1
|
Mishra A, Kumar R, Harilal S, Nigam M, Datta D, Singh S. Emerging Landscape of In Vitro Models for Assessing Rheumatoid Arthritis Management. ACS Pharmacol Transl Sci 2024; 7:2280-2305. [PMID: 39144547 PMCID: PMC11320735 DOI: 10.1021/acsptsci.4c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 08/16/2024]
Abstract
Rheumatoid arthritis (RA) is a complex condition that is influenced by various causes, including immunological, genetic, and environmental factors. Several studies using animal models have documented immune system dysfunction and described the clinical characteristics of the disease. These studies have provided valuable insights into the pathogenesis of inflammatory arthritis and the identification of new targets for treatment. Nevertheless, none of these animal models successfully replicated all the characteristics of RA. Additionally, numerous experimental medications, which were developed based on our enhanced comprehension of the immune system's function in RA, have shown potential in animal research but ultimately proved ineffective during different stages of clinical trials. There have been several novel therapy alternatives, which do not achieve a consistently outstanding therapeutic outcome in all patients. This underscores the importance of employing the progress in in vitro models, particularly 3D models like tissue explants, and diverse multicomponent approaches such as coculture strategies, synovial membrane, articular cartilage, and subchondral bone models that accurately replicate the structural characteristics of RA pathophysiology. These methods are crucial for the advancement of potential therapeutic strategies. This review discusses the latest advancements in in vitro models and their potential to greatly impact research on managing RA.
Collapse
Affiliation(s)
- Abhay
Prakash Mishra
- Department
of Pharmacology, University of Free State, Bloemfontein 9301, South Africa
- Department
of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Rajesh Kumar
- Faculty
of Pharmaceutical Sciences, Kerala University
of Health Sciences, Kerala 680596, India
| | - Seetha Harilal
- Faculty
of Pharmaceutical Sciences, Kerala University
of Health Sciences, Kerala 680596, India
| | - Manisha Nigam
- Department
of Biochemistry, Hemvati Nandan Bahuguna
Garhwal University, Srinagar
Garhwal, Uttarakhand 246174, India
| | - Deepanjan Datta
- Department
of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sudarshan Singh
- Office of
Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Faculty of
Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
M. S. Barron A, Fabre T, De S. Distinct fibroblast functions associated with fibrotic and immune-mediated inflammatory diseases and their implications for therapeutic development. F1000Res 2024; 13:54. [PMID: 38681509 PMCID: PMC11053351 DOI: 10.12688/f1000research.143472.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 05/01/2024] Open
Abstract
Fibroblasts are ubiquitous cells that can adopt many functional states. As tissue-resident sentinels, they respond to acute damage signals and shape the earliest events in fibrotic and immune-mediated inflammatory diseases. Upon sensing an insult, fibroblasts produce chemokines and growth factors to organize and support the response. Depending on the size and composition of the resulting infiltrate, these activated fibroblasts may also begin to contract or relax thus changing local stiffness within the tissue. These early events likely contribute to the divergent clinical manifestations of fibrotic and immune-mediated inflammatory diseases. Further, distinct changes to the cellular composition and signaling dialogue in these diseases drive progressive fibroblasts specialization. In fibrotic diseases, fibroblasts support the survival, activation and differentiation of myeloid cells, granulocytes and innate lymphocytes, and produce most of the pathogenic extracellular matrix proteins. Whereas, in immune-mediated inflammatory diseases, sequential accumulation of dendritic cells, T cells and B cells programs fibroblasts to support local, destructive adaptive immune responses. Fibroblast specialization has clear implications for the development of effective induction and maintenance therapies for patients with these clinically distinct diseases.
Collapse
Affiliation(s)
- Alexander M. S. Barron
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Thomas Fabre
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Saurav De
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
3
|
Kraus SE, Lee E. Engineering approaches to investigate the roles of lymphatics vessels in rheumatoid arthritis. Microcirculation 2023; 30:e12769. [PMID: 35611452 PMCID: PMC9684355 DOI: 10.1111/micc.12769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022]
Abstract
Rheumatoid arthritis (RA) is one of the most common chronic inflammatory joint disorders. While our understanding of the autoimmune processes that lead to synovial degradation has improved, a majority of patients are still resistant to current treatments and require new therapeutics. An understudied and promising area for therapy involves the roles of lymphatic vessels (LVs) in RA progression, which has been observed to have a significant effect on mediating chronic inflammation. RA disease progression has been shown to correlate with dramatic changes in LV structure and interstitial fluid drainage, manifesting in the retention of distinct immune cell phenotypes within the synovium. Advances in dynamic imaging technologies have demonstrated that LVs in RA undergo an initial expansion phase of increased LVs and abnormal contractions followed by a collapsed phase of reduced lymphatic function and immune cell clearance in vivo. However, current animal models of RA fail to decouple biological and biophysical factors that might be responsible for this lymphatic dysfunction in RA, and a few attempted in vitro models of the synovium in RA have not yet included the contributions from the LVs. Various methods of replicating LVs in vitro have been developed to study lymphatic biology, but these have yet not been integrated into the RA context. This review discusses the roles of LVs in RA and the current engineering approaches to improve our understanding of lymphatic pathophysiology in RA.
Collapse
Affiliation(s)
- Samantha E. Kraus
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
4
|
Marshall LJ, Bailey J, Cassotta M, Herrmann K, Pistollato F. Poor Translatability of Biomedical Research Using Animals - A Narrative Review. Altern Lab Anim 2023; 51:102-135. [PMID: 36883244 DOI: 10.1177/02611929231157756] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The failure rate for the translation of drugs from animal testing to human treatments remains at over 92%, where it has been for the past few decades. The majority of these failures are due to unexpected toxicity - that is, safety issues revealed in human trials that were not apparent in animal tests - or lack of efficacy. However, the use of more innovative tools, such as organs-on-chips, in the preclinical pipeline for drug testing, has revealed that these tools are more able to predict unexpected safety events prior to clinical trials and so can be used for this, as well as for efficacy testing. Here, we review several disease areas, and consider how the use of animal models has failed to offer effective new treatments. We also make some suggestions as to how the more human-relevant new approach methodologies might be applied to address this.
Collapse
Affiliation(s)
- Lindsay J Marshall
- Animal Research Issues, 94219The Humane Society of the United States, Gaithersburg, MD, USA
| | - Jarrod Bailey
- 380235Cruelty Free International, London, UK; 542332Animal Free Research UK, London, UK
| | | | - Kathrin Herrmann
- Johns Hopkins Bloomberg School of Public Health, 457389Center for Alternatives to Animal Testing, Baltimore, MD, USA; Senate Department for the Environment, Urban Mobility, Consumer Protection and Climate Action, Berlin, Germany
| | | |
Collapse
|
5
|
Crum RJ, Hall K, Molina CP, Hussey GS, Graham E, Li H, Badylak SF. Immunomodulatory matrix-bound nanovesicles mitigate acute and chronic pristane-induced rheumatoid arthritis. NPJ Regen Med 2022; 7:13. [PMID: 35110573 PMCID: PMC8810774 DOI: 10.1038/s41536-022-00208-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation and destruction of synovial joints affecting ~7.5 million people worldwide. Disease pathology is driven by an imbalance in the ratio of pro-inflammatory vs. anti-inflammatory immune cells, especially macrophages. Modulation of macrophage phenotype, specifically an M1 to M2, pro- to anti-inflammatory transition, can be induced by biologic scaffold materials composed of extracellular matrix (ECM). The ECM-based immunomodulatory effect is thought to be mediated in part through recently identified matrix-bound nanovesicles (MBV) embedded within ECM. Isolated MBV was delivered via intravenous (i.v.) or peri-articular (p.a.) injection to rats with pristane-induced arthritis (PIA). The results of MBV administration were compared to intraperitoneal (i.p.) administration of methotrexate (MTX), the clinical standard of care. Relative to the diseased animals, i.p. MTX, i.v. MBV, and p.a. MBV reduced arthritis scores in both acute and chronic pristane-induced arthritis, decreased synovial inflammation, decreased adverse joint remodeling, and reduced the ratio of synovial and splenic M1 to M2 macrophages (p < 0.05). Both p.a. and i.v. MBV reduced the serum concentration of RA and PIA biomarkers CXCL10 and MCP-3 in the acute and chronic phases of disease (p < 0.05). Flow-cytometry revealed the presence of a systemic CD43hi/His48lo/CD206+, immunoregulatory monocyte population unique to p.a. and i.v. MBV treatment associated with disease resolution. The results show that the therapeutic efficacy of MBV is equal to that of MTX for the management of acute and chronic pristane-induced arthritis and, further, this effect is associated with modulation of local synovial macrophages and systemic myeloid populations.
Collapse
Affiliation(s)
- Raphael J Crum
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA, 15219, USA
| | - Kelsey Hall
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA, 15219, USA
| | - Catalina Pineda Molina
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA, 15219, USA.,Department of Surgery, School of Medicine, University of Pittsburgh, University of Pittsburgh Medical Center Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - George S Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA, 15219, USA.,Department of Surgery, School of Medicine, University of Pittsburgh, University of Pittsburgh Medical Center Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.,ECM Therapeutics, Inc., 118 Marshall Dr., Warrendale, PA, 15086, USA
| | - Emma Graham
- Musculoskeletal Growth and Regeneration Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, 450 Technology Drive, Suite 206, Pittsburgh, PA, 15219, USA
| | - Hongshuai Li
- Department of Orthopedics and Rehabilitation, University of Iowa, 25 Grand Ave, Iowa City, IA, 52246, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA, 15219, USA. .,Department of Surgery, School of Medicine, University of Pittsburgh, University of Pittsburgh Medical Center Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA, 15213, USA. .,ECM Therapeutics, Inc., 118 Marshall Dr., Warrendale, PA, 15086, USA. .,Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
6
|
Horbert V, Xin L, Föhr P, Huber R, Burgkart RH, Kinne RW. In Vitro Cartilage Regeneration with a Three-Dimensional Polyglycolic Acid (PGA) Implant in a Bovine Cartilage Punch Model. Int J Mol Sci 2021; 22:11769. [PMID: 34769199 PMCID: PMC8583898 DOI: 10.3390/ijms222111769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022] Open
Abstract
Resorbable polyglycolic acid (PGA) chondrocyte grafts are clinically established for human articular cartilage defects. Long-term implant performance was addressed in a standardized in vitro model. PGA implants (+/- bovine chondrocytes) were placed inside cartilage rings punched out of bovine femoral trochleas (outer Ø 6 mm; inner defect Ø 2 mm) and cultured for 84 days (12 weeks). Cartilage/PGA hybrids were subsequently analyzed by histology (hematoxylin/eosin; safranin O), immunohistochemistry (aggrecan, collagens 1 and 2), protein assays, quantitative real-time polymerase chain reactions, and implant push-out force measurements. Cartilage/PGA hybrids remained vital with intact matrix until 12 weeks, limited loss of proteoglycans from "host" cartilage or cartilage-PGA interface, and progressively diminishing release of proteoglycans into the supernatant. By contrast, the collagen 2 content in cartilage and cartilage-PGA interface remained approximately constant during culture (with only little collagen 1). Both implants (+/- cells) displayed implant colonization and progressively increased aggrecan and collagen 2 mRNA, but significantly decreased push-out forces over time. Cell-loaded PGA showed significantly accelerated cell colonization and significantly extended deposition of aggrecan. Augmented chondrogenic differentiation in PGA and cartilage/PGA-interface for up to 84 days suggests initial cartilage regeneration. Due to the PGA resorbability, however, the model exhibits limitations in assessing the "lateral implant bonding".
