1
|
Yang F, Duan Y, Li Y, Zhu D, Wang Z, Luo Z, Zhang Y, Zhang G, He X, Kang X. S100A6 Regulates nucleus pulposus cell apoptosis via Wnt/β-catenin signaling pathway: an in vitro and in vivo study. Mol Med 2024; 30:87. [PMID: 38877413 PMCID: PMC11179208 DOI: 10.1186/s10020-024-00853-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a common musculoskeletal degenerative disease, which often leads to low back pain and even disability, resulting in loss of labor ability and decreased quality of life. Although many progresses have been made in the current research, the underlying mechanism of IDD remains unclear. The apoptosis of nucleus pulposus (NP) cells (NPCs) is an important pathological mechanism in intervertebral disc degeneration (IDD). This study evaluated the relationship between S100A6 and NPCs and its underlying mechanism. METHODS Mass spectrometry, bioinformatics, and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were used to screen and verify hub genes for IDD in human IVD specimens with different degeneration degrees. Western blotting, immunohistochemistry (IHC), and/or immunofluorescence (IF) were used to detect the expression level of S100A6 in human NP tissues and NPCs. The apoptotic phenotype of NPCs and Wnt/β-catenin signaling pathway were evaluated using flow cytometry, western blotting, and IF. S100A6 was overexpressed or knocked down in NPCs to determine its impact on apoptosis and Wnt/β-catenin signaling pathway activity. Moreover, we used the XAV-939 to inhibit and SKL2001 to activate the Wnt/β-catenin signaling pathway. The therapeutic effect of S100A6 inhibition on IDD was also evaluated. RESULTS S100A6 expression increased in IDD. In vitro, increased S100A6 expression promoted apoptosis in interleukin (IL)-1β-induced NPCs. In contrast, the inhibition of S100A6 expression partially alleviated the progression of annulus fibrosus (AF) puncture-induced IDD in rats. Mechanistic studies revealed that S100A6 regulates NPC apoptosis via Wnt/β-catenin signaling pathway. CONCLUSIONS This study showed that S100A6 expression increased during IDD and promoted NPCs apoptosis by regulating the Wnt/β-catenin signaling pathway, suggesting that S100A6 is a promising new therapeutic target for IDD.
Collapse
Affiliation(s)
- Fengguang Yang
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Yanni Duan
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Yanhu Li
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Daxue Zhu
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Zhaoheng Wang
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Zhangbin Luo
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Yizhi Zhang
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Guangzhi Zhang
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Xuegang He
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Xuewen Kang
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China.
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China.
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China.
| |
Collapse
|
2
|
Xia Q, Zhao Y, Dong H, Mao Q, Zhu L, Xia J, Weng Z, Liao W, Hu Z, Yi J, Feng S, Jiang Y, Xin Z. Progress in the study of molecular mechanisms of intervertebral disc degeneration. Biomed Pharmacother 2024; 174:116593. [PMID: 38626521 DOI: 10.1016/j.biopha.2024.116593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024] Open
Abstract
Degenerative intervertebral disc disease (IVDD) is one of the main spinal surgery, conditions, which markedly increases the incidence of low back pain and deteriorates the patient's quality of life, and it imposes significant social and economic burdens. The molecular pathology of IVDD is highly complex and multilateral however still not ompletely understood. New findings indicate that IVDD is closely associated with inflammation, oxidative stress, cell injury and extracellular matrix metabolismdysregulation. Symptomatic management is the main therapeutic approach adopted for IVDD, but it fails to address the basic pathological changes and the causes of the disease. However, research is still focusing on molecular aspects in terms of gene expression, growth factors and cell signaling pathways in an attempt to identify specific molecular targets for IVDD treatment. The paper summarizes the most recent achievements in molecularunderstanding of the pathogenesis of IVDD and gives evidence-based recommendations for clinical practice.
Collapse
Affiliation(s)
- Qiuqiu Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Yan Zhao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Huaize Dong
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Qiming Mao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Lu Zhu
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Jiyue Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Zijing Weng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Wenbo Liao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China
| | - Zongyue Hu
- Department of Pain Rehabilitation, Affiliated Sinopharm Gezhouba Central Hospital, Third Clinical Medical College of Three Gorges University, Yichang, Hubei Province 443003, China
| | - Jiangbi Yi
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Shuai Feng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Youhong Jiang
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; First School of Clinical Medicine, Zun yi Medical University, Zunyi 563000, China
| | - Zhijun Xin
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000, China; Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, Paris 75005, France.
| |
Collapse
|
3
|
Jones TW, Almuntashiri S, Chase A, Alhumaid A, Somanath PR, Sikora A, Zhang D. Plasma matrix metalloproteinase-3 predicts mortality in acute respiratory distress syndrome: a biomarker analysis of a randomized controlled trial. Respir Res 2023; 24:166. [PMID: 37349704 PMCID: PMC10286483 DOI: 10.1186/s12931-023-02476-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Matrix metalloproteinase-3 (MMP-3) is a proteolytic enzyme involved in acute respiratory distress syndrome (ARDS) pathophysiology that may serve as a lung-specific biomarker in ARDS. METHODS This study was a secondary biomarker analysis of a subset of Albuterol for the Treatment of Acute Lung Injury (ALTA) trial patients to determine the prognostic value of MMP-3. Plasma sample MMP-3 was measured by enzyme-linked immunosorbent assay. The primary outcome was the area under the receiver operating characteristic (AUROC) of MMP-3 at day 3 for the prediction of 90-day mortality. RESULTS A total of 100 unique patient samples were evaluated and the AUROC analysis of day three MMP-3 showed an AUROC of 0.77 for the prediction of 90-day mortality (95% confidence interval: 0.67-0.87), corresponding to a sensitivity of 92% and specificity of 63% and an optimal cutoff value of 18.4 ng/mL. Patients in the high MMP-3 group (≥ 18.4 ng/mL) showed higher mortality compared to the non-elevated MMP-3 group (< 18.4 ng/mL) (47% vs. 4%, p < 0.001). A positive difference in day zero and day three MMP-3 concentration was predictive of mortality with an AUROC of 0.74 correlating to 73% sensitivity, 81% specificity, and an optimal cutoff value of + 9.5 ng/mL. CONCLUSIONS Day three MMP-3 concentration and difference in day zero and three MMP-3 concentrations demonstrated acceptable AUROCs for predicting 90-day mortality with a cut-point of 18.4 ng/mL and + 9.5 ng/mL, respectively. These results suggest a prognostic role of MMP-3 in ARDS.
