1
|
Gupta S, Zhang E, Sinha S, Martin LM, Varghese TS, Forck NG, Sinha PR, Ericsson AC, Hesemann NP, Mohan RR. Analysis of Smad3 in the modulation of stromal extracellular matrix proteins in corneal scarring after alkali injury. Mol Vis 2024; 30:448-464. [PMID: 39959170 PMCID: PMC11829792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/28/2024] [Indexed: 02/18/2025] Open
Abstract
Purpose During ocular trauma, excessive proliferation and transdifferentiation of corneal stromal fibroblasts cause haze/fibrosis in the cornea. Transforming growth factor β (TGFβ) plays a key role in corneal fibrosis through the Smad signaling pathway. The aberrant activity of TGFβ signaling during ocular trauma (viz. mechanical, infectious, chemical, or surgically altered TGFβ/Smad signaling) leads to regulating the predominant expression of myogenic proteins and the extracellular matrix (ECM). We sought to investigate the functional role of Smad3 in corneal wound repair and stromal ECM assembly using Smad3+/+ wild-type and Smad3-/- deficient mice. Methods Corneal injury was introduced with the topical application of an alkali-soaked 2-mm filter disc on the central cornea in the Smad3+/+ (C57BL/6J) and Smad3-/- (129-Smad3tm1Par/J) mouse strains. Slit-lamp and stereo microscopy were used for clinical assessment and corneal haze grading in live animals. Hematoxylin and eosin and Masson's trichrome staining were used to study comparative morphology and collagen level alterations between the groups. Real-time qRT-PCR, western blot, and immunohistochemistry were used to measure changes in profibrotic genes at the mRNA and protein levels. Results Slit-lamp clinical exams and stereo microscopy detected notably less opaque cornea in the eyes of Smad3-/- compared with Smad3+/+ mice at 3 weeks (p<0.01) in live animals. Corneal tissue sections of Smad3-/- mice showed significantly fewer α-smooth muscle actin-positive cells compared with those of the Smad3+/+ animals (p<0.05). The corneas of the Smad3-/- mice showed significantly lower mRNA levels of pro-fibrotic genes, α-smooth muscle actin, fibronectin, and collagen I (p<0.05, p<0.01, and p<0.001). In addition, the matrix metalloproteinase and tissue inhibitors of metalloproteinase levels were significantly increased (p<0.001) in the corneal tissue during alkali injury in both Smad3+/+ wild-type and Smad3-/- deficient mice. Conclusions The significant changes in profibrotic genes and stromal ECM proteins revealed a direct role of Smad3 in stromal ECM proteins and TGFβ/Smad-driven wound healing. Smad3 appears to be an attractive molecular target for limiting abnormal stroma wound healing to treat corneal fibrosis in vivo.
Collapse
Affiliation(s)
- Suneel Gupta
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Eric Zhang
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO
| | - Sampann Sinha
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Lynn M. Martin
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Thomas S. Varghese
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO
| | - Nathan G. Forck
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Prashant R. Sinha
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Aaron C. Ericsson
- Departments of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Nathan P. Hesemann
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO
| | - Rajiv R. Mohan
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO
| |
Collapse
|
2
|
Rajalekshmi R, Rai V, Agrawal DK. Deciphering Collagen Phenotype Dynamics Regulators: Insights from In-Silico Analysis. JOURNAL OF BIOINFORMATICS AND SYSTEMS BIOLOGY : OPEN ACCESS 2024; 7:169-181. [PMID: 39484658 PMCID: PMC11526781 DOI: 10.26502/jbsb.5107089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Collagen (Col) types I and III are integral components in wound healing and tissue regeneration, influencing tissue development, homeostasis, and related pathologies. Col I and Col III expression changes during different stages of wound healing and understanding the regulation of collagen phenotype determination is crucial for unraveling the complexities of these processes. Transcription factors and microRNAs, directly and indirectly, play a critical role in regulating collagen expression, however, a comprehensive understanding of the factors regulating Col I and III phenotypes remains elusive. This critically analyzed published reports with focuses on various factors regulating the expression of Col I and Col III at the transcriptional and translational levels. We performed bioinformatics analysis with an input of proinflammatory mediators, growth factors, elastases, and matrix metalloproteinases and predicted transcription factors and microRNAs involved in the regulation of collagen expression. Network analysis revealed an interaction between genes, transcription factors, and microRNAs and provided a holistic view of the regulatory landscape governing collagen expression and unveils intricate interconnections. This analysis lays a founda-tional framework for guiding future research and therapeutic interventions to promote extracellular matrix remodeling, wound healing, and tissue regeneration after an injury by modulating collagen expression. In essence, this scientific groundwork offers a comprehensive exploration of the regulatory dynamics in collagen synthesis, serving as a valuable resource for advancing both basic research and clinical interventions in tissue repair.
Collapse
Affiliation(s)
- Resmi Rajalekshmi
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766 USA
| | - Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766 USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766 USA
| |
Collapse
|
3
|
Pattani N, Sanghera J, Langridge BJ, Frommer ML, Abu-Hanna J, Butler P. Exploring the mechanisms behind autologous lipotransfer for radiation-induced fibrosis: A systematic review. PLoS One 2024; 19:e0292013. [PMID: 38271326 PMCID: PMC10810439 DOI: 10.1371/journal.pone.0292013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/11/2023] [Indexed: 01/27/2024] Open
Abstract
AIM Radiation-induced fibrosis is a recognised consequence of radiotherapy, especially after multiple and prolonged dosing regimens. There is no definitive treatment for late-stage radiation-induced fibrosis, although the use of autologous fat transfer has shown promise. However, the exact mechanisms by which this improves radiation-induced fibrosis remain poorly understood. We aim to explore existing literature on the effects of autologous fat transfer on both in-vitro and in-vivo radiation-induced fibrosis models, and to collate potential mechanisms of action. METHOD PubMed, Cochrane reviews and Scopus electronic databases from inception to May 2023 were searched. Our search strategy combined both free-text terms with Boolean operators, derived from synonyms of adipose tissue and radiation-induced fibrosis. RESULTS The search strategy produced 2909 articles. Of these, 90 underwent full-text review for eligibility, yielding 31 for final analysis. Nine conducted in-vitro experiments utilising a co-culture model, whilst 25 conducted in-vivo experiments. Interventions under autologous fat transfer included adipose-derived stem cells, stromal vascular function, whole fat and microfat. Notable findings include downregulation of fibroblast proliferation, collagen deposition, epithelial cell apoptosis, and proinflammatory processes. Autologous fat transfer suppressed hypoxia and pro-inflammatory interferon-γ signalling pathways, and tissue treated with adipose-derived stem cells stained strongly for anti-inflammatory M2 macrophages. Although largely proangiogenic initially, studies show varying effects on vascularisation. There is early evidence that adipose-derived stem cell subgroups may have different functional properties. CONCLUSION Autologous fat transfer functions through pro-angiogenic, anti-fibrotic, immunomodulatory, and extracellular matrix remodelling properties. By characterising these mechanisms, relevant drug targets can be identified and used to further improve clinical outcomes in radiation-induced fibrosis. Further research should focus on adipose-derived stem cell sub-populations and augmentation techniques such as cell-assisted lipotransfer.
Collapse
Affiliation(s)
| | | | - Benjamin J. Langridge
- Department of Plastic Surgery, Royal Free Hospital, London, United Kingdom
- Division of Surgery & Interventional Sciences, University College London, London, United Kingdom
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London, United Kingdom
| | - Marvin L. Frommer
- Division of Surgery & Interventional Sciences, University College London, London, United Kingdom
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London, United Kingdom
| | - Jeries Abu-Hanna
- Division of Surgery & Interventional Sciences, University College London, London, United Kingdom
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London, United Kingdom
- Division of Medical Sciences, University of Oxford, Oxford, United Kingdom
| | - Peter Butler
- Department of Plastic Surgery, Royal Free Hospital, London, United Kingdom
- Division of Surgery & Interventional Sciences, University College London, London, United Kingdom
- Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
4
|
Devos H, Zoidakis J, Roubelakis MG, Latosinska A, Vlahou A. Reviewing the Regulators of COL1A1. Int J Mol Sci 2023; 24:10004. [PMID: 37373151 DOI: 10.3390/ijms241210004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The collagen family contains 28 proteins, predominantly expressed in the extracellular matrix (ECM) and characterized by a triple-helix structure. Collagens undergo several maturation steps, including post-translational modifications (PTMs) and cross-linking. These proteins are associated with multiple diseases, the most pronounced of which are fibrosis and bone diseases. This review focuses on the most abundant ECM protein highly implicated in disease, type I collagen (collagen I), in particular on its predominant chain collagen type I alpha 1 (COLα1 (I)). An overview of the regulators of COLα1 (I) and COLα1 (I) interactors is presented. Manuscripts were retrieved searching PubMed, using specific keywords related to COLα1 (I). COL1A1 regulators at the epigenetic, transcriptional, post-transcriptional and post-translational levels include DNA Methyl Transferases (DNMTs), Tumour Growth Factor β (TGFβ), Terminal Nucleotidyltransferase 5A (TENT5A) and Bone Morphogenic Protein 1 (BMP1), respectively. COLα1 (I) interacts with a variety of cell receptors including integrinβ, Endo180 and Discoidin Domain Receptors (DDRs). Collectively, even though multiple factors have been identified in association to COLα1 (I) function, the implicated pathways frequently remain unclear, underscoring the need for a more spherical analysis considering all molecular levels simultaneously.