Collapse
Affiliation(s)
- Victoria Horbert
- Experimental Rheumatology Unit, Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany; (V.H.); (L.X.)
| | - Long Xin
- Experimental Rheumatology Unit, Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany; (V.H.); (L.X.)
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Peter Föhr
- Biomechanics Laboratory, Chair of Orthopedics and Sport Orthopedics, Technische Universität München, 81675 Munich, Germany; (P.F.); (R.H.B.)
| | - René Huber
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany;
| | - Rainer H. Burgkart
- Biomechanics Laboratory, Chair of Orthopedics and Sport Orthopedics, Technische Universität München, 81675 Munich, Germany; (P.F.); (R.H.B.)
| | - Raimund W. Kinne
- Experimental Rheumatology Unit, Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany; (V.H.); (L.X.)
| |
Collapse
|
7
|
Spinnen J, Shopperly LK, Rendenbach C, Kühl AA, Sentürk U, Kendoff D, Hemmati-Sadeghi S, Sittinger M, Dehne T. A Novel Method Facilitating the Simple and Low-Cost Preparation of Human Osteochondral Slice Explants for Large-Scale Native Tissue Analysis. Int J Mol Sci 2021; 22:ijms22126394. [PMID: 34203791 PMCID: PMC8232634 DOI: 10.3390/ijms22126394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/16/2022] Open
Abstract
For in vitro modeling of human joints, osteochondral explants represent an acceptable compromise between conventional cell culture and animal models. However, the scarcity of native human joint tissue poses a challenge for experiments requiring high numbers of samples and makes the method rather unsuitable for toxicity analyses and dosing studies. To scale their application, we developed a novel method that allows the preparation of up to 100 explant cultures from a single human sample with a simple setup. Explants were cultured for 21 days, stimulated with TNF-α or TGF-β3, and analyzed for cell viability, gene expression and histological changes. Tissue cell viability remained stable at >90% for three weeks. Proteoglycan levels and gene expression of COL2A1, ACAN and COMP were maintained for 14 days before decreasing. TNF-α and TGF-β3 caused dose-dependent changes in cartilage marker gene expression as early as 7 days. Histologically, cultures under TNF-α stimulation showed a 32% reduction in proteoglycans, detachment of collagen fibers and cell swelling after 7 days. In conclusion, thin osteochondral slice cultures behaved analogously to conventional punch explants despite cell stress exerted during fabrication. In pharmacological testing, both the shorter diffusion distance and the lack of need for serum in the culture suggest a positive effect on sensitivity. The ease of fabrication and the scalability of the sample number make this manufacturing method a promising platform for large-scale preclinical testing in joint research.
Collapse
Affiliation(s)
- Jacob Spinnen
- Department of Rheumatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.K.S.); (S.H.-S.); (M.S.); (T.D.)
- Correspondence:
| | - Lennard K. Shopperly
- Department of Rheumatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.K.S.); (S.H.-S.); (M.S.); (T.D.)
| | - Carsten Rendenbach
- Department of Oral and Maxillofacial Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany;
| | - Anja A. Kühl
- iPATH Histopathology Core Unit, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany;
| | - Ufuk Sentürk
- Department of Orthopedics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany;
| | - Daniel Kendoff
- Department of Orthopaedic Surgery, Helios Klinikum Berlin-Buch, 13125 Berlin, Germany;
| | - Shabnam Hemmati-Sadeghi
- Department of Rheumatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.K.S.); (S.H.-S.); (M.S.); (T.D.)
| | - Michael Sittinger
- Department of Rheumatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.K.S.); (S.H.-S.); (M.S.); (T.D.)
| | - Tilo Dehne
- Department of Rheumatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.K.S.); (S.H.-S.); (M.S.); (T.D.)
| |
Collapse
|
8
|
A Human Osteochondral Tissue Model Mimicking Cytokine-Induced Key Features of Arthritis In Vitro. Int J Mol Sci 2020; 22:ijms22010128. [PMID: 33374446 PMCID: PMC7794893 DOI: 10.3390/ijms22010128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Adequate tissue engineered models are required to further understand the (patho)physiological mechanism involved in the destructive processes of cartilage and subchondral bone during rheumatoid arthritis (RA). Therefore, we developed a human in vitro 3D osteochondral tissue model (OTM), mimicking cytokine-induced cellular and matrix-related changes leading to cartilage degradation and bone destruction in order to ultimately provide a preclinical drug screening tool. To this end, the OTM was engineered by co-cultivation of mesenchymal stromal cell (MSC)-derived bone and cartilage components in a 3D environment. It was comprehensively characterized on cell, protein, and mRNA level. Stimulating the OTM with pro-inflammatory cytokines, relevant in RA (tumor necrosis factor α, interleukin-6, macrophage migration inhibitory factor), caused cell- and matrix-related changes, resulting in a significantly induced gene expression of lactate dehydrogenase A, interleukin-8 and tumor necrosis factor α in both, cartilage and bone, while the matrix metalloproteases 1 and 3 were only induced in cartilage. Finally, application of target-specific drugs prevented the induction of inflammation and matrix-degradation. Thus, we here provide evidence that our human in vitro 3D OTM mimics cytokine-induced cell- and matrix-related changes—key features of RA—and may serve as a preclinical tool for the evaluation of both new targets and potential drugs in a more translational setup.
Collapse
|
9
|
Damerau A, Gaber T. Modeling Rheumatoid Arthritis In Vitro: From Experimental Feasibility to Physiological Proximity. Int J Mol Sci 2020; 21:ijms21217916. [PMID: 33113770 PMCID: PMC7663779 DOI: 10.3390/ijms21217916] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, inflammatory, and systemic autoimmune disease that affects the connective tissue and primarily the joints. If not treated, RA ultimately leads to progressive cartilage and bone degeneration. The etiology of the pathogenesis of RA is unknown, demonstrating heterogeneity in its clinical presentation, and is associated with autoantibodies directed against modified self-epitopes. Although many models already exist for RA for preclinical research, many current model systems of arthritis have limited predictive value because they are either based on animals of phylogenetically distant origin or suffer from overly simplified in vitro culture conditions. These limitations pose considerable challenges for preclinical research and therefore clinical translation. Thus, a sophisticated experimental human-based in vitro approach mimicking RA is essential to (i) investigate key mechanisms in the pathogenesis of human RA, (ii) identify targets for new therapeutic approaches, (iii) test these approaches, (iv) facilitate the clinical transferability of results, and (v) reduce the use of laboratory animals. Here, we summarize the most commonly used in vitro models of RA and discuss their experimental feasibility and physiological proximity to the pathophysiology of human RA to highlight new human-based avenues in RA research to increase our knowledge on human pathophysiology and develop effective targeted therapies.
Collapse
Affiliation(s)
- Alexandra Damerau
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany;
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Timo Gaber
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany;
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany
- Correspondence:
| |
Collapse
|
10
|
Anderson JR, Phelan MM, Foddy L, Clegg PD, Peffers MJ. Ex Vivo Equine Cartilage Explant Osteoarthritis Model: A Metabolomics and Proteomics Study. J Proteome Res 2020; 19:3652-3667. [PMID: 32701294 PMCID: PMC7476031 DOI: 10.1021/acs.jproteome.0c00143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
Osteoarthritis is an age-related
degenerative musculoskeletal disease
characterized by loss of articular cartilage, synovitis, and subchondral
bone sclerosis. Osteoarthritis pathogenesis is yet to be fully elucidated
with no osteoarthritis-specific biomarkers in clinical use. Ex vivo equine cartilage explants (n =
5) were incubated in tumor necrosis factor-α (TNF-α)/interleukin-1β
(IL-1β)-supplemented culture media for 8 days, with the media
removed and replaced at 2, 5, and 8 days. Acetonitrile metabolite
extractions of 8 day cartilage explants and media samples at all time
points underwent one-dimensional (1D) 1H nuclear magnetic
resonance metabolomic analysis, with media samples also undergoing
mass spectrometry proteomic analysis. Within the cartilage, glucose
and lysine were elevated following TNF-α/IL-1β treatment,
while adenosine, alanine, betaine, creatine, myo-inositol, and uridine
decreased. Within the culture media, 4, 4, and 6 differentially abundant
metabolites and 154, 138, and 72 differentially abundant proteins
were identified at 1–2, 3–5, and 6–8 days, respectively,
including reduced alanine and increased isoleucine, enolase 1, vimentin,
and lamin A/C following treatment. Nine potential novel osteoarthritis
neopeptides were elevated in the treated media. Implicated pathways
were dominated by those involved in cellular movement. Our innovative
study has provided insightful information on early osteoarthritis
pathogenesis, enabling potential translation for clinical markers
and possible new therapeutic targets.
