witek E, Hickman D, Lahiri DK. Nuclear factor-kappa B: Glucocorticoid-induced leucine zipper interface analogs suppress pathology in an Alzheimer's disease model. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2018; 4:488-498. [PMID: 30338290 PMCID: PMC6186959 DOI: 10.1016/j.trci.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Glucocorticoid-induced leucine zipper is a regulatory protein that sequesters activated nuclear factor-kappa B p65. Previously, we showed that rationally designed analogs of the p65-binding domain of glucocorticoid-induced leucine zipper, referred to as glucocorticoid-induced leucine zipper analogs (GAs), inhibited amyloid β-induced metabolic activity and inflammatory cytokines in mixed brain cell cultures. Here, we investigate the therapeutic efficacy of GA in an Alzheimer's disease model. METHODS GA and control peptides were synthesized covalently as peptide amides with the cell-penetrating agent. C57Bl/6J mice induced with lipopolysaccharide-mediated neuroinflammation (250 mg/kg i.p/day for six days) were treated on alternate days with GA-1, GA-2, or control peptides (25 mg/kg i.v). Brain tissues were assessed for gliosis, cytokines, and antiapoptotic factors. RESULTS The brain tissues of GA-1- and GA-2-treated mice exhibited significantly reduced gliosis, suppressed inflammatory cytokines, and elevated antiapoptotic factors. DISCUSSION The antineuroinflammatory effects of GA suggest potential therapeutic application for Alzheimer's disease.
Collapse
Affiliation(s)
- Mythily Srinivasan
- Department of Oral Pathology, Medicine and Radiology, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Niloy Lahiri
- Provaidya LLC, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Anish Thyagarajan
- Provaidya LLC, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Emily Witek
- Stark Neuroscience Research Institute, Department of Psychiatry, Institute of Psychiatry Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Debra Hickman
- Stark Neuroscience Research Institute, Department of Psychiatry, Institute of Psychiatry Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Debomoy K. Lahiri
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indiana University–Purdue University Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
42
|
Alexandrov PN, Pogue AI, Lukiw WJ. Synergism in aluminum and mercury neurotoxicity. INTEGRATIVE FOOD, NUTRITION AND METABOLISM 2018; 5:10.15761/IFNM.1000214. [PMID: 29938114 PMCID: PMC6013271 DOI: 10.15761/ifnm.1000214] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Aluminum and mercury are common neurotoxic contaminants in our environment - from the air we breathe to the water that we drink to the foods that we eat. It is remarkable that to date neither of these two well-established environmental neurotoxins (i.e. those having a general toxicity towards brain cells) and genotoxins (those agents which exhibit directed toxicity toward the genetic apparatus) have been critically studied, nor have their neurotoxicities been evaluated in human neurobiology or in cells of the human central nervous system (CNS). In this paper we report the effects of added aluminum [sulfate; Al₂(SO₄)₃] and/or mercury [sulfate; HgSO4] to human neuronal-glial (HNG) cells in primary co-culture using the evolution of the pro-inflammatory transcription factor NF-kB (p50/p65) complex as a critical indicator for the onset of inflammatory neurodegeneration and pathogenic inflammatory signaling. As indexed by significant induction of the NF-kB (p50/p65) complex the results indicate: (i) a notable increase in pro-inflammatory signaling imparted by each of these two environmental neurotoxins toward HNG cells in the ambient 20-200 nM range; and (ii) a significant synergism in the neurotoxicity when aluminum (sulfate) and mercury (sulfate) were added together. This is the first report on the neurotoxic effects of aluminum sulfate and/or mercury sulfate on the initiation of inflammatory signaling in human brain cells in primary culture. The effects aluminum+mercury together on other neurologically important signaling molecules or the effects of other combinations of common environmental metallic neurotoxins to human neurobiology currently remain not well understood but certainly warrant additional investigation and further study in laboratory animals, in human primary tissue cultures of CNS cells, and in other neurobiologically realistic experimental test systems.