Collapse
Affiliation(s)
- Timothy W. Jones
- Department of Pharmacy, Augusta University Medical Center, 1120 15th St., Augusta, GA 30912 USA
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, 120 15th Street, HM-117, Augusta, GA 30912 USA
| | - Sultan Almuntashiri
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, 120 15th Street, HM-117, Augusta, GA 30912 USA
| | - Aaron Chase
- Department of Pharmacy, Augusta University Medical Center, 1120 15th St., Augusta, GA 30912 USA
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, 120 15th Street, HM-117, Augusta, GA 30912 USA
| | - Abdullah Alhumaid
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, 120 15th Street, HM-117, Augusta, GA 30912 USA
| | - Payaningal R. Somanath
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, 120 15th Street, HM-117, Augusta, GA 30912 USA
| | - Andrea Sikora
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, 120 15th Street, HM-117, Augusta, GA 30912 USA
| | - Duo Zhang
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, 120 15th Street, HM-117, Augusta, GA 30912 USA
| |
Collapse
|
4
|
Tekari A, Marazza A, Crump K, Bermudez‐Lekerika P, Gantenbein B. Inhibition of the extracellular signal-regulated kinase pathway reduces the inflammatory component in nucleus pulposus cells. J Orthop Res 2022; 40:2362-2371. [PMID: 35106811 PMCID: PMC9788225 DOI: 10.1002/jor.25273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/21/2021] [Accepted: 01/16/2022] [Indexed: 02/04/2023]
Abstract
Intervertebral disc (IVD) degeneration is a spinal disorder that triggers an inflammatory response and subsequent development of spinal pseudoarthrosis. The aim of the present study is to elucidate the role of the extracellular signal-regulated kinase (ERK) pathway in inflammation-induced IVD cells. Inflammatory human nucleus pulposus (NP) cells (NPCs) were induced using tumor necrosis factor-α and the ERK pathway was blocked using a selective molecule-based inhibitor U0126. Gene expression of catabolic and anabolic markers, proinflammatory, and NPCs markers was investigated. The enzymatic activity of matrix metalloproteinases (MMP)2/MMP9 was determined by gelatin zymography and nitrite production was assessed by Griess reaction. The NPC metabolic activity and viability were assessed using resazurin sodium-salt and live/dead assays, and subsequently, the specificity of U0126 on ERK1/2 signaling was determined. The catabolic enzyme MMP3 (p = 0.0001) and proinflammatory cytokine interleukin 6 (p = 0.036) were downregulated by U0126 in NPCs under inflammatory conditions. A significant increase of the cytokeratin 19 (p = 0.0031) was observed, suggesting a partial and possible recovery of the NP phenotype. U0126 does not seem to have an effect on prostaglandin production, aggrecanases, or other anabolic genes. We confirmed that U0126 selectively blocks the ERK phosphorylation and only affects the cell metabolic activity without the reduction of viable cells. Inhibition of ERK signaling downregulates important metalloproteinases and proinflammatory cytokines, and upregulates some NP markers, suggesting its potential to treat IVD degeneration.
Collapse
Affiliation(s)
- Adel Tekari
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland,Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of SfaxUniversity of SfaxSfaxTunisia
| | - Alessandro Marazza
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland,Alzheimer's Center at Temple, Lewis Katz School of MedicineTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Katherine Crump
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
| | - Paola Bermudez‐Lekerika
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
| |
Collapse
|
5
|
Yu P, Mao F, Chen J, Ma X, Dai Y, Liu G, Dai F, Liu J. Characteristics and mechanisms of resorption in lumbar disc herniation. Arthritis Res Ther 2022; 24:205. [PMID: 35999644 PMCID: PMC9396855 DOI: 10.1186/s13075-022-02894-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 07/26/2022] [Indexed: 12/12/2022] Open
Abstract
Lumbar disc herniation (LDH) can be spontaneously absorbed without surgical treatment. However, the pathogenesis and physiological indications for predicting protrusion reabsorption are still unclear, which prevents clinicians from preferentially choosing conservative treatment options for LDH patients with reabsorption effects. The purpose of this review was to summarize previous reports on LDH reabsorption and to discuss the clinical and imaging features that favor natural absorption. We highlighted the biological mechanisms involved in the phenomenon of LDH reabsorption, including macrophage infiltration, inflammatory responses, matrix remodeling, and neovascularization. In addition, we summarized and discussed potential clinical treatments for promoting reabsorption. Current evidence suggests that macrophage regulation of inflammatory mediators, matrix metalloproteinases, and specific cytokines in intervertebral disc is essential for the spontaneous reabsorption of LDH.
Collapse
Affiliation(s)
- Pengfei Yu
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People's Republic of China
| | - Feng Mao
- Department of Orthopaedic Surgery, Kunshan Integrated TCM and Western Medicine Hospital, Suzhou, 215332, People's Republic of China
| | - Jingyun Chen
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Xiaoying Ma
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Yuxiang Dai
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People's Republic of China
| | - Guanhong Liu
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People's Republic of China
| | - Feng Dai
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People's Republic of China
| | - Jingtao Liu
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People's Republic of China.
| |
Collapse
|
6
|
Hong J, Yan J, Chen J, Li S, Huang Y, Huang Z, Chen W, Liang A, Ye W. Identification of key potential targets for TNF-α/TNFR1-related intervertebral disc degeneration by bioinformatics analysis. Connect Tissue Res 2021; 62:531-541. [PMID: 32686499 DOI: 10.1080/03008207.2020.1797709] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Bioinformatics analysis was performed on gene expression profile microarray data to identify the key genes activated through the TNF-α/TNFR1 signaling pathway in intervertebral disc degeneration (IDD). The common differentially expressed genes (co-DEGs) were calculated in nucleus pulposus (NP) cells and annulus fibrosus (AF) cells under TNF-α treatment or TNFR1 knockdown, which reveals the potential mechanism of TNF-α involvement in IDD and may provide new therapeutic targets for IDD. METHODS Differentially expressed genes (DEGs) in TNF-α-treated or TNFR1-knockdown NP cells and AF cells were identified. Further analysis of the gene ontology (GO), signaling pathways and interaction networks of the DEGs or co-DEGs were conducted using the Database for Annotation, Visualization and Integrated Discovery, STRING Database, and Cytoscape software. The relationship between genes and musculoskeletal diseases, including IDD, was assessed with the Comparative Toxicogenomics Database. The predicted microRNAs corresponding to the co-DEGs were also identified by microRNA Data Integration Portal. RESULTS In NP cells, the DEGs (|log2FoldChange|>2, adj.P < 0.01) were identified including 48 DEGs by TNF-α treatment and 74 DEGs by TNFR1 knockdown; in AF cells, correspondingly, 105 DEGs were identified. The co-DEGs between NP cells and AF cells were calculated including CXCL8, ICAM1, BIRC3, RELB, NFKBIA, and TNFAIP3. They may be the hub genes that were significantly associated with both NP cells and AF cells through the TNF-α/TNFR1 signaling pathway. The co-DEGs and corresponding predicted miRNAs may be potential therapeutic targets for IDD. CONCLUSIONS CXCL8, ICAM1, BIRC3, RELB, NFKBIA, and TNFAIP3 may have a synergistic effect on TNF-α-induced IDD development.Abbreviations: IDD: Intervertebral disc degeneration; NP: Nucleus pulposus; AF: Annulus fibrosus; co-DEG: Common differentially expressed gene; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; PPI: Protein-protein interaction.
Collapse
Affiliation(s)
- Junmin Hong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiansen Yan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiancong Chen
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Orthopedics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuangxing Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yingjie Huang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Orthopedics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhengqi Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weijian Chen
- Department of Orthopedics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Anjing Liang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Ye
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Wang Y, Che M, Xin J, Zheng Z, Li J, Zhang S. The role of IL-1β and TNF-α in intervertebral disc degeneration. Biomed Pharmacother 2020; 131:110660. [PMID: 32853910 DOI: 10.1016/j.biopha.2020.110660] [Citation(s) in RCA: 271] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Low back pain (LBP), a prevalent and costly disease around the world, is predominantly caused by intervertebral disc (IVD) degeneration (IDD). LBP also presents a substantial burden to public health and the economy. IDD is mainly caused by aging, trauma, genetic susceptibility, and other factors. It is closely associated with changes in tissue structure and function, including progressive destruction of the extracellular matrix (ECM), enhanced senescence, disc cell death, and impairment of tissue biomechanical function. The inflammatory process, exacerbated by cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), are considered to be the key mediators of IDD and LBP. IL-1β and TNF-α are the most important proinflammatory cytokines, as they have powerful proinflammatory activities and can promote the secretion of a variety of proinflammatory mediators. They are also upregulated in the degenerative IVDs, and they are closely related to various pathological IDD processes, including inflammatory response, matrix destruction, cellular senescence, autophagy, apoptosis, pyroptosis, and proliferation. Therefore, anti-IL-1β and anti-TNF-α therapies may have the potential to alleviate disc degeneration and LBP. In this paper, we reviewed the expression pattern and signal transduction pathways of IL-1β and TNF-α, and we primarily focused on their similar and different roles in IDD. Because IL-1β and TNF-α inhibition have the potential to alleviate IDD, an in-depth understanding of the role of IL-1β and TNF-α in IDD will benefit the development of new treatment methods for disc degeneration with IL-1β and TNF-α at the core.
Collapse
Affiliation(s)
- Yongjie Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Mingxue Che
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jingguo Xin
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhi Zheng
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jiangbi Li
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Shaokun Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
8
|
Li Z, Gehlen Y, Heizmann F, Grad S, Alini M, Richards RG, Kubosch D, Südkamp N, Izadpanah K, Kubosch EJ, Lang G. Preclinical ex-vivo Testing of Anti-inflammatory Drugs in a Bovine Intervertebral Degenerative Disc Model. Front Bioeng Biotechnol 2020; 8:583. [PMID: 32587853 PMCID: PMC7298127 DOI: 10.3389/fbioe.2020.00583] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/13/2020] [Indexed: 01/06/2023] Open
Abstract
Discogenic low back pain (LBP) is a main cause of disability and inflammation is presumed to be a major driver of symptomatic intervertebral disc degeneration (IDD). Anti-inflammatory agents are currently under investigation as they demonstrated to alleviate symptoms in patients having IDD. However, their underlying anti-inflammatory and regenerative activity is poorly explored. The present study sought to investigate the potential of Etanercept and Tofacitinib for maintaining disc homeostasis in a preclinical intervertebral disc (IVD) organ culture model within IVD bioreactors allowing for dynamic loading and nutrient exchange. Bovine caudal IVDs were cultured in a bioreactor system for 4 days to simulate physiological or degenerative conditions: (1) Phy—physiological loading (0.02–0.2 MPa; 0.2 Hz; 2 h/day) and high glucose DMEM medium (4.5 g/L); (2) Deg+Tumor necrosis factor α (TNF-α)—degenerative loading (0.32–0.5 MPa; 5 Hz; 2 h/day) and low glucose DMEM medium (2 g/L), with TNF-α injection. Etanercept was injected intradiscally while Tofacitinib was supplemented into the culture medium. Gene expression in the IVD tissue was measured by RT-qPCR. Release of nitric oxide (NO), interleukin 8 (IL-8) and glycosaminoglycan (GAG) into the IVD conditioned medium were analyzed. Cell viability in the IVD was assessed using lactate dehydrogenase and ethidium homodimer-1 staining. Immunohistochemistry was performed to assess protein expression of IL-1β, IL-6, IL-8, and collagen type II in the IVD tissue. Etanercept and Tofacitinib downregulated the expression of IL-1β, IL-6, IL-8, Matrix metalloproteinase 1 (MMP1), and MMP3 in the nucleus pulposus (NP) tissue and IL-1β, MMP3, Cyclooxygenase-2 (COX2), and Nerve growth factor (NGF) in the annulus fibrosus (AF) tissue. Furthermore, Etanercept significantly reduced the IL-1β positively stained cells in the outer AF and NP regions. Tofacitinib significantly reduced IL-1β and IL-8 positively stained cells in the inner AF region. Both, Etanercept and Tofacitinib reduced the GAG loss to the level under physiological culture condition. Etanercept and Tofacitinib are able to neutralize the proinflammatory and catabolic environment in the IDD organ culture model. However, combined anti-inflammatory and anabolic treatment may be required to constrain accelerated IDD and relieving inflammation-induced back pain.
Collapse
Affiliation(s)
- Zhen Li
- AO Research Institute Davos, Davos, Switzerland
| | - Yannik Gehlen
- AO Research Institute Davos, Davos, Switzerland.,Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center - Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Fabian Heizmann
- AO Research Institute Davos, Davos, Switzerland.,Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center - Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | | | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | - R Geoff Richards
- AO Research Institute Davos, Davos, Switzerland.,Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center - Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - David Kubosch
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center - Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Norbert Südkamp
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center - Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Kaywan Izadpanah
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center - Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Eva Johanna Kubosch
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center - Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Gernot Lang
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center - Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Baptista JS, Traynelis VC, Liberti EA, Fontes RBV. Expression of degenerative markers in intervertebral discs of young and elderly asymptomatic individuals. PLoS One 2020; 15:e0228155. [PMID: 31986181 PMCID: PMC6984735 DOI: 10.1371/journal.pone.0228155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 01/09/2020] [Indexed: 12/22/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a remodeling process mediated by several growth factors and cytokines. This process has been extensively studied in vitro and with pathologic specimens obtained during surgery for scoliosis or back pain. However, the occurrence and temporal evolution of these molecules during normal aging, particularly in the cervical segment, is not known. Our objective was to study and compare the presence of putative mediators in the IVD of young (<35 years, G1) and elderly (>65 years, G2) presumably asymptomatic individuals. Thirty C4-5 and C5-6 discs and thirty L4-5 and L5-S1 discs per group were collected during the autopsy of individuals whose family members denied a history of neck or back pain. Discs were divided into anterior, central (lumbar only) and posterior sectors for analysis. Immunohistochemistry for TNF-α, IL-1β, VEGF, NGF-β, BDNF, TIMP-1, MMP-1, -2 and -3 was performed and reactivity compared between groups and sectors. All of these molecules were detected in every disc sector of both G1 and G2. Most statistical comparisons (25/45, 55.6%) revealed an increase in mediator expression in G2 in relation to G1. Regional differences in the expression of remodeling enzymes were rare; NGF-β and BDNF had slightly higher expression in the cervical segment of elderly individuals. A senescent profile with elevated VEGF, MMP-2 and MMP-3 was observed across most G2 disc regions and were generally elevated from G1. In conclusion, the mere presence of any of the studied molecules inside the IVD cannot be considered pathologic. Expression of remodeling enzymes and inflammatory mediators is relatively similar across different vertebral segments and disc regions leading to a common degenerated pattern, while neurotrophins have slightly higher expression in cervical discs. These findings support the concept that disc remodeling in different segments follows a similar pathway that can be potentially mediated to avoid structural failure.
Collapse
Affiliation(s)
- Josemberg S. Baptista
- Department of Morphology, Universidade Federal do Espirito Santo, Vitoria, Brazil
- Department of Anatomy, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Vincent C. Traynelis
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Edson A. Liberti
- Department of Anatomy, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Ricardo B. V. Fontes
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, United States of America
| |
Collapse
|
10
|
Hasvik E, Schjølberg T, Jacobsen DP, Haugen AJ, Grøvle L, Schistad EI, Gjerstad J. Up-regulation of circulating microRNA-17 is associated with lumbar radicular pain following disc herniation. Arthritis Res Ther 2019; 21:186. [PMID: 31409426 PMCID: PMC6693234 DOI: 10.1186/s13075-019-1967-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 07/25/2019] [Indexed: 02/07/2023] Open
Abstract
Background Previous studies suggest that regulatory microRNAs (miRs) may modulate neuro-inflammatory processes. The purpose of the present study was to examine the role of miR-17 following intervertebral disc herniation. Methods In a cohort of 97 patients with leg pain and disc herniation verified on MRI, we investigated the association between circulating miR-17 and leg pain intensity. A rat model was used to examine possible changes in miR-17 expression in nucleus pulposus (NP) associated with leak of NP tissue out of the herniated disc. The functional role of miR-17 was addressed by transfection of miR-17 into THP-1 cells (human monocyte cell line). Results An association between the level of miR-17 in serum and the intensity of lumbar radicular pain was shown. Up-regulation of miR-17 in the rat NP tissue when applied onto spinal nerve roots and increased release of TNF following transfection of miR-17 into THP-1 cells were also observed. Hence, our data suggest that miR-17 may be involved in the pathophysiology underlying lumbar radicular pain after disc herniation. Conclusions We conclude that miR-17 may be associated with the intensity of lumbar radicular pain after disc herniation, possibly through a TNF-driven pro-inflammatory mechanism. Electronic supplementary material The online version of this article (10.1186/s13075-019-1967-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eivind Hasvik
- Department of Physical Medicine and Rehabilitation, Østfold Hospital Trust, Grålum, Norway.