Collapse
Affiliation(s)
- James R Anderson
- Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, U.K
| | - Marie M Phelan
- NMR Metabolomics Facility, Technology Directorate & Department of Biochemistry & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Laura Foddy
- School of Veterinary Science, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool L69 3GH, U.K
| | - Peter D Clegg
- Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, U.K
| | - Mandy J Peffers
- Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, U.K
| |
Collapse
|
11
|
Haidar O, O'Neill N, Staunton CA, Bavan S, O'Brien F, Zouggari S, Sharif U, Mobasheri A, Kumagai K, Barrett-Jolley R. Pro-inflammatory Cytokines Drive Deregulation of Potassium Channel Expression in Primary Synovial Fibroblasts. Front Physiol 2020; 11:226. [PMID: 32265733 PMCID: PMC7105747 DOI: 10.3389/fphys.2020.00226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/27/2020] [Indexed: 01/15/2023] Open
Abstract
The synovium secretes synovial fluid, but is also richly innervated with nociceptors and acts as a gateway between avascular joint tissues and the circulatory system. Resident fibroblast-like synoviocytes' (FLS) calcium-activated potassium channels (K Ca) change in activity in arthritis models and this correlates with FLS activation. Objective To investigate this activation in an in vitro model of inflammatory arthritis; 72 h treatment with cytokines TNFα and IL1β. Methods FLS cells were isolated from rat synovial membranes. We analyzed global changes in FLS mRNA by RNA-sequencing, then focused on FLS ion channel genes and the corresponding FLS electrophysiological phenotype and finally modeling data with ingenuity pathway analysis (IPA) and MATLAB. Results IPA showed significant activation of inflammatory, osteoarthritic and calcium signaling canonical pathways by cytokines, and we identified ∼200 channel gene transcripts. The large K Ca (BK) channel consists of the pore forming Kcnma1 together with β-subunits. Following cytokine treatment, a significant increase in Kcnma1 RNA abundance was detected by qPCR and changes in several ion channels were detected by RNA-sequencing, including a loss of BK channel β-subunit expression Kcnmb1/2 and an increase in Kcnmb3. In electrophysiological experiments, there was a decrease in over-all current density at 20 mV without change in chord conductance at this potential. Conclusion TNFα and IL1β treatment of FLS in vitro recapitulated several common features of inflammatory arthritis at the transcriptomic level, including increase in Kcnma1 and Kcnmb3 gene expression.
Collapse
Affiliation(s)
- Omar Haidar
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Nathanael O'Neill
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Caroline A Staunton
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Selvan Bavan
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Fiona O'Brien
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Sarah Zouggari
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Umar Sharif
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.,Department of Orthopedics and Department of Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht, Netherlands.,Versus Arthritis Centre for Sport, Exercise and Osteoarthritis Research, Queen's Medical Centre, Nottingham, United Kingdom
| | - Kosuke Kumagai
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.,Department of Orthopaedic Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Richard Barrett-Jolley
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.,Versus Arthritis Centre for Sport, Exercise and Osteoarthritis Research, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
12
|
Horbert V, Xin L, Foehr P, Brinkmann O, Bungartz M, Burgkart RH, Graeve T, Kinne RW. In Vitro Analysis of Cartilage Regeneration Using a Collagen Type I Hydrogel (CaReS) in the Bovine Cartilage Punch Model. Cartilage 2019; 10:346-363. [PMID: 29463136 PMCID: PMC6585298 DOI: 10.1177/1947603518756985] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE Limitations of matrix-assisted autologous chondrocyte implantation to regenerate functional hyaline cartilage demand a better understanding of the underlying cellular/molecular processes. Thus, the regenerative capacity of a clinically approved hydrogel collagen type I implant was tested in a standardized bovine cartilage punch model. METHODS Cartilage rings (outer diameter 6 mm; inner defect diameter 2 mm) were prepared from the bovine trochlear groove. Collagen implants (± bovine chondrocytes) were placed inside the cartilage rings and cultured up to 12 weeks. Cartilage-implant constructs were analyzed by histology (hematoxylin/eosin; safranin O), immunohistology (aggrecan, collagens 1 and 2), and for protein content, RNA expression, and implant push-out force. RESULTS Cartilage-implant constructs revealed vital morphology, preserved matrix integrity throughout culture, progressive, but slight proteoglycan loss from the "host" cartilage or its surface and decreasing proteoglycan release into the culture supernatant. In contrast, collagen 2 and 1 content of cartilage and cartilage-implant interface was approximately constant over time. Cell-free and cell-loaded implants showed (1) cell migration onto/into the implant, (2) progressive deposition of aggrecan and constant levels of collagens 1 and 2, (3) progressively increased mRNA levels for aggrecan and collagen 2, and (4) significantly augmented push-out forces over time. Cell-loaded implants displayed a significantly earlier and more long-lasting deposition of aggrecan, as well as tendentially higher push-out forces. CONCLUSION Preserved tissue integrity and progressively increasing cartilage differentiation and push-out forces for up to 12 weeks of cultivation suggest initial cartilage regeneration and lateral bonding of the implant in this in vitro model for cartilage replacement materials.
Collapse
Affiliation(s)
- Victoria Horbert
- Experimental Rheumatology Unit,
Department of Orthopedics, Jena University Hospital, Waldkrankenhaus “Rudolf Elle”,
Eisenberg, Germany
| | - Long Xin
- Experimental Rheumatology Unit,
Department of Orthopedics, Jena University Hospital, Waldkrankenhaus “Rudolf Elle”,
Eisenberg, Germany,Department of Orthopedics, Tongde
Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Peter Foehr
- Biomechanics Laboratory, Department of
Orthopedics and Sportsorthopedics, Klinikum rechts der Isar, Technische Universität
München, Munich, Germany
| | - Olaf Brinkmann
- Chair of Orthopedics, Department of
Orthopedics, Jena University Hospital, Waldkrankenhaus “Rudolf Elle”, Eisenberg,
Germany
| | - Matthias Bungartz
- Chair of Orthopedics, Department of
Orthopedics, Jena University Hospital, Waldkrankenhaus “Rudolf Elle”, Eisenberg,
Germany
| | - Rainer H. Burgkart
- Biomechanics Laboratory, Department of
Orthopedics and Sportsorthopedics, Klinikum rechts der Isar, Technische Universität
München, Munich, Germany
| | | | - Raimund W. Kinne
- Experimental Rheumatology Unit,
Department of Orthopedics, Jena University Hospital, Waldkrankenhaus “Rudolf Elle”,
Eisenberg, Germany,Raimund W. Kinne, Experimental Rheumatology
Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus
“Rudolf Elle”, Klosterlausnitzer Straße 81, D-07607, Eisenberg, Germany.
| |
Collapse
|
13
|
Pérez‐García S, Carrión M, Villanueva‐Romero R, Hermida‐Gómez T, Fernández‐Moreno M, Mellado M, Blanco FJ, Juarranz Y, Gomariz RP. Wnt and RUNX2 mediate cartilage breakdown by osteoarthritis synovial fibroblast-derived ADAMTS-7 and -12. J Cell Mol Med 2019; 23:3974-3983. [PMID: 30903650 PMCID: PMC6533528 DOI: 10.1111/jcmm.14283] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/18/2019] [Accepted: 02/25/2019] [Indexed: 12/19/2022] Open
Abstract
Failure of therapeutic approaches for the treatment of osteoarthritis (OA) based on the inhibition of metalloproteinases, might be because of their constitutive expression in homeostasis, together with their network complexity. The knowledge of this network would contribute to selective target pathological conditions. In this sense, blockade of mediators produced by neighbouring joint cells, such as synovial fibroblasts (SF), would prevent cartilage damage. Thus, we studied the contribution of ADAMTS-7 and -12 from SF to cartilage oligomeric matrix protein (COMP) degradation, and the signalling pathways involved in their expression. We report for the first time in SF, the involvement of ERK-Runx2 axis and Wnt/β-catenin signalling in ADAMTS-12 and ADAMTS-7 expressions, respectively, with the subsequent consequences in COMP degradation from cartilage extracellular matrix. After stimulation with IL-1β or fibronectin fragments, we showed that ERK inhibition decreased Runx2 activation and ADAMTS-12 expression in OA-SF, also reducing Fn-fs-induced COMP degradation. Blockage of Wnt signalling by DKK1 reduced ADAMTS-7 and COMP degradation in OA-SF as well. In addition, Wnt7B expression was induced by IL-1β and by itself, also increasing ADAMTS-7. Our results could contribute to the development of disease-modifying OA drugs targeting ADAMTS-7 and -12 for the prevention of extracellular matrix components degradation like COMP.
Collapse
Affiliation(s)
- Selene Pérez‐García
- Departamento de Biología Celular, Facultad de BiologíaUniversidad Complutense de MadridSpain
| | - Mar Carrión
- Departamento de Biología Celular, Facultad de BiologíaUniversidad Complutense de MadridSpain
| | - Raúl Villanueva‐Romero
- Departamento de Biología Celular, Facultad de BiologíaUniversidad Complutense de MadridSpain
| | - Tamara Hermida‐Gómez
- Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña, Sergas Universidade de A Coruña (UDC)A CoruñaSpain
| | - Mercedes Fernández‐Moreno
- Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña, Sergas Universidade de A Coruña (UDC)A CoruñaSpain
| | - Mario Mellado
- Departamento de Inmunología y OncologíaCentro Nacional de Biotecnología (CNB)/CSICMadridSpain
| | - Francisco J. Blanco
- Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña, Sergas Universidade de A Coruña (UDC)A CoruñaSpain
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de BiologíaUniversidad Complutense de MadridSpain
| | - Rosa P. Gomariz
- Departamento de Biología Celular, Facultad de BiologíaUniversidad Complutense de MadridSpain
| |
Collapse
|
14
|
Stefani RM, Halder SS, Estell EG, Lee AJ, Silverstein AM, Sobczak E, Chahine NO, Ateshian GA, Shah RP, Hung CT. A Functional Tissue-Engineered Synovium Model to Study Osteoarthritis Progression and Treatment. Tissue Eng Part A 2019; 25:538-553. [PMID: 30203722 PMCID: PMC6482911 DOI: 10.1089/ten.tea.2018.0142] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/31/2018] [Indexed: 01/15/2023] Open
Abstract
IMPACT STATEMENT The synovium envelops the diarthrodial joint and plays a key regulatory role in defining the composition of the synovial fluid through filtration and biosynthesis of critical boundary lubricants. Synovium changes often precede cartilage damage in osteoarthritis. We describe a novel in vitro tissue engineered model, validated against native synovium explants, to investigate the structure-function of synovium through quantitative solute transport measures. Synovium was evaluated in the presence of a proinflammatory cytokine, interleukin-1, or the clinically relevant corticosteroid, dexamethasone. We anticipate that a better understanding of synovium transport would support efforts to develop more effective strategies aimed at restoring joint health.