Collapse
Affiliation(s)
- Hanne Devos
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Jerome Zoidakis
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Maria G Roubelakis
- Laboratory of Biology, University of Athens School of Medicine, 11527 Athens, Greece
- Laboratory of Cell and Gene Therapy, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | | | - Antonia Vlahou
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
5
|
Ahn KJ, Kim JS. TGF-β1 upregulates Sar1a expression and induces procollagen-I secretion in hypertrophic scarring fibroblasts. Open Med (Wars) 2022; 17:1473-1482. [PMID: 36188194 PMCID: PMC9483117 DOI: 10.1515/med-2022-0543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022] Open
Abstract
Hypertrophic scarring (HTS) is a common fibroproliferative disorder that typically follows thermal and other injuries involving the deep dermis. The underlying pathogenic mechanisms are regulated by transforming growth factor-β (TGF-β); however, the exact mechanisms in HTS have not been elucidated. We conducted this study to explore the cellular signaling mechanisms for expression of Sar1a, a coat protein complex II-associated small GTPase, in HTS fibroblasts (HTSF). We found that Sar1a was upregulated in HTSF as compared to that in normal fibroblasts. Furthermore, stimulation of TGF-β1 increased the expression of Sar1a in HTSF, and small interfering RNA for Sar1a suppressed procollagen-I (PC-I) secretion. Next we investigated the signaling mechanism from TGF-β1 to Sar1a expression and its association with PC-I secretion. In the presence of TGF-β-activated kinase 1 (TAK1), c-Jun N-terminal kinase, or p38 inhibitors, the effect of TGF-β1 on Sar1a expression and PC-I secretion significantly decreased; however, it had no effect on collagen-1A (Col-1A) expression. Further, the inhibitors of Smad3 or extracellular signal-regulated kinases inhibited TGF-β1-induced Col-1A expression but had no effect on PC-I secretion and Sar1a expression. Taken together, our results suggested that TGF-β1 induces Sar1a expression through TAK1 signaling and this signaling event regulates PC-I secretion in HTSF.
Collapse
Affiliation(s)
- Keun Jae Ahn
- Department of Science Education, Jeju National University, Jeju, 63063, Korea
| | - Jun-Sub Kim
- Department of Biotechnology, Korea National University of Transportation, Chungbuk, 27909, Korea
| |
Collapse
|
6
|
Lin GW, Liang YC, Wu P, Chen CK, Lai YC, Jiang TX, Haung YH, Chuong CM. Regional specific differentiation of integumentary organs: SATB2 is involved in α- and β-keratin gene cluster switching in the chicken. Dev Dyn 2022; 251:1490-1508. [PMID: 34240503 PMCID: PMC8742846 DOI: 10.1002/dvdy.396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Animals develop skin regional specificities to best adapt to their environments. Birds are excellent models in which to study the epigenetic mechanisms that facilitate these adaptions. Patients suffering from SATB2 mutations exhibit multiple defects including ectodermal dysplasia-like changes. The preferential expression of SATB2, a chromatin regulator, in feather-forming compared to scale-forming regions, suggests it functions in regional specification of chicken skin appendages by acting on either differentiation or morphogenesis. RESULTS Retrovirus mediated SATB2 misexpression in developing feathers, beaks, and claws causes epidermal differentiation abnormalities (e.g. knobs, plaques) with few organ morphology alterations. Chicken β-keratins are encoded in 5 sub-clusters (Claw, Feather, Feather-like, Scale, and Keratinocyte) on Chromosome 25 and a large Feather keratin cluster on Chromosome 27. Type I and II α-keratin clusters are located on Chromosomes 27 and 33, respectively. Transcriptome analyses showed these keratins (1) are often tuned up or down collectively as a sub-cluster, and (2) these changes occur in a temporo-spatial specific manner. CONCLUSIONS These results suggest an organizing role of SATB2 in cluster-level gene co-regulation during skin regional specification.
Collapse
Affiliation(s)
- Gee-Way Lin
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Ya-Chen Liang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Integrative Stem Cell Center, China Medical University and Hospital, China Medical University, Taichung 40447, Taiwan
| | - Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Chih-Kuan Chen
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- The IEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402204, Taiwan
| | - Yung-Chih Lai
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Integrative Stem Cell Center, China Medical University and Hospital, China Medical University, Taichung 40447, Taiwan
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
| | - Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yen-Hua Haung
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
7
|
MG132 Induces Progerin Clearance and Improves Disease Phenotypes in HGPS-like Patients’ Cells. Cells 2022; 11:cells11040610. [PMID: 35203262 PMCID: PMC8870437 DOI: 10.3390/cells11040610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Progeroid syndromes (PS), including Hutchinson-Gilford Progeria Syndrome (HGPS), are premature and accelerated aging diseases, characterized by clinical features mimicking physiological aging. Most classical HGPS patients carry a de novo point mutation within exon 11 of the LMNA gene encoding A-type lamins. This mutation activates a cryptic splice site, leading to the production of a truncated prelamin A, called prelamin A ∆50 or progerin, that accumulates in HGPS cell nuclei and is a hallmark of the disease. Some patients with PS carry other LMNA mutations and are named “HGPS-like” patients. They produce progerin and/or other truncated prelamin A isoforms (∆35 and ∆90). We previously found that MG132, a proteasome inhibitor, induced progerin clearance in classical HGPS through autophagy activation and splicing regulation. Here, we show that MG132 induces aberrant prelamin A clearance and improves cellular phenotypes in HGPS-like patients’ cells other than those previously described in classical HGPS. These results provide preclinical proof of principle for the use of a promising class of molecules toward a potential therapy for children with HGPS-like or classical HGPS.
Collapse
|
8
|
Penke LRK, Speth J, Wettlaufer S, Draijer C, Peters-Golden M. Bortezomib Inhibits Lung Fibrosis and Fibroblast Activation Without Proteasome Inhibition. Am J Respir Cell Mol Biol 2021; 66:23-37. [PMID: 34236953 DOI: 10.1165/rcmb.2021-0112oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The FDA-approved proteasomal inhibitor bortezomib (BTZ) has attracted interest for its potential anti-fibrotic actions. However, neither its in vivo efficacy in lung fibrosis nor its dependence on proteasome inhibition has been conclusively defined. In this study, we assessed the therapeutic efficacy of BTZ in a mouse model of pulmonary fibrosis, developed an in vitro protocol to define its actions on diverse fibroblast activation parameters, determined its reliance on proteasome inhibition for these actions in vivo and in vitro and explored alternative mechanisms of action. The therapeutic administration of BTZ diminished the severity of pulmonary fibrosis without reducing proteasome activity in the lung. In experiments designed to mimic this lack of proteasome inhibition in vitro, BTZ reduced fibroblast proliferation, differentiation into myofibroblasts, and collagen synthesis. It promoted de-differentiation of myofibroblasts and overcame their characteristic resistance to apoptosis. Mechanistically, BTZ inhibited kinases important for fibroblast activation while inducing expression of dual-specificity phosphatase 1 or DUSP1, and knockdown of DUSP1 abolished its anti-fibrotic actions in fibroblasts. Collectively, these findings suggest that BTZ exhibits a multidimensional profile of robust inhibitory actions on lung fibroblasts as well as anti-fibrotic actions in vivo. Unexpectedly, these actions appear to be independent of proteasome inhibition, and instead attributable to induction of DUSP1.