| | - Tiril Schjølberg
- Department of Work Psychology and Physiology, National Institute of Occupational Health, Oslo, Norway
| | - Daniel Pitz Jacobsen
- Department of Work Psychology and Physiology, National Institute of Occupational Health, Oslo, Norway
| | | | - Lars Grøvle
- Department of Rheumatology, Østfold Hospital Trust, Grålum, Norway
| | | | - Johannes Gjerstad
- Department of Work Psychology and Physiology, National Institute of Occupational Health, Oslo, Norway
| |
Collapse
|
11
|
Park TSW, Kuo A, Smith MT. Chronic low back pain: a mini-review on pharmacological management and pathophysiological insights from clinical and pre-clinical data. Inflammopharmacology 2018; 26:10.1007/s10787-018-0493-x. [PMID: 29754321 DOI: 10.1007/s10787-018-0493-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/01/2018] [Indexed: 12/19/2022]
Abstract
Globally, low back pain (LBP) is one of the most common health problems affecting humans. The lifetime prevalence of non-specific LBP is approximately 84%, with the chronic prevalence at about 23%. Chronic LBP in humans is defined as LBP that persists for more than 12 weeks without a significant pain improvement. Although there are numerous evidence-based guidelines on the management of acute LBP, this is not the case for chronic LBP, which is regarded as particularly difficult to treat. Research aimed at discovering new drug treatments for alleviation of chronic mechanical LBP is lacking due to the paucity of knowledge on the pathobiology of this condition, despite its high morbidity in the affected adult population. For a debilitating condition such as chronic LBP, it is necessary to assess the sustained effects of pharmacotherapy of various agents spanning months to years. Although many rodent models of mechanical LBP have been developed to mimic the human condition, some of the major shortcomings of many of these models are (1) the presence of a concurrent neuropathic component that develops secondary to posterior intervertebral disc puncture, (2) severe model phenotype, and/or (3) use of behavioural endpoints that have yet to be validated for pain. Hence, there is a great, unmet need for research aimed at discovering new biological targets in rodent models of chronic mechanical LBP for use in drug discovery programs as a means to potentially produce new highly effective and well-tolerated analgesic agents to improve relief of chronic LBP. On a cautionary note, it must be borne in mind that because humans and rats display orthograde and pronograde postures, respectively, the different mechanical forces on their spines add to the difficulty in translation of promising rodent data to humans.
Collapse
Affiliation(s)
- Thomas S W Park
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
- UQ Centre for Clinical Research, Faculty of Medicine, Steele Building, St Lucia Campus, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Andy Kuo
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Maree T Smith
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Pharmacy, Pharmacy Australia Centre of Excellence, Faculty of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
12
|
Borem R, Madeline A, Walters J, Mayo H, Gill S, Mercuri J. Angle-ply biomaterial scaffold for annulus fibrosus repair replicates native tissue mechanical properties, restores spinal kinematics, and supports cell viability. Acta Biomater 2017; 58:254-268. [PMID: 28587986 DOI: 10.1016/j.actbio.2017.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/26/2017] [Accepted: 06/02/2017] [Indexed: 12/25/2022]
Abstract
Annulus fibrosus (AF) damage commonly occurs due to intervertebral disc (IVD) degeneration/herniation. The dynamic mechanical role of the AF is essential for proper IVD function and thus it is imperative that biomaterials developed to repair the AF withstand the mechanical rigors of the native tissue. Furthermore, these biomaterials must resist accelerated degradation within the proteolytic environment of degenerate IVDs while supporting integration with host tissue. We have previously reported a novel approach for developing collagen-based, multi-laminate AF repair patches (AFRPs) that mimic the angle-ply architecture and basic tensile properties of the human AF. Herein, we further evaluate AFRPs for their: tensile fatigue and impact burst strength, IVD attachment strength, and contribution to functional spinal unit (FSU) kinematics following IVD repair. Additionally, AFRP resistance to collagenase degradation and cytocompatibility were assessed following chemical crosslinking. In summary, AFRPs demonstrated enhanced durability at high applied stress amplitudes compared to human AF and withstood radially-directed biaxial stresses commonly borne by the native tissue prior to failure/detachment from IVDs. Moreover, FSUs repaired with AFRPs and nucleus pulposus (NP) surrogates had their axial kinematic parameters restored to intact levels. Finally, carbodiimide crosslinked AFRPs resisted accelerated collagenase digestion without detrimentally effecting AFRP tensile properties or cytocompatibility. Taken together, AFRPs demonstrate the mechanical robustness and enzymatic stability required for implantation into the damaged/degenerate IVD while supporting AF cell infiltration and viability. STATEMENT OF SIGNIFICANCE The quality of life for millions of individuals globally is detrimentally impacted by IVD degeneration and herniation. These pathologies often result in the structural demise of IVD tissue, particularly the annulus fibrosus (AF). Biomaterials developed for AF repair have yet to demonstrate the mechanical strength and durability required for utilization in the spine. Herein, we demonstrate the development of an angle-ply AF repair patch (AFRP) that can resist the application of physiologically relevant stresses without failure and which contributes to the restoration of functional spinal unit axial kinematics following repair. Furthermore, we show that this biomaterial can resist accelerated degradation in a simulated degenerate environment and supports AF cell viability.
Collapse
Affiliation(s)
- Ryan Borem
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Allison Madeline
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Joshua Walters
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Henry Mayo
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Sanjitpal Gill
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, SC, USA; Department of Orthopaedic Surgery, Medical Group of the Carolinas-Pelham, Spartanburg Regional Healthcare System, Greer, SC, USA
| | - Jeremy Mercuri
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, SC, USA.
| |
Collapse
|
13
|
Celastrol reduces IL-1β induced matrix catabolism, oxidative stress and inflammation in human nucleus pulposus cells and attenuates rat intervertebral disc degeneration in vivo. Biomed Pharmacother 2017; 91:208-219. [PMID: 28458159 DOI: 10.1016/j.biopha.2017.04.093] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/20/2017] [Accepted: 04/20/2017] [Indexed: 01/08/2023] Open
Abstract
Celastrol has been reported to exert therapeutic potential on pro-inflammatory diseases including asthma, Crohn's disease, arthritis and neurodegenerative disorders via inhibiting NF-κB pathway. While the effect of celastrol on intervertebral disc degeneration (IDD), which is also a pro-inflammatory disease, remains unknown. In this study, we evaluated the effect of celastrol on IDD in IL-1β treated human nucleus pulposus cells in vitro as well as in puncture induced rat IDD model in vivo. Our results showed that celastrol reduced the expression of catabolic genes (MMP-3, 9, 13, ADAMTS-4, 5), oxidative stress factors (COX-2, iNOS) and pro-inflammatory factors (IL-6, TNF-a) induced by IL-1β in nucleus pulposus cells, also phosphorylation of IκBα and p65 were attenuated by celastrol, indicating NF-κB pathway was inhibited by celastrol in nucleus pulposus cells. In vivo study showed that celastrol treated rats had stronger T2-weighted signal than vehicle-treated rats at 2 weeks and 6 weeks' time point, suggesting celastrol could attenuate intervertebral disc degeneration in vivo. Together, our study demonstrates that celastrol could reduce IL-1β induced matrix catabolism, oxidative stress and inflammation in human nucleus pulposus cells and attenuates rat intervertebral disc degeneration in vivo, which shows its potential to be a therapeutic drug for IDD.