Collapse
Affiliation(s)
- Robert M. Stefani
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Saiti S. Halder
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Eben G. Estell
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Andy J. Lee
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Amy M. Silverstein
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Evie Sobczak
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Nadeen O. Chahine
- Department of Biomedical Engineering, Columbia University, New York, New York
- Department of Orthopedic Surgery, Columbia University, New York, New York
| | - Gerard A. Ateshian
- Department of Biomedical Engineering, Columbia University, New York, New York
- Department of Mechanical Engineering, Columbia University, New York, New York
| | - Roshan P. Shah
- Department of Orthopedic Surgery, Columbia University, New York, New York
| | - Clark T. Hung
- Department of Biomedical Engineering, Columbia University, New York, New York
| |
Collapse
|
15
|
Sadia S, Tariq A, Shaheen S, Malik K, khan F, Ahmad M, Qureshi H, Nayyar BG. Ethnopharmacological profile of anti-arthritic plants of Asia-a systematic review. J Herb Med 2018. [DOI: 10.1016/j.hermed.2018.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Qu Y, Wu J, Deng JX, Zhang YP, Liang WY, Jiang ZL, Yu QH, Li J. MicroRNA-126 affects rheumatoid arthritis synovial fibroblast proliferation and apoptosis by targeting PIK3R2 and regulating PI3K-AKT signal pathway. Oncotarget 2018; 7:74217-74226. [PMID: 27729613 PMCID: PMC5342047 DOI: 10.18632/oncotarget.12487] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/10/2016] [Indexed: 12/20/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes inflammation and destruction of the joints as well as an increased risk of cardiovascular disease. RA synovial fibroblasts (RASFs) are involved in the progression of RA and release pro-inflammatory cytokines. On the other hand, microRNAs (miRs) may help control the inflammatory response of immune and non-immune cells. Therefore, our study used lentiviral expression vectors to test the effects of miR-126 overexpression on RASF proliferation and apoptosis. Luciferase experiments verified the targeting relationship between miR-126 and PIK3R2 gene. The co-transfection of anti-miR-126 and PIK3R2 siRNA to RASFs were used to identify whether PIK3R2 was directly involved in proliferation and apoptosis of miR-126-induced RASFs. Real-time polymerase chain reaction (PCR) was used to detect miR-126 and PIK3R2 expressions. MTT assay was used to detect cell proliferation. Flow cytometry was used to detect cell apoptosis and cell cycle. Western blotting was used to detect PIK3R2, PI3K, AKT and p-AKT proteins. After Lv-miR-126 infected RASFs, the relative expression of miR-126 was significantly enhanced. MiR-126 promoted RASF proliferation and inhibited apoptosis. Levels of PIK3R2 decreased while total PI3K and p-AKT levels increased in RASFs overexpressing miR-126. Co-transfection of anti-miR-126 and PIK3R2 siRNA also increased PI3K and p-AKT levels as well as RASF proliferation and reduced apoptosis, as compared to anti-miR-126 treatment alone. Finally, luciferase reporter assays showed that miR-126 targeted PIK3R2. Our data indicate that miR-126 overexpression in RASFs inhibits PIK3R2 expression and promotes proliferation while inhibiting apoptosis. This suggests inhibiting miR-126 may yield therapeutic benefits in the treatment of RA.
Collapse
Affiliation(s)
- Yuan Qu
- Department of Internal Medicine of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510510, Guangdong, P. R. China.,Department of Rheumatology and Clinical Immunology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong, P. R. China
| | - Jing Wu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong, P. R. China.,Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510510, Guangdong, P. R. China
| | - Jia-Xin Deng
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong, P. R. China
| | - Yu-Ping Zhang
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong, P. R. China
| | - Wan-Yi Liang
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong, P. R. China
| | - Zhen-Lan Jiang
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong, P. R. China
| | - Qing-Hong Yu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong, P. R. China
| | - Juan Li
- Department of Internal Medicine of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510510, Guangdong, P. R. China.,Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510510, Guangdong, P. R. China
| |
Collapse
|
17
|
Mehta BB, Tiwari A, Sharma S, Shukla A, Sharma M, Vasishta RK, Sen RK, Sharma A, Luthra-Guptasarma M. Amelioration of collagen antibody induced arthritis in mice by an antibody directed against the fibronectin type III repeats of tenascin-C: Targeting fibronectin type III repeats of tenascin-C in rheumatoid arthritis. Int Immunopharmacol 2018. [PMID: 29529488 DOI: 10.1016/j.intimp.2018.02.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tenascin-C (TN-C) levels are elevated in the synovial tissue and fluid, as well as cartilage of rheumatoid arthritis (RA) patients. In addition, the presence of TN-C fragments has also been documented in arthritic cartilage. We have previously shown that a single chain variable fragment antibody (TN64), directed against the fibronectin type III repeats 1-5 (TNfnIII 1-5) of TN-C, effectively inhibits fibrotic pathology. Given that fibrosis results from chronic inflammation, and the fact that increased levels of TN-C in the synovial fluid of patients with RA contributes to synovial inflammation and joint destruction, we aimed to investigate the role of TNfnIII 1-5 region of TN-C in RA pathogenesis. Using either the wild type or variants of the two integrin-binding motifs (RGD and AEIDGIEL) present within the TNfnIII 1-5 polypeptide, we demonstrate that the adhesion and migration of synovial fibroblasts is RGD-dependent. The antibody TN64 is effective in inhibiting migration of cells in response to TnfnIII 1-5, and prevents fibroblast-mediated destruction of cartilage. The TN64 antibody was further tested in collagen antibody induced arthritic (CAIA) mice. Our data shows the efficacy of TN64 in preventing induction of arthritis, with significant downregulation of RA-associated cytokines. This suggests that components of the extracellular matrix such as the TNfnIII 1-5 region of TN-C could be exploited to develop therapies to suppress inflammation seen in RA. The TN64 antibody is one such promising candidate in the development of novel treatments for RA.
Collapse
Affiliation(s)
- Brij Bhushan Mehta
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Anil Tiwari
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Saniya Sharma
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ashu Shukla
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Maryada Sharma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rakesh K Vasishta
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ramesh K Sen
- Department of Orthopaedics, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Aman Sharma
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Manni Luthra-Guptasarma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
18
|
Spakova T, Plsikova J, Harvanova D, Lacko M, Stolfa S, Rosocha J. Influence of Kartogenin on Chondrogenic Differentiation of Human Bone Marrow-Derived MSCs in 2D Culture and in Co-Cultivation with OA Osteochondral Explant. Molecules 2018; 23:molecules23010181. [PMID: 29337871 PMCID: PMC6017512 DOI: 10.3390/molecules23010181] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/10/2018] [Accepted: 01/14/2018] [Indexed: 12/18/2022] Open
Abstract
Articular cartilage has limited capacity for natural regeneration and repair. In the present study, we evaluated kartogenin (KGN), a bioactive small heterocyclic molecule, for its effect on in vitro proliferation and chondrogenic differentiation of human bone marrow-derived mesenchymal stromal cells (hBMSCs) in monolayer culture and in co-culture models in vitro. OA osteochondral cylinders and hBMSCs were collected during total knee replacement. The effect of KGN on hBMSCs during 21 days of culture was monitored by real-time proliferation assay, immunofluorescence staining, histological assay, scanning electron microscopy (SEM) (imaging and multiplex enzyme-linked immunosorbent assay) ELISA assay. The rate of proliferation of hBMSCs was significantly increased by treatment with 10 µM KGN during nine days of culture. Histological and SEM analyses showed the ability of hBMSCs in the presence of KGN to colonize the surface of OA cartilage and to produce glycosaminoglycans and proteoglycans after 21 days of co-culture. KGN treated hBMSCs secreted higher concentrations of TIMPs and the secretion of pro-inflammatory molecules (MMP 13, TNF-α) were significantly suppressed in comparison with control without hBMSCs. Our preliminary results support the concept that 10 µM KGN enhances proliferation and chondrogenic differentiation of hBMSCs and suggest that KGN is a potential promoter for cell-based therapeutic application for cartilage regeneration.
Collapse
Affiliation(s)
- Timea Spakova
- Associated Tissue Bank of Faculty of Medicine of P. J. Safarik University and L. Pasteur University Hospital, Trieda SNP 1, 04011 Kosice, Slovakia.
| | - Jana Plsikova
- Associated Tissue Bank of Faculty of Medicine of P. J. Safarik University and L. Pasteur University Hospital, Trieda SNP 1, 04011 Kosice, Slovakia.
| | - Denisa Harvanova
- Associated Tissue Bank of Faculty of Medicine of P. J. Safarik University and L. Pasteur University Hospital, Trieda SNP 1, 04011 Kosice, Slovakia.
| | - Marek Lacko
- Department of Orthopaedics and Traumatology of Faculty of Medicine of P. J. Safarik University and L. Pasteur University Hospital, Trieda SNP 1, 04011 Kosice, Slovakia.
| | - Stefan Stolfa
- Department of Orthopaedics and Traumatology of Faculty of Medicine of P. J. Safarik University and L. Pasteur University Hospital, Trieda SNP 1, 04011 Kosice, Slovakia.
| | - Jan Rosocha
- Associated Tissue Bank of Faculty of Medicine of P. J. Safarik University and L. Pasteur University Hospital, Trieda SNP 1, 04011 Kosice, Slovakia.
| |
Collapse
|
19
|
Yokose C, Chen M, Berhanu A, Pillinger MH, Krasnokutsky S. Gout and Osteoarthritis: Associations, Pathophysiology, and Therapeutic Implications. Curr Rheumatol Rep 2017; 18:65. [PMID: 27686950 DOI: 10.1007/s11926-016-0613-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Osteoarthritis (OA), the most common type of arthritis worldwide, is a degenerative disease of diarthrodial joints resulting in pain, reduced quality of life, and socioeconomic burden. Gout, the most common form of inflammatory arthritis, is a consequence of persistently elevated levels of urate and the formation of proinflammatory monosodium urate crystals in joints. Clinicians have long noted a predilection for both diseases to occur in the same joints. In this review, we provide an overview into research elucidating possible biochemical, mechanical, and immunological relationships between gout and OA. We additionally consider the potential implications of these relationships for OA treatment.
