1
|
Liu J, Zhang K, Zhang X, Guan F, Zeng H, Kubo M, Lee P, Candotti F, James LK, Camara NOS, Benlagha K, Lei J, Forsman H, Yang L, Xiao W, Liu Z, Liu C. Immunoglobulin class-switch recombination: Mