1
|
DiNicola ES, Martinez AV, Walker L, Wu Y, Burnikel BG, Mercuri J. Cigarette smoke extract exacerbates progression of osteoarthritic-like changes in cartilage explant cultures. J Orthop Res 2024; 42:1682-1695. [PMID: 38460961 DOI: 10.1002/jor.25828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 03/11/2024]
Abstract
Established risk factors for osteoarthritis (OA) include obesity, joint injury, age, race, and genetics. However, the relationship between cigarette smoking and OA has yet to be established. In the present study, we have employed the use of cigarette smoke extract (CSE), the water-soluble vapor phase of cigarette smoke, with porcine cartilage explants to investigate the effects of cigarette smoking on cartilage catabolism at the tissue level. Articular cartilage explants were first exposed to 2.5%, 5%, and 10% CSE to assess its effects on cartilage homeostasis. Following, the effects of CSE on OA-like inflammation was observed by culturing explants with a combined treatment of IL-1β and TNF-α and 10% CSE (CSE + OA). Cartilage explants were assessed for changes in viability, biochemical composition, extracellular matrix (ECM) integrity, and equilibrium mechanical properties (aggregate modulus and hydraulic permeability). CSE alone leads to both a time- and dose-dependent decrease in chondrocyte viability but does not significantly affect sGAG content, percent sGAG loss, or the ECM integrity of cartilage explants. When IL-1β and TNF-α were combined with 10% CSE, this led to a synergistic effect with more significant losses in viability, significantly more sGAG loss, and significantly higher production of ROS than OA-like inflammation only. Cartilage explant equilibrium mechanical properties were unaffected. Within the timeframe of this study, CSE alone does not cause OA but when combined with OA-like inflammation leads to worsened articular cartilage degeneration as measured by chondrocyte viability, sGAG loss, proteoglycan staining, and ROS production.
Collapse
Affiliation(s)
- Emily Sawvell DiNicola
- Department of Bioengineering, The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina, USA
- Frank H. Stelling and C. Dayton Riddle Orthopaedic Education and Research Laboratory, Clemson University Biomedical Engineering Innovation Campus, Greenville, South Carolina, USA
| | - Andrea Vera Martinez
- Department of Bioengineering, The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina, USA
- Frank H. Stelling and C. Dayton Riddle Orthopaedic Education and Research Laboratory, Clemson University Biomedical Engineering Innovation Campus, Greenville, South Carolina, USA
| | - Lizzie Walker
- Orthopaedic Bioengineering Laboratory, Medical University of South Carolina, Department of Bioengineering, Clemson University, Charleston, South Carolina, USA
| | - Yongren Wu
- Orthopaedic Bioengineering Laboratory, Medical University of South Carolina, Department of Bioengineering, Clemson University, Charleston, South Carolina, USA
| | - Brian G Burnikel
- Prisma Health Steadman Hawkins Clinic of the Carolinas - Patewood, Greenville, South Carolina, USA
| | - Jeremy Mercuri
- Department of Bioengineering, The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina, USA
- Frank H. Stelling and C. Dayton Riddle Orthopaedic Education and Research Laboratory, Clemson University Biomedical Engineering Innovation Campus, Greenville, South Carolina, USA
| |
Collapse
|
2
|
Alexandrova Y, Yero A, Olivenstein R, Orlova M, Schurr E, Estaquier J, Costiniuk CT, Jenabian MA. Dynamics of pulmonary mucosal cytotoxic CD8 T-cells in people living with HIV under suppressive antiretroviral therapy. Respir Res 2024; 25:240. [PMID: 38867225 PMCID: PMC11170847 DOI: 10.1186/s12931-024-02859-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Despite the success of antiretroviral therapy (ART), people living with HIV (PLWH) suffer from a high burden of pulmonary diseases, even after accounting for their smoking status. Cytotoxic CD8 T-cells are likely implicated in this phenomenon and may act as a double-edged sword. While being essential in viral infection control, their hyperactivation can also contribute to lung mucosal tissue damage. The effects of HIV and smoking on pulmonary mucosal CD8 T-cell dynamics has been a neglected area of research, which we address herein. METHODS Bronchoalveolar lavage (BAL) fluid were obtained from ART-treated PLWH (median duration of supressed viral load: 9 years; smokers: n = 14; non-smokers: n = 21) and HIV-uninfected controls (smokers: n = 11; non-smokers: n = 20) without any respiratory symptoms or active infection. Lymphocytes were isolated and CD8 T-cell subsets and homing markers were characterized by multiparametric flow cytometry. RESULTS Both smoking and HIV infection were independently associated with a significant increase in frequencies of total pulmonary mucosal CD8 T-cell. BAL CD8 T-cells were primarily CD69 + expressing CD103 and/or CD49a, at least one of the two granzymes (GzmA/GzmB), and little Perforin. Higher expression levels of CD103, CD69, and GzmB were observed in smokers versus non-smokers. The ex vivo phenotype of GzmA + and GzmB + cells revealed increased expression of CD103 and CXCR6 in smokers, while PLWH displayed elevated levels of CX3CR1 compared to controls. CONCLUSION Smoking and HIV could promote cytotoxic CD8 T-cell retention in small airways through different mechanisms. Smoking likely increases recruitment and retention of GzmB + CD8 Trm via CXCR6 and CD103. Heightened CX3CR1 expression could be associated with CD8 non-Trm recruitment from the periphery in PLWH.
Collapse
Affiliation(s)
- Yulia Alexandrova
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), 141, Avenue President Kennedy, Montreal, QC, H2X 1Y4, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Alexis Yero
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), 141, Avenue President Kennedy, Montreal, QC, H2X 1Y4, Canada
| | - Ronald Olivenstein
- Division of Respirology, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Marianna Orlova
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Erwin Schurr
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Departments of Human Genetics and Medicine, McGill University, Montreal, QC, Canada
| | - Jerome Estaquier
- Centre de recherche de CHU de Québec - Université Laval Research Center, Québec City, Québec, Canada
| | - Cecilia T Costiniuk
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), 141, Avenue President Kennedy, Montreal, QC, H2X 1Y4, Canada.
| |
Collapse
|
3
|
Kim YE, Lee JH, Lee EJ, Kim DH, Jeong MR, Hong S, Lee CK, Yoo B, Youn J, Chang EJ, Kim YG. The Expression of the Alpha7 Nicotinic Acetylcholine Receptor and the Effect of Smoking in Curdlan-Administered SKG Mice. Biomedicines 2023; 11:2757. [PMID: 37893130 PMCID: PMC10603960 DOI: 10.3390/biomedicines11102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Nicotine, an abundant molecule in tobacco, has immunomodulatory effects on inflammatory diseases, primarily due to the activation of alpha7 nicotinic acetylcholine receptor (α7 nAChR). We aim to evaluate the expression of the α7 nAChR+ cells in joint tissue and the effect of smoking on immune cells and peripheral arthritis in curdlan-administered SKG mice, a murine model of spondyloarthropathy (SpA). The SKG mice were injected with curdlan two times at 2-week intervals and were divided into two groups; one exposed to cigarette smoke and the other not exposed. We found that the α7 nAChR+ cells increased in the joint tissue of curdlan-administered SKG mice compared to in the wild type. Furthermore, the peripheral arthritis scores and histological scores for synovial inflammation were lower in smoke-exposed curdlan-administered SKG mice than in mice not exposed to smoke. Immunofluorescence staining of the α7 nAChR+ and IL-17A+ cells was lower in the synovia of smoke-exposed mice than the control mice. The proportions of α7 nAChR+IL-17A+ and α7 nAChR+IL-17A+FOXP3+ cells also decreased in the synovia of smoke-exposed mice compared with the controls. We observed an increase in the α7 nAChR+ cells within the joint tissue of curdlan-administered SKG mice and that cigarette smoke had an influence on both peripheral arthritis and immune cell population, especially α7 nAChR+ cells. Thus, exposure to cigarette smoke after arthritogenic stimuli may have an anti-arthritogenic effect in curdlan-administered SKG mice.
Collapse
Affiliation(s)
- Young-Eun Kim
- Department of Rheumatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.-E.K.); (J.-H.L.); (E.-J.L.); (D.H.K.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Jae-Hyun Lee
- Department of Rheumatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.-E.K.); (J.-H.L.); (E.-J.L.); (D.H.K.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Eun-Ju Lee
- Department of Rheumatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.-E.K.); (J.-H.L.); (E.-J.L.); (D.H.K.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Do Hoon Kim
- Department of Rheumatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.-E.K.); (J.-H.L.); (E.-J.L.); (D.H.K.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Mi Ryeong Jeong
- Department of Rheumatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.-E.K.); (J.-H.L.); (E.-J.L.); (D.H.K.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Seokchan Hong
- Department of Rheumatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.-E.K.); (J.-H.L.); (E.-J.L.); (D.H.K.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Chang-Keun Lee
- Department of Rheumatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.-E.K.); (J.-H.L.); (E.-J.L.); (D.H.K.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Bin Yoo
- Department of Rheumatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.-E.K.); (J.-H.L.); (E.-J.L.); (D.H.K.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| | - Jeehee Youn
- Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul 04763, Republic of Korea;
| | - Eun-Ju Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| | - Yong-Gil Kim
- Department of Rheumatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (Y.-E.K.); (J.-H.L.); (E.-J.L.); (D.H.K.); (M.R.J.); (S.H.); (C.-K.L.); (B.Y.)
| |
Collapse
|
4
|
Maisha JA, El-Gabalawy HS, O’Neil LJ. Modifiable risk factors linked to the development of rheumatoid arthritis: evidence, immunological mechanisms and prevention. Front Immunol 2023; 14:1221125. [PMID: 37767100 PMCID: PMC10520718 DOI: 10.3389/fimmu.2023.1221125] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Rheumatoid Arthritis (RA) is a common autoimmune disease that targets the synovial joints leading to arthritis. Although the etiology of RA remains largely unknown, it is clear that numerous modifiable risk factors confer increased risk to developing RA. Of these risk factors, cigarette smoking, nutrition, obesity, occupational exposures and periodontal disease all incrementally increase RA risk. However, the precise immunological mechanisms by which these risk factors lead to RA are not well understood. Basic and translational studies have provided key insights into the relationship between inflammation, antibody production and the influence in other key cellular events such as T cell polarization in RA risk. Improving our general understanding of the mechanisms which lead to RA will help identify targets for prevention trials, which are underway in at-risk populations. Herein, we review the modifiable risk factors that are linked to RA development and describe immune mechanisms that may be involved. We highlight the few studies that have sought to understand if modification of these risk factors reduces RA risk. Finally, we speculate that modification of risk factors may be an appealing avenue for prevention for some at-risk individuals, specifically those who prefer lifestyle interventions due to safety and economic reasons.