Collapse
Affiliation(s)
- Chio Yokose
- From the Crystal Disease Study Group, Division of Rheumatology, New York University School of Medicine, New York, USA
| | - Meng Chen
- From the Crystal Disease Study Group, Division of Rheumatology, New York University School of Medicine, New York, USA
| | - Adey Berhanu
- From the Crystal Disease Study Group, Division of Rheumatology, New York University School of Medicine, New York, USA
| | - Michael H Pillinger
- From the Crystal Disease Study Group, Division of Rheumatology, New York University School of Medicine, New York, USA
| | - Svetlana Krasnokutsky
- From the Crystal Disease Study Group, Division of Rheumatology, New York University School of Medicine, New York, USA. .,NYU Hospital for Joint Diseases, 301 East 17th Street, Suite 1410, New York, NY, 10003, USA.
| |
Collapse
|
20
|
Zhang M, Yang H, Lu L, Wan X, Zhang J, Zhang H, Liu X, Huang X, Xiao G, Wang M. Matrix replenishing by BMSCs is beneficial for osteoarthritic temporomandibular joint cartilage. Osteoarthritis Cartilage 2017; 25:1551-1562. [PMID: 28532603 DOI: 10.1016/j.joca.2017.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 04/24/2017] [Accepted: 05/03/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVES The present goal was to explore whether matrix replenishment is the primary requirement for osteoarthritic (OA) cartilage. METHODS Cells isolated from the superficial and deep zone cartilage of a pig temporomandibular joint (TMJ) were exposed to fluid flow shear stress (FFSS). Differences in matrix production and cellular differentiation were detected. Unilateral anterior crossbite (UAC) was applied to C57BL/6J female mice. Green fluorescent protein-labeled exogenous bone marrow stromal cells (GFP-BMSCs) were injected weekly into TMJs, starting from 3 weeks of UAC stimulation and continuing for 4-, 8- and 12-weeks. Another GFP-BMSCs injection UAC group stopped receiving injections for 4-weeks after 8-weeks of injections. Assessments were focused on morphological alterations in UAC mouse TMJ cartilage, the expression levels of DAP3, an anoikis marker, CD163, a scavenger receptor family member, and ki67, a proliferation indicator. RESULTS FFSS down-regulated type-II collagen expression but stimulated terminal differentiation in cells isolated from deep zone cartilage. It down-regulated aggrecan expression but up-regulated type I collagen in cells isolated from both superficial and deep zones. UAC caused matrix loss and anoikis and enhanced scavenging activity in deep zone chondrocytes without affecting cell proliferation. Superficial fibrillation was obvious in the late stage. Weekly injections of BMSCs largely restored these changes. The implanted BMSCs expressed a high level of CD163 protein but did not show remarkable cell proliferation. Terminating the supply of exogenous BMSCs reversed the restorative effects. CONCLUSIONS Scavenging the degraded matrix and replenishing the fibrosis-developmental matrix are the primary requirements for the repair of OA cartilage.
Collapse
Affiliation(s)
- M Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, 145 Changle West Road, Xi'an, China
| | - H Yang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, 145 Changle West Road, Xi'an, China
| | - L Lu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, 145 Changle West Road, Xi'an, China
| | - X Wan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, 145 Changle West Road, Xi'an, China
| | - J Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, 145 Changle West Road, Xi'an, China
| | - H Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, 145 Changle West Road, Xi'an, China
| | - X Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, 145 Changle West Road, Xi'an, China
| | - X Huang
- Department of Biology, The Fourth Military Medical University, 17 Changle West Road, Xi'an, China
| | - G Xiao
- Department of Biology, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China; Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - M Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, 145 Changle West Road, Xi'an, China.
| |
Collapse
|
21
|
Peck Y, Leom LT, Low PFP, Wang DA. Establishment of an in vitro three-dimensional model for cartilage damage in rheumatoid arthritis. J Tissue Eng Regen Med 2017; 12:e237-e249. [PMID: 28079986 DOI: 10.1002/term.2399] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/15/2016] [Accepted: 01/09/2017] [Indexed: 11/09/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that leads to progressive joint destruction. To further understand the process of rheumatoid cartilage damage, an in vitro model consisting of an interactive tri-culture of synovial fibroblasts (SFs), LPS-stimulated macrophages and a primary chondrocyte-based tissue-engineered construct was established. The tissue-engineered construct has a composition similar to that of human cartilage, which is rich in collagen type II and proteoglycans. Data generated from this model revealed that healthy chondrocytes were activated in the presence of SFs and macrophages. The activated chondrocytes subsequently displayed aberrant behaviours as seen in a disease state such as increased apoptosis, decreased gene expression for matrix components such as type II collagen and aggrecan, increased gene expression for tissue-degrading enzymes (MMP-1, -3, -13 and ADAMTS-4, -5), and upregulation of inflammatory mediator gene expression (TNF-α, IL-1β, IL-6 and IKBKB). Additionally, the inclusion of SFs and macrophages in the model enabled both cell types to more closely replicate an in vivo role in mediating cartilage destruction. This is evidenced by extensive matrix loss, detected in the model through immunostaining and biochemical analysis. Subsequent drug treatment with celecoxib has shown that the model was able to respond to the therapeutic effects of this drug by reversing cartilage damage. This study showed that the model was able to recapitulate certain pathological features of an RA cartilage. If properly validated, this model potentially can be used for screening new therapeutic drugs and strategies, thereby contributing to the improvement of anti-rheumatic treatment. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yvonne Peck
- Division of BioEngineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Li Ting Leom
- Division of BioEngineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Pei Fen Patricia Low
- Division of BioEngineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Dong-An Wang
- Division of BioEngineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
22
|
Pérez-García S, Gutiérrez-Cañas I, Seoane IV, Fernández J, Mellado M, Leceta J, Tío L, Villanueva-Romero R, Juarranz Y, Gomariz RP. Healthy and Osteoarthritic Synovial Fibroblasts Produce a Disintegrin and Metalloproteinase with Thrombospondin Motifs 4, 5, 7, and 12: Induction by IL-1β and Fibronectin and Contribution to Cartilage Damage. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2449-61. [PMID: 27449198 DOI: 10.1016/j.ajpath.2016.05.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 12/22/2022]
Abstract
Current description of osteoarthritis includes the involvement of synovial inflammation. Studies contributing to understanding the mechanisms of cross-talk and feedback among the joint tissues could be relevant to the development of therapies that block disease progression. During osteoarthritis, synovial fibroblasts exposed to anomalous mechanical forces and an inflammatory microenvironment release factors such as a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) metalloproteinases that mediate tissue damage and perpetuate inflammation. We therefore studied the production of ADAMTS by synovial fibroblasts and their contribution to cartilage degradation. Moreover, we analyzed the implication of two mediators present in the osteoarthritis joint, IL-1β as proinflammatory cytokine, and 45-kDa fibronectin fragments as products of matrix degradation. We reported that synovial fibroblasts constitutively express and release ADAMTS 4, 5, 7, and 12. Despite the contribution of both mediators to the stimulation of Runx2 and Wnt/β-catenin signaling pathways, as well as to ADAMTS expression, promoting the degradation of aggrecan and cartilage oligomeric matrix protein from cartilage, fibronectin fragments rather than IL-1β played the major pathological role in osteoarthritis, contributing to the maintenance of the disease. Moreover, higher levels of ADAMTS 4 and 7 and a specific regulation of ADAMTS-12 were observed in osteoarthritis, suggesting them as new potential therapeutic targets. Therefore, synovial fibroblasts provide the biochemical tools to the chronicity and destruction of the osteoarthritic joints.
Collapse
Affiliation(s)
- Selene Pérez-García
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Irene Gutiérrez-Cañas
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Iria V Seoane
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Julián Fernández
- Traumatology Service, Hospital Universitario de La Princesa, Medical Research Institute, Madrid, Spain
| | - Mario Mellado
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Javier Leceta
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Laura Tío
- Cellular Inflammation and Cartilage Research Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Raúl Villanueva-Romero
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Yasmina Juarranz
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Rosa P Gomariz
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
23
|
Siebuhr AS, Bay-Jensen AC, Jordan JM, Kjelgaard-Petersen CF, Christiansen C, Abramson SB, Attur M, Berenbaum F, Kraus V, Karsdal MA. Inflammation (or synovitis)-driven osteoarthritis: an opportunity for personalizing prognosis and treatment? Scand J Rheumatol 2015; 45:87-98. [PMID: 26484849 DOI: 10.3109/03009742.2015.1060259] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The disabling and painful disease osteoarthritis (OA) is the most common form of arthritis. Strong evidence suggests that a subpopulation of OA patients has a form of OA driven by inflammation. Consequently, understanding when inflammation is the driver of disease progression and which OA patients might benefit from anti-inflammatory treatment is a topic of intense research in the OA field. We have reviewed the current literature on OA, with an emphasis on inflammation in OA, biochemical markers of structural damage, and anti-inflammatory treatments for OA. The literature suggests that the OA patient population is diverse, consisting of several subpopulations, including one associated with inflammation. This inflammatory subpopulation may be identified by a combination of novel serological inflammatory biomarkers. Preliminary evidence from small clinical studies suggests that this subpopulation may benefit from anti-inflammatory treatment currently reserved for other inflammatory arthritides.
Collapse
Affiliation(s)
- A S Siebuhr
- a Rheumatology, Biomarkers and Research , Nordic Bioscience , Herlev , Denmark
| | - A C Bay-Jensen
- a Rheumatology, Biomarkers and Research , Nordic Bioscience , Herlev , Denmark
| | - J M Jordan
- b Thurston Arthritis Research Center , University of North Carolina , NC , USA
| | | | - C Christiansen
- c Centre for Clinical and Basic Research , Ballerup , Denmark
| | - S B Abramson
- d New York University School of Medicine and Hospital for Joint Diseases, NYU Langone Medical Center , New York , NY , USA
| | - M Attur
- d New York University School of Medicine and Hospital for Joint Diseases, NYU Langone Medical Center , New York , NY , USA
| | - F Berenbaum
- e Department of Rheumatology, AP-HP Saint-Antoine Hospital , Sorbonne University , Paris , France
| | - V Kraus
- f Department of Medicine and Duke Molecular Physiology Institute , Duke University School of Medicine , Durham , NC , USA
| | - M A Karsdal
- a Rheumatology, Biomarkers and Research , Nordic Bioscience , Herlev , Denmark
| |
Collapse
|
24
|
Hawkins P, Armstrong R, Boden T, Garside P, Knight K, Lilley E, Seed M, Wilkinson M, Williams RO. Applying refinement to the use of mice and rats in rheumatoid arthritis research. Inflammopharmacology 2015; 23:131-50. [PMID: 26168847 PMCID: PMC4508365 DOI: 10.1007/s10787-015-0241-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/24/2015] [Indexed: 12/19/2022]
Abstract
Rheumatoid arthritis (RA) is a painful, chronic disorder and there is currently an unmet need for effective therapies that will benefit a wide range of patients. The research and development process for therapies and treatments currently involves in vivo studies, which have the potential to cause discomfort, pain or distress. This Working Group report focuses on identifying causes of suffering within commonly used mouse and rat ‘models’ of RA, describing practical refinements to help reduce suffering and improve welfare without compromising the scientific objectives. The report also discusses other, relevant topics including identifying and minimising sources of variation within in vivo RA studies, the potential to provide pain relief including analgesia, welfare assessment, humane endpoints, reporting standards and the potential to replace animals in RA research.