Collapse
Affiliation(s)
| | - Jennifer Speth
- University of Michigan, 1259, Ann Arbor, Michigan, United States
| | - Scott Wettlaufer
- University of Michigan, 1259, Division of Pulmonary and Critical Care Medicine, Ann Arbor, Michigan, United States
| | | | - Marc Peters-Golden
- University of Michigan Health System, 21707, Ann Arbor, Michigan, United States;
| |
Collapse
|
9
|
Lim JY, Ryu DB, Kim TW, Lee SE, Park G, Yoon HK, Min CK. CCL1 blockade alleviates human mesenchymal stem cell (hMSC)-induced pulmonary fibrosis in a murine sclerodermatous graft-versus-host disease (Scl-GVHD) model. Stem Cell Res Ther 2020; 11:254. [PMID: 32586381 PMCID: PMC7318460 DOI: 10.1186/s13287-020-01768-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/07/2020] [Accepted: 06/11/2020] [Indexed: 02/08/2023] Open
Abstract
Background Human chronic graft-versus-host disease (CGVHD) shares clinical characteristics with a murine sclerodermatous GVHD (Scl-GVHD, B10.D2 → BALB/c) model that is characterized by skin and lung fibrosis. In this study, bone marrow- or adipose tissue-derived human mesenchymal stem cells (hMSCs) were injected into the Scl-GVHD mice to address their therapeutic effect on CGVHD. Methods Lethally irradiated BALB/c mice were transplanted with B10.D2 T cell-depleted bone marrow with or without spleen cells to generate Scl-GVHD. hMSCs were intravenously treated on days 3, 5, and 7 post-transplantation, and the control antibody or CCL1 blocking antibody was subcutaneously injected according to the same schedule as the hMSCs. Fourteen days after transplantation, the recipient mice were sacrificed, and their skin and lungs were analyzed. Results After the early injection of hMSCs after transplantation, the clinical and pathological severity of Scl-GVHD in the skin was significantly attenuated, whereas the pathological score was exacerbated in the lungs. hMSCs had migrated into the lungs, but not into the skin. CD11b monocyte/macrophages and CD4 T cells were markedly decreased in skin tissues, whereas there was an early recruitment of CD11b cells, and subsequently increased infiltration of CD4 T cells, in the lungs. Importantly, hMSCs persistently upregulated the expression of CCL1 in the lungs, but not in the skin. Concurrent treatment of hMSCs with a CCL1-blocking antibody alleviated the severity of the lung histopathology score and fibrosis with the preservation of the cutaneous protective effect against CGVHD. Infiltration of CD3 T cells and CD68 macrophages and upregulation of chemokines were also decreased in lung tissues, along with the recruitment of eosinophils and tissue IgE expression. In the skin, chemokine expression was further reduced after CCL1 blockade. Conclusions These data demonstrate that despite a protective effect against Scl-GVHD in the skin, administration of hMSCs exacerbated lung fibrosis associated with eosinophilia and airway inflammation through persistent CCL1 upregulation. CCL1 blockade offers a potential treatment of pulmonary complications induced after treatment with hMSCs.
Collapse
Affiliation(s)
- Ji-Young Lim
- Hematology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpodae-ro, Seocho-gu, Seoul, 06591, South Korea
| | - Da-Bin Ryu
- Hematology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpodae-ro, Seocho-gu, Seoul, 06591, South Korea
| | - Tae Woo Kim
- Hematology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpodae-ro, Seocho-gu, Seoul, 06591, South Korea
| | - Sung-Eun Lee
- Hematology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpodae-ro, Seocho-gu, Seoul, 06591, South Korea
| | - Gyeongsin Park
- Department of Pathology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Hyoung Kyu Yoon
- Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Chang-Ki Min
- Hematology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpodae-ro, Seocho-gu, Seoul, 06591, South Korea.
| |
Collapse
|
10
|
Roque W, Boni A, Martinez-Manzano J, Romero F. A Tale of Two Proteolytic Machines: Matrix Metalloproteinases and the Ubiquitin-Proteasome System in Pulmonary Fibrosis. Int J Mol Sci 2020; 21:ijms21113878. [PMID: 32485920 PMCID: PMC7312171 DOI: 10.3390/ijms21113878] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 01/19/2023] Open
Abstract
Pulmonary fibrosis is a chronic and progressive lung disease characterized by the activation of fibroblasts and the irreversible deposition of connective tissue matrices that leads to altered pulmonary architecture and physiology. Multiple factors have been implicated in the pathogenesis of lung fibrosis, including genetic and environmental factors that cause abnormal activation of alveolar epithelial cells, leading to the development of complex profibrotic cascade activation and extracellular matrix (ECM) deposition. One class of proteinases that is thought to be important in the regulation of the ECM are the matrix metalloproteinases (MMPs). MMPs can be up- and down- regulated in idiopathic pulmonary fibrosis (IPF) lungs and their role depends upon their location and function. Furthermore, alterations in the ubiquitin-proteosome system (UPS), a major intracellular protein degradation complex, have been described in aging and IPF lungs. UPS alterations could potentially lead to the abnormal accumulation and deposition of ECM. A better understanding of the specific roles MMPs and UPS play in the pathophysiology of pulmonary fibrosis could potentially drive to the development of novel biomarkers that can be as diagnostic and therapeutic targets. In this review, we describe how MMPs and UPS alter ECM composition in IPF lungs and mouse models of pulmonary fibrosis, thereby influencing the alveolar epithelial and mesenchymal cell behavior. Finally, we discuss recent findings that associate MMPs and UPS interplay with the development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Willy Roque
- Department of Medicine, Rutgers—New Jersey Medical School, 185 S Orange Ave, Newark, NJ 07103, USA; (W.R.); (A.B.)
| | - Alexandra Boni
- Department of Medicine, Rutgers—New Jersey Medical School, 185 S Orange Ave, Newark, NJ 07103, USA; (W.R.); (A.B.)
| | - Jose Martinez-Manzano
- Brigham and Women’s Hospital—Pulmonary and Critical Care Medicine, Boston, MA 02115, USA;
| | - Freddy Romero
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care and the Center for Translational Medicine, The Jane & Leonard Korman Respiratory Institute, Philadelphia, PA 19107, USA
- Correspondence:
| |
Collapse
|
11
|
Misra DP, Ahmed S, Agarwal V. Is biological therapy in systemic sclerosis the answer? Rheumatol Int 2020; 40:679-694. [PMID: 31960079 DOI: 10.1007/s00296-020-04515-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022]
Abstract
Systemic sclerosis is a systemic fibrosing disorder associated with significant morbidity and mortality, with no universally accepted disease-modifying therapy. Significant advances in the understanding of systemic sclerosis in recent years have guided the exploration of biological drugs in systemic sclerosis. In this narrative review, we summarize the published literature on biologic therapies in systemic sclerosis. A double-blind randomized trial, and an open label trial of tocilizumab (which antagonizes the interleukin 6 receptor), identified potential benefits in skin and lung fibrosis in systemic sclerosis; however, these differences failed to attain statistical significance. Two open-label trials compared rituximab (which depletes B lymphocytes) to conventional treatment/ cyclophosphamide in systemic sclerosis-associated interstitial lung disease (ILD), and revealed significant improvements in lung functions and skin disease with rituximab. Significant observational data also support the use of rituximab in skin, lung, muscle and joint manifestations of systemic sclerosis. Abatacept (which blocks T lymphocyte activation) has demonstrated utility for skin and joint disease in systemic sclerosis; a recent clinical trial failed to demonstrate benefits in improving skin thickness compared to placebo. Agents targeting type I interferons, interleukin 17 pathway, CD19 and plasma cells hold promise in systemic sclerosis; however, high-quality evidence is lacking. The results of different ongoing clinical trials targeting B lymphocytes, T lymphocytes, various cytokines (interleukins 6, 17, 4, 13, IL-1α), platelet-derived growth factor receptor, proteasome, integrins or oncostatin M may help guide future therapeutic regimens with biological agents in systemic sclerosis.
Collapse
Affiliation(s)
- Durga Prasanna Misra
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, 226014, India.
| | - Sakir Ahmed
- Department of Clinical Immunology and Rheumatology, Kalinga Institute of Medical Sciences, Bhubaneswar, India
| | - Vikas Agarwal
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, 226014, India
| |
Collapse
|
12
|
Niarakis A, Giannopoulou E, Syggelos SA, Panagiotopoulos E. Effects of proteasome inhibitors on cytokines, metalloproteinases and their inhibitors and collagen type-I expression in periprosthetic tissues and fibroblasts from loose arthroplasty endoprostheses. Connect Tissue Res 2019; 60:555-570. [PMID: 30931650 DOI: 10.1080/03008207.2019.1601186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Objective: Aseptic loosening is a major problem in total joint replacement. Implant wear debris provokes a foreign body host response and activates cells to produce a variety of mediators and ROS, leading to periprosthetic osteolysis. Elevated ROS levels can harm proteasome function. Proteasome inhibitors have been reported to alter the secretory profile of cells involved in inflammation and also to induce ROS production. In this work, we aimed to document the effects of proteasome inhibitors MG-132 and Epoxomicin, on the production of factors involved in aseptic loosening, in periprosthetic tissues and fibroblasts, and investigate the role of proteasome impairment in periprosthetic osteolysis. Materials and methods: IL-6 levels in tissue cultures were determined by sandwich ELISA. MMP-1, -3, -13, -14 and TIMP-1 levels in tissue or cell cultures were determined by indirect ELISA. Results for MMP-1 and TIMP-1 in tissue cultures were confirmed by Western blotting. MMP-2 and MMP-9 levels were determined by gelatin zymography. Gene expression of IL-6, MMP-1,-3,-14, TIMP-1 and collagen type-I was determined by RT-PCR. Results: Results show that proteasome inhibition induces the expression of ΜΜΡ-1, -2, -3, -9 and suppresses that of IL-6, MMP-14, -13, TIMP-1 and collagen type I, enhancing the collagenolytic and gelatinolytic activity already present in periprosthetic tissues, as documented in various studies. Conclusions: These findings suggest that proteasome impairment could be a contributing factor to aseptic loosening. Protection and enhancement of proteasome efficacy could thus be considered as an alternative strategy toward disease treatment.