Collapse
Affiliation(s)
| | | | - Liam J. O’Neil
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
5
|
Tucker J, McCullen A, Kennedy P, Koroneos Z, Wee HB, Dhawan A, Atkins H, Lewis GS, Garner MR. The effect of cigarette smoke versus vaporized nicotine on healing of a rat femur. Injury 2022; 53:3102-3108. [PMID: 36030094 DOI: 10.1016/j.injury.2022.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/01/2022] [Accepted: 08/16/2022] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Little data exists regarding the effects of vaporized nicotine on healing. Our goal was to compare vaporized nicotine, combusted nicotine and control with respect to bone healing in a rat femur fracture model. MATERIALS AND METHODS Forty-five male Sprague Dawley rats were divided into three equal cohorts. Rats were exposed to two cigarettes daily, an equivalent dose of vaporized nicotine, or control, six days a week. Exposures occurred for 4 weeks prior to iatrogenic femur fracture and intramedullary repair. Four additional weeks of exposure occurred prior to sacrifice. Radiographic, biomechanical and histologic analysis was conducted. RESULTS No significant difference between the three groups was identified for total mineralized bone volume (p = 0.14), total volume of mature bone (p = 0.12) or immature bone (p = 0.15). Importantly, less total mineralized bone volume and immature bone volume was seen in the vaporized nicotine group compared to combusted tobacco, but results were not significant. Biomechanical testing revealed no significant difference in group torsional stiffness (p = 0.92) or maximum torque (p = 0.31) between the three groups. On histologic analysis, chi-square testing showed no significant difference in any category. CONCLUSIONS This exploratory study compared combusted nicotine, vaporized nicotine and a control on rat femur fractures. While no statistically significant differences were identified, there were trends showing less total mineralized bone volume and immature bone volume in the vaporized nicotine group compared to the other groups. Additional study is warranted based on our findings.
Collapse
Affiliation(s)
| | | | - Patrick Kennedy
- HCA Virginia Health System, Lewisgale Medical Center, Salem, VA, USA
| | | | - Hwa Bok Wee
- Penn State College of Medicine, Hershey, PA, USA
| | - Aman Dhawan
- Penn State College of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | | | | | - Matthew R Garner
- Penn State College of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
6
|
Arleevskaya M, Takha E, Petrov S, Kazarian G, Renaudineau Y, Brooks W, Larionova R, Korovina M, Valeeva A, Shuralev E, Mukminov M, Kravtsova O, Novikov A. Interplay of Environmental, Individual and Genetic Factors in Rheumatoid Arthritis Provocation. Int J Mol Sci 2022; 23:ijms23158140. [PMID: 35897715 PMCID: PMC9329780 DOI: 10.3390/ijms23158140] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/05/2023] Open
Abstract
In this review, we explore systemization of knowledge about the triggering effects of non-genetic factors in pathogenic mechanisms that contribute to the development of rheumatoid arthritis (RA). Possible mechanisms involving environmental and individual factors in RA pathogenesis were analyzed, namely, infections, mental stress, sleep deprivation ecology, age, perinatal and gender factors, eating habits, obesity and smoking. The non-genetic factors modulate basic processes in the body with the impact of these factors being non-specific, but these common challenges may be decisive for advancement of the disease in the predisposed body at risk for RA. The provocation of this particular disease is associated with the presence of congenital loci minoris resistentia. The more frequent non-genetic factors form tangles of interdependent relationships and, thereby, several interdependent external factors hit one vulnerable basic process at once, either provoking or reinforcing each other. Understanding the specific mechanisms by which environmental and individual factors impact an individual under RA risk in the preclinical stages can contribute to early disease diagnosis and, if the factor is modifiable, might be useful for the prevention or delay of its development.
Collapse
Affiliation(s)
- Marina Arleevskaya
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia;
- Correspondence: ; Tel.: +7-89172-886-679; Fax: +7-843-238-5413
| | - Elena Takha
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
| | - Sergey Petrov
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
- Institute of Environmental Sciences, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Gevorg Kazarian
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
| | - Yves Renaudineau
- Department of Immunology, CHU Toulouse, INSERM U1291, CNRS U5051, University Toulouse IIII, 31000 Toulouse, France;
| | - Wesley Brooks
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA;
| | - Regina Larionova
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
| | - Marina Korovina
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia;
| | - Anna Valeeva
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
| | - Eduard Shuralev
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
- Institute of Environmental Sciences, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Malik Mukminov
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
- Institute of Environmental Sciences, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Olga Kravtsova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia;
| | - Andrey Novikov
- Mathematical Center, Sobolev Instiute of Mathematics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| |
Collapse
|
7
|
Heluany CS, Scharf P, Schneider AH, Donate PB, Dos Reis Pedreira Filho W, de Oliveira TF, Cunha FQ, Farsky SHP. Toxic mechanisms of cigarette smoke and heat-not-burn tobacco vapor inhalation on rheumatoid arthritis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151097. [PMID: 34695477 DOI: 10.1016/j.scitotenv.2021.151097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Tobacco combustion exposure worsens rheumatoid arthritis (RA). Non-combustible tobacco devices, as heat-not-burn tobacco (HNBT), are emerging as harm reduction to smokers by releasing nicotine and lower combustible tobacco products. Nevertheless, HNBT toxicity remains unclear. Hence, here we investigated the impacts of the tobacco combustible product (cigarette smoke; CS) or HNBT vapor exposures on antigen-induced arthritis (AIA) in C57BL/6 mice. Animals were exposed to airflow, HNBT vapor, or CS during 1 h/twice a day, under the Health Canada Intense (HCI) smoking regime, between days 14 to 20 after the first immunization. At day 21, 16 h after the last exposures, mice were i.a. challenged and the AIA effects were evaluated 24 h later. CS- or HNBT-exposed mice presented equivalent blood nicotine levels. CS exposure worsened articular symptoms, pulmonary inflammation, and expression of lung metallothioneins. Nevertheless, CS or HNBT exposures reduced lymphoid organs' cellularity, splenocyte proliferation and IL-2 secretion. Additional in vitro CS or HNBT exposures confirmed the harmful effects on splenocytes, which were partially mediated by the activation of nicotine/α7nAchR pathway. Associated, data demonstrate the toxic mechanisms of CS or HNBT inhalation at HCI regime on RA, and highlight that further investigations are fundamental to assure the toxicity of emerging tobacco products on the immune system during specific challenges.
Collapse
Affiliation(s)
- Cintia Scucuglia Heluany
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, SP, Brazil
| | - Pablo Scharf
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, SP, Brazil
| | | | - Paula Barbim Donate
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | | | - Tiago Franco de Oliveira
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Fernando Queiroz Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | - Sandra Helena Poliselli Farsky
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, SP, Brazil.
| |
Collapse
|
8
|
Zhang W, Lin H, Zou M, Yuan Q, Huang Z, Pan X, Zhang W. Nicotine in Inflammatory Diseases: Anti-Inflammatory and Pro-Inflammatory Effects. Front Immunol 2022; 13:826889. [PMID: 35251010 PMCID: PMC8895249 DOI: 10.3389/fimmu.2022.826889] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
As an anti-inflammatory alkaloid, nicotine plays dual roles in treating diseases. Here we reviewed the anti-inflammatory and pro-inflammatory effects of nicotine on inflammatory diseases, including inflammatory bowel disease, arthritis, multiple sclerosis, sepsis, endotoxemia, myocarditis, oral/skin/muscle inflammation, etc., mainly concerning the administration methods, different models, therapeutic concentration and duration, and relevant organs and tissues. According to the data analysis from recent studies in the past 20 years, nicotine exerts much more anti-inflammatory effects than pro-inflammatory ones, especially in ulcerative colitis, arthritis, sepsis, and endotoxemia. On the other hand, in oral inflammation, nicotine promotes and aggravates some diseases such as periodontitis and gingivitis, especially when there are harmful microorganisms in the oral cavity. We also carefully analyzed the nicotine dosage to determine its safe and effective range. Furthermore, we summarized the molecular mechanism of nicotine in these inflammatory diseases through regulating immune cells, immune factors, and the vagus and acetylcholinergic anti-inflammatory pathways. By balancing the “beneficial” and “harmful” effects of nicotine, it is meaningful to explore the effective medical value of nicotine and open up new horizons for remedying acute and chronic inflammation in humans.
Collapse
Affiliation(s)
- Wenji Zhang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hui Lin
- Department of Radiation Oncology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mingmin Zou
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qinghua Yuan
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhenrui Huang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaoying Pan
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- *Correspondence: Xiaoying Pan, ; Wenjuan Zhang,
| | - Wenjuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- *Correspondence: Xiaoying Pan, ; Wenjuan Zhang,
| |
Collapse
|
9
|
Li Z, Hao H, Gao Y, Wang Z, Lu W, Liu J. Expression and localization analyses of the cholinergic anti-inflammatory pathway and α7nAchR in different tissues of rats with rheumatoid arthritis. Acta Histochem 2019; 121:742-749. [PMID: 31279484 DOI: 10.1016/j.acthis.2019.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/15/2019] [Accepted: 07/01/2019] [Indexed: 11/26/2022]
Abstract
Rheumatoid arthritis (RA) is a complicated chronic multisystem autoimmune disease, wherein the inflammatory cascade leads to vasospasm and osteoclastogenesis, which ultimately results in bone and cartilage destruction. In this study, we investigated the expression and localization of the alpha-7 nicotinic receptor (α7nAchR) gene CHRNA7 in the heart, liver, spleen, lung, kidney, and joints of the collagen-induced arthritis (CIA) rat model. The CHRNA7 mRNA and protein expression levels in these tissues of rats from CIA and normal groups were analyzed via real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting, respectively. The cellular localization of CHRNA7 protein was determined via immunohistochemistry (IHC) assays. CHRNA7 was expressed at varying levels in different tissues of rats from the groups, among which joints showed significantly higher CHRNA7 expression levels than other tissues (P < 0.05). CIA rats had significantly higher CHRNA7 expression levels in the spleen and joints than the control group rats (P < 0.05). Positive expression signals for CHRNA7 were detected in various tissues of CIA and control group rats, among which strong positive signals were detected in joint fibroblast-like synoviocytes (FLSs), endothelial cells, stromal cells, and macrophages. Our results further confirmed the involvement of the CAP in the onset and development of inflammatory responses in RA, suggesting that CHRNA7 may be a new therapeutic target for RA. This study is of great clinical and theoretical significance for understanding the differential expression of CHRNA7 in various tissues and cholinergic anti-inflammatory pathway (CAP)-targeted treatment of RA.
Collapse
|
10
|
Kanashiro A, Shimizu Bassi G, de Queiróz Cunha F, Ulloa L. From neuroimunomodulation to bioelectronic treatment of rheumatoid arthritis. ACTA ACUST UNITED AC 2018; 1:151-165. [PMID: 30740246 DOI: 10.2217/bem-2018-0001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neuronal stimulation is an emerging field in modern medicine to control organ function and reestablish physiological homeostasis during illness. The nervous system innervates most of the peripheral organs and provides a fine tune to control the immune system. Most of these studies have focused on vagus nerve stimulation and the physiological, cellular and molecular mechanisms regulating the immune system. Here, we review the new results revealing afferent vagal signaling pathways, immunomodulatory brain structures, spinal cord-dependent circuits, neural and non-neural cholinergic/catecholaminergic signals and their respective receptors contributing to neuromodulation of inflammation in rheumatoid arthritis. These new neuromodulatory networks and structures will allow the design of innovative bioelectronic or pharmacological approaches for safer and low-cost treatment of arthritis and related inflammatory disorders.