Collapse
Affiliation(s)
- Penny Hawkins
- Research Animals Department, RSPCA, Wilberforce Way, Southwater, West Sussex, RH13 9RS, UK,
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Friebel K, Schönherr R, Kinne RW, Kunisch E. Functional role of the KCa3.1 potassium channel in synovial fibroblasts from rheumatoid arthritis patients. J Cell Physiol 2015; 230:1677-88. [DOI: 10.1002/jcp.24924] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 12/22/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Kristin Friebel
- Center for Molecular Biomedicine, Department of Biophysics; Friedrich Schiller University of Jena and Jena University Hospital; Jena Germany
| | - Roland Schönherr
- Center for Molecular Biomedicine, Department of Biophysics; Friedrich Schiller University of Jena and Jena University Hospital; Jena Germany
| | - Raimund W. Kinne
- Experimental Rheumatology Unit, Department of Orthopedics; Jena University Hospital; Jena Germany
| | - Elke Kunisch
- Experimental Rheumatology Unit, Department of Orthopedics; Jena University Hospital; Jena Germany
| |
Collapse
|
26
|
Pretzel D, Linss S, Ahrem H, Endres M, Kaps C, Klemm D, Kinne RW. A novel in vitro bovine cartilage punch model for assessing the regeneration of focal cartilage defects with biocompatible bacterial nanocellulose. Arthritis Res Ther 2014; 15:R59. [PMID: 23673274 PMCID: PMC4060236 DOI: 10.1186/ar4231] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 02/04/2013] [Accepted: 05/14/2013] [Indexed: 12/21/2022] Open
Abstract
Introduction Current therapies for articular cartilage defects fail to achieve qualitatively sufficient tissue regeneration, possibly because of a mismatch between the speed of cartilage rebuilding and the resorption of degradable implant polymers. The present study focused on the self-healing capacity of resident cartilage cells in conjunction with cell-free and biocompatible (but non-resorbable) bacterial nanocellulose (BNC). This was tested in a novel in vitro bovine cartilage punch model. Methods Standardized bovine cartilage discs with a central defect filled with BNC were cultured for up to eight weeks with/without stimulation with transforming growth factor-β1 (TGF-β1. Cartilage formation and integrity were analyzed by histology, immunohistochemistry and electron microscopy. Content, release and neosynthesis of the matrix molecules proteoglycan/aggrecan, collagen II and collagen I were also quantified. Finally, gene expression of these molecules was profiled in resident chondrocytes and chondrocytes migrated onto the cartilage surface or the implant material. Results Non-stimulated and especially TGF-β1-stimulated cartilage discs displayed a preserved structural and functional integrity of the chondrocytes and surrounding matrix, remained vital in long-term culture (eight weeks) without signs of degeneration and showed substantial synthesis of cartilage-specific molecules at the protein and mRNA level. Whereas mobilization of chondrocytes from the matrix onto the surface of cartilage and implant was pivotal for successful seeding of cell-free BNC, chondrocytes did not immigrate into the central BNC area, possibly due to the relatively small diameter of its pores (2 to 5 μm). Chondrocytes on the BNC surface showed signs of successful redifferentiation over time, including increase of aggrecan/collagen type II mRNA, decrease of collagen type I mRNA and initial deposition of proteoglycan and collagen type II in long-term high-density pellet cultures. Although TGF-β1 stimulation showed protective effects on matrix integrity, effects on other parameters were limited. Conclusions The present bovine cartilage punch model represents a robust, reproducible and highly suitable tool for the long-term culture of cartilage, maintaining matrix integrity and homoeostasis. As an alternative to animal studies, this model may closely reflect early stages of cartilage regeneration, allowing the evaluation of promising biomaterials with/without chondrogenic factors.
Collapse
|
27
|
Del Rey MJ, Faré R, Izquierdo E, Usategui A, Rodríguez-Fernández JL, Suárez-Fueyo A, Cañete JD, Pablos JL. Clinicopathological correlations of podoplanin (gp38) expression in rheumatoid synovium and its potential contribution to fibroblast platelet crosstalk. PLoS One 2014; 9:e99607. [PMID: 24932813 PMCID: PMC4059710 DOI: 10.1371/journal.pone.0099607] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/16/2014] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION Synovial fibroblasts (SF) undergo phenotypic changes in rheumatoid arthritis (RA) that contribute to inflammatory joint destruction. This study was undertaken to evaluate the clinical and functional significance of ectopic podoplanin (gp38) expression by RA SF. METHODS Expression of gp38 and its CLEC2 receptor was analyzed by immunohistochemistry in synovial arthroscopic biopsies from RA patients and normal and osteoarthritic controls. Correlation between gp38 expression and RA clinicopathological variables was analyzed. In patients rebiopsied after anti-TNF-α therapy, changes in gp38 expression were determined. Platelet-SF coculture and gp38 silencing in SF were used to analyze the functional contribution of gp38 to SF migratory and invasive properties, and to SF platelet crosstalk. RESULTS gp38 was abundantly but variably expressed in RA, and it was undetectable in normal synovial tissues. Among clinicopathologigal RA variables, significantly increased gp38 expression was only found in patients with lymphoid neogenesis (LN), and RF or ACPA autoantibodies. Cultured synovial but not dermal fibroblasts showed strong constitutive gp38 expression that was further induced by TNF-α. In RA patients, anti-TNF-α therapy significantly reduced synovial gp38 expression. In RA synovium, CLEC2 receptor expression was only observed in platelets. gp38 silencing in cultured SF did not modify their migratory and invasive properties but reduced the expression of IL-6 and IL-8 genes induced by SF-platelet interaction. CONCLUSIONS In RA, synovial expression of gp38 is strongly associated to LN and it is reduced after anti-TNF-α therapy. Interaction between gp38 and CLEC2 platelet receptor is feasible in RA synovium in vivo and can specifically contribute to gene expression by SF.
Collapse
Affiliation(s)
- Manuel J. Del Rey
- Servicio de Reumatología, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Regina Faré
- Servicio de Reumatología, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Elena Izquierdo
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Alicia Usategui
- Servicio de Reumatología, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | | | - Abel Suárez-Fueyo
- Servicio de Reumatología, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Juan D. Cañete
- Unitat d’Artritis, Servei de Reumatologia, Hospital Clínic de Barcelona and Institut d’Investigacions Biomèdiques August Pí i Sunyer, Barcelona, Spain
| | - José L. Pablos
- Servicio de Reumatología, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- * E-mail:
| |
Collapse
|
28
|
Mrosewski I, Jork N, Gorte K, Conrad C, Wiegand E, Kohl B, Ertel W, John T, Oberholzer A, Kaps C, Schulze-Tanzil G. Regulation of osteoarthritis-associated key mediators by TNFα and IL-10: effects of IL-10 overexpression in human synovial fibroblasts and a synovial cell line. Cell Tissue Res 2014; 357:207-23. [PMID: 24816983 DOI: 10.1007/s00441-014-1868-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 03/06/2014] [Indexed: 11/28/2022]
Abstract
Synovial fibroblasts (SF) contribute to the pathogenesis of osteoarthritis (OA), but the effects of intra-articular cytokines on SF are not completely understood. The aim of this study was to characterize the interplay between tumor necrosis factor (TNF)α and the anti-inflammatory interleukin (IL)-10. Non-immortalized human SF and SF of the human cell line K4IM were stimulated with recombinant TNFα, IL-10, or TNFα + IL-10 (10 ng/ml each) for 24 h or transduced with an adenoviral vector overexpressing human IL-10 (hIL-10) and subsequently treated with 10 ng/ml TNFα for 24 h. Effects on the gene expression and protein synthesis of IL-6, IL-10, matrix metalloproteinases (MMP)-1, -3, type I collagen, β1-integrin, and CD44 were investigated via real-time detection polymerase chain reaction, immunofluorescence labeling, flow cytometry, and Western blotting. IL-10 release by transduced SF was confirmed with enzyme-linked immunosorbent assay. Both cell populations were activated by TNFα and by TNFα + IL-10, increasing their gene expression and protein synthesis of IL-6, IL-10, MMP-1, and MMP-3 and altering the synthesis of type I collagen, β1-integrin, and CD44. hIL-10 overexpression greatly elevated the gene expression and protein synthesis of IL-10. However, transduction did not significantly affect the gene expression of IL-6, MMP-1, and MMP-3 in SF. The increased expression of pro-inflammatory and catabolic mediators in TNFα-activated SF indicates their role in OA pathogenesis, suggesting they are a potential therapeutic target. Although the vigorousness of the responses of non-immortalized SF and K4IM clearly differ, the K4IM cell line seems to be a suitable model for non-immortalized human SF.
Collapse
Affiliation(s)
- I Mrosewski
- Department for Orthopaedic, Trauma and Reconstructive Surgery, Charité-University of Medicine, Campus Benjamin Franklin, FEM Garystrasse 5, 14195, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Xue M, Shen K, McKelvey K, Li J, Chan YKA, Hatzis V, March L, Little CB, Tonkin M, Jackson CJ. Endothelial protein C receptor-associated invasiveness of rheumatoid synovial fibroblasts is likely driven by group V secretory phospholipase A2. Arthritis Res Ther 2014; 16:R44. [PMID: 24495480 PMCID: PMC3979138 DOI: 10.1186/ar4473] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 01/28/2014] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION Rheumatoid synovial fibroblasts (RASFs) mediate joint inflammation and destruction in rheumatoid arthritis (RA). Endothelial protein C receptor (EPCR) is a specific receptor for the natural anticoagulant activated protein C (APC). It mediates the cytoprotective properties of APC and is expressed in rheumatoid synovial tissue. A recent report shows that group V secretory phospholipase A2 (sPLA₂V) prevents APC from binding to EPCR in endothelium and inhibits EPCR/APC function. The aim of this study was to investigate the expression and function of EPCR on RASFs. METHODS Human synovial fibroblasts (SFs) were isolated from RA or osteoarthritis (OA) synovial tissues and treated with control, EPCR, or sPLA₂V small interfering RNA (siRNA); recombinant human APC, tumor necrosis factor-alpha (TNF-α), or sPLA₂V. RASF viability and migration/invasion were measured by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and collagen gel migration/invasion assays, respectively, and cartilage degradation by 1,9-dimethylmethylene blue (DMMB) assay in the presence of human OA articular cartilage explants. The expression or activation of cytokines, EPCR, cadherin-11, mitogen-activated protein (MAP) kinases, and nuclear factor-kappa-B (NF-κB) or both were detected by enzyme-linked immunosorbent assay, Western blotting, or immunostaining. RESULTS EPCR was expressed by both OASFs and RASFs but was markedly increased in RASFs. When EPCR was suppressed by siRNA or blocking antibody cell viability, cell invasion and cartilage degradation were reduced by more than 30%. Inflammatory mediators interleukin-1-beta (IL-1β), cadherin-11, and NF-κB were significantly reduced by EPCR suppression under control or TNF-α-stimulated conditions. The expression or activation (or both) of MAP kinases ERK, p38, and JNK were also markedly decreased in cells transfected with EPCR siRNA. Further analysis revealed that sPLA₂V co-localized with EPCR on RASFs. Suppression of sPLA₂V reduced cell viability and cartilage degradation and increased APC binding to RASFs. Conversely, recombinant sPLA₂V increased cartilage degradation, blocked APC binding to RASFs, and could not rescue the effects induced by EPCR suppression. CONCLUSIONS Our results demonstrate that EPCR is overexpressed by RASFs and mediates the aggressive behavior of RASFs. This function of EPCR is contrary to its cytoprotective role in other settings and is likely driven by sPLA₂V.