Collapse
Affiliation(s)
- Anna Niarakis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece.,GenHotel EA3886, Univ Evry, Université Paris-Saclay , Evry , France
| | | | - Spyros A Syggelos
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras , Patras , Greece
| | - Elias Panagiotopoulos
- Department of Orthopaedics, School of Medicine, University of Patras , Patras , Greece
| |
Collapse
|
13
|
Piao MJ, Kang KA, Zhen AX, Kang HK, Koh YS, Kim BS, Hyun JW. Horse Oil Mitigates Oxidative Damage to Human HaCaT Keratinocytes Caused by Ultraviolet B Irradiation. Int J Mol Sci 2019; 20:ijms20061490. [PMID: 30934595 PMCID: PMC6471125 DOI: 10.3390/ijms20061490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 12/24/2022] Open
Abstract
Horse oil products have been used in skin care for a long time in traditional medicine, but the biological effects of horse oil on the skin remain unclear. This study was conducted to evaluate the protective effect of horse oil on ultraviolet B (UVB)-induced oxidative stress in human HaCaT keratinocytes. Horse oil significantly reduced UVB-induced intracellular reactive oxygen species and intracellular oxidative damage to lipids, proteins, and DNA. Horse oil absorbed light in the UVB range of the electromagnetic spectrum and suppressed the generation of cyclobutane pyrimidine dimers, a photoproduct of UVB irradiation. Western blotting showed that horse oil increased the UVB-induced Bcl-2/Bax ratio, inhibited mitochondria-mediated apoptosis and matrix metalloproteinase expression, and altered mitogen-activated protein kinase signaling-related proteins. These effects were conferred by increased phosphorylation of extracellular signal-regulated kinase 1/2 and decreased phosphorylation of p38 and c-Jun N-terminal kinase 1/2. Additionally, horse oil reduced UVB-induced binding of activator protein 1 to the matrix metalloproteinase-1 promoter site. These results indicate that horse oil protects human HaCaT keratinocytes from UVB-induced oxidative stress by absorbing UVB radiation and removing reactive oxygen species, thereby protecting cells from structural damage and preventing cell death and aging. In conclusion, horse oil is a potential skin protectant against skin damage involving oxidative stress.
Collapse
Affiliation(s)
- Mei Jing Piao
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| | - Kyoung Ah Kang
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| | - Ao Xuan Zhen
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| | - Hee Kyoung Kang
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| | - Young Sang Koh
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| | - Bong Seok Kim
- Bio Convergence Center, Jeju Technopark, Jeju 63243, Korea.
| | - Jin Won Hyun
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
14
|
Abstract
Idiopathic pulmonary fibrosis (IPF) is an extremely aggressive lung disease that develops almost exclusively in older individuals, carries a very poor prognosis, and lacks any truly effective therapies. The current conceptual model is that IPF develops because of an age-related decline in the ability of the lung epithelium to regenerate after injury, largely due to death or senescence of epithelial progenitor cells in the distal airways. This loss of regenerative capacity is thought to initiate a chronic and ineffective wound-healing response, characterized by persistent, low-grade lung inflammation and sustained production of collagen and other extracellular matrix materials. Despite recent advances in our understanding of IPF pathobiology, there remains a pressing need to further delineate underlying mechanisms to develop more effective therapies for this disease. In this review, we build the case that many of the manifestations of IPF result from a failure of cells to effectively manage their proteome. We propose that epithelial progenitor cells, as well as immune cells and fibroblasts, become functionally impaired, at least in part, because of an accumulation or a loss in the expression of various crucial proteins. Further, we propose that central to this defect is the dysregulation of the ubiquitin-proteasome system (UPS), which is the major protein-degradation system in eukaryotic cells. Lastly, borrowing concepts from other fields, we discuss how targeting the UPS system could be employed as a novel treatment for IPF and perhaps for other fibrotic lung diseases as well.
Collapse
Affiliation(s)
- Willy Roque
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ross Summer
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Freddy Romero
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
15
|
Aletras AJ, Trilivas I, Christopoulou ME, Drakouli S, Georgakopoulos CD, Pharmakakis N. UVB-mediated down-regulation of proteasome in cultured human primary pterygium fibroblasts. BMC Ophthalmol 2018; 18:328. [PMID: 30563490 PMCID: PMC6299496 DOI: 10.1186/s12886-018-0987-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 11/30/2018] [Indexed: 11/16/2022] Open
Abstract
Background Pterygium is a condition characterized by epithelial overgrowth of the cornea, inflammatory cell infiltration and an abnormal extracellular matrix accumulation. Chronic UV exposure is considered as a pathogenic factor of this disease. Proteasome is an intracellular multi-subunit protease complex that degrades intracellular proteins. Among proteasome subunits the β5 (PSMB5), bearing chymotrypsin-like activity. It is considered as the main proteasome subunit and its expression is mediated by Nrf2-ARE pathway in many cell types. This study investigates the expression of PSMB5 in pterygium and the effect of UVB irradiation on its expression and activity in pterygium fibroblasts. Methods Normal conjunctival and pterygium specimens were obtained from the bulbar conjunctiva of patients undergoing cataract surgery and from patients with pterygium undergoing surgical removal of primary tissue, respectively. Fibroblasts were isolated upon treatment of specimens with clostridium collagenase. The expression of PSMB5 and Nrf2 in tissues and cells was ascertained by RT-PCR analysis and western blotting. Cell survival was measured by the MTT method and the proteasome chymotrypsin-like activity was determined by fluorometry. Results RT-PCR analysis showed that the expression of PSMB5 was significantly lower in pterygium than in normal conjunctiva. The expression of PSMB5 was mediated by the Nrf2/ARE pathway as indicated by using the Nrf2 activator Oltipraz. The expression of PSMB5 and Nrf2 by pterygium fibroblasts was suppressed in a dose dependent manner following UVB radiation of 0–50 mJ/cm2 doses. The expression of PSMB5, but not of Nrf2, remained at almost the control levels, when UVB exposure was performed after pre-incubation of cells with the src kinases inhibitor PP2. UVB irradiation had very low deleterious effect on fibroblasts survival, while it did not affect the proteasome chymotrypsin-like activity. Conclusion In pterygium fibroblasts, UVB exposure leads to down-regulation of Nrf2/ARE-mediated PSMB5 gene expression, in which src kinases may be implicated. This effect may be partially responsible for the lower expression of PSMB5 detected in pterygium as compared to normal conjunctiva.
Collapse
Affiliation(s)
- Alexios J Aletras
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26 504, Patras, Greece.
| | - Ioannis Trilivas
- Department of Opthalmology, Medical School, University of Patras, Patras, Greece
| | | | - Sotiria Drakouli
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26 504, Patras, Greece.,Present address: Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Volos, Greece
| | | | - Nikolaos Pharmakakis
- Department of Opthalmology, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
16
|
Giménez A, Duch P, Puig M, Gabasa M, Xaubet A, Alcaraz J. Dysregulated Collagen Homeostasis by Matrix Stiffening and TGF-β1 in Fibroblasts from Idiopathic Pulmonary Fibrosis Patients: Role of FAK/Akt. Int J Mol Sci 2017; 18:ijms18112431. [PMID: 29144435 PMCID: PMC5713399 DOI: 10.3390/ijms18112431] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 11/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an aggressive disease in which normal lung parenchyma is replaced by a stiff dysfunctional scar rich in activated fibroblasts and collagen-I. We examined how the mechanochemical pro-fibrotic microenvironment provided by matrix stiffening and TGF-β1 cooperates in the transcriptional control of collagen homeostasis in normal and fibrotic conditions. For this purpose we cultured fibroblasts from IPF patients or control donors on hydrogels with tunable elasticity, including 3D collagen-I gels and 2D polyacrylamide (PAA) gels. We found that TGF-β1 consistently increased COL1A1 while decreasing MMP1 mRNA levels in hydrogels exhibiting pre-fibrotic or fibrotic-like rigidities concomitantly with an enhanced activation of the FAK/Akt pathway, whereas FAK depletion was sufficient to abrogate these effects. We also demonstrate a synergy between matrix stiffening and TGF-β1 that was positive for COL1A1 and negative for MMP1. Remarkably, the COL1A1 expression upregulation elicited by TGF-β1 alone or synergistically with matrix stiffening were higher in IPF-fibroblasts compared to control fibroblasts in association with larger FAK and Akt activities in the former cells. These findings provide new insights on how matrix stiffening and TGF-β1 cooperate to elicit excessive collagen-I deposition in IPF, and support a major role of the FAK/Akt pathway in this cooperation.