Collapse
Affiliation(s)
- Alexandre Kanashiro
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Physiological Sciences, Federal University of São Carlos (UFSCAR), São Carlos, SP, Brazil
| | - Gabriel Shimizu Bassi
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fernando de Queiróz Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luis Ulloa
- Department of Surgery, Center of Immunology & Inflammation, Rutgers-New Jersey Medical School, Rutgers University, Newark, NJ 07101, USA
| |
Collapse
|
11
|
Jia W, Wu W, Yang D, Xiao C, Huang M, Long F, Su Z, Qin M, Liu X, Zhu YZ. GATA4 regulates angiogenesis and persistence of inflammation in rheumatoid arthritis. Cell Death Dis 2018; 9:503. [PMID: 29717129 PMCID: PMC5931571 DOI: 10.1038/s41419-018-0570-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by abnormal inflammation, angiogenesis, and cartilage destruction. In RA, neoangiogenesis is an early and crucial event to promote the formation of pannus, causing further inflammatory cell infiltration. The transcription factor GATA4 is a critical regulator of cardiac differentiation-specific gene expression. We find that a higher level of GATA4 exists in synovium of rheumatoid arthritis (RA) patients, but the function of GATA4 in RA remains unclear. In the present study, IL-1β induces inflammation in fibroblast-like synoviocytes (FLS) MH7A, which is accompanied with the increased expression of GATA4 and VEGF production. Through application of GATA4 loss-of-function assays, we confirm the requirement of GATA4 expression for inflammation induced by IL-1β in FLS. In addition, we demonstrate for the first time that GATA4 plays key roles in regulating VEGF secretion from RA FLS to promote cellular proliferation, induce cell migration, and angiogenic tube formation of endothelial cells. GATA4 induces the angiogenic factors VEGFA and VEGFC, by directly binding to the promoter and enhancing transcription. The knockdown of GATA4 attenuates the development of collagen-induced arthritis (CIA) and prevents RA-augmented angiogenesis in vivo, which are accompanied with decreased VEGF level. These results reveal a previously unrecognized function for GATA4 as a regulator of RA angiogenesis and we provide experimental data validating the therapeutic target of GATA4 in RA mice.
Collapse
Affiliation(s)
- Wanwan Jia
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China.,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Weijun Wu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Di Yang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Chenxi Xiao
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Mengwei Huang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Fen Long
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhenghua Su
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Ming Qin
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xinhua Liu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Yi Zhun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China. .,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
12
|
Gomes JP, Watad A, Shoenfeld Y. Nicotine and autoimmunity: The lotus' flower in tobacco. Pharmacol Res 2018; 128:101-109. [PMID: 29051105 DOI: 10.1016/j.phrs.2017.10.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 12/14/2022]
Abstract
Nicotine, the major component of cigarettes, has demonstrated conflicting impact on the immune system: some authors suggest that increases pro-inflammatory cytokines and provokes cellular apoptosis of neutrophils, releasing intracellular components that act as auto-antigens; others claimed that nicotine has a protective and anti-inflammatory effects, especially by binding to α7 subunit of nicotinic acetylcholine receptors. The cholinergic pathway contributes to an anti-inflammatory environment characterized by increasing T regulatory cells response, down-regulating of pro-inflammatory cytokines and a pro-inflammatory cells apoptosis. The effects of nicotine were studied in different autoimmune disease, as multiple sclerosis, type 1 diabetes, rheumatoid arthritis, sarcoidosis, Behçet's disease and inflammatory bowel diseases. The major problems about nicotine are the addiction and the adverse effects of related to each commercialized formulation. We sought in this review to summarize the knowledge accumulated to date concerning the relationship between nicotine and autoimmunity.
Collapse
Affiliation(s)
- João Pedro Gomes
- Department A of Internal Medicine, Hospital and University Centre of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Portugal
| | - Abdulla Watad
- Zabludowicz Center for Autoimmune Disease, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Disease, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel.
| |
Collapse
|
13
|
Benson RA, McInnes IB, Garside P, Brewer JM. Model answers: Rational application of murine models in arthritis research. Eur J Immunol 2017; 48:32-38. [PMID: 29193037 PMCID: PMC5814907 DOI: 10.1002/eji.201746938] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/02/2017] [Accepted: 11/22/2017] [Indexed: 12/29/2022]
Abstract
Advances in targeted immune therapeutics have profoundly improved clinical outcomes for patients with inflammatory arthropathies particularly rheumatoid arthritis. The landscape of disease that is observed and the treatment outcomes desired for the future have also progressed. As such there is an increasing move away from traditional models of end‐stage, chronic disease with recognition of the need to consider the earliest phases of pathogenesis as a target for treatment leading to resolution and/or cure. In order to continue the discovery process and enhance our understanding of disease and treatment, we therefore need to continuously revisit the animal models we employ and assess their relevance and utility in the light of contemporary therapeutic goals. In this review, we highlight the areas where we consider new developments in animal models and their application are most required. Thus, we have contextualised the relevant mouse models and their use within the current concepts of human inflammatory arthritis pathogenesis and highlight areas of need.
Collapse
Affiliation(s)
- Robert A Benson
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary & Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, UK
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary & Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, UK
| | - Paul Garside
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary & Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, UK
| | - James M Brewer
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary & Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow, UK
| |
Collapse
|
14
|
Pollard KM, Christy JM, Cauvi DM, Kono DH. Environmental Xenobiotic Exposure and Autoimmunity. CURRENT OPINION IN TOXICOLOGY 2017; 10:15-22. [PMID: 29503968 DOI: 10.1016/j.cotox.2017.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Susceptibility to autoimmune diseases is dependent on multigenic inheritance, environmental factors, and stochastic events. Although there has been substantial progress in identifying predisposing genetic variants, a significant challenge facing autoimmune disease research is the identification of the specific events that trigger loss of tolerance, autoreactivity and ultimately autoimmune disease. Accordingly, studies have indicated that a wide range of extrinsic factors including drugs, chemicals, microbes, and other environmental factors can induce autoimmunity, particularly systemic autoimmune diseases such as lupus. This review describes a class of environmental factors, namely xenobiotics, epidemiologically linked to human autoimmunity. Mechanisms of xenobiotic autoimmune disease induction are discussed in terms of human and animal model studies with a focus on the role of inflammation and the innate immune response. We argue that localized tissue damage and chronic inflammation elicited by xenobiotic exposure leads to the release of self-antigens and damage-associated molecular patterns as well as the appearance of ectopic lymphoid structures and secondary lymphoid hypertrophy, which provide a milieu for the production of autoreactive B and T cells that contribute to the development and persistence of autoimmunity in predisposed individuals.
Collapse
Affiliation(s)
- K Michael Pollard
- Department of Molecular Medicine, MEM125, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA 92037
| | - Joseph M Christy
- Department of Molecular Medicine, MEM125, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA 92037
| | - David M Cauvi
- Department of Surgery, School of Medicine, University of California, San Diego, 9500 Gilman Drive #0739, La Jolla, CA, USA 92093
| | - Dwight H Kono
- Department of Immunology and Microbiology, IMM310, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA 92037
| |
Collapse
|
15
|
Koopman FA, van Maanen MA, Vervoordeldonk MJ, Tak PP. Balancing the autonomic nervous system to reduce inflammation in rheumatoid arthritis. J Intern Med 2017; 282:64-75. [PMID: 28547815 DOI: 10.1111/joim.12626] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Imbalance in the autonomic nervous system (ANS) has been observed in many established chronic autoimmune diseases, including rheumatoid arthritis (RA), which is a prototypic immune-mediated inflammatory disease (IMID). We recently discovered that autonomic dysfunction precedes and predicts arthritis development in subjects at risk of developing seropositive RA. In addition, RA patients with relatively high vagus nerve tone (higher parasympathetic parameters, measured by heart rate variability) respond better to antirheumatic therapies. Together, these data suggest that the ANS may control inflammation in humans. This notion is supported by experimental studies in animal models of RA. We have found that stimulation of the so-called cholinergic anti-inflammatory pathway by efferent electrical vagus nerve stimulation (VNS) or pharmacological activation of the alpha7 subunit of nicotinic acetylcholine receptors (α7nAChR) improves clinical signs and symptoms of arthritis, reduces cytokine production and protects against progressive joint destruction. Conversely, increased arthritis activity was observed in alpha7nAChR knockout mice. These studies together with previous work in animal models of sepsis and other forms of inflammation provided the rationale for an experimental clinical trial in patients with RA. We could for the first time show that an implantable vagus nerve stimulator inhibits peripheral blood cytokine production in humans. VNS significantly inhibited TNF and IL-6 production and improved RA disease severity, even in some patients with therapy-resistant disease. This work strongly supports further studies using a bioelectronic approach to treat RA and other IMIDs.
Collapse
Affiliation(s)
- F A Koopman
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - M A van Maanen
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - M J Vervoordeldonk
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands.,Galvani Bioelectronics, Stevenage, UK
| | - P P Tak
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands.,GlaxoSmithKline, Stevenage, UK.,University of Cambridge, Cambridge, UK.,Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Lee J, Luria A, Rhodes C, Raghu H, Lingampalli N, Sharpe O, Rada B, Sohn DH, Robinson WH, Sokolove J. Nicotine drives neutrophil extracellular traps formation and accelerates collagen-induced arthritis. Rheumatology (Oxford) 2017; 56:644-653. [PMID: 28013195 DOI: 10.1093/rheumatology/kew449] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 12/17/2022] Open
Abstract
Objectives The aim was to investigate the effects of nicotine on neutrophil extracellular traps (NETs) formation in current and non-smokers and on a murine model of RA. Methods We compared spontaneous and phorbol 12-myristate 13-acetate-induced NETosis between current and non-smokers by DNA release binding. Nicotine-induced NETosis from non-smokers was assessed by DNA release binding, NET-specific (myeloperoxidase (MPO)-DNA complex) ELISA and real-time fluorescence microscopy. We also used immunofluorescent staining to detect nicotinic acetylcholine receptors (nAChRs) on neutrophils and performed a functional analysis to assess the role of nAChRs in nicotine-induced NETosis. Finally, we investigated the effects of systemic nicotine exposure on arthritis severity and NETosis in the CIA mouse model. Results Neutrophils derived from current smokers displayed elevated levels of spontaneous and phorbol 12-myristate 13-acetate-induced NETosis. Nicotine induced dose-dependent NETosis in ex vivo neutrophils from healthy non-smokers, and co-incubation with ACPA-immune complexes or TNF-α facilitated a synergistic effect on NETosis. Real-time fluorescence microscopy revealed robust formation of NET-like structures in nicotine-exposed neutrophils. Immunofluorescent staining demonstrated the presence of the α7 subunit of the nAChR on neutrophils. Stimulation of neutrophils with an α7-specific nAChR agonist induced NETosis, whereas pretreatment with an nAChR antagonist attenuated nicotine-induced NETosis. Nicotine administration to mice with CIA exacerbated inflammatory arthritis, with higher plasma levels of NET-associated MPO-DNA complex. Conclusion We demonstrate that nicotine is a potent inducer of NETosis, which may play an important role in accelerating arthritis in the CIA model. This study generates awareness of and the mechanisms by which nicotine-containing products, including e-cigarettes, may have deleterious effects on patients with RA.