Collapse
|
30
|
Hwang JK, Noh EM, Moon SJ, Kim JM, Kwon KB, Park BH, You YO, Hwang BM, Kim HJ, Kim BS, Lee SJ, Kim JS, Lee YR. Emodin suppresses inflammatory responses and joint destruction in collagen-induced arthritic mice. Rheumatology (Oxford) 2013; 52:1583-91. [PMID: 23685361 DOI: 10.1093/rheumatology/ket178] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE Emodin (3-methyl-1,6,8-trihydroxyanthraquinone) is one of the active components present in the root and rhizome of Rheum palmatum. It has been shown to contain biological activity (antitumour, antibacterial, diuretic and vasorelaxant effects). However, the mechanisms underlying the anti-arthritic effect of emodin have not been elucidated. Here we investigated whether emodin treatment would modulate the severity of the disease in an experimental arthritis model. METHODS We evaluated the effects of emodin on CIA mice in vivo. RESULTS The pathological processes of RA are mediated by a number of cytokines and MMPs. Expression of these proinflammatory mediators is controlled by nuclear factor-κB (NF-κB). This study was performed to explore the effect of emodin on control of the NF-κB activation pathway and to investigate whether emodin has anti-inflammatory effects in CIA mice in vivo. Emodin inhibited the nuclear translocation and DNA binding of NF-κB subunits, which were correlated with its inhibitory effect on cytoplasmic IκBα degradation in CIA mice. These events further suppressed chemokine production and MMP expression. In addition, emodin inhibited the osteoclast differentiation induced by M-CSF and receptor activation of NF-κB ligand in bone marrow macrophages. CONCLUSION These findings suggest that emodin exerts anti-inflammatory effects in CIA mice through inhibition of the NF-κB pathway and therefore may have therapeutic value for the treatment of RA.
Collapse
Affiliation(s)
- Jin-Ki Hwang
- Department of Oral Biochemistry, Wonkwang University, Iksan City, Jeonbuk, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gierman LM, van El B, van der Ham F, Koudijs A, Stoop R, Verheijen JH, Kloppenburg M, van Osch GJVM, Stojanovic-Susulic V, Huizinga TWJ, Zuurmond AM. Profiling the secretion of soluble mediators by end stage osteoarthritis synovial tissue explants reveals a reduced responsiveness to an inflammatory trigger. PLoS One 2013; 8:e62634. [PMID: 23658758 PMCID: PMC3643929 DOI: 10.1371/journal.pone.0062634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/23/2013] [Indexed: 01/28/2023] Open
Abstract
Objective Evidence is accumulating that synovial tissue plays an active role in osteoarthritis (OA), however, exact understanding of its contribution is lacking. In order to further elucidate its role in the OA process, we aimed to identify the secretion pattern of soluble mediators by synovial tissue and to assess its ability to initiate cartilage degeneration. Methods Synovial tissue explants (STEs) obtained from donors without history of OA (n = 8) or from end stage OA patients (n = 16) were cultured alone or together with bovine cartilage explants in the absence or presence of IL-1α. The secretion of 48 soluble mediators was measured and the effect on glycosaminoglycan (GAG) release and matrix metalloproteinase (MMP) activity was determined. Results Normal and OA STEs secreted comparable levels of almost all measured soluble mediators. However, in the presence of IL-1α these mediators were less secreted by OA than by normal STEs of which 15 differed significantly (p<0.01). No effect of normal or OA STEs on GAG release from the cartilage explants was observed, and no differences in MMP activity between OA and normal STEs were detected. Conclusions Unexpectedly, a comparable secretion profile of soluble mediators was found for OA and normal STEs while the reduced responsiveness of OA STEs to an inflammatory trigger indicates a different state of this tissue in OA patients. The effects could be the result of prolonged exposure to an inflammatory environment in OA development. Further understanding of the pro-inflammatory and inflammation resolving mechanisms during disease progression in synovial tissue may provide valuable targets for therapy in the future.
Collapse
Affiliation(s)
- Lobke M. Gierman
- TNO, Leiden, The Netherlands
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | - Margreet Kloppenburg
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerjo J. V. M. van Osch
- Department of Orthopaedics and Department of Otorhinolaryngology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Vedrana Stojanovic-Susulic
- Pharmaceutical R&D, Janssen, A division of Johnson & Johnson, Malvern, Pennsylvania, United States of America
| | - Tom W. J. Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
32
|
Dumas A, Lagarde S, Laflamme C, Pouliot M. Oncostatin M decreases interleukin-1 β secretion by human synovial fibroblasts and attenuates an acute inflammatory reaction in vivo. J Cell Mol Med 2012; 16:1274-85. [PMID: 21854541 PMCID: PMC3823080 DOI: 10.1111/j.1582-4934.2011.01412.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Oncostatin M (OSM) is a pleiotropic cytokine of the IL-6 family and displays both pro-inflammatory and anti-inflammatory activities. We studied the impact of OSM on the gene activation profile of human synovial cells, which play a central role in the progression of inflammatory responses in joints. In synovial cells stimulated with lipopolysaccharide and recombinant human granulocyte-macrophage colony-stimulating factor, recombinant human OSM and native OSM secreted by human granulocytes both reduced the gene expression and secretion of IL-1β and CXCL8, but increased that of IL-6 and CCL2. This impact on synovial cell activation was not obtained using IL-6 or leukaemia inhibitory factor. Signal transducer and activator of transcription-1 appeared to mediate the effects of OSM on stimulated human synovial fibroblasts. In the murine dorsal air pouch model of inflammation, OSM reduced the expression of the pro-inflammatory cytokines IL-1β and TNF-α in lining tissues, and their presence in the cavity. These results as a whole suggest an anti-inflammatory role for OSM, guiding inflammatory processes towards resolution.
Collapse
Affiliation(s)
- Aline Dumas
- Centre de Recherche en Rhumatologie et Immunologie du CHUQ, and Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | | | | | | |
Collapse
|
33
|
Kim M, Hong B, Lee J, Kim SE, Kang SS, Kim YH, Tae G. Composite System of PLCL Scaffold and Heparin-Based Hydrogel for Regeneration of Partial-Thickness Cartilage Defects. Biomacromolecules 2012; 13:2287-98. [DOI: 10.1021/bm3005353] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mihye Kim
- School of Materials
Science and Engineering and Department of
Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju, 500-712,
Korea
| | - Bohee Hong
- School of Materials
Science and Engineering and Department of
Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju, 500-712,
Korea
| | - Jongman Lee
- School of Materials
Science and Engineering and Department of
Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju, 500-712,
Korea
| | - Se Eun Kim
- College
of Veterinary
Medicine, Chonnam National University, Gwang-ju, 500-757, Korea
| | - Seong Soo Kang
- College
of Veterinary
Medicine, Chonnam National University, Gwang-ju, 500-757, Korea
| | - Young Ha Kim
- Department of Chemistry, Chung-Ang University, 221 Heukseok-dong,
Dongiak-gu, Seoul 156-755, Korea
| | - Giyoong Tae
- School of Materials
Science and Engineering and Department of
Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju, 500-712,
Korea
| |
Collapse
|
34
|
Abstract
Chronic sequelae of sepsis represent a major, yet underappreciated clinical problem, contributing to long-term mortality and quality-of-life impairment. In chronic liver disease, inflammation perpetuates fibrogenesis, but development of fibrosis in the post-acute phase of systemic inflammation has not been studied. Therefore, a mouse model of post-acute sequelae of sepsis was established based on polymicrobial peritonitis under antibiotic protection. Survival decreased to approximately 40% within 7 days and remained constant until day 28 (post-acute phase). In survivors, clinical recovery was observed within 1 week, whereas white blood cell and platelet count, as well as markers of liver injury, remained elevated until day 28. Macroscopically, inflammation and abscess formation were detected in the peritoneal space and on/in the liver. Microscopically, acute-chronic inflammation with ductular proliferation, focal granuloma formation in the parenchyma, and substantial hepatic fibrosis were observed. Increased numbers of potentially pathogenetic macrophages and α-smooth muscle actin-positive cells, presumably activated hepatic stellate cells, were detected in the vicinity of fibrotic areas. Fibrosis was associated with the presence of elastin and an augmented production/deposition of collagen types I and III. Microarray analyses revealed early activation of canonical and noncanonical pathways of hepatic stellate cell transdifferentiation. Thus, chronic sequelae of experimental sepsis were characterized by abscess formation, persistent inflammation, and substantial liver injury and fibrosis, the latter associated with increased numbers of macrophages/α-smooth muscle actin-positive cells and deposition of collagen types I and III. This suggests persistent activation of stellate cells, with consecutive fibrosis-a hallmark of chronic liver disease-as a result of acute life-threatening infection.
Collapse
|
35
|
Lee YR, Hwang JK, Lee HS, Cheon YJ, Ryu JH, Lee SI, Kwak HB, Lee SM, Kim JS, Park JW, Jeon R, Park BH. SPA0355, a thiourea analogue, inhibits inflammatory responses and joint destruction in fibroblast-like synoviocytes and mice with collagen-induced arthritis. Br J Pharmacol 2012; 164:794-806. [PMID: 21501144 DOI: 10.1111/j.1476-5381.2011.01441.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE NF-κB has been implicated as a therapeutic target for the treatment of rheumatoid arthritis. We previously synthesized a thiourea analogue, SPA0355, which suppressed NF-κB activity. Here we have assessed the anti-inflammatory and anti-arthritic effects of SPA0355. EXPERIMENTAL APPROACH We evaluated the effects of SPA0355 on human rheumatoid fibroblast-like synoviocytes in vitro and on collagen-induced arthritis (CIA) in mice in vivo. KEY RESULTS In vitro experiments demonstrated that SPA0355 suppressed chemokine production, matrix metalloproteinase secretion and cell proliferation induced by TNF-α in rheumatoid fibroblast-like synoviocytes. In addition, SPA0355 inhibited osteoclast differentiation induced by macrophage colony-stimulating factor and the receptor activator of NF-κB ligand, in bone marrow macrophages. Mice with CIA that were pretreated with SPA0355 had a lower cumulative disease incidence and severity of arthritis, based on hind paw thickness, radiological and histopathological findings, and inflammatory cytokine levels, than mice treated with vehicle. Mice treated with SPA0355, after the onset of CIA, also showed significantly decreased disease incidence and joint oedema. The in vitro and in vivo protective effects of SPA0355 were mediated by inhibition of the NF-κB signalling pathway. CONCLUSION AND IMPLICATIONS Taken together, these results suggested that using SPA0355 to block the NF-κB pathway in rheumatoid joints reduced both the inflammatory responses and tissue destruction. Therefore, SPA0355 may have therapeutic value in preventing or delaying joint destruction in patients with rheumatoid arthritis.