Collapse
|
14
|
Peng J, Zhou H, Kuang G, Xie L, Tian T, Liu R. The selective cysteinyl leukotriene receptor 1 (CysLT1R) antagonist montelukast regulates extracellular matrix remodeling. Biochem Biophys Res Commun 2017; 484:474-479. [PMID: 28088523 DOI: 10.1016/j.bbrc.2017.01.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/11/2017] [Indexed: 01/24/2023]
Abstract
Scar formation after filtration surgery of glaucoma is mainly caused by excessive synthesis of new extracellular matrix (ECM) and contraction of subconjunctival tissue mediated by human Tenon fibroblasts (HTFs) and the transforming growth factor (TGF-β1). Montelukast, a potent and specific cysteinyl leukotriene receptor 1 (cysLT1R) antagonist, is a licensed drug clinically used for the treatment of bronchial asthma. In this study, we investigated the effects of montelukast on the contractility of HTFs cultured in a three-dimensional collagen gel. We found that cysLT1R was expressed in HTFs. Interestingly, the expression of cysLT1R was increased in response to TGF-β1 in a dose dependent manner, suggesting its potential role in TGF-β1 induced fibrosis. Importantly, we found that montelukast inhibited TGF-β1-induced collagen gel contraction mediated by HTFs in a concentration- and time-dependent manner. In addition, TGF-β1-induced expression of MMP-1 and MMP-3, generation of fibronectin and type I collagen production, focal adhesion kinase (FAK) and paxillin phosphorylation in HTFs were also ameliorated by montelukast in a dose dependent manner. These results suggested that montelukast might provide therapeutic possibilities for inhibition of scar formation after such surgery.
Collapse
Affiliation(s)
- Jingli Peng
- Department of Ophthalmology, Wuhan General Hospital of Guangzhou Command, Southern Medical University, Wuhan, Hubei Province, 430000, China; Department of Ophthalmology, Chenzhou First People's Hospital, Chenzhou, Hunan Province, 430000, China
| | - Hezheng Zhou
- Department of Ophthalmology, Wuhan General Hospital of Guangzhou Command, Southern Medical University, Wuhan, Hubei Province, 430000, China.
| | - Guoping Kuang
- Department of Ophthalmology, Chenzhou First People's Hospital, Chenzhou, Hunan Province, 430000, China
| | - Lilian Xie
- Department of Ophthalmology, Chenzhou First People's Hospital, Chenzhou, Hunan Province, 430000, China
| | - Tao Tian
- Department of Ophthalmology, Chenzhou First People's Hospital, Chenzhou, Hunan Province, 430000, China
| | - Ru Liu
- Department of Ophthalmology, Chenzhou First People's Hospital, Chenzhou, Hunan Province, 430000, China
| |
Collapse
|
15
|
Wang C, Yu X, Yan Y, Yang W, Zhang S, Xiang Y, Zhang J, Wang W. Tumor necrosis factor-α: a key contributor to intervertebral disc degeneration. Acta Biochim Biophys Sin (Shanghai) 2017; 49:1-13. [PMID: 27864283 DOI: 10.1093/abbs/gmw112] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/13/2016] [Indexed: 12/11/2022] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is the most common cause leading to low back pain (LBP), which is a highly prevalent, costly, and crippling condition worldwide. Current treatments for IDD are limited to treat the symptoms and do not target the pathophysiology. Tumor necrosis factor-α (TNF-α) is one of the most potent pro-inflammatory cytokines and signals through its receptors TNFR1 and TNFR2. TNF-α is highly expressed in degenerative IVD tissues, and it is deeply involved in multiple pathological processes of disc degeneration, including matrix destruction, inflammatory responses, apoptosis, autophagy, and cell proliferation. Importantly, anti-TNF-α therapy has shown promise for mitigating disc degeneration and relieving LBP. In this review, following a brief description of TNF-α signal transduction, we mainly focus on the expression pattern and roles of TNF-α in IDD, and summarize the emerging progress regarding its inhibition as a promising biological therapeutic approach to disc degeneration and associated LBP. A better understanding will help to develop novel TNF-α-centered therapeutic interventions for degenerative disc disease.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Xiaohua Yu
- Medical Research Center, University of South China, Hengyang 421001, China
| | - Yiguo Yan
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Wei Yang
- Department of Hand and Micro-surgery, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Shujun Zhang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Yongxiao Xiang
- Department of Hand and Micro-surgery, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Jian Zhang
- Department of Hand and Micro-surgery, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Wenjun Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| |
Collapse
|
16
|
IL-1β/HMGB1 signalling promotes the inflammatory cytokines release via TLR signalling in human intervertebral disc cells. Biosci Rep 2016; 36:BSR20160118. [PMID: 27512095 PMCID: PMC5025813 DOI: 10.1042/bsr20160118] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022] Open
Abstract
Inflammation and cytokines have been recognized to correlate with intervertebral disc (IVD) degeneration (IDD), via mediating the development of clinical signs and symptoms. However, the regulation mechanism remains unclear. We aimed at investigating the regulatory role of interleukin (IL)β and high mobility group box 1 (HMGB1) in the inflammatory response in human IVD cells, and then explored the signalling pathways mediating such regulatory effect. Firstly, the promotion to inflammatory cytokines in IVD cells was examined with ELISA method. And then western blot and real time quantitative PCR were performed to analyse the expression of toll-like receptors (TLRs), receptors for advanced glycation endproducts (RAGE) and NF-κB signalling markers in the IL-1β- or (and) HMGB1-treated IVD cells. Results demonstrated that either IL-1β or HMGB1 promoted the release of the inflammatory cytokines such as prostaglandin E2 (PGE2), TNF-α, IL-6 and IL-8 in human IVD cells. And the expression of matrix metalloproteinases (MMPs) such as MMP-1, -3 and -9 was also additively up-regulated by IL-1β and HMGB1. We also found such additive promotion to the expression of TLR-2, TLR-4 and RAGE, and the NF-κB signalling in intervertebral disc cells. In summary, our study demonstrated that IL-1β and HMGB1 additively promotes the release of inflammatory cytokines and the expression of MMPs in human IVD cells. The TLRs and RAGE and the NF-κB signalling were also additively promoted by IL-1β and HMGB1. Our study implied that the additive promotion by IL-1β and HMGB1 to inflammatory cytokines and MMPs might aggravate the progression of IDD.
Collapse
|
17
|
Regulation of a disintegrins and metalloproteinase with thrombospondin motifs 7 during inflammation in nucleus pulposus (NP) cells: role of AP-1, Sp1 and NF-κB signaling. Inflamm Res 2016; 65:951-962. [PMID: 27516213 DOI: 10.1007/s00011-016-0978-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/12/2016] [Accepted: 08/06/2016] [Indexed: 12/31/2022] Open
Abstract
AIM The objective of this study is to explore the effect of inflammatory cytokines on a disintegrins and metalloproteinase with thrombospondin motifs 7 (ADAMTS7) and to demonstrate the role of Sp1, AP-1 and NF-κB signaling on the ADAMTS7 regulation during inflammation in NP cells. METHODS Real-time PCR was to detect the effect of ADAMTS7 knockdown on the expression of catabolic enzymes during inflammatory condition in NP cells. Real-time PCR, western blot, immunofluorescence and transfection experiments were used to observe the effect of tumor necrosis factor-α (TNF-α) or interleukin-1β on the expression and the activity of ADAMTS7, and demonstrated the role to Sp1, AP-1 and NF-κB in the regulation of ADAMTS7 during inflammation. RESULTS As other cells, ADAMTS7 knockdown suppressed the mRNA expression of catabolic factors during inflammation in human NP cells. However, the expression of ADAMTS7 mRNA and protein and the activity of ADAMTS7 promoter were refractory to inflammatory cytokines. In addition, Sp1, AP-1, not NF-κB signaling sustained the expression of ADAMTS7 mRNA, protein, as well as promoter activity during inflammation in NP cells. CONCLUSION ADAMTS7 played a crucial role in the expression of catabolic genes in the presence of TNF-α and AP-1, Sp1, not NF-κB signaling were critical for the maintenance of ADAMTS7 expression during inflammation in NP cells.