Collapse
Affiliation(s)
- Jaejoon Lee
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Medicine, VA Palo Alto Healthcare System, Palo Alto.,Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA
| | - Ayala Luria
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, VA Palo Alto Healthcare System, Palo Alto.,Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA
| | - Christopher Rhodes
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, VA Palo Alto Healthcare System, Palo Alto.,Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA
| | - Harini Raghu
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, VA Palo Alto Healthcare System, Palo Alto.,Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA
| | - Nithya Lingampalli
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, VA Palo Alto Healthcare System, Palo Alto.,Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA
| | - Orr Sharpe
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, VA Palo Alto Healthcare System, Palo Alto.,Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA
| | - Balazs Rada
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Pusan, Korea
| | - William H Robinson
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, VA Palo Alto Healthcare System, Palo Alto.,Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA
| | - Jeremy Sokolove
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, VA Palo Alto Healthcare System, Palo Alto.,Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
17
|
Andersson KME, Brisslert M, Cavallini NF, Svensson MND, Welin A, Erlandsson MC, Ciesielski MJ, Katona G, Bokarewa MI. Survivin co-ordinates formation of follicular T-cells acting in synergy with Bcl-6. Oncotarget 2016; 6:20043-57. [PMID: 26343374 PMCID: PMC4652986 DOI: 10.18632/oncotarget.4994] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/30/2015] [Indexed: 02/07/2023] Open
Abstract
Follicular T helper (Tfh) cells are recognized by the expression of CXCR5 and the transcriptional regulator Bcl-6. Tfh cells control B cell maturation and antibody production, and if deregulated, may lead to autoimmunity. Here, we study the role of the proto-oncogene survivin in the formation of Tfh cells. We show that blood Tfh cells of patients with the autoimmune condition rheumatoid arthritis, have intracellular expression of survivin. Survivin was co-localized with Bcl-6 in the nuclei of CXCR5+CD4 lymphocytes and was immunoprecipitated with the Bcl-6 responsive element of the target genes. Inhibition of survivin in arthritic mice led to the reduction of CXCR5+ Tfh cells and to low production of autoantibodies. Exposure to survivin activated STAT3 and induced enrichment of PD-1+Bcl-6+ subset within Tfh cells. Collectively, our study demonstrates that survivin belongs to the Tfh cell phenotype and ensures their optimal function by regulating transcriptional activity of Bcl-6.
Collapse
Affiliation(s)
- Karin M E Andersson
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Mikael Brisslert
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Nicola Filluelo Cavallini
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Mattias N D Svensson
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Division of Cellular Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA
| | - Amanda Welin
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Malin C Erlandsson
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Michael J Ciesielski
- Department of Neurosurgery, Roswell Park Cancer Institute and State University of New York School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Gergely Katona
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Maria I Bokarewa
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
18
|
Weng CH, Gupta S, Geraghty P, Foronjy R, Pernis AB. Cigarette smoke inhibits ROCK2 activation in T cells and modulates IL-22 production. Mol Immunol 2016; 71:115-122. [PMID: 26882474 PMCID: PMC4797327 DOI: 10.1016/j.molimm.2016.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/04/2016] [Accepted: 01/12/2016] [Indexed: 12/29/2022]
Abstract
Gene-environment interactions are known to play a key role in the development of rheumatoid arthritis (RA). Exposure to cigarette smoke (CS) is one of the strongest environmental risk factors associated with RA and has been shown to mediate a range of complex immunomodulatory effects from decreased T and B cell activation to depressed phagocytic function. The effects of CS on the function of TH17 cells, one of the key TH effector subsets implicated in RA pathogenesis, are not fully understood. IRF4 is one of the crucial transcription factors involved in TH-17 differentiation and is absolutely required for the production of IL-17 and IL-21 but, interestingly, inhibits the synthesis of IL-22. The production of IL-17 and IL-21 by IRF4 can be augmented by its phosphorylation by the serine-threonine kinase ROCK2. Given that CS has been reported to increase ROCK activity in endothelial cells, here we investigated the effects of CS on the ROCK2-IRF4 axis in T cells. Surprisingly, we found that CS leads to decreased ROCK2 activation and IRF4 phosphorylation in T cells. This effect was associated with increased IL-22 production. Using a GEF pull-down assay we furthermore identify ARHGEF1 as a key upstream regulator of ROCK2 whose activity in T cells is inhibited by CS. Thus CS can inhibit the ROCK2-IRF4 axis and modulate T cell production of IL-22.
Collapse
Affiliation(s)
- Chien-Huan Weng
- Graduate Program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA; Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA.
| | - Sanjay Gupta
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA.
| | - Patrick Geraghty
- SUNY Downstate Medical Center, 450Clarkson Avenue, Brooklyn, New York, NY 11203, USA.
| | - Robert Foronjy
- SUNY Downstate Medical Center, 450Clarkson Avenue, Brooklyn, New York, NY 11203, USA.
| | - Alessandra B Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA; David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA.
| |
Collapse
|
19
|
Beckmann J, Dittmann N, Schütz I, Klein J, Lips KS. Effect of M3 muscarinic acetylcholine receptor deficiency on collagen antibody-induced arthritis. Arthritis Res Ther 2016; 18:17. [PMID: 26785775 PMCID: PMC4719200 DOI: 10.1186/s13075-016-0926-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 01/07/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND There is increasing evidence that the non-neuronal cholinergic system might be of importance for the pathology of rheumatoid arthritis. The role of M3 muscarinic acetylcholine receptor (M3R) in this regard has, however, not been investigated to date. Thus, in the present study we analyzed if M3R deficiency might have a protective effect on experimentally induced arthritis. METHODS Collagen antibody-induced arthritis (CAIA) was evoked in M3R-deficient (M3R(-/-)) mice and wild-type (WT) littermates. Severity of arthritis was assessed by scoring of paw swelling. The joints of arthritic and nonarthritic animals were analyzed for histopathological changes regarding synovial tissue, cartilage degradation and bone destruction. Further, gene expression analysis of respective markers was performed. Systemic and local inflammatory response was determined by flow cytometry and immunohistochemistry for leukocytes as well as mRNA and protein measurements for pro-inflammatory cytokines and chemokines. RESULTS In arthritic M3R(-/-) mice the number of leukocytes, specifically neutrophils, was enhanced even though clinical arthritis score was not significantly different between WT and M3R(-/-) mice with CAIA. In M3R(-/-) mice, levels of neutrophil chemoattractant chemokine C-X-C-motif ligand 2 (CXCL2) as well as the pro-inflammatory cytokine interleukin-6 were already strongly increased in mice with low arthritis score, whereas WT mice only showed prominent expression of these markers when reaching high arthritis scores. Furthermore, arthritic M3R(-/-) mice displayed a stronger degradation of collagen II in the articular cartilage and, most strikingly, histopathological evaluation revealed more severe bone destruction in arthritic mice with M3R deficiency compared to WT littermates. Moreover, in M3R(-/-) mice, gene expression of markers for bone degradation (matrix metalloproteinase 13, cathepsin K and receptor activator of nuclear factor-κB ligand) was already increased in mice with low arthritis score. CONCLUSIONS Taken together, the present study shows that while M3R(-/-) mice were not protected from CAIA, they had a tendency toward a higher inflammatory response after arthritis induction than WT mice. Further, arthritis-induced joint destruction was significantly stronger in mice with M3R deficiency, indicating that stimulation of M3R might have protective effects on arthritis.
Collapse
Affiliation(s)
- Janet Beckmann
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University Giessen, Kerkraderstrasse 9, 35394, Giessen, Germany.
| | - Nicole Dittmann
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University Giessen, Kerkraderstrasse 9, 35394, Giessen, Germany.
| | - Iris Schütz
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University Giessen, Kerkraderstrasse 9, 35394, Giessen, Germany.
| | - Jochen Klein
- Department of Pharmacology, School of Pharmacy, Goethe-University Frankfurt, Max-von-Laue Strasse 9, 60438, Frankfurt am Main, Germany.
| | - Katrin Susanne Lips
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University Giessen, Kerkraderstrasse 9, 35394, Giessen, Germany.
| |
Collapse
|
20
|
Fisher BA, Cartwright AJ, Quirke AM, de Pablo P, Romaguera D, Panico S, Mattiello A, Gavrila D, Navarro C, Sacerdote C, Vineis P, Tumino R, Lappin DF, Apatzidou D, Apazidou D, Culshaw S, Potempa J, Michaud DS, Riboli E, Venables PJ. Smoking, Porphyromonas gingivalis and the immune response to citrullinated autoantigens before the clinical onset of rheumatoid arthritis in a Southern European nested case-control study. BMC Musculoskelet Disord 2015; 16:331. [PMID: 26537917 PMCID: PMC4634856 DOI: 10.1186/s12891-015-0792-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 10/24/2015] [Indexed: 12/13/2022] Open
Abstract
Background Antibodies to citrullinated proteins (ACPA) occur years before RA diagnosis. Porphyromonas gingivalis expresses its own peptidylarginine deiminase (PPAD), and is a proposed aetiological factor for the ACPA response. Smoking is a risk factor for both ACPA-positive RA and periodontitis. We aimed to study the relation of these factors to the risk of RA in a prospective cohort. Methods We performed a nested case–control study by identifying pre-RA cases in four populations from the European Prospective Investigation into Cancer and nutrition, matched with three controls. Data on smoking and other covariates were obtained from baseline questionnaires. Antibodies to CCP2 and citrullinated peptides from α-enolase, fibrinogen, vimentin and PPAD were measured. Antibodies to arginine gingipain (RgpB) were used as a marker for P.gingivalis infection and validated in a separate cohort of healthy controls and subjects with periodontitis. Results We studied 103 pre-RA cases. RA development was associated with several ACPA specificities, but not with antibodies to citrullinated PPAD peptides. Antibody levels to RgpB and PPAD peptides were higher in smokers but were not associated with risk of RA or with pre-RA autoimmunity. Former but not current smoking was associated with antibodies to α-enolase (OR 4.06; 95 % CI 1.02, 16.2 versus 0.54; 0.09-3.73) and fibrinogen peptides (OR 4.24; 95 % CI 1.2-14.96 versus 0.58; 0.13-2.70), and later development of RA (OR 2.48; 95 % CI 1.27-4.84 versus 1.57; 0.85-2.93), independent of smoking intensity. Conclusions Smoking remains a risk factor for RA well before the clinical onset of disease. In this cohort, P.gingivalis is not associated with pre-RA autoimmunity or risk of RA in an early phase before disease-onset. Antibodies to PPAD peptides are not an early feature of ACPA ontogeny.