Collapse
Affiliation(s)
- Alícia Giménez
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain.
| | - Paula Duch
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain.
| | - Marta Puig
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain.
| | - Marta Gabasa
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
| | - Antoni Xaubet
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
- Pneumology Service, Hospital Clínic, 08036 Barcelona, Spain.
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain.
| | - Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain.
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain.
| |
Collapse
|
17
|
The Red Algae Compound 3-Bromo-4,5-dihydroxybenzaldehyde Protects Human Keratinocytes on Oxidative Stress-Related Molecules and Pathways Activated by UVB Irradiation. Mar Drugs 2017; 15:md15090268. [PMID: 28841171 PMCID: PMC5618407 DOI: 10.3390/md15090268] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/28/2022] Open
Abstract
Skin exposure to ultraviolet B (UVB) irradiation leads to the generation of reactive oxygen species (ROS). Excessive ROS cause aging of the skin via basement membrane/extracellular matrix degradation by matrix metalloproteinases (MMPs). We recently demonstrated that 3-bromo-4,5-dihydroxybenzaldehyde (BDB), a natural compound of red algae, had a photo-protective effect against UVB-induced oxidative stress in human keratinocytes. The present study focused on the effect of BDB on UVB-irradiated photo-aging in HaCaT keratinocytes and the underlying mechanism. BDB significantly impeded MMP-1 activation and expression, and abrogated the activation of mitogen-activated protein kinases and intracellular Ca2+ level in UVB-irradiated HaCaT cells. Moreover, BDB decreased the expression levels of c-Fos and phospho-c-Jun and the binding of activator protein-1 to the MMP-1 promoter induced by UVB irradiation. These results offer evidence that BDB is potentially useful for the prevention of UVB-irradiated skin damage.
Collapse
|
18
|
Bao JX, Zhang QF, Wang M, Xia M, Boini KM, Gulbins E, Zhang Y, Li PL. Implication of CD38 gene in autophagic degradation of collagen I in mouse coronary arterial myocytes. Front Biosci (Landmark Ed) 2017; 22:558-569. [PMID: 27814632 DOI: 10.2741/4502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Collagen deposition is a hallmark of atherosclerosis. Although compromised collagen I degradation has been implied in the pathogenesis of atherosclerosis, the molecular mechanisms are still unclear. Thus, we determined the role of CD38, an enzyme involved in cellular calcium modulation and autophagic flux, in the regulation of collagen I degradation in coronary arterial myocytes (CAMs).In primary cultured CAMs from CD38-/- mice, collagen I protein accumulation but not mRNA abundance was significantly increased compared with cells from CD38+/+ mice either under control or upon TGF-Beta stimulation. Pharmacological inhibition of the formation of autophagosomes with 3-methyladenine or of autophagolysosomes with a lysosomal functional blocker, bafilomycin A1, induced a similar increase in collagen protein levels, while inhibition of the proteasome by MG132 had no effects on collagen I accumulation. In addition, CD38-deficiency did not change the protein expression of matrix metalloprotein-9 (MMP-9) or tissue inhibitor of metalloproteinase-1 (TIMP-1) in CAMs. Confocal microscopy showed that collagen I deposition was mainly lied within lysosomes or autophagosomes in CD38-/- or TGF-Beta treated CAMs. Collagen I deposition increased when CAMs lack CD38 expression or if autophagy was blocked, which is associated with impaired autophagic degradation of collagen I. This CD38 regulation of autophagic flux may represent a novel mechanism for extracellular matrix (ECM) plasticity of coronary arteries upon atherogenic stimulation.
Collapse
Affiliation(s)
- Jun-Xiang Bao
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Qin-Fang Zhang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298
| | - Mi Wang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298
| | - Min Xia
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298
| | - Krishna M Boini
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA and Department of Nephrology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Yang Zhang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298
| | - Pin-Lan Li
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, 1220 East Broad Street, P.O.Box 980613, Richmond, VA 23298-0613,
| |
Collapse
|
19
|
Song JH, Piao MJ, Han X, Kang KA, Kang HK, Yoon WJ, Ko MH, Lee NH, Lee MY, Chae S, Hyun JW. Anti-wrinkle effects of Sargassum muticum ethyl acetate fraction on ultraviolet B-irradiated hairless mouse skin and mechanistic evaluation in the human HaCaT keratinocyte cell line. Mol Med Rep 2016; 14:2937-44. [PMID: 27573915 PMCID: PMC5042786 DOI: 10.3892/mmr.2016.5655] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 06/17/2016] [Indexed: 02/06/2023] Open
Abstract
The present study investigated the photoprotective properties of the ethyl acetate fraction of Sargassum muticum (SME) against ultraviolet B (UVB)‑induced skin damage and photoaging in a mouse model. HR‑1 strain hairless male mice were divided into three groups: An untreated control group, a UVB‑irradiated vehicle group and a UVB‑irradiated SME group. The UVB‑irradiated mice in the SME group were orally administered with SME (100 mg/kg body weight in 0.1 ml water per day) and then exposed to radiation at a dose of 60‑120 mJ/cm2. Wrinkle formation and skin damage were evaluated by analysis of skin replicas, epidermal thickness and collagen fiber integrity in the dermal connective tissue. The mechanism underlying the action of SME was also investigated in the human HaCaT keratinocyte cell line following exposure of the cells to UVB at a dose of 30 mJ/cm2. The protein expression levels and activity of matrix metalloproteinase‑1 (MMP‑1), and the binding of activator protein‑1 (AP‑1) to the MMP‑1 promoter were assessed in the HaCaT cells using western blot analysis, an MMP‑1 fluorescent assay and a chromatin immune‑precipitation assay, respectively. The results showed that the mean length and depth of the wrinkles in the UVB‑exposed hairless mice were significantly improved by oral administration of SME, which also prevented the increase in epidermal thickness triggered by UVB irradiation. Furthermore, a marked increase in collagen bundle formation was observed in the UVB‑treated mice with SME administration. SME pretreatment also significantly inhibited the UVB‑induced upregulation in the expression and activity of MMP‑1 in the cultured HaCaT keratinocytes, and the UVB‑enhanced association of AP‑1 with the MMP‑1 promoter. These results suggested that SME may be useful as an anti-photoaging resource for the skin.
Collapse
Affiliation(s)
- Jae Hyoung Song
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054
| | - Mei Jing Piao
- School of Medicine, Jeju National University, Jeju 63243
| | - Xia Han
- School of Medicine, Jeju National University, Jeju 63243
| | - Kyoung Ah Kang
- School of Medicine, Jeju National University, Jeju 63243
| | | | - Weon Jong Yoon
- Jeju Biodiversity Research Institute, Jeju High-Tech Development Institute, Jeju 63612
| | - Mi Hee Ko
- Jeju Biodiversity Research Institute, Jeju High-Tech Development Institute, Jeju 63612
| | - Nam Ho Lee
- Department of Chemistry, College of Natural Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Mi Young Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054
| | - Sungwook Chae
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054
| | - Jin Won Hyun
- School of Medicine, Jeju National University, Jeju 63243
| |
Collapse
|
20
|
Llombart V, García-Berrocoso T, Bech-Serra JJ, Simats A, Bustamante A, Giralt D, Reverter-Branchat G, Canals F, Hernández-Guillamon M, Montaner J. Characterization of secretomes from a human blood brain barrier endothelial cells in-vitro model after ischemia by stable isotope labeling with aminoacids in cell culture (SILAC). J Proteomics 2015; 133:100-112. [PMID: 26718731 DOI: 10.1016/j.jprot.2015.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/04/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
Abstract
UNLABELLED The human immortalized brain endothelial cell line hCMEC/D3 is considered a simple in-vitro model of the blood-brain-barrier. Our aim was to characterize changes in the secretome of hCMEC/D3 subjected to oxygen and glucose deprivation (OGD) to identify new proteins altered after ischemia and that might trigger blood-brain-barrier disruption and test their potential as blood biomarkers for ischemic stroke. Using a quantitative proteomic approach based on SILAC, 19 proteins were found differentially secreted between OGD and normoxia/normoglycemia conditions. Among the OGD-secreted proteins, protein folding was the main molecular function identified and for the main canonical pathways there was an enrichment in epithelial adherens junctions and aldosterone signaling. Western blot was used to verify the MS results in a set of 9 differentially secreted proteins and 5 of these were analyzed in serum samples of 38 ischemic stroke patients, 18 stroke-mimicking conditions and 18 healthy controls. SIGNIFICANCE "We characterized changes in the secretome of hCMEC/D3 cells after an ischemic insult by SILAC and identified proteins associated with ischemia that might be involved in the disruption of the blood-brain barrier. Besides we analyzed the putative potential of the candidate proteins to become biomarkers for the diagnosis of ischemic stroke.