Collapse
|
18
|
Liu Y, Kimura K, Orita T, Suzuki K, Teranishi S, Mori T, Sonoda KH. Inhibition by a retinoic acid receptor γ agonist of extracellular matrix remodeling mediated by human Tenon fibroblasts. Mol Vis 2015; 21:1368-77. [PMID: 26788029 PMCID: PMC4704771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/30/2015] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Scar formation is most frequently responsible for the failure of glaucoma filtration surgery. Retinoic acids are vitamin A derivatives that play diverse roles in development, immunity, and tissue repair. The effects of the retinoic acid receptor (RAR) γ agonist R667 on the contractility of human Tenon fibroblasts (HTFs) cultured in a three-dimensional collagen gel as well as on intraocular pressure (IOP) in a rat model of glaucoma filtration surgery were investigated. METHODS HTFs were cultured in a type I collagen gel, the contraction of which was evaluated by measurement of the gel diameter. The release of matrix metalloproteinases (MMPs) into culture supernatants was assessed with immunoblot analysis and gelatin zymography. Phosphorylation of focal adhesion kinase (FAK) was examined with immunoblot analysis, and production of fibronectin and type I collagen was measured with immunoassays. RESULTS R667 inhibited transforming growth factor-β1 (TGF-β1)-induced collagen gel contraction mediated by HTFs in a concentration- and time-dependent manner, whereas an RARα agonist inhibited this process to a lesser extent and an RARβ agonist had no effect. TGF-β1-induced MMP-1 and MMP-3 release, FAK phosphorylation, and fibronectin and type I collagen production in HTFs were also attenuated by R667. Furthermore, R667 lowered IOP in rats after glaucoma filtration surgery. CONCLUSIONS R667 inhibited TGF-β1-induced contraction and extracellular matrix synthesis in HTFs. Such effects might have contributed to the lowering of IOP by R667 in a rat model of glaucoma filtration surgery. RARγ agonists might thus prove effective for inhibition of scar formation after such surgery.
Collapse
Affiliation(s)
- Yang Liu
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube City, Yamaguchi, Japan
- Department of Ophthalmology, First Hospital of Jilin University, Jilin, PR China
| | - Kazuhiro Kimura
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube City, Yamaguchi, Japan
| | - Tomoko Orita
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube City, Yamaguchi, Japan
| | - Katsuyoshi Suzuki
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube City, Yamaguchi, Japan
| | - Shinichiro Teranishi
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube City, Yamaguchi, Japan
| | - Takuya Mori
- Yamaguchi University School of Medicine, Ube City, Yamaguchi, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube City, Yamaguchi, Japan
| |
Collapse
|
19
|
Johnson ZI, Schoepflin ZR, Choi H, Shapiro IM, Risbud MV, Risbud MV. Disc in flames: Roles of TNF-α and IL-1β in intervertebral disc degeneration. Eur Cell Mater 2015; 30:104-16; discussion 116-7. [PMID: 26388614 PMCID: PMC4751407 DOI: 10.22203/ecm.v030a08] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The intervertebral disc is an important mechanical structure that allows range of motion of the spinal column. Degeneration of the intervertebral disc--incited by aging, traumatic insult, genetic predisposition, or other factors--is often defined by functional and structural changes in the tissue, including excessive breakdown of the extracellular matrix, increased disc cell senescence and death, as well as compromised biomechanical function of the tissue. Intervertebral disc degeneration is strongly correlated with low back pain, which is a highly prevalent and costly condition, significantly contributing to loss in productivity and health care costs. Disc degeneration is a chronic, progressive condition, and current therapies are limited and often focused on symptomatic pain relief rather than curtailing the progression of the disease. Inflammatory processes exacerbated by cytokines tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) are believed to be key mediators of disc degeneration and low back pain. In this review, we describe the contributions of TNF-α and IL-1β to changes seen during disc degeneration at both cellular and tissue level, as well as new evidence suggesting a link between infection of the spine and low back pain, and the emerging therapeutic modalities aimed at combating these processes.
Collapse
|
20
|
Interleukin-1β in intervertebral disk degeneration. Clin Chim Acta 2015; 450:262-72. [PMID: 26341894 DOI: 10.1016/j.cca.2015.08.029] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/26/2015] [Accepted: 08/30/2015] [Indexed: 01/06/2023]
Abstract
Intervertebral disk degeneration (IDD) is the most common diagnosis in patients with low back pain, a main cause of musculoskeletal disability in the world. Interleukin-1 (IL-1) β is the most important member of the IL-1 family, and has a strong pro-inflammatory activity by stimulating the secretion of multiple pro-inflammatory mediators. IL-1β is highly expressed in degenerative intervertebral disk (IVD) tissues and cells, and it has been shown to be involved in multiple pathological processes during disk degeneration, including inflammatory responses, matrix destruction, angiogenesis and innervation, cellular apoptosis, oxidative stress and cellular senescence. However, inhibition of IL-1β is found to promote extracellular matrix (ECM) repair and protect against disk regeneration. In this review, after a brief description of IL-1β signaling, we mainly focus on the expression profiles, roles and therapeutic potential of IL-1β in IDD. A better understanding will help develop novel IL-1β-based therapeutic interventions for degenerative disk disease.
Collapse
|
21
|
Abstract
STUDY DESIGN Laboratory study. OBJECTIVE To evaluate whether blockade of the Substance P (SP) NK1R attenuates its proinflammatory effect on human intervertebral disc cells (IVD), and to evaluate the signaling pathways associated with SP. SUMMARY OF BACKGROUND DATA SP and its receptors are expressed in human IVD cells, and cause upregulation of inflammatory mediators; however, the effects of blocking these receptors have not been studied in human IVD cells. METHODS Human annulus fibrosus (AF) and nucleus pulposus (NP) cells were expanded in monolayer, and then suspended in alginate beads. The alginate beads were treated with culture medium first containing a high affinity NK1R antagonist (L-760735) at different concentrations, and then with medium containing both NK1R antagonist and SP at 2 concentrations. Ribonucleic acid was isolated and transcribed into cDNA. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to evaluate expression of interleukin (IL)-1β, IL-6, and IL-8. Western blot analysis was performed to examine levels of the phosphorylated p38 mitogen-activated protein kinase (MAPK), extracellular signal regulated kinase 1/2 (ERK1/2) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB p65). The cells were pretreated with specific inhibitors of p38 (SB203580), ERK1/2 (PD98059), and p65 (SM7368) and then stimulated with SP. RESULTS We detected expression of NK1R, neurokinin receptor 2 (NK2R), and neurokinin receptor 3 (NK3R) in AF and NP cells. Treatment of disc cells with the NK1R antagonist was able to suppress expression of IL-1β, IL-6, and IL-8 in a dose-dependent manner. SP stimulation increased phosphorylation of p38-MAPK and ERK1/2, but not of NFκB p65. This indicates that p38-MAPK and ERK1/2 control SP-induced cytokine expression independently from NF-kB p65. Inhibition of p38 and ERK1/2 activation reduced SP-induced IL-6 production in human disc cells. CONCLUSION NK1R is responsible for the proinflammatory effect of SP on IVD cells and this effect can be blocked by preventing binding of SP to NK1R. This study shows for the first time that SP mediates signaling in disc cells through NK1R and that SP activates the proinflammatory p38-MAPK and ERK1/2 pathways. LEVEL OF EVIDENCE 4.