Collapse
Affiliation(s)
- Benjamin A Fisher
- Rheumatology Research Group, Centre for Translational Inflammation Research, Queen Elizabeth Hospital Birmingham, Birmingham, B15 2WB, UK.
| | | | - Anne-Marie Quirke
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| | - Paola de Pablo
- Rheumatology Research Group, Centre for Translational Inflammation Research, Queen Elizabeth Hospital Birmingham, Birmingham, B15 2WB, UK.
| | - Dora Romaguera
- School of Public Health, Imperial College London, London, UK. .,CIBER-OBN (Fisiopatología de la Obesidad y Nutrición), Madrid, Spain.
| | - Salvatore Panico
- Department of Clinical and Experimental Medicine, Federico II University of Naples, Naples, Italy.
| | - Amalia Mattiello
- Department of Clinical and Experimental Medicine, Federico II University of Naples, Naples, Italy.
| | - Diana Gavrila
- Department of Epidemiology, Murcia Regional Health Council, Murcia, Spain. .,CIBER Epidemiología y Salud Pública (CIBERESP), Murcia, Spain.
| | - Carmen Navarro
- Department of Epidemiology, Murcia Regional Health Council, Murcia, Spain. .,CIBER Epidemiología y Salud Pública (CIBERESP), Murcia, Spain.
| | | | | | - Rosario Tumino
- Cancer Registry and Histopathology Unit, "Civic - M.P.Arezzo" Hospital, ASP Ragusa, Ragusa, Italy.
| | - David F Lappin
- University of Glasgow Dental School, University of Glasgow, Glasgow, UK.
| | | | - Danae Apazidou
- University of Glasgow Dental School, University of Glasgow, Glasgow, UK.
| | - Shauna Culshaw
- University of Glasgow Dental School, University of Glasgow, Glasgow, UK.
| | - Jan Potempa
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland. .,Oral Health and Systemic Research Group, School of Dentistry, University of Louisville, Louisville, USA.
| | - Dominique S Michaud
- School of Public Health, Imperial College London, London, UK. .,Department of Epidemiology, Brown University School of Public Health, Providence, USA.
| | - Elio Riboli
- School of Public Health, Imperial College London, London, UK.
| | | |
Collapse
|
21
|
Lourido L, Calamia V, Fernández-Puente P, Mateos J, Oreiro N, Blanco FJ, Ruiz-Romero C. Secretome analysis of human articular chondrocytes unravels catabolic effects of nicotine on the joint. Proteomics Clin Appl 2015; 10:671-80. [DOI: 10.1002/prca.201400186] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/24/2015] [Accepted: 04/23/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Lucía Lourido
- Proteomics Group-PBR2-ProteoRed/ISCIII; Rheumatology Division, Instituto de Investigación Biomédica de A Coruña (INIBIC); Complexo Hospitalario Universitario de A Coruña (CHUAC); Sergas, Universidade da Coruña (UDC); A Coruña Spain
| | - Valentina Calamia
- Proteomics Group-PBR2-ProteoRed/ISCIII; Rheumatology Division, Instituto de Investigación Biomédica de A Coruña (INIBIC); Complexo Hospitalario Universitario de A Coruña (CHUAC); Sergas, Universidade da Coruña (UDC); A Coruña Spain
| | - Patricia Fernández-Puente
- Proteomics Group-PBR2-ProteoRed/ISCIII; Rheumatology Division, Instituto de Investigación Biomédica de A Coruña (INIBIC); Complexo Hospitalario Universitario de A Coruña (CHUAC); Sergas, Universidade da Coruña (UDC); A Coruña Spain
| | - Jesús Mateos
- Proteomics Group-PBR2-ProteoRed/ISCIII; Rheumatology Division, Instituto de Investigación Biomédica de A Coruña (INIBIC); Complexo Hospitalario Universitario de A Coruña (CHUAC); Sergas, Universidade da Coruña (UDC); A Coruña Spain
| | - Natividad Oreiro
- Proteomics Group-PBR2-ProteoRed/ISCIII; Rheumatology Division, Instituto de Investigación Biomédica de A Coruña (INIBIC); Complexo Hospitalario Universitario de A Coruña (CHUAC); Sergas, Universidade da Coruña (UDC); A Coruña Spain
| | - Francisco J. Blanco
- Proteomics Group-PBR2-ProteoRed/ISCIII; Rheumatology Division, Instituto de Investigación Biomédica de A Coruña (INIBIC); Complexo Hospitalario Universitario de A Coruña (CHUAC); Sergas, Universidade da Coruña (UDC); A Coruña Spain
- RIER-RED de Inflamación y Enfermedades Reumáticas; Instituto de Investigación Biomédica de A Coruña (INIBIC); Complexo Hospitalario Universitario de A Coruña (CHUAC); A Coruña Spain
| | - Cristina Ruiz-Romero
- Proteomics Group-PBR2-ProteoRed/ISCIII; Rheumatology Division, Instituto de Investigación Biomédica de A Coruña (INIBIC); Complexo Hospitalario Universitario de A Coruña (CHUAC); Sergas, Universidade da Coruña (UDC); A Coruña Spain
- CIBER-BBN Instituto de Salud Carlos III; Instituto de Investigación Biomédica de A Coruña (INIBIC); Complexo Hospitalario Universitario de A Coruña (CHUAC); A Coruña Spain
| |
Collapse
|
22
|
Beckmann J, Schubert J, Morhenn HG, Grau V, Schnettler R, Lips KS. Expression of choline and acetylcholine transporters in synovial tissue and cartilage of patients with rheumatoid arthritis and osteoarthritis. Cell Tissue Res 2015; 359:465-477. [PMID: 25418136 PMCID: PMC4320306 DOI: 10.1007/s00441-014-2036-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 10/15/2014] [Indexed: 12/20/2022]
Abstract
Increasing evidence is showing that the non-neuronal cholinergic system plays an important role in the pathology of rheumatoid arthritis (RA). Choline transport into the cell is the rate-limiting step for the synthesis of acetylcholine (ACh), which can be released directly or in vesicles from the cell. However, in the human joint little is known about choline import or the release of ACh from the cell. Thus, we analyze the expression of members of the organic cation transporter (OCT), of the newly discovered choline transporter-like (CTL) family and of classical neuronal components such as the high-affinity choline transporter (CHT1) and the vesicular ACh transporter (VAChT) in the synovium and cartilage of the human hip joint from patients with osteoarthritis (OA) and RA. OCT1, OCT3 and OCTN1 and all members of the CTL family were expressed in synovial and cartilage samples. The expression of CTL1 and CTL2 was localized in synovial macrophages and fibroblasts. CHT1 mRNA expression was detectable only in the synovium, whereas VAChT was completely absent in all samples. Therefore, in the human joint, choline transport into the cell and the release of ACh seems to be mediated mainly by members of the OCT and CTL family. Expression of transporters appears not to be influenced by the pathological state, as no differences have been detected between joints from OA or RA patients. Importantly, however, all necessary components for choline import and the release of non-neuronal ACh are present in the human joint.
Collapse
Affiliation(s)
- Janet Beckmann
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Schubert Strasse 81, 35392, Giessen, Germany.
| | - Jan Schubert
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Schubert Strasse 81, 35392, Giessen, Germany
| | - Hans-Georg Morhenn
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Schubert Strasse 81, 35392, Giessen, Germany
| | - Veronika Grau
- Laboratory of Experimental Surgery, Justus-Liebig University, Giessen, German
| | - Reinhard Schnettler
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Schubert Strasse 81, 35392, Giessen, Germany
- Department of Trauma Surgery Giessen, University Hospital of Giessen-Marburg, Giessen, German
| | - Katrin Susanne Lips
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University, Schubert Strasse 81, 35392, Giessen, Germany
| |
Collapse
|
23
|
Activation of Nicotinic Receptors Inhibits TNF-α-Induced Production of Pro-inflammatory Mediators Through the JAK2/STAT3 Signaling Pathway in Fibroblast-Like Synoviocytes. Inflammation 2015; 38:1424-33. [DOI: 10.1007/s10753-015-0117-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Andersson KME, Svensson MND, Erlandsson MC, Jonsson IM, Bokarewa MI. Down-regulation of survivin alleviates experimental arthritis. J Leukoc Biol 2014; 97:135-45. [PMID: 25381389 DOI: 10.1189/jlb.3a0714-317r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Survivin is a proto-oncogene that regulates cell division and apoptosis. It is a molecular marker of cancer. Recently, survivin has emerged as a feature of RA, associated with severe joint damage and poor treatment response. The present study examined if inhibition of survivin affects experimental arthritis, which was induced in mBSA-immunized mice by an injection of mBSA in the knee joint or developed spontaneously in collagen type II-immunized mice. The inhibition of survivin transcription by a lentivirus shRNA construct alleviated joint inflammation and reduced bone damage. The inhibition of survivin reduced the levels of metalloproteinases, β-catenin, and vimentin, limiting the invasive capacity of synovia, while no inhibition of osteoclastogenesis could be found. The inhibition of survivin led to a p53-independent reduction of T cell proliferation and favored the transcription and activity of Blimp-1, which limited IL-2 production and facilitated formation of regulatory Foxp3(+)CD4(+) and effector CD8(+) T cells. The study shows that the inhibition of survivin is sufficient to reduce joint inflammation and bone damage in preclinical models of arthritis. Antiarthritic effects of survivin inhibition are related to p53-independent control of lymphocyte proliferation.
Collapse
Affiliation(s)
- K M E Andersson
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, University of Gothenburg, Sweden
| | - M N D Svensson
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, University of Gothenburg, Sweden
| | - M C Erlandsson
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, University of Gothenburg, Sweden
| | - I-M Jonsson
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, University of Gothenburg, Sweden
| | - M I Bokarewa
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, University of Gothenburg, Sweden
| |
Collapse
|
25
|
Jiang X, Alfredsson L, Klareskog L, Bengtsson C. Smokeless Tobacco (Moist Snuff) Use and the Risk of Developing Rheumatoid Arthritis: Results From a Case-Control Study. Arthritis Care Res (Hoboken) 2014; 66:1582-6. [DOI: 10.1002/acr.22325] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/13/2014] [Accepted: 03/18/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Xia Jiang
- Institute of Environmental Medicine, Karolinska Institute; Stockholm Sweden
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institute, and Centre for Occupational and Environmental Medicine, Stockholm County Council; Stockholm Sweden
| | - Lars Klareskog
- Karolinska Institutet and Karolinska University Hospital; Stockholm Sweden
| | - Camilla Bengtsson
- Institute of Environmental Medicine, Karolinska Institute; Stockholm Sweden
| |
Collapse
|
26
|
Parks CG, Miller FW, Pollard KM, Selmi C, Germolec D, Joyce K, Rose NR, Humble MC. Expert panel workshop consensus statement on the role of the environment in the development of autoimmune disease. Int J Mol Sci 2014; 15:14269-97. [PMID: 25196523 PMCID: PMC4159850 DOI: 10.3390/ijms150814269] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 12/20/2022] Open
Abstract
Autoimmune diseases include 80 or more complex disorders characterized by self-reactive, pathologic immune responses in which genetic susceptibility is largely insufficient to determine disease onset. In September 2010, the National Institute of Environmental Health Sciences (NIEHS) organized an expert panel workshop to evaluate the role of environmental factors in autoimmune diseases, and the state of the science regarding relevant mechanisms, animal models, and human studies. The objective of the workshop was to analyze the existing data to identify conclusions that could be drawn regarding environmental exposures and autoimmunity and to identify critical knowledge gaps and areas of uncertainty for future study. This consensus document summarizes key findings from published workshop monographs on areas in which “confident” and “likely” assessments were made, with recommendations for further research. Transcribed notes and slides were reviewed to synthesize an overview on exposure assessment and questions addressed by interdisciplinary panels. Critical advances in the field of autoimmune disease research have been made in the past decade. Collaborative translational and interdisciplinary research is needed to elucidate the role of environmental factors in autoimmune diseases. A focus on exposure assessment methodology is needed to improve the effectiveness of human studies, and more experimental studies are needed to focus on causal mechanisms underlying observed associations of environmental factors with autoimmune disease in humans.