Collapse
Affiliation(s)
- Victor Llombart
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Teresa García-Berrocoso
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Joan Josep Bech-Serra
- Proteomics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Alba Simats
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Alejandro Bustamante
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Dolors Giralt
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Gemma Reverter-Branchat
- Proteomics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Francesc Canals
- Proteomics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
21
|
Shanker A, Pellom ST, Dudimah DF, Thounaojam MC, de Kluyver RL, Brooks AD, Yagita H, McVicar DW, Murphy WJ, Longo DL, Sayers TJ. Bortezomib Improves Adoptive T-cell Therapy by Sensitizing Cancer Cells to FasL Cytotoxicity. Cancer Res 2015; 75:5260-72. [PMID: 26494122 PMCID: PMC4681610 DOI: 10.1158/0008-5472.can-15-0794] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 09/23/2015] [Indexed: 01/15/2023]
Abstract
Cancer immunotherapy shows great promise but many patients fail to show objective responses, including in cancers that can respond well, such as melanoma and renal adenocarcinoma. The proteasome inhibitor bortezomib sensitizes solid tumors to apoptosis in response to TNF-family death ligands. Because T cells provide multiple death ligands at the tumor site, we investigated the effects of bortezomib on T-cell responses in immunotherapy models involving low-avidity antigens. Bortezomib did not affect lymphocyte or tissue-resident CD11c(+)CD8(+) dendritic cell counts in tumor-bearing mice, did not inhibit dendritic cell expression of costimulatory molecules, and did not decrease MHC class I/II-associated antigen presentation to cognate T cells. Rather, bortezomib activated NF-κB p65 in CD8(+) T cells, stabilizing expression of T-cell receptor CD3ζ and IL2 receptor-α, while maintaining IFNγ secretion to improve FasL-mediated tumor lysis. Notably, bortezomib increased tumor cell surface expression of Fas in mice as well as human melanoma tissue from a responsive patient. In renal tumor-bearing immunodeficient Rag2(-/-) mice, bortezomib treatment after adoptive T-cell immunotherapy reduced lung metastases and enhanced host survival. Our findings highlight the potential of proteasome inhibitors to enhance antitumor T-cell function in the context of cancer immunotherapy.
Collapse
Affiliation(s)
- Anil Shanker
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, Tennessee. Host-Tumor Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee. School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee.
| | - Samuel T Pellom
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, Tennessee. School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee. Department of Microbiology and Immunology, School of Medicine, Meharry Medical College, Nashville, Tennessee
| | - Duafalia F Dudimah
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, Tennessee
| | - Menaka C Thounaojam
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, Tennessee
| | - Rachel L de Kluyver
- Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland
| | - Alan D Brooks
- Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland. Basic Sciences Program, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Daniel W McVicar
- Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland
| | - William J Murphy
- Division of Hematology/Oncology, Departments of Dermatology and Internal Medicine, University of California School of Medicine, Davis, California
| | - Dan L Longo
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Thomas J Sayers
- Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland. Basic Sciences Program, Leidos Biomedical Research, Inc., Frederick, Maryland.
| |
Collapse
|
22
|
Piao MJ, Susara Ruwan Kumara MH, Kim KC, Kang KA, Kang HK, Lee NH, Hyun JW. Diphlorethohydroxycarmalol Suppresses Ultraviolet B-Induced Matrix Metalloproteinases via Inhibition of JNK and ERK Signaling in Human Keratinocytes. Biomol Ther (Seoul) 2015; 23:557-63. [PMID: 26535081 PMCID: PMC4624072 DOI: 10.4062/biomolther.2015.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/03/2015] [Accepted: 09/08/2015] [Indexed: 01/22/2023] Open
Abstract
Skin aging is the most readily observable process involved in human aging. Ultraviolet B (UVB) radiation causes photo-oxidation via generation of reactive oxygen species (ROS), thereby damaging the nucleus and cytoplasm of skin cells and ultimately leading to cell death. Recent studies have shown that high levels of solar UVB irradiation induce the synthesis of matrix metalloproteinases (MMPs) in skin fibroblasts, causing photo-aging and tumor progression. The MMP family is involved in the breakdown of extracellular matrix in normal physiological processes such as embryonic development, reproduction, and tissue remodeling, as well as in disease processes such as arthritis and metastasis. We investigated the effect of diphlorethohydroxycarmalol (DPHC) against damage induced by UVB radiation in human skin keratinocytes. In UVB-irradiated cells, DPHC significantly reduced expression of MMP mRNA and protein, as well as activation of MMPs. Furthermore, DPHC reduced phosphorylation of ERK and JNK, which act upstream of c-Fos and c-Jun, respectively; consequently, DPHC inhibited the expression of c-Fos and c-Jun, which are key components of activator protein-1 (AP-1, up-regulator of MMPs). Additionally, DPHC abolished the DNA-binding activity of AP-1, and thereby prevented AP-1-mediated transcriptional activation. These data demonstrate that by inactivating ERK and JNK, DPHC inhibits induction of MMPs triggered by UVB radiation.
Collapse
Affiliation(s)
- Mei Jing Piao
- School of Medicine, College of Natural Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | | | - Ki Cheon Kim
- School of Medicine, College of Natural Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Kyoung Ah Kang
- School of Medicine, College of Natural Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Hee Kyoung Kang
- School of Medicine, College of Natural Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Nam Ho Lee
- Department of Chemistry, College of Natural Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Jin Won Hyun
- School of Medicine, College of Natural Sciences, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
23
|
Liu JJ, Lin XJ, Yang XJ, Zhou L, He S, Zhuang SM, Yang J. A novel AP-1/miR-101 regulatory feedback loop and its implication in the migration and invasion of hepatoma cells. Nucleic Acids Res 2014; 42:12041-51. [PMID: 25260594 PMCID: PMC4231742 DOI: 10.1093/nar/gku872] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNA-101 (miR-101) is frequently downregulated in various cancers. To date, the regulatory networks of miR-101 remain obscure. In this study, we demonstrated that miR-101 was mainly transcribed from human miR-101-2 and mouse miR-101bgene loci. Subsequent analyses revealed that activator protein-1 (AP-1) directly binded to the −17.4 to −16.4 k region upstream of pre-miR-101-2 and activated the expression of miR-101. On the other hand, miR-101 could inhibit the expression of ERK2 and c-Fos, two key factors of the AP-1 pathway, by binding to their 3′-UTRs. Furthermore, reintroduction of miR-101 efficiently suppressed the AP-1 activity and pri-miR-101-2 transcription. These data thus suggest a novel AP-1/miR-101 regulatory circuitry, that is, AP-1 promotes the transcription of miR-101, whereas the expression of miR-101 reduces the level of ERK2 and c-Fos and thereby attenuates the AP-1 signaling. Further investigation disclosed that the AP-1 activator TPA-induced MMP9 activity and the TPA-promoted migration and invasion of hepatoma cells were significantly attenuated by miR-101 but were enhanced by miR-101 inhibitor. Our results suggest that the AP-1/miR-101 feedback loop may prevent the excessive activation of metastatic signals imposed by ERK2/AP-1 and highlight the biological significance of miR-101 downregulation in cancer metastasis.
Collapse
Affiliation(s)
- Jing-Jing Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Xue-Jia Lin
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Xiao-Jing Yang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Liangji Zhou
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Shuai He
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Shi-Mei Zhuang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Jine Yang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
24
|
Inhibition of Matrix Metalloproteinase-1 Induced by Oxidative Stress in Human Keratinocytes by Mangiferin Isolated fromAnemarrhena asphodeloides. Biosci Biotechnol Biochem 2014; 75:2321-5. [DOI: 10.1271/bbb.110465] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
25
|
Involvement of MIF in basement membrane damage in chronically UVB-exposed skin in mice. PLoS One 2014; 9:e89569. [PMID: 24586879 PMCID: PMC3931804 DOI: 10.1371/journal.pone.0089569] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/21/2014] [Indexed: 02/04/2023] Open
Abstract
Solar ultraviolet (UV) B radiation is known to induce matrix metalloproteinases (MMPs) that degrade collagen in the basement membrane. Macrophage migration inhibitory factor (MIF) is a pluripotent cytokine that plays an essential role in the pathophysiology of skin inflammation induced by UV irradiation. This study examined the effects of MIF on basement membrane damage following chronic UVB irradiation in mice. The back skin of MIF transgenic (Tg) and wild-type (WT) mice was exposed to UVB three times a week for 10 weeks. There was a decrease in intact protein levels of type IV collagen and increased basement membrane damage in the exposed skin of the MIF Tg mice compared to that observed in the WT mice. Moreover, the skin of the MIF Tg mice exhibited higher MIF, MMP-2 and MMP-9 expression and protein levels than those observed in the WT mice. We also found that chronic UVB exposure in MIF Tg mice resulted in higher levels of neutrophil infiltration in the dermis compared with that observed in the WT mice. In vitro experiments revealed that MIF induced increases in the MMPs expression, including that of MMP-9 in keratinocytes and MMP-2 in fibroblasts. Cultured neutrophils also secreted MMP-9 stimulated by MIF. Therefore, MIF-mediated basement membrane damage occurs primarily through MMPs activation and neutrophil influx in murine skin following chronic UVB irradiation.