Collapse
|
22
|
Xu K, Chen W, Wang X, Peng Y, Liang A, Huang D, Li C, Ye W. Autophagy attenuates the catabolic effect during inflammatory conditions in nucleus pulposus cells, as sustained by NF-κB and JNK inhibition. Int J Mol Med 2015; 36:661-8. [PMID: 26165348 PMCID: PMC4533778 DOI: 10.3892/ijmm.2015.2280] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 06/24/2015] [Indexed: 11/17/2022] Open
Abstract
Proteoglycan degradation contributing to the pathogenesis of intervertebral disc (IVD) degeneration is induced by inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). Cell autophagy exists in degenerative diseases, including osteoarthritis and inter-vertebral disc degeneration. However, the autophagy induced by TNF-α and IL-1β and the corresponding molecular mechanism appear to be cell-type dependent. The effect and mechanism of autophagy regulated by TNF-α and IL-1β in IVDs remains unclear. Additionally, the impact of autophagy on the catabolic effect in inflammatory conditions also remains elusive. In the present study, autophagy activator and inhibitor were used to demonstrate the impact of autophagy on the catabolic effect induced by TNF-α. A critical role of autophagy was identified in rat nucleus pulposus (NP) cells: Inhibition of autophagy suppresses, while activation of autophagy enhances, the catabolic effect of cytokines. Subsequently, the autophagy-related gene expression in rat NP cells following TNF-α and IL-1β treatment was observed using immunofluorescence, quantitative polymerase chain reaction and western blot analysis; however, no association was present. In addition, nuclear factor κB (NF-κB), c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinases and p38 mitogen-activated protein kinase inhibitors and TNF-α were used to determine the molecular mechanism of autophagy during the inflammatory conditions, and only the NF-κB and JNK inhibitor were found to enhance the autophagy of rat NP cells. Finally, IKKβ knockdown was used to further confirm the effect of the NF-κB signal on human NP cells autophagy, and the data showed that IKKβ knockdown upregulated the autophagy of NP cells during inflammatory conditions.
Collapse
Affiliation(s)
- Kang Xu
- Experimental Center of the Surgery, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Weijian Chen
- Department of Orthopedics, The Second People's Hospital of Guangdong Province, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaofei Wang
- Department of Spinal Surgery, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Yan Peng
- Department of Spinal Surgery, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Anjing Liang
- Department of Spinal Surgery, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Dongsheng Huang
- Department of Spinal Surgery, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Chunhai Li
- Department of Spinal Surgery, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Wei Ye
- Department of Spinal Surgery, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
23
|
Abstract
STUDY DESIGN Human nucleus pulposus (NP) cell culture study investigating response to tumor necrosis factor-α (TNFα), effectiveness of clinically available anti-inflammatory drugs, and interactions between proinflammatory cytokines. OBJECTIVE To characterize the kinetic response of proinflammatory cytokines released by human NP cells to TNFα stimulation and the effectiveness of multiple anti-inflammatories with 3 substudies: Timecourse, Same-time blocking, Delayed blocking. SUMMARY OF BACKGROUND DATA Chronic inflammation is a key component of painful intervertebral disc degeneration. Improved efficacy of anti-inflammatories requires better understanding of how quickly NP cells produce proinflammatory cytokines and which proinflammatory mediators are most therapeutically advantageous to target. METHODS Degenerated human NP cells (n = 10) were cultured in alginate with or without TNFα (10 ng/mL). Cells were incubated with 1 of 4 anti-inflammatories (anti-IL-6 receptor/atlizumab, IL-1 receptor anatagonist, anti-TNFα/infliximab and sodium pentosan polysulfate/PPS) in 2 blocking-studies designed to determine how intervention timing influences drug efficacy. Cell viability, protein, and gene expression for IL-1β, IL-6, and IL-8 were assessed. RESULTS Timecourse: TNFα substantially increased the amount of IL-6, IL-8, and IL-1β, with IL-1β and IL-8 reaching equilibrium within ∼72 hours (IL-1β: 111 ± 40 pg/mL, IL-8: 8478 ± 957 pg/mL), and IL-6 not reaching steady state after 144 hours (1570 ± 435 pg/mL). Anti-TNFα treatment was most effective at reducing the expression of all cytokines measured when added at the same time as TNFα stimulation. Similar trends were observed when drugs were added 72 hours after TNFα stimulation, however, no anti-inflammatories significantly reduced cytokine levels compared with TNF control. CONCLUSION IL-1β, IL-6, and IL-8 were expressed at different rates and magnitudes suggesting different roles for these cytokines in disease. Autocrine signaling of IL-6 or IL-1β did not contribute to the expression of any proinflammatory cytokines measured in this study. Anti-inflammatory treatments were most effective when applied early in the inflammatory process, when targeting the source of the inflammation. LEVEL OF EVIDENCE N/A.
Collapse
|
24
|
Abstract
STUDY DESIGN Laboratory study. OBJECTIVE To evaluate the differential gene expression of cytokines and growth factors in anterior versus posterior annulus fibrosus (AF) intervertebral disc (IVD) specimens. SUMMARY OF BACKGROUND DATA Histological analysis has demonstrated regional differences in vascular and neural ingrowth in the IVD, and similar differences may exist for cytokine and growth factor expression in patients with degenerative disc disease (DDD). Regional expression of these cytokines may also be related to the pain experienced in DDD. METHODS IVD tissue was obtained from patients undergoing anterior lumbar interbody fusion surgery for back pain with radiological evidence of disc degeneration. For a control group, the discs of patients undergoing anterior lumbar discectomy for degenerative scoliosis were obtained as well. The tissue was carefully removed and separated into anterior and posterior AF. After tissue processing, an antibody array was completed to determine expression levels of 42 cytokines and growth factors. RESULTS Nine discs from 7 patients with DDD and 5 discs from 2 patients with scoliosis were analyzed. In the DDD group, there were 10 cytokines and growth factors with significantly increased expression in the posterior AF versus the anterior AF ([interleukin] IL-4, IL-5, IL-6, M-CSF, MDC, tumor necrosis factor β, EGF, IGF-1, angiogenin, leptin). In the scoliosis group, only angiogenin and PDGF-BB demonstrated increased expression in the posterior AF. No cytokines or growth factors had increased expression in the anterior AF compared with posterior AF. CONCLUSION The posterior AF expresses increased levels of cytokines and growth factors compared with the anterior AF in patients with DDD. This differential expression may be important for targeting treatment of painful IVDs. LEVEL OF EVIDENCE N/A.