Collapse
Affiliation(s)
- Christine G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, NC 27709, USA.
| | | | - Kenneth Michael Pollard
- Department of Molecular and Experimental Medicine, the Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Carlo Selmi
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA 95616, USA.
| | - Dori Germolec
- National Toxicology Program, NIEHS, NIH, Morrisville, NC 27560, USA.
| | - Kelly Joyce
- Department of History and Politics, Drexel University, Philadelphia, PA 19104, USA.
| | - Noel R Rose
- John Hopkins Center for Autoimmune Disease Research, Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Michael C Humble
- Division of Extramural Research and Training, NIEHS, NIH, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
27
|
Engler A, Niederer F, Klein K, Gay RE, Kyburz D, Camici GG, Gay S, Ospelt C. SIRT6 regulates the cigarette smoke-induced signalling in rheumatoid arthritis synovial fibroblasts. J Mol Med (Berl) 2014; 92:757-67. [PMID: 24638860 DOI: 10.1007/s00109-014-1139-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/14/2014] [Accepted: 02/21/2014] [Indexed: 01/02/2023]
Abstract
UNLABELLED Cigarette smoking is a recognized environmental risk factor for the development and progression of rheumatoid arthritis (RA). RA synovial fibroblasts (RASF) actively contribute to inflammation and joint destruction in this chronic inflammatory autoimmune disease. In the current study, we investigated the influence of cigarette smoke on the inflammatory and matrix-destructive properties of RASF. Furthermore, the functional role of Sirtuin 6 (SIRT6) in the regulation of the signalling induced by cigarette smoke or by tumor necrosis factor alpha (TNFα) was elucidated. We demonstrated that stimulation with cigarette smoke extract (CSE) enhances the pro-inflammatory and matrix-destructive potential of RASF by inducing the production of pro-inflammatory cytokine interleukin 8 (IL8) and the matrix-destructive enzyme matrix metalloproteinase 1 (MMP1), but not of IL6 and MMP3. Moreover, we could show that the expression of MMP1 is specifically regulated by SIRT6. Treatment of RASF with CSE or TNFα increased the levels of SIRT6. The expression of SIRT6 was also enhanced in vivo in synovial tissues of RA smokers and in joints of mice exposed to cigarette smoke. Silencing of SIRT6 specifically increased basal as well as CSE- and TNFα-induced production of MMP1, demonstrating that SIRT6 plays an important role in restricting MMP1 expression. In conclusion, the upregulation of SIRT6 in RASF under CSE or TNFα stimulation functions as a counterregulatory mechanism attenuating the production of the matrix-destructive enzyme MMP1. This is the first study revealing the protective function of SIRT6 in the cigarette smoke-induced signalling. KEY MESSAGES Cigarette smoke induces pro-inflammatory and matrix-destructive responses in RASF. Cigarette smoke enhances the expression of SIRT6 in vitro and in vivo. TNFα increases the levels of SIRT6. SIRT6 diminishes MMP1 production under cigarette smoke extract and TNFα stimulation.
Collapse
Affiliation(s)
- Anna Engler
- Center of Experimental Rheumatology, University Hospital Zurich, Gloriastrasse 25, 8091, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Nasto LA, Ngo K, Leme AS, Robinson AR, Dong Q, Roughley P, Usas A, Sowa GA, Pola E, Kang J, Niedernhofer LJ, Shapiro S, Vo NV. Investigating the role of DNA damage in tobacco smoking-induced spine degeneration. Spine J 2014; 14:416-423. [PMID: 24211096 PMCID: PMC3944725 DOI: 10.1016/j.spinee.2013.08.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 07/15/2013] [Accepted: 08/23/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Tobacco smoking is a key risk factor for spine degeneration. However, the underlying mechanism by which smoking induces degeneration is not known. Recent studies implicate DNA damage as a cause of spine and intervertebral disc degeneration. Because tobacco smoke contains many genotoxins, we hypothesized that tobacco smoking promotes spine degeneration by inducing cellular DNA damage. PURPOSE To determine if DNA damage plays a causal role in smoking-induced spine degeneration. STUDY DESIGN To compare the effect of chronic tobacco smoke inhalation on intervertebral disc and vertebral bone in normal and DNA repair-deficient mice to determine the contribution of DNA damage to degenerative changes. METHODS Two-month-old wild-type (C57BL/6) and DNA repair-deficient Ercc1(-/Δ) mice were exposed to tobacco smoke by direct inhalation (4 cigarettes/day, 5 days/week for 7 weeks) to model first-hand smoking in humans. Total disc proteoglycan (PG) content (1,9-dimethylmethylene blue assay), PG synthesis ((35)S-sulfate incorporation assay), aggrecan proteolysis (immunoblotting analysis), and vertebral bone morphology (microcomputed tomography) were measured. RESULTS Exposure of wild-type mice to tobacco smoke led to a 19% increase in vertebral porosity and a 61% decrease in trabecular bone volume. Intervertebral discs of smoke-exposed animals also showed a 2.6-fold decrease in GAG content and an 8.1-fold decrease in new PG synthesis. These smoking-induced degenerative changes were similar but not worse in Ercc1(-/Δ) mice. CONCLUSIONS Short-term exposure to high levels of primary tobacco smoke inhalation promotes degeneration of vertebral bone and discs. Disc degeneration is primarily driven by reduced synthesis of proteoglycans needed for vertebral cushioning. Degeneration was not exacerbated in congenic DNA repair-deficient mice, indicating that DNA damage per se does not have a significant causal role in driving smoke-induced spine degeneration.
Collapse
Affiliation(s)
- Luigi A Nasto
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopaedic Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Orthopaedic Surgery, Catholic University of Rome School of Medicine, "A. Gemelli" University Hospital, l.go Agostino Gemelli 8, 00168 Roma, Italy
| | - Kevin Ngo
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopaedic Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Adriana S Leme
- Department of Medicine, University of Pittsburgh School of Medicine, 3550 Terrace St, Pittsburgh, PA 15213, USA
| | - Andria R Robinson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Qing Dong
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopaedic Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Peter Roughley
- McGill Scoliosis and Spine Group, Genetics Unit, Shriners Hospital for Children, Montreal, Quebec H3G 1A6, Canada
| | - Arvydas Usas
- Department of Orthopaedic Surgery of UPMC, Stem Cell Research Center, Pittsburgh, PA 15261, USA
| | - Gwendolyn A Sowa
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopaedic Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Enrico Pola
- Department of Orthopaedic Surgery, Catholic University of Rome School of Medicine, "A. Gemelli" University Hospital, l.go Agostino Gemelli 8, 00168 Roma, Italy
| | - James Kang
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopaedic Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Laura J Niedernhofer
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Metabolism and Aging, The Scripps Research Institute, 130 Scripps Way #3B3, Jupiter, FL 33458-5284, USA
| | - Steven Shapiro
- Department of Medicine, University of Pittsburgh School of Medicine, 3550 Terrace St, Pittsburgh, PA 15213, USA
| | - Nam V Vo
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopaedic Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
29
|
Vesperini V, Lukas C, Fautrel B, Le Loet X, Rincheval N, Combe B. Association of Tobacco Exposure and Reduction of Radiographic Progression in Early Rheumatoid Arthritis: Results From a French Multicenter Cohort. Arthritis Care Res (Hoboken) 2013; 65:1899-906. [DOI: 10.1002/acr.22057] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 06/03/2013] [Indexed: 01/23/2023]
Affiliation(s)
| | - Cedric Lukas
- Lapeyronie Hospital, Montpellier I University; UMR5535, Montpellier France
| | | | | | | | - Bernard Combe
- Lapeyronie Hospital, Montpellier I University; UMR5535, Montpellier France
| |
Collapse
|
30
|
Julian MW, Shao G, Schlesinger LS, Huang Q, Cosmar DG, Bhatt NY, Culver DA, Baughman RP, Wood KL, Crouser ED. Nicotine treatment improves Toll-like receptor 2 and Toll-like receptor 9 responsiveness in active pulmonary sarcoidosis. Chest 2013; 143:461-470. [PMID: 22878868 DOI: 10.1378/chest.12-0383] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND New evidence links nicotine to the regulation of T cell-mediated inflammation via a 7 nicotinic cholinergic receptor activation, and chronic nicotine exposure (smoking) reduces the incidence of granulomatous diseases. We sought to determine whether nicotine treatment was well tolerated while effectively normalizing immune responses in patients with active pulmonary sarcoidosis. METHODS Consenting adults with symptomatic sarcoidosis (n 5 13) were randomly assigned to receive 12 weeks of nicotine treatment plus conventional therapy or conventional therapy alone. Obtained blood cells were evaluated for their responsiveness to selected Toll-like receptor (TLR) and nucleotide oligomerization domain-like receptor ligands and T cell surface marker expression before and after nicotine treatment. Asymptomatic patients (n 5 6) and disease-free subjects (n 5 6) served as comparative control subjects. Adverse events were monitored for the duration of the study. RESULTS Compared with the asymptomatic group, symptomatic patients had impaired peripheral responses to TLR2, TLR4, and TLR9 ligands (anergy) and reduced peripheral populations of CD4 1 FoxP3 1 regulatory T cells (Tregs). Nicotine treatment was associated with restoration of TLR2 and TLR9 responsiveness, and expansion of Tregs, including the CD4 1 CD25 2 FoxP3 1 phenotype. There were no serious adverse events or signs of nicotine dependency. CONCLUSIONS Nicotine treatment in active pulmonary sarcoidosis was well tolerated and restored peripheral immune responsiveness to TLR2 and TLR9 agonists and expansion of FoxP3 1 Tregs, including a specific “preactivated” (CD25 2 ) phenotype. The immune phenotype of patients with symptomatic sarcoidosis treated with nicotine closely resembled that of asymptomatic patients, supporting the notion that nicotine treatment may be beneficial in this patient population.