Collapse
Affiliation(s)
- Y R Lee
- Department of Biochemistry, Research Institute for Endocrine Sciences, and Diabetes Research Center, Chonbuk National University Medical School, Jeonju, Jeonbuk, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kunisch E, Chakilam S, Gandesiri M, Kinne RW. IL-33 regulates TNF-α dependent effects in synovial fibroblasts. Int J Mol Med 2012; 29:530-40. [PMID: 22246057 PMCID: PMC3573710 DOI: 10.3892/ijmm.2012.883] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 11/04/2011] [Indexed: 02/04/2023] Open
Abstract
The recently described IL-33 acts as a pro-inflammatory cytokine, inducing the expression of multiple responses in the target cells. Although a nuclear localization of IL-33 has been described, its exact functional relevance is presently unknown. The present study was conducted to analyze the effects of IL-33 on the TNF-α induced synthesis of the pro-inflammatory mediators IL-6, IL-8, and monocyte chemotactic protein-1 (MCP-1) and the pro-destructive molecules matrix metalloproteinase-1 (MMP-1), MMP-3, and TIMP-1 of rheumatoid arthritis synovial fibroblast (RA-SFs) using RNA overexpression and silencing. TNF-α significantly induced IL-33 mRNA expression and protein synthesis in RA-SFs. TNF-α-induced IL-33 protein expression was mediated via p38 signaling. Immunohistochemistry for IL-33 clearly showed that nuclear translocation of IL-33 was induced in TNF-α stimulated RA-SFs. IL-33 overexpression enhanced TNF-α-induced pro-inflammatory and pro-destructive functions in RA-SFs. IL-33 silencing significantly downregulated TNF-α-induced pro-inflammatory functions, whereas TNF-α-induced pro-destructive functions were less influenced by IL-33 silencing. This study identifies IL-33 as a critical regulator/enhancer of TNF-α-induced functions in RA-SFs, pointing to a central role of this cytokine in the perpetuation of pro-inflammatory and pro-destructive processes in rheumatoid arthritis (RA) and other inflammatory and degenerative diseases.
Collapse
Affiliation(s)
- Elke Kunisch
- Experimental Rheumatology Unit, Department of Orthopedics, University Hospital Jena, Kloster-lausnitzer Str. 81, D-07607 Eisenberg, Germany.
| | | | | | | |
Collapse
|
37
|
Kim M, Kim SE, Kang SS, Kim YH, Tae G. The use of de-differentiated chondrocytes delivered by a heparin-based hydrogel to regenerate cartilage in partial-thickness defects. Biomaterials 2011; 32:7883-96. [DOI: 10.1016/j.biomaterials.2011.07.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/05/2011] [Indexed: 12/25/2022]
|
38
|
Ganesan K, Balachandran C, Manohar BM, Puvanakrishnan R. Effects of testosterone, estrogen and progesterone on TNF-α mediated cellular damage in rat arthritic synovial fibroblasts. Rheumatol Int 2011; 32:3181-8. [PMID: 21960045 DOI: 10.1007/s00296-011-2146-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 09/10/2011] [Indexed: 01/10/2023]
Abstract
Sexual dimorphism is a well-established phenomenon in rheumatoid arthritis, with women exhibiting higher disease severity. Understanding the role of sex hormones using in vivo animal models is limited due to the systemic effects as well as the difficulty in exploring different dose combinations of the hormones simultaneously. However, cell culture systems pose ideal systems for exploring different combinations and concentrations of the hormones simultaneously. In this study, the procedure for isolation of arthritic fibroblasts was standardized using a combination of collagenase and trypsin based on maximal yield and viability after employing different enzymatic disaggregation procedures. The cultured synovial fibroblasts from arthritic rats did not differ significantly from normal rat fibroblasts in terms of proliferation or secretion of inflammatory mediators. Stimulation of fibroblasts with TNF-α was standardized and TNF-α stimulated rat arthritic synovial fibroblasts exhibited an ideal in vitro system for screening antiinflammatory molecules. The effects of physiological and pharmacological concentrations of testosterone, estrogen and progesterone were studied on TNF-α induced cellular damage in rat arthritic synovial fibroblasts. The results showed that estrogen and testosterone exerted antiinflammatory effects on rat arthritic synovial fibroblasts at physiological and pharmacological concentrations. However, there was no significant difference in the effects between physiological and pharmacological concentrations. Progesterone independently did not show any protective effects. In combination with physiological concentrations of estrogen, progesterone abrogated estrogen's protective effect but it exhibited protection in combination with pharmacological concentrations of estrogen.
Collapse
Affiliation(s)
- Kalaivani Ganesan
- Department of Biotechnology, Central Leather Research Institute, Adyar, Chennai, India
| | | | | | | |
Collapse
|
39
|
Coleman RA. Human tissue in the evaluation of safety and efficacy of new medicines: a viable alternative to animal models? ISRN PHARMACEUTICS 2011; 2011:806789. [PMID: 22389860 PMCID: PMC3263708 DOI: 10.5402/2011/806789] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 05/15/2011] [Indexed: 11/23/2022]
Abstract
The pharma Industry's ability to develop safe and effective new drugs to market is in serious decline.
Arguably, a major contributor to this is the Industry's extensive reliance on nonhuman biology-based test methods to determine potential
safety and efficacy, objective analysis of which reveals poor predictive value. An obvious alternative approach is to use human-based tests,
but only if they are available, practical, and effective. While in vivo (phase 0 microdosing with high sensitivity mass spectroscopy)
and in silico (using established human biological data), technologies are increasingly being used, in vitro human approaches
are more rarely employed. However, not only are increasingly sophisticated in vitro test methods now available or under development,
but the basic ethically approved infrastructure through which human cells and tissues may be acquired is established. Along with clinical microdosing
and in silico approaches, more effective access to and use of human cells and tissues in vitro provide exciting and potentially
more effective opportunities for the assessment of safety and efficacy of new medicines.
Collapse
|
40
|
In vitro inhibition of compression-induced catabolic gene expression in meniscal explants following treatment with IL-1 receptor antagonist. J Orthop Sci 2011; 16:212-20. [PMID: 21331553 DOI: 10.1007/s00776-011-0026-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND Damage to the knee meniscus may result in tears that are difficult or unable to heal, and are often treated by partial removal of the damaged tissue. In vitro, 20% dynamic compressive strains on meniscal tissue explants have resulted in an increase in the release of sulfated glycosaminoglycans (GAG) and nitric oxide (NO) from the tissue explants and increased expression of matrix metalloproteinases (MMP) and interleukin-1α (IL-1α). The objective of this study was to explore the efficacy of IL-1 blockade on the expression of a wide range of genes, as well as NO and GAG release, following dynamic compression of porcine meniscal explants. METHODS Explants were dynamically compressed for 2 h at 1 Hz to 0, 10, or 20% strain with and without a pre-treatment of 500 ng/ml interleukin-1 receptor antagonist (IL-1RA). Relative changes in gene expression of IL-1α, MMP-1, -3, -13, A Disintegrin and Metalloproteinase with ThromboSpondin 4 (ADAMTS-4), ADAMTS-5, iNOS, aggrecan, and COX-2, as well as changes in NO and GAG release, were measured with standard biochemical assays. RESULTS Expression of IL-1α, MMP-3, MMP-13, and ADAMTS-4 in superficial explants was significantly downregulated at 20% dynamic strain compared to 10% strain following treatment with IL-1RA. GAG and NO release were not significantly influenced by IL-1RA treatment. CONCLUSIONS Treatment of meniscal explants with IL-1RA inhibited the expression of many catabolic genes following a single bout of high dynamic strain. IL-1RA may therefore be a potential therapy option during the acute phase of meniscal tear or meniscectomy treatment.
Collapse
|
41
|
Effect of acetaminophen (paracetamol) on human osteosarcoma cell line MG63. Acta Pharmacol Sin 2010; 31:1495-9. [PMID: 21052086 DOI: 10.1038/aps.2010.129] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
AIM To examine the effects of acetaminophen (paracetamol), a nonsteroidal anti-inflammatory drug (NSAID), on different cellular and functional parameters of the human osteosarcoma cell line MG63. METHODS Flow cytometry was used to study proliferation, antigenic profile, and phagocytic activity, and radioimmunoassay was used to determine osteocalcin synthesis as a cell differentiation marker. RESULTS Short-term treatment with therapeutic doses of paracetamol(5 or 25 μmol/L) reduced cell proliferation, osteocalcin synthesis, and phagocyte activity, and increased the expression of antigens involved in antigen presentation to T lymphocytes (CD80, CD86, HLA-DR). CONCLUSION These findings suggest that paracetamol activates the osteoblast, inducing its immunogenic action to the detriment of its bone formation capacity.
Collapse
|
42
|
Human leukocyte antigen-G molecules are constitutively expressed by synovial fibroblasts and upmodulated in osteoarthritis. Hum Immunol 2010; 71:342-50. [PMID: 20097242 DOI: 10.1016/j.humimm.2010.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 12/15/2009] [Accepted: 01/15/2010] [Indexed: 11/22/2022]
Abstract
Human leukocyte antigen (HLA)-G molecules are nonclassical HLA class I antigens expressed as membrane bound and soluble isoforms (sHLA-G) with a restricted tissue distribution and anti-inflammatory functions. Because inflammation is involved in the pathogenesis of osteoarthritis (OA), we have analyzed the expression and production of HLA-G molecules in in vitro cultured synovial fibroblasts (SFs) from OA patients and control subjects. We have analyzed the levels of sHLA-G1 and HLA-G5 isoforms by immunoenzymatic assay (enzyme-linked immunosorbent assay) in the SF culture supernatants from six OA patients and six control subjects in 70-day in vitro cultures and after the addition of lipopolysaccharide or recombinant interleukin (IL)-10 (rIL-10). We have confirmed HLA-G modulation by cytofluorimetry and immunofluorescence. The results have demonstrated the spontaneous production of sHLA-G1 molecules by both OA and control SFs. The expression was confirmed by cytofluorimetry and immunofluorescence. OA SFs produce both sHLA-G1 and HLA-G5 molecules during the first 23 days of culture and higher levels of sHLA-G1 during the first 40 days of in vitro culture and after lipopolysaccharide or rIL-10 activation compared with control SFs. The production of HLA-G1 molecules, constitutively expressed by control and OA SFs, is significantly increased in OA, suggesting a possible mechanism to counteract the inflammation of the synovial joints.
Collapse
|
43
|
|