Collapse
Affiliation(s)
| | | | - Walter J Lukiw
- Russian Academy of Medical Sciences, Moscow 113152, Russia
- Alchem Biotek Research, Toronto ON M5S 1A8, Canada
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112, USA
- Department of Neurology, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112, USA
- Department of Ophthalmology, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112, USA
| |
Collapse
|
43
|
Nakhate KT, Bharne AP, Verma VS, Aru DN, Kokare DM. Plumbagin ameliorates memory dysfunction in streptozotocin induced Alzheimer’s disease via activation of Nrf2/ARE pathway and inhibition of β-secretase. Biomed Pharmacother 2018; 101:379-390. [DOI: 10.1016/j.biopha.2018.02.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/31/2018] [Accepted: 02/13/2018] [Indexed: 01/01/2023] Open
|
44
|
Abstract
Significant advancements have been made in unraveling and understanding the non-coding elements of the human genome. New insights into the structure and function of noncoding RNAs have emerged. Their relevance in the context of both physiological cellular homeostasis and human diseases is getting appreciated. As a result, exploration of noncoding RNAs, in particular microRNAs (miRs), as therapeutic agents or targets of therapeutic strategies is under way. This review summarizes and discusses in depth the current literature on the role of miRs in neurodegenerative diseases.
Collapse
Affiliation(s)
- Salil Sharma
- Department of Psychological and Brain Sciences, The Linda and Jack Gill Center for Bimolecular Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Hui-Chen Lu
- Department of Psychological and Brain Sciences, The Linda and Jack Gill Center for Bimolecular Sciences, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
45
|
Wang J, Ma MW, Dhandapani KM, Brann DW. Regulatory role of NADPH oxidase 2 in the polarization dynamics and neurotoxicity of microglia/macrophages after traumatic brain injury. Free Radic Biol Med 2017; 113:119-131. [PMID: 28942245 DOI: 10.1016/j.freeradbiomed.2017.09.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/21/2017] [Accepted: 09/19/2017] [Indexed: 12/29/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability. Secondary injuries that develop after the initial trauma contribute to long-lasting neurophysiological deficits. Polarization of microglia/macrophages toward a pro-inflammatory (M1) phenotype may increase the progression of secondary injury following TBI; however, the regulatory and functional mechanisms underlying these changes remain poorly defined. In the present study, we showed elevated expression of NADPH oxidase 2 (NOX2) and activation of nuclear factor-kappa B (NF-κB) predominantly in microglia/macrophages at 4- and 7-days after controlled cortical impact in mice. Delayed inhibition of NOX2, beginning one day after TBI, reduced reactive oxygen species production of myeloid cells and protected neurons from oxidative damage. Moreover, delayed NOX inhibition or global genetic NOX2 knockout suppressed the M1 "pro-inflammatory" profile of microglia/macrophages and simultaneously increased the M2 "anti-inflammatory" profile in the injured brain. These changes were associated with marked down-regulation of the classical NF-κB pathway in microglia/macrophages and reduced production of pro-inflammatory cytokines, tumor necrosis factor-α and interleukin-1β, after TBI. Finally, we demonstrated that wild-type microglia/macrophages isolated from the ipsilateral cortex at 7 days post-TBI were neurotoxic to co-cultured primary neurons, whereas this neurotoxicity was largely attenuated in microglia/macrophages from NOX2-KO mice. Taken together, our study shows a direct link between NOX2 and the NF-κB pathway in microglia/macrophages after TBI, and it provides a novel mechanism by which NOX2 activation leads to the enhanced inflammatory response and neuronal damage after brain injury. Our data also supports the therapeutic potential of targeting NOX2, which may provide efficacy with an extended therapeutic window after TBI.
Collapse
Affiliation(s)
- Jing Wang
- Charlie Norwood Medical Center, One Freedom Way, Augusta, GA 30904, USA; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-4004, Augusta, GA 30912, USA
| | - Merry W Ma
- Charlie Norwood Medical Center, One Freedom Way, Augusta, GA 30904, USA; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-4004, Augusta, GA 30912, USA
| | - Krishnan M Dhandapani
- Charlie Norwood Medical Center, One Freedom Way, Augusta, GA 30904, USA; Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Darrell W Brann
- Charlie Norwood Medical Center, One Freedom Way, Augusta, GA 30904, USA; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-4004, Augusta, GA 30912, USA.