Collapse
Affiliation(s)
- Mark W Julian
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, the Dorothy M. Davis Heart and Lung Research Institute, Columbus
| | - Guohong Shao
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, the Dorothy M. Davis Heart and Lung Research Institute, Columbus
| | - Larry S Schlesinger
- Department of Microbial Infection and Immunity and the Center for Microbial Interface Biology, Wexner Medical Center at The Ohio State University, Columbus
| | - Qin Huang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, the Dorothy M. Davis Heart and Lung Research Institute, Columbus
| | - David G Cosmar
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, the Dorothy M. Davis Heart and Lung Research Institute, Columbus
| | - Nitin Y Bhatt
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, the Dorothy M. Davis Heart and Lung Research Institute, Columbus
| | - Daniel A Culver
- Department of Pulmonary, Allergy and Critical Care Medicine, Cleveland Clinic Foundation, Cleveland
| | - Robert P Baughman
- Division of Pulmonary and Critical Care Medicine, University of Cincinnati Medical Center, Cincinnati, OH
| | - Karen L Wood
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, the Dorothy M. Davis Heart and Lung Research Institute, Columbus
| | - Elliott D Crouser
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, the Dorothy M. Davis Heart and Lung Research Institute, Columbus.
| |
Collapse
|
31
|
The Effect of Snuff (Smokeless Tobacco) on Disease Activity and Function in Rheumatoid Arthritis. J Clin Rheumatol 2013; 19:14-8. [DOI: 10.1097/rhu.0b013e31828214ed] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
32
|
Wang D, Nasto LA, Roughley P, Leme AS, Houghton M, Usas A, Sowa G, Lee J, Niedernhofer L, Shapiro S, Kang J, Vo N. Spine degeneration in a murine model of chronic human tobacco smokers. Osteoarthritis Cartilage 2012; 20:896-905. [PMID: 22531458 PMCID: PMC3389285 DOI: 10.1016/j.joca.2012.04.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/28/2012] [Accepted: 04/13/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the mechanisms by which chronic tobacco smoking promotes intervertebral disc degeneration (IDD) and vertebral degeneration in mice. METHODS Three month old C57BL/6 mice were exposed to tobacco smoke by direct inhalation (4 cigarettes/day, 5 days/week for 6 months) to model long-term smoking in humans. Total disc proteoglycan (PG) content [1,9-dimethylmethylene blue (DMMB) assay], aggrecan proteolysis (immunobloting analysis), and cellular senescence (p16INK4a immunohistochemistry) were analyzed. PG and collagen syntheses ((35)S-sulfate and (3)H-proline incorporation, respectively) were measured using disc organotypic culture. Vertebral osteoporosity was measured by micro-computed tomography. RESULTS Disc PG content of smoke-exposed mice was 63% of unexposed control, while new PG and collagen syntheses were 59% and 41% of those of untreated mice, respectively. Exposure to tobacco smoke dramatically increased metalloproteinase-mediated proteolysis of disc aggrecan within its interglobular domain (IGD). Cellular senescence was elevated two-fold in discs of smoke-exposed mice. Smoke exposure increased vertebral endplate porosity, which closely correlates with IDD in humans. CONCLUSIONS These findings further support tobacco smoke as a contributor to spinal degeneration. Furthermore, the data provide a novel mechanistic insight, indicating that smoking-induced IDD is a result of both reduced PG synthesis and increased degradation of a key disc extracellular matrix protein, aggrecan. Cleavage of aggrecan IGD is extremely detrimental as this results in the loss of the entire glycosaminoglycan-attachment region of aggrecan, which is vital for attracting water necessary to counteract compressive forces. Our results suggest identification and inhibition of specific metalloproteinases responsible for smoke-induced aggrecanolysis as a potential therapeutic strategy to treat IDD.
Collapse
Affiliation(s)
- Dong Wang
- Beijing Haidian Hospital, Department of Orthopaedics. 29 Zhong-Guan-Cun Street, Beijing 100080, China
- Ferguson Laboratory for Orthopaedic Research, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh PA 15261
| | - Luigi A Nasto
- Ferguson Laboratory for Orthopaedic Research, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh PA 15261
- Department of Orthopaedic Surgery, Catholic University of Rome School of Medicine, “A. Gemelli” University Hospital, l.go Agostino Gemelli 8, 00168 Roma, Italy
| | - Peter Roughley
- Genetics Unit, Shriners Hospital for Children, Montreal, Quebec, Canada
| | - Adriana S. Leme
- University of Pittsburgh School of Medicine, Pittsburgh PA 15213
| | - McGarry Houghton
- University of Pittsburgh School of Medicine, Pittsburgh PA 15213
| | - Arvydas Usas
- Stem Cell Research Center, Department of Orthopaedic Surgery of UPMC, Pittsburgh PA 15261
| | - Gwendolyn Sowa
- Ferguson Laboratory for Orthopaedic Research, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh PA 15261
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh PA 15261
| | - Joon Lee
- Ferguson Laboratory for Orthopaedic Research, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh PA 15261
| | - Laura Niedernhofer
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA 15261
| | - Steven Shapiro
- University of Pittsburgh School of Medicine, Pittsburgh PA 15213
| | - James Kang
- Ferguson Laboratory for Orthopaedic Research, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh PA 15261
| | - Nam Vo
- Ferguson Laboratory for Orthopaedic Research, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh PA 15261
| |
Collapse
|
33
|
Newkirk MM, Mitchell S, Procino M, Li Z, Cosio M, Mazur W, Kinnula VL, Hudson M, Baron M, Fritzler MJ, El-Gabalawy HS. Chronic smoke exposure induces rheumatoid factor and anti-heat shock protein 70 autoantibodies in susceptible mice and humans with lung disease. Eur J Immunol 2012; 42:1051-61. [PMID: 22531929 DOI: 10.1002/eji.201141856] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The impact of cigarette smoke (CS), a risk factor for rheumatoid arthritis (RA), on sauto-antibody production was studied in humans and mice with and without chronic lung disease (LD). Rheumatoid factor (RF), anti-cyclic citrullinated peptides (CCPs), and anti-HSP70 autoantibodies were measured in several mouse strains and in cohorts of smokers and nonsmokers with and without autoimmune disease. Chronic smoking-induced RFs in AKR/J mice, which are most susceptible to LD. RFs were identified in human smokers, preferentially in those with LD. Anti-HSP70 auto-antibodies were identified in CS-exposed AKR/J mice but not in ambient air exposed AKR/J controls. Whereas inflammation could induce anti-HSP70 IgM, smoke exposure promoted the switch to anti-HSP70 IgG autoantibodies. Elevated anti-CCP autoantibodies were not detected in CS-exposed mice or smokers. AKR/J splenocytes stimulated in vitro by immune complexes (ICs) of HSP70/anti-HSP70 antibodies produced RFs. The CD91 scavenger pathway was required as anti-CD91 blocked the HSP70-IC-induced RF response. Blocking Toll-like receptors did not influence the HSP70-IC-induced RFs. These studies identify both anti-HSP70 and RFs as serological markers of smoke-related LD in humans and mice. Identification of these autoantibodies could suggest a common environmental insult, namely CS, in a number of different disease settings.
Collapse
Affiliation(s)
- Marianna M Newkirk
- Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Karlson EW, Deane K. Environmental and gene-environment interactions and risk of rheumatoid arthritis. Rheum Dis Clin North Am 2012; 38:405-26. [PMID: 22819092 DOI: 10.1016/j.rdc.2012.04.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Multiple environmental factors including hormones, dietary factors, infections, and exposure to tobacco smoke, as well as gene-environment interactions, have been associated with increased risk for rheumatoid arthritis (RA). The growing understanding of the prolonged period before the first onset of symptoms of RA suggests that these environmental and genetic factors are likely acting to drive the development of RA-related autoimmunity long before the appearance of the first joint symptoms and clinical findings that are characteristic of RA. This article reviews these factors and interactions, especially those that have been investigated in a prospective fashion before the symptomatic onset of RA.
Collapse
Affiliation(s)
- Elizabeth W Karlson
- Section of Clinical Sciences, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| | | |
Collapse
|
35
|
Lindblad SS, Mydel P, Hellvard A, Jonsson IM, Bokarewa MI. The N-methyl-d-aspartic acid receptor antagonist memantine ameliorates and delays the development of arthritis by enhancing regulatory T cells. Neurosignals 2011; 20:61-71. [PMID: 22134197 DOI: 10.1159/000329551] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 05/20/2011] [Indexed: 12/31/2022] Open
Abstract
The neuroendocrine impact on rheumatoid arthritis is not yet fully described although numerous neurotransmitters are shown to act as inflammatory modulators. One of these is the excitatory transmitter glutamate (Glu). In this study, the influence of the Glu receptor (GluR)-mediated effects on collagen-induced arthritis (CIA) was investigated. CIA was induced in DBA/1 mice by immunization with chicken collagen type II (CII). Mice were exposed to the following GluR antagonists: group 1, the N-methyl-D-aspartic acid (NMDA) receptor channel blocker memantine; group 2, the metabotropic GluR antagonist AIDA, and group 3, the excitatory amino acid receptor antagonist kynurenic acid (KA). Arthritis was evaluated clinically and histologically and compared to PBS-treated controls. The effects of treatment on T cell populations and the levels of anti-CII and anti-citrullinated peptide antibodies were evaluated. Memantine treatment significantly improved the course of CIA, reducing synovitis (p = 0.007) and the frequency of erosions (p = 0.007). Memantine treatment up-regulated the expression of Foxp3 in spleen CD4+ T cells followed by an increase in CD4+CD25+ regulatory T cells. The other GluR antagonists, AIDA and KA, had no effect on CIA. These results demonstrate that blockade of the NMDA receptor channel with memantine delays and attenuates the development of arthritis, probably by promoting the development of regulatory T lymphocytes.
Collapse
Affiliation(s)
- Sofia S Lindblad
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Sahlgrenska University Hospital, Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
36
|
Lee J, Taneja V, Vassallo R. Cigarette smoking and inflammation: cellular and molecular mechanisms. J Dent Res 2011; 91:142-9. [PMID: 21876032 DOI: 10.1177/0022034511421200] [Citation(s) in RCA: 486] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cigarette smoke (CS) causes considerable morbidity and mortality by inducing cancer, chronic lung and vascular diseases, and oral disease. Despite the well-recognized risks associated with smoking, the habit remains unacceptably prevalent. Several toxins present in CS have immunomodulatory effects. CS also contains trace amounts of microbial cell components, including bacterial lipopolysaccharide. These and other CS constituents induce chronic inflammation at mucosal surfaces and modify host responses to exogenous antigens. The effects of CS on immunity are far-reaching and complex; both pro-inflammatory and suppressive effects may be induced. The net effect of CS on immunity depends on many variables, including the dose and type of tobacco, the route and chronicity of exposure, and the presence of other factors at the time of immune cell stimulation, such as Toll receptor ligands or other inflammatory mediators. CS impairs innate defenses against pathogens, modulates antigen presentation, and promotes autoimmunity. CS also impairs immunity in the oral cavity and promotes gingival and periodontal disease and oral cancer. The recognition of specific mechanisms by which CS affects host immunity is an important step toward elucidating mechanisms of tobacco-induced disease and may identify novel therapeutic approaches for the management of diseases that afflict smokers.