Collapse
|
26
|
Perez-Aso M, Fernandez P, Mediero A, Chan ES, Cronstein BN. Adenosine 2A receptor promotes collagen production by human fibroblasts via pathways involving cyclic AMP and AKT but independent of Smad2/3. FASEB J 2013; 28:802-12. [PMID: 24200882 DOI: 10.1096/fj.13-241646] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Activation of adenosine A2A receptor (A2AR) promotes fibrosis and collagen synthesis. However, the underlying mechanism is still unclear, not least because cAMP, its principal effector, has been found to inhibit TGFβ1-induced collagen synthesis. Here, we show that in primary normal human dermal fibroblasts, A2AR stimulation with CGS21680 elicits a modest cAMP increase (150 ± 12% of control; EC50 54.8 nM), which stimulates collagen1 (Col1) and collagen3 (Col3), but maximal cAMP resulting from direct activation of adenylyl cyclase by forskolin (15,689 ± 7038% of control; EC50 360.7 nM) inhibits Col1 and increases Col3. Similar to Col1 expression, fibroblast proliferation increased following physiological cAMP increases by CGS21680 but was inhibited by cAMP increases beyond the physiological range by forskolin. The A2AR-mediated increase of Col1 and Col3 was mediated by AKT, while Col3, but not Col1, expression was dependent on p38 and repressed by ERK. TGFβ1 induced phosphorylation of Smad2/3 and increased Col3 expression, which was prevented by Smad3 depletion. In contrast, CGS21680 did not activate Smad2/3, and Smad2/3 knockdown did not prevent CGS21680-induced Col1 or Col3 increases. Our results indicate that cAMP is a concentration-dependent switch for collagen production via noncanonical, AKT-dependent, Smad2/3-independent signaling. These observations explain the paradoxical effects of cAMP on collagen expression.
Collapse
Affiliation(s)
- Miguel Perez-Aso
- 1Department of Medicine, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|
27
|
Ramani VC, Sanderson RD. Chemotherapy stimulates syndecan-1 shedding: a potentially negative effect of treatment that may promote tumor relapse. Matrix Biol 2013; 35:215-22. [PMID: 24145151 DOI: 10.1016/j.matbio.2013.10.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/11/2013] [Accepted: 10/12/2013] [Indexed: 01/01/2023]
Abstract
In patients with multiple myeloma, the heparan sulfate proteoglycan syndecan-1 (CD138) is shed from the surface of tumor cells and accumulates in the serum and within the extracellular matrix of the bone marrow where it promotes tumor growth and metastasis. In the present study we discovered that commonly used anti-myeloma drugs stimulate syndecan-1 shedding both in vitro and in animals bearing myeloma tumors. Enhanced shedding is accompanied by increased syndecan-1 synthesis prior to drug induced tumor cell death. Addition of a caspase inhibitor blocks the drug-induced shedding of syndecan-1 in vitro indicating that shedding is linked to the onset of apoptosis. ADAM inhibitors or siRNA targeting ADAMs blocked drug-induced shedding suggesting that upregulation or activation of ADAMs is responsible for cleaving syndecan-1 from the tumor cell surface. These results reveal that myeloma chemotherapy stimulates synthesis and shedding of syndecan-1, a potentially negative side effect that may lead to the accumulation of high levels of syndecan-1 to establish a microenvironment that nurtures relapse and promotes tumor progression. Interestingly, we also found that chemotherapeutic drugs stimulated syndecan-1 shedding from pancreatic cancer cells as well, indicating that drug-induced shedding of syndecan-1 may occur in many cancer types. Overall, our results indicate that the use of metalloproteinase inhibitors (to inhibit syndecan-1 shedding) in combination with chemotherapy may represent a novel therapeutic strategy to prevent re-establishment of a microenvironment conducive for tumor relapse.
Collapse
Affiliation(s)
- Vishnu C Ramani
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ralph D Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
28
|
Ghosh AK, Quaggin SE, Vaughan DE. Molecular basis of organ fibrosis: potential therapeutic approaches. Exp Biol Med (Maywood) 2013; 238:461-81. [PMID: 23856899 DOI: 10.1177/1535370213489441] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Fibrosis, a non-physiological wound healing in multiple organs, is associated with end-stage pathological symptoms of a wide variety of vascular injury and inflammation related diseases. In response to chemical, immunological and physical insults, the body's defense system and matrix synthetic machinery respond to healing the wound and maintain tissue homeostasis. However, uncontrolled wound healing leads to scarring or fibrosis, a pathological condition characterized by excessive synthesis and accumulation of extracellular matrix proteins, loss of tissue homeostasis and organ failure. Understanding the actual cause of pathological wound healing and identification of igniter(s) of fibrogenesis would be helpful to design novel therapeutic approaches to control pathological wound healing and to prevent fibrosis related morbidity and mortality. In this article, we review the significance of a few key cytokines (TGF-β, IFN-γ, IL-10) transcriptional activators (Sp1, Egr-1, Smad3), repressors (Smad7, Fli-1, PPAR-γ, p53, Klotho) and epigenetic modulators (acetyltransferase, methyltransferases, deacetylases, microRNAs) involved in major matrix protein collagen synthesis under pathological stage of wound healing, and the potentiality of these regulators as therapeutic targets for fibrosis treatment. The significance of endothelial to mesenchymal transition (EndMT) and senescence, two newly emerged fields in fibrosis research, has also been discussed.
Collapse
Affiliation(s)
- Asish K Ghosh
- Feinberg Cardiovascular Research Institute & Division of Nephrology, Northwestern University, Chicago, IL, USA.
| | | | | |
Collapse
|
29
|
Extracellular matrix degradation and tissue remodeling in periprosthetic loosening and osteolysis: focus on matrix metalloproteinases, their endogenous tissue inhibitors, and the proteasome. BIOMED RESEARCH INTERNATIONAL 2013; 2013:230805. [PMID: 23862137 PMCID: PMC3703793 DOI: 10.1155/2013/230805] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/31/2013] [Indexed: 12/18/2022]
Abstract
The leading complication of total joint replacement is periprosthetic osteolysis, which often results in aseptic loosening of the implant, leading to revision surgery. Extracellular matrix degradation and connective tissue remodeling around implants have been considered as major biological events in the periprosthetic loosening. Critical mediators of wear particle-induced inflammatory osteolysis released by periprosthetic synovial cells (mainly macrophages) are inflammatory cytokines, chemokines, and proteolytic enzymes, mainly matrix metalloproteinases (MMPs). Numerous studies reveal a strong interdependence of MMP expression and activity with the molecular mechanisms that control the composition and turnover of periprosthetic matrices. MMPs can either actively modulate or be modulated by the molecular mechanisms that determine the debris-induced remodeling of the periprosthetic microenvironment. In the present study, the molecular mechanisms that control the composition, turnover, and activity of matrix macromolecules within the periprosthetic microenvironment exposed to wear debris are summarized and presented. Special emphasis is given to MMPs and their endogenous tissue inhibitors (TIMPs), as well as to the proteasome pathway, which appears to be an elegant molecular regulator of specific matrix macromolecules (including specific MMPs and TIMPs). Furthermore, strong rationale for potential clinical applications of the described molecular mechanisms to the treatment of periprosthetic loosening and osteolysis is provided.