Collapse
|
25
|
Vasiliadis ES, Pneumaticos SG, Evangelopoulos DS, Papavassiliou AG. Biologic treatment of mild and moderate intervertebral disc degeneration. Mol Med 2014; 20:400-9. [PMID: 25171110 PMCID: PMC4212014 DOI: 10.2119/molmed.2014.00145] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 08/25/2014] [Indexed: 12/28/2022] Open
Abstract
Disc degeneration is the most common cause of back pain in adults and has enormous socioeconomic implications. Conservative management is ineffective in most cases, and results of surgical treatment have not yet reached desirable standards. Biologic treatment options are an alternative to the above conventional management and have become very attractive in recent years. The present review highlights the currently available biologic treatment options in mild and moderate disc degeneration, where a potential for regeneration still exists. Biologic treatment options include protein-based and cell-based therapies. Protein-based therapies involve administration of biologic factors into the intervertebral disc to enhance matrix synthesis, delay degeneration or impede inflammation. These factors can be delivered by an intradiscal injection, alone or in combination with cells or tissue scaffolds and by gene therapy. Cell-based therapies comprise treatment strategies that aim to either replace necrotic or apoptotic cells, or minimize cell death. Cell-based therapies are more appropriate in moderate stages of degenerated disc disease, when cell population is diminished; therefore, the effect of administration of growth factors would be insufficient. Although clinical application of biologic treatments is far from being an everyday practice, the existing studies demonstrate promising results that will allow the future design of more sophisticated methods of biologic intervention to treat intervertebral disc degeneration.
Collapse
Affiliation(s)
- Elias S Vasiliadis
- Third Department of Orthopaedic Surgery, University of Athens Medical School, KAT Hospital, Athens, Greece
| | - Spyros G Pneumaticos
- Third Department of Orthopaedic Surgery, University of Athens Medical School, KAT Hospital, Athens, Greece
| | - Demitrios S Evangelopoulos
- Third Department of Orthopaedic Surgery, University of Athens Medical School, KAT Hospital, Athens, Greece
| | | |
Collapse
|
26
|
Mwale F. Syndecan 4 signaling and intervertebral disc degeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2371-3. [PMID: 25072503 DOI: 10.1016/j.ajpath.2014.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 10/25/2022]
Abstract
This commentary highlights the article by Wang et al, exploring the regulatory relationship between matrix metalloproteinase-3 and syndecan 4 in disc degeneration.
Collapse
Affiliation(s)
- Fackson Mwale
- Division of Orthopaedic Surgery, Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
27
|
Is there any relation between cervical cord plaques and discopathy in patients with multiple sclerosis? Clin Neurol Neurosurg 2014; 121:23-6. [PMID: 24793469 DOI: 10.1016/j.clineuro.2014.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 01/11/2014] [Accepted: 03/10/2014] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Multiple sclerosis (MS) is the most common chronic autoimmune demyelinating disease of the central nervous system. The purpose of this study is to determine the relationship between the site of the cervical discopathy and cervical spinal cord plaque in MS patients. METHODS This retrospective study included all patients with a definite diagnosis of MS who were treated at an outpatient clinic between September 2004 and September 2011. All patients underwent cervical magnetic resonance imaging (MRI) for primary investigation of the disease. Cervical MRI scans were evaluated for detection of any evidence of cervical discopathy and cervical MS plaques. Any correlation between the site of the MS lesions and discopathy was recorded. RESULTS From 536 patients who were involved in the study, 214 patients had both cervical discopathy and cervical cord plaques. In this group 148 (69.1% of patients) had cervical plaque at the same site of cervical discopathy. The number of patients with cervical cord plaque and discopathy at same site was significantly higher than those with plaque and discopathy at different sites (P<0.05). CONCLUSION The study data suggests a possible correlation between cervical discopathy and cervical MS plaque.
Collapse
|
28
|
Xu H, Mei Q, He J, Liu G, Zhao J, Xu B. Correlation of Matrix Metalloproteinases-1 and Tissue Inhibitor of Metalloproteinases-1 with Patient Age and Grade of Lumbar Disk Herniation. Cell Biochem Biophys 2014; 69:439-44. [DOI: 10.1007/s12013-014-9815-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Kepler CK, Ponnappan RK, Tannoury CA, Risbud MV, Anderson DG. The molecular basis of intervertebral disc degeneration. Spine J 2013; 13:318-30. [PMID: 23537454 DOI: 10.1016/j.spinee.2012.12.003] [Citation(s) in RCA: 327] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 08/08/2012] [Accepted: 12/08/2012] [Indexed: 02/03/2023]
Abstract
BACKGROUND Intervertebral disc (IVD) degeneration remains a clinically important condition for which treatment is costly and relatively ineffective. The molecular basis of degenerative disc disease has been an intense focus of research recently, which has greatly increased our understanding of the biology underlying this process. PURPOSE To review the current understanding of the molecular basis of disc degeneration. STUDY DESIGN Review article. METHODS A literature review was performed to identify recent investigations and current knowledge regarding the molecular basis of IVD degeneration. RESULTS The unique structural requirements and biochemical properties of the disc contribute to its propensity toward degeneration. Mounting evidence suggests that genetic factors account for up to 75% of individual susceptibility to IVD degeneration, far more than the environmental factors such as occupational exposure or smoking that were previously suspected to figure prominently in this process. Decreased extracellular matrix production, increased production of degradative enzymes, and increased expression of inflammatory cytokines contribute to the loss of structural integrity and accelerate IVD degeneration. Neurovascular ingrowth occurs, in part, because of the changing degenerative phenotype. CONCLUSIONS A detailed understanding of the biology of IVD degeneration is essential to the design of therapeutic solutions to treat degenerative discs. Although significant advances have been made in explaining the biologic mediators of disc degeneration, the inhospitable biochemical environment of the IVD remains a challenging environment for biological therapies.
Collapse
Affiliation(s)
- Christopher K Kepler
- Department of Orthopaedic Surgery, Thomas Jefferson University & Rothman Institute, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|
30
|
Park J, Yoon Y, Park H, Kuh S. Molecular response of human cervical and lumbar nucleus pulposus cells from degenerated discs following cytokine treatment. GENETICS AND MOLECULAR RESEARCH 2013; 12:838-51. [DOI: 10.4238/2013.march.15.4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Bae WC, Masuda K. Emerging technologies for molecular therapy for intervertebral disk degeneration. Orthop Clin North Am 2011; 42:585-601, ix. [PMID: 21944594 PMCID: PMC4029337 DOI: 10.1016/j.ocl.2011.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Intervertebral disks are biologically regulated by the maintenance of a balance between the anabolic and catabolic activities of disk cells. Therapeutic agents, initially evaluated using in vitro studies on disk cells and explants, have been used as intradiscal injections in preclinical settings to test in vivo efficacy. These include anabolic growth factors, other biostimulatory agents, and antagonistic agents against matrix-degrading enzymes and cytokines. Additional work is needed to identify patient populations, using methods such as MRI, and to better understand the mechanism of healing. Clinical trials are underway for a few of these agents and other promising candidates are on the horizon.
Collapse
Affiliation(s)
- Won C. Bae
- Department of Radiology, University of California, San Diego, San Diego, California
| | - Koichi Masuda
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| |
Collapse
|
32
|
Abstract
Although understanding of the biologic basis of intervertebral disk (IVD) degeneration is rapidly advancing, the unique IVD environment presents challenges to the development and delivery of biologic treatments. Acceleration of cellular senescence and apoptosis in degenerative IVDs and the depletion of matrix proteins have prompted the development of treatments based on replacing IVD cells using various cell sources. However, this strategy has not been tested in animal models. IVD degeneration and associated pain have led to interest in pathologic innervation of the IVD and ultimately to the development of percutaneous devices to ablate afferent nerve endings in the posterior annulus. Degeneration leads to changes in the expression of matrix protein, cytokines, and proteinases. Injection of growth factors and mitogens may help overcome these degenerative changes in IVD phenotype, and these potential treatments are being explored in animal studies. Gene therapy is an elegant method to address changes in protein expression, but efforts to apply this technology to IVD degeneration are still at early stages.
Collapse
|
33
|
Roncoroni C, Baillet A, Durand M, Gaudin P, Juvin R. Efficacy and tolerance of systemic steroids in sciatica: a systematic review and meta-analysis. Rheumatology (Oxford) 2011; 50:1603-11. [DOI: 10.1093/rheumatology/ker151] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|