| |
Collapse
|
46
|
Morris G, Puri BK, Frye RE. The putative role of environmental aluminium in the development of chronic neuropathology in adults and children. How strong is the evidence and what could be the mechanisms involved? Metab Brain Dis 2017; 32:1335-1355. [PMID: 28752219 PMCID: PMC5596046 DOI: 10.1007/s11011-017-0077-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/19/2017] [Indexed: 02/06/2023]
Abstract
The conceptualisation of autistic spectrum disorder and Alzheimer's disease has undergone something of a paradigm shift in recent years and rather than being viewed as single illnesses with a unitary pathogenesis and pathophysiology they are increasingly considered to be heterogeneous syndromes with a complex multifactorial aetiopathogenesis, involving a highly complex and diverse combination of genetic, epigenetic and environmental factors. One such environmental factor implicated as a potential cause in both syndromes is aluminium, as an element or as part of a salt, received, for example, in oral form or as an adjuvant. Such administration has the potential to induce pathology via several routes such as provoking dysfunction and/or activation of glial cells which play an indispensable role in the regulation of central nervous system homeostasis and neurodevelopment. Other routes include the generation of oxidative stress, depletion of reduced glutathione, direct and indirect reductions in mitochondrial performance and integrity, and increasing the production of proinflammatory cytokines in both the brain and peripherally. The mechanisms whereby environmental aluminium could contribute to the development of the highly specific pattern of neuropathology seen in Alzheimer's disease are described. Also detailed are several mechanisms whereby significant quantities of aluminium introduced via immunisation could produce chronic neuropathology in genetically susceptible children. Accordingly, it is recommended that the use of aluminium salts in immunisations should be discontinued and that adults should take steps to minimise their exposure to environmental aluminium.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, Wales, SA15 2LW, UK
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, England, W12 0HS, UK.
| | - Richard E Frye
- College of Medicine, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR, 72202, USA
| |
Collapse
|
47
|
Li D, Tomljenovic L, Li Y, Shaw CA. RETRACTED: Subcutaneous injections of aluminum at vaccine adjuvant levels activate innate immune genes in mouse brain that are homologous with biomarkers of autism. J Inorg Biochem 2017; 177:39-54. [PMID: 28923356 DOI: 10.1016/j.jinorgbio.2017.08.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Dan Li
- Dept. of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lucija Tomljenovic
- Dept. of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yongling Li
- Dept. of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher A Shaw
- Dept. of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Program in Experimental Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
48
|
Russo GL, Vastolo V, Ciccarelli M, Albano L, Macchia PE, Ungaro P. Dietary polyphenols and chromatin remodeling. Crit Rev Food Sci Nutr 2017; 57:2589-2599. [DOI: 10.1080/10408398.2015.1062353] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Gian Luigi Russo
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, Avellino, Italy
| | - Viviana Vastolo
- Dipartimento di Scienze Mediche Traslazionali, UniversitàdegliStudi di Napoli ‘Federico II’, Napoli, Italy
| | - Marco Ciccarelli
- Dipartimento di Scienze Mediche Traslazionali, UniversitàdegliStudi di Napoli ‘Federico II’, Napoli, Italy
| | - Luigi Albano
- Dipartimento di Scienze Mediche Traslazionali, UniversitàdegliStudi di Napoli ‘Federico II’, Napoli, Italy
| | - Paolo Emidio Macchia
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli ‘Federico II’, Napoli, Italy
| | - Paola Ungaro
- Istituto di Endocrinologia ed Oncologia Sperimentale ‘G. Salvatore’, Consiglio Nazionaledelle Ricerche, Napoli, Italy
| |
Collapse
|
49
|
Deng LL, Yuan D, Zhou ZY, Wan JZ, Zhang CC, Liu CQ, Dun YY, Zhao HX, Zhao B, Yang YJ, Wang T. Saponins from Panax japonicus attenuate age-related neuroinflammation via regulation of the mitogen-activated protein kinase and nuclear factor kappa B signaling pathways. Neural Regen Res 2017; 12:1877-1884. [PMID: 29239335 PMCID: PMC5745843 DOI: 10.4103/1673-5374.219047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Neuroinflammation is recognized as an important pathogenic factor for aging and related cognitive disorders. Mitogen-activated protein kinase and nuclear factor kappa B signaling pathways may mediate neuroinflammation. Saponins from Panax japonicus are the most abundant and bioactive members in rhizomes of Panax japonicus, and show anti-inflammatory activity. However, it is not known whether saponin from Panax japonicus has an anti-inflammatory effect in the aging brain, and likewise its underlying mechanisms. Sprague-Dawley rats were divided into control groups (3-, 9-, 15-, and 24-month-old groups) and saponins from Panax japonicus-treated groups. Saponins from Panax japonicus-treated groups were orally administrated saponins from Panax japonicus at three doses of 10, 30, and 60 mg/kg once daily for 6 months until the rats were 24 months old. Immunohistochemical staining and western blot assay results demonstrated that many microglia were activated in 24-month-old rats compared with 3- and 9-month-old rats. Expression of interleukin-1β, tumor necrosis factor-α, cyclooxygenase-2, and inducible nitric oxide synthase increased. Each dose of saponins from Panax japonicus visibly suppressed microglial activation in the aging rat brain, and inhibited expression levels of the above factors. Each dose of saponins from Panax japonicus markedly diminished levels of nuclear factor kappa B, IκBα, extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38. These results confirm that saponins from Panax japonicus can mitigate neuroinflammation in the aging rat brain by inhibition of the mitogen-activated protein kinase and nuclear factor kappa B signaling pathways.
Collapse
Affiliation(s)
- Li-Li Deng
- College of Medical Science, China Three Gorges University, Yichang, Hubei Province; Renhe Hospital, Second College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province, China
| | - Ding Yuan
- Renhe Hospital, Second College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province, China
| | - Zhi-Yong Zhou
- College of Medical Science, China Three Gorges University, Yichang, Hubei Province, China
| | - Jing-Zhi Wan
- Renhe Hospital, Second College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province, China
| | - Chang-Cheng Zhang
- College of Medical Science, China Three Gorges University, Yichang, Hubei Province, China
| | - Chao-Qi Liu
- College of Medical Science, China Three Gorges University, Yichang, Hubei Province, China
| | - Yao-Yan Dun
- College of Medical Science, China Three Gorges University, Yichang, Hubei Province, China
| | - Hai-Xia Zhao
- College of Medical Science, China Three Gorges University, Yichang, Hubei Province, China
| | - Bo Zhao
- College of Medical Science, China Three Gorges University, Yichang, Hubei Province, China
| | - Yuan-Jian Yang
- Medical Experimental Center, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Ting Wang
- College of Medical Science, China Three Gorges University, Yichang, Hubei Province, China
| |
Collapse
|
50
|
Snow WM, Albensi BC. Neuronal Gene Targets of NF-κB and Their Dysregulation in Alzheimer's Disease. Front Mol Neurosci 2016; 9:118. [PMID: 27881951 PMCID: PMC5101203 DOI: 10.3389/fnmol.2016.00118] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/25/2016] [Indexed: 11/21/2022] Open
Abstract
Although, better known for its role in inflammation, the transcription factor nuclear factor kappa B (NF-κB) has more recently been implicated in synaptic plasticity, learning, and memory. This has been, in part, to the discovery of its localization not just in glia, cells that are integral to mediating the inflammatory process in the brain, but also neurons. Several effectors of neuronal NF-κB have been identified, including calcium, inflammatory cytokines (i.e., tumor necrosis factor alpha), and the induction of experimental paradigms thought to reflect learning and memory at the cellular level (i.e., long-term potentiation). NF-κB is also activated after learning and memory formation in vivo. In turn, activation of NF-κB can elicit either suppression or activation of other genes. Studies are only beginning to elucidate the multitude of neuronal gene targets of NF-κB in the normal brain, but research to date has confirmed targets involved in a wide array of cellular processes, including cell signaling and growth, neurotransmission, redox signaling, and gene regulation. Further, several lines of research confirm dysregulation of NF-κB in Alzheimer's disease (AD), a disorder characterized clinically by a profound deficit in the ability to form new memories. AD-related neuropathology includes the characteristic amyloid beta plaque formation and neurofibrillary tangles. Although, such neuropathological findings have been hypothesized to contribute to memory deficits in AD, research has identified perturbations at the cellular and synaptic level that occur even prior to more gross pathologies, including transcriptional dysregulation. Indeed, synaptic disturbances appear to be a significant correlate of cognitive deficits in AD. Given the more recently identified role for NF-κB in memory and synaptic transmission in the normal brain, the expansive network of gene targets of NF-κB, and its dysregulation in AD, a thorough understanding of NF-κB-related signaling in AD is warranted and may have important implications for uncovering treatments for the disease. This review aims to provide a comprehensive view of our current understanding of the gene targets of this transcription factor in neurons in the intact brain and provide an overview of studies investigating NF-κB signaling, including its downstream targets, in the AD brain as a means of uncovering the basic physiological mechanisms by which memory becomes fragile in the disease.
Collapse
Affiliation(s)
- Wanda M Snow
- Division of Neurodegenerative Disorders, St. Boniface Hospital ResearchWinnipeg, MB, Canada; Department of Pharmacology and Therapeutics, University of ManitobaWinnipeg, MB, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital ResearchWinnipeg, MB, Canada; Department of Pharmacology and Therapeutics, University of ManitobaWinnipeg, MB, Canada
| |
Collapse
|