Collapse
|
30
|
Bailey JR, Bland PW, Tarlton JF, Peters I, Moorghen M, Sylvester PA, Probert CSJ, Whiting CV. IL-13 promotes collagen accumulation in Crohn's disease fibrosis by down-regulation of fibroblast MMP synthesis: a role for innate lymphoid cells? PLoS One 2012; 7:e52332. [PMID: 23300643 PMCID: PMC3534115 DOI: 10.1371/journal.pone.0052332] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/12/2012] [Indexed: 01/20/2023] Open
Abstract
Background Fibrosis is a serious consequence of Crohn’s disease (CD), often necessitating surgical resection. We examined the hypothesis that IL-13 may promote collagen accumulation within the CD muscle microenvironment. Methods Factors potentially modulating collagen deposition were examined in intestinal tissue samples from fibrotic (f) CD and compared with cancer control (C), ulcerative colitis (UC) and uninvolved (u) CD. Mechanisms attributable to IL-13 were analysed using cell lines derived from uninvolved muscle tissue and tissue explants. Results In fCD muscle extracts, collagen synthesis was significantly increased compared to other groups, but MMP-2 was not co-ordinately increased. IL-13 transcripts were highest in fCD muscle compared to muscle from other groups. IL-13 receptor (R) α1 was expressed by intestinal muscle smooth muscle, nerve and KIR+ cells. Fibroblasts from intestinal muscle expressed Rα1, phosphorylated STAT6 in response to IL-13, and subsequently down-regulated MMP-2 and TNF-α-induced MMP-1 and MMP-9 synthesis. Cells with the phenotype KIR+CD45+CD56+/−CD3− were significantly increased in fCD muscle compared to all other groups, expressed Rα1 and membrane IL-13, and transcribed high levels of IL-13. In explanted CD muscle, these cells did not phosphorylate STAT6 in response to exogenous IL-13. Conclusions The data indicate that in fibrotic intestinal muscle of Crohn’s patients, the IL-13 pathway is stimulated, involving a novel population of infiltrating IL-13Rα1+, KIR+ innate lymphoid cells, producing IL-13 which inhibits fibroblast MMP synthesis. Consequently, matrix degradation is down-regulated and this leads to excessive collagen deposition.
Collapse
Affiliation(s)
- Jennifer R. Bailey
- School of Veterinary Science, University of Bristol, Bristol, United Kingdom
| | - Paul W. Bland
- School of Veterinary Science, University of Bristol, Bristol, United Kingdom
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - John F. Tarlton
- School of Veterinary Science, University of Bristol, Bristol, United Kingdom
- * E-mail:
| | - Iain Peters
- Molecular Testing, Innovation Centre, University of Exeter, Exeter, United Kingdom
| | | | - Paul A. Sylvester
- Department of Surgery, Bristol Royal Infirmary, Bristol, United Kingdom
| | | | | |
Collapse
|
31
|
Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, Grune T, Gonos ES. Protein damage, repair and proteolysis. Mol Aspects Med 2012; 35:1-71. [PMID: 23107776 DOI: 10.1016/j.mam.2012.09.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/26/2012] [Indexed: 01/10/2023]
Abstract
Proteins are continuously affected by various intrinsic and extrinsic factors. Damaged proteins influence several intracellular pathways and result in different disorders and diseases. Aggregation of damaged proteins depends on the balance between their generation and their reversal or elimination by protein repair systems and degradation, respectively. With regard to protein repair, only few repair mechanisms have been evidenced including the reduction of methionine sulfoxide residues by the methionine sulfoxide reductases, the conversion of isoaspartyl residues to L-aspartate by L-isoaspartate methyl transferase and deglycation by phosphorylation of protein-bound fructosamine by fructosamine-3-kinase. Protein degradation is orchestrated by two major proteolytic systems, namely the lysosome and the proteasome. Alteration of the function for both systems has been involved in all aspects of cellular metabolic networks linked to either normal or pathological processes. Given the importance of protein repair and degradation, great effort has recently been made regarding the modulation of these systems in various physiological conditions such as aging, as well as in diseases. Genetic modulation has produced promising results in the area of protein repair enzymes but there are not yet any identified potent inhibitors, and, to our knowledge, only one activating compound has been reported so far. In contrast, different drugs as well as natural compounds that interfere with proteolysis have been identified and/or developed resulting in homeostatic maintenance and/or the delay of disease progression.
Collapse
Affiliation(s)
- Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Isabelle Petropoulos
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Stefanie Grimm
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Konstantina Georgila
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Betul Catalgol
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Haydarpasa, Istanbul, Turkey
| | - Bertrand Friguet
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| |
Collapse
|
32
|
Pujols L, Fernández-Bertolín L, Fuentes-Prado M, Alobid I, Roca-Ferrer J, Agell N, Mullol J, Picado C. Proteasome inhibition reduces proliferation, collagen expression, and inflammatory cytokine production in nasal mucosa and polyp fibroblasts. J Pharmacol Exp Ther 2012; 343:184-97. [PMID: 22787116 DOI: 10.1124/jpet.111.190710] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proteasome inhibitors, used in cancer treatment for their proapoptotic effects, have anti-inflammatory and antifibrotic effects on animal models of various inflammatory and fibrotic diseases. Their effects in cells from patients affected by either inflammatory or fibrotic diseases have been poorly investigated. Nasal polyposis is a chronic inflammatory disease of the sinus mucosa characterized by tissue inflammation and remodeling. We tested the hypothesis that proteasome inhibition of nasal polyp fibroblasts might reduce their proliferation and inflammatory and fibrotic response. Accordingly, we investigated the effect of the proteasome inhibitor Z-Leu-Leu-Leu-B(OH)(2) (MG262) on cell viability and proliferation and on the production of collagen and inflammatory cytokines in nasal polyp and nasal mucosa fibroblasts obtained from surgery specimens. MG262 reduced the viability of nasal mucosa and polyp fibroblasts concentration- and time-dependently, with marked effects after 48 h of treatment. The proteasome inhibitor bortezomib provoked a similar effect. MG262-induced cell death involved loss of mitochondrial membrane potential, caspase-3 and poly(ADP-ribose) polymerase activation, induction of c-Jun phosphorylation, and mitogen-activated protein kinase phosphatase-1 expression. Low concentrations of MG262 provoked growth arrest, inhibited DNA replication and retinoblastoma phosphorylation, and increased expression of the cell cycle inhibitors p21 and p27. MG262 concentration-dependently inhibited basal and transforming growth factor-β-induced collagen mRNA expression and interleukin (IL)-1β-induced production of IL-6, IL-8, monocyte chemoattractant protein-1, regulated on activation normal T cell expressed and secreted, and granulocyte/macrophage colony-stimulating factor in both fibroblast types. MG262 inhibited IL-1β/tumor necrosis factor-α-induced activation of nuclear factor-κB. We conclude that noncytotoxic treatment with MG262 reduces the proliferative, fibrotic, and inflammatory response of nasal fibroblasts, whereas high MG262 concentrations induce apoptosis.
Collapse
Affiliation(s)
- Laura Pujols
- Clinical and Experimental Respiratory Immunoallergy, Institut d'Investigacions Biomèdiques August Pi i Sunyer, and Centro de Investigaciones Respiratorias en Red de Enfermedades Respiratorias, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Avouac J, Palumbo K, Tomcik M, Zerr P, Dees C, Horn A, Maurer B, Akhmetshina A, Beyer C, Sadowski A, Schneider H, Shiozawa S, Distler O, Schett G, Allanore Y, Distler JHW. Inhibition of activator protein 1 signaling abrogates transforming growth factor β-mediated activation of fibroblasts and prevents experimental fibrosis. ACTA ACUST UNITED AC 2012; 64:1642-52. [DOI: 10.1002/art.33501] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Piao MJ, Zhang R, Lee NH, Hyun JW. Phloroglucinol Attenuates Ultraviolet B Radiation-Induced Matrix Metalloproteinase-1 Production in Human Keratinocytes via Inhibitory Actions against Mitogen-Activated Protein Kinases and Activator Protein-1. Photochem Photobiol 2012; 88:381-8. [DOI: 10.1111/j.1751-1097.2012.01074.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Fulciniti M, Amin S, Nanjappa P, Rodig S, Prabhala R, Li C, Minvielle S, Tai YT, Tassone P, Avet-Loiseau H, Hideshima T, Anderson KC, Munshi NC. Significant biological role of sp1 transactivation in multiple myeloma. Clin Cancer Res 2011; 17:6500-9. [PMID: 21856768 DOI: 10.1158/1078-0432.ccr-11-1036] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE The transcription factor specificity protein 1 (Sp1) controls number of cellular processes by regulating the expression of critical cell cycle, differentiation, and apoptosis-related genes containing proximal GC/GT-rich promoter elements. We here provide experimental and clinical evidence that Sp1 plays an important regulatory role in multiple myeloma (MM) cell growth and survival. EXPERIMENTAL DESIGN We have investigated the functional Sp1 activity in MM cells using a plasmid with Firefly luciferase reporter gene driven by Sp1-responsive promoter. We have also used both siRNA- and short hairpin RNA-mediated Sp1 knockdown to investigate the growth and survival effects of Sp1 on MM cells and further investigated the anti-MM activity of terameprocol (TMP), a small molecule that specifically competes with Sp1-DNA binding in vitro and in vivo. RESULTS We have confirmed high Sp1 activity in MM cells that is further induced by adhesion to bone marrow stromal cells (BMSC). Sp1 knockdown decreases MM cell proliferation and induces apoptosis. Sp1-DNA binding inhibition by TMP inhibits MM cell growth both in vitro and in vivo, inducing caspase-9-dependent apoptosis and overcoming the protective effects of BMSCs. CONCLUSIONS Our results show Sp1 as an important transcription factor in myeloma that can be therapeutically targeted for clinical application by TMP.
Collapse
Affiliation(s)
- Mariateresa Fulciniti
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|