Collapse
Affiliation(s)
- J Lee
- Department of Internal Medicine, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | | | |
Collapse
|
37
|
Onat A, Hergenç G. Low-grade inflammation, and dysfunction of high-density lipoprotein and its apolipoproteins as a major driver of cardiometabolic risk. Metabolism 2011; 60:499-512. [PMID: 20580781 DOI: 10.1016/j.metabol.2010.04.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 04/12/2010] [Accepted: 04/19/2010] [Indexed: 12/30/2022]
Abstract
Dysfunction of high-density lipoprotein (HDL) particles that even become proinflammatory or lose atheroprotective properties is known through analyses of HDL isolated from diabetic subjects. Recently, high concentrations of HDL or apolipoprotein (apo) A-I in individuals with diabetes or coronary heart disease were found to reveal dysfunction in some population-based studies. Such dysfunction of HDL and its apos A-I, A-II, and C-III has been observed in a general population for the first time among Turkish adults. Functional defectiveness manifested itself by unexpected correlations with inflammatory biomarkers and, in long-term follow-up, by lack of protection against diabetes and coronary heart disease, accounting for the excess incidences in Turks. Female sex was more pronouncedly affected by this process that presumably exists in other ethnicities in South Asia, East Europe, and the Middle East. In contradistinction, in Western and East Asian population, only individuals with glucose intolerance or those at risk for cardiometabolic disease are considered to be or were documented in a review of clinical trials to have been affected by impaired function of HDL. High-density lipoprotein dysfunctionality is closely linked to obesity and low-grade inflammation yet seems to act partly independently of them. Cigarette smoking in overweight women with low-grade inflammation appears to offer limited protection against cardiometabolic risk. The great impact in public health of the dysfunction of protective serum proteins requires individual clinical recognition, appropriate preventive measures, and delineation of management, including with anti-inflammatory drugs.
Collapse
Affiliation(s)
- Altan Onat
- Turkish Society of Cardiology, Istanbul University, Istanbul 34098, Turkey.
| | | |
Collapse
|
38
|
Yu H, Yang YH, Rajaiah R, Moudgil KD. Nicotine-induced differential modulation of autoimmune arthritis in the Lewis rat involves changes in interleukin-17 and anti-cyclic citrullinated peptide antibodies. ARTHRITIS AND RHEUMATISM 2011; 63:981-91. [PMID: 21305506 PMCID: PMC3079435 DOI: 10.1002/art.30219] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is a debilitating autoimmune disease, and smoking is an important environmental factor in a subset of RA patients. A role of the cholinergic antiinflammatory pathway in autoimmune inflammation is increasingly being realized. Nicotine is a major component of cigarette smoke, and it stimulates the α7 nicotinic acetylcholine receptors. Therefore, defining the mechanisms underlying the immunomodulatory effects of nicotine on arthritis is of high relevance. The purpose of this study was to address this issue using the rat adjuvant-induced arthritis (AIA) model of human RA. METHODS Lewis rats were immunized subcutaneously with heat-killed Mycobacterium tuberculosis H37Ra for disease induction. Rats were treated with nicotine intraperitoneally either before (pretreatment) or after (posttreatment) the onset of AIA. Control rats received the vehicle (buffer) in place of nicotine. The severity of arthritis was assessed and graded. The draining lymph node cells were tested for T cell proliferative and cytokine responses against the disease-related antigen mycobacterial heat-shock protein 65. The sera were tested for anti-cyclic citrullinated peptide (anti-CCP) antibodies and anti-mycobacterial Hsp65 antibodies. RESULTS Nicotine pretreatment aggravated the arthritis, whereas nicotine posttreatment suppressed the disease. This altered severity of AIA directly correlated with the levels of the anti-CCP antibodies, of the Th1/Th17 cytokines, and of the corresponding dendritic cell-derived cytokines. The majority of these effects on cellular responses could be replicated in vitro. CONCLUSION Nicotine-induced modulation of AIA involves specific alterations in the disease-related cellular and humoral immune responses in AIA. These results are of significance in advancing our understanding of the pathogenesis of RA.
Collapse
Affiliation(s)
- Hua Yu
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Ying-Hua Yang
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Rajesh Rajaiah
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Kamal D. Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
- Division of Rheumatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
39
|
Okamoto S, Adachi M, Chujo S, Yamada K, Akita K, Itoh S, Takii T, Hayakawa K, Onozaki K. Etiological role of cigarette smoking in rheumatoid arthritis: Nasal exposure to cigarette smoke condensate extracts augments the development of collagen-induced arthritis in mice. Biochem Biophys Res Commun 2011; 404:1088-92. [PMID: 21195061 DOI: 10.1016/j.bbrc.2010.12.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 12/21/2010] [Indexed: 11/22/2022]
Abstract
Cigarette smoking is a major environmental risk factor for rheumatoid arthritis (RA). However, the experimental bases supporting the etiological role of cigarette smoking in RA have not been fully provided. We have reported that cigarette smoke condensate (CSC), by means of subcutaneous injection into DBA/1J mice with collagen and complete Freund's adjuvant or intraperitoneal injection one day before immunization, augmented the development of arthritis in the mouse model of collagen type II-induced arthritis (CIA). However, these experimental procedures may not be appropriate for cigarette smoking. In this study, we nasally exposed mice to mainstream CSC and found that CSC augmented the induction and development of arthritis and antibody level against collagen. Histological examination confirmed the augmenting effect of CSC. These findings provide experimental bases supporting the etiological role of cigarette smoking in RA.
Collapse
Affiliation(s)
- Shosuke Okamoto
- Department of Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho 3-1, Nagoya 467-8603, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Khan OM, Ibrahim MX, Jonsson IM, Karlsson C, Liu M, Sjogren AKM, Olofsson FJ, Brisslert M, Andersson S, Ohlsson C, Hultén LM, Bokarewa M, Bergo MO. Geranylgeranyltransferase type I (GGTase-I) deficiency hyperactivates macrophages and induces erosive arthritis in mice. J Clin Invest 2011; 121:628-39. [PMID: 21266780 DOI: 10.1172/jci43758] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 11/10/2010] [Indexed: 11/17/2022] Open
Abstract
RHO family proteins are important for the function of inflammatory cells. They are modified with a 20-carbon geranylgeranyl lipid in a process catalyzed by protein geranylgeranyltransferase type I (GGTase-I). Geranylgeranylation is viewed as essential for the membrane targeting and activity of RHO proteins. Consequently, inhibiting GGTase-I to interfere with RHO protein activity has been proposed as a strategy to treat inflammatory disorders. However, here we show that mice lacking GGTase-I in macrophages develop severe joint inflammation resembling erosive rheumatoid arthritis. The disease was initiated by the GGTase-I-deficient macrophages and was transplantable and reversible in bone marrow transplantation experiments. The cells accumulated high levels of active GTP-bound RAC1, CDC42, and RHOA, and RAC1 remained associated with the plasma membrane. Moreover, GGTase-I deficiency activated p38 and NF-κB and increased the production of proinflammatory cytokines. The results challenge the view that geranylgeranylation is essential for the activity and localization of RHO family proteins and suggest that reduced geranylgeranylation in macrophages can initiate erosive arthritis.
Collapse
Affiliation(s)
- Omar M Khan
- Sahlgrenska Center for Cardiovascular and Metabolic Research, Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chujo S, Okamoto S, Sunahara R, Adachi M, Yamada K, Hayashi H, Takii T, Hayakawa K, Onozaki K. Cigarette smoke condensate extracts augment collagen-induced arthritis in mice. Int Immunopharmacol 2010; 10:1194-9. [PMID: 20620226 DOI: 10.1016/j.intimp.2010.06.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 05/24/2010] [Accepted: 06/23/2010] [Indexed: 11/16/2022]
Abstract
Although cigarette smoking is a solid environmental risk factor for rheumatoid arthritis (RA) as revealed by epidemiological studies, the scientific basis has not been provided. Proinflammatory cytokines produced by synoviocytes are implicated in the pathogenesis of RA. As cigarette smoke condensate (CSC) is able to up-regulate the production of proinflammatory cytokines from human fibroblast-like synoviocytes, we studied the effect of CSC on induction of arthritis in the mouse model of collagen type II-induced arthritis (CIA). When mainstream CSC or sidestream CSC was administered into DBA/1J mice at the time of immunization with collagen and complete Freund adjuvant, CSC dose-dependently augmented the induction and clinical development of arthritis at both young and older mice. Peritoneal injected mainstream CSC one day before immunization also exhibited the augmenting effect, suggesting the systemic effect of CSC. These results support the etiological role of cigarette smoking in RA.
Collapse
Affiliation(s)
- Satomi Chujo
- Department of Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho, Nagoya 467-8603, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhou Y, Zuo X, Li Y, Wang Y, Zhao H, Xiao X. Nicotine inhibits tumor necrosis factor-α induced IL-6 and IL-8 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Rheumatol Int 2010; 32:97-104. [DOI: 10.1007/s00296-010-1549-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 07/11/2010] [Indexed: 10/19/2022]
|
43
|
Arnson Y, Shoenfeld Y, Amital H. Effects of tobacco smoke on immunity, inflammation and autoimmunity. J Autoimmun 2009; 34:J258-65. [PMID: 20042314 DOI: 10.1016/j.jaut.2009.12.003] [Citation(s) in RCA: 647] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Smoking is a central factor in many pathological conditions. Its role in neoplasm, lung and cardiovascular diseases has been well established for years. However it is less acknowledged the cigarette smoking affects both the innate and adoptive immune arms. Cigarette smoke was shown to augment the production of numerous pro-inflammatory cytokines such as TNF-alpha, IL-1, IL-6, IL-8 GM-CSF and to decrease the levels of anti-inflammatory cytokines such as IL-10. Tobacco smoke via multiple mechanisms leads to elevated IgE concentrations and to the subsequent development of atopic diseases and asthma. Cigarette smoke has also been shown activate in many ways macrophage and dendritic cell activity. While it is better evident how cigarette smoke evokes airway diseases more mechanisms are being revealed linking this social hazard to autoimmune disorders, for instance via the production of antibodies recognizing citrullinated proteins in rheumatoid arthritis or by the elevation of anti-dsDNA titers in systemic lupus erythematosus. The current review underlines the importance of smoking prevention and eradication not only in respiratory disorders but also in autoimmune conditions as well.
Collapse
Affiliation(s)
- Yoav Arnson
- Department of Medicine D, Meir Medical Center, Kfar Saba, Israel
| | | | | |
Collapse
|
44
|
Smoking delays CIA onset in mice. Nat Rev Rheumatol 2009. [DOI: 10.1038/nrrheum.2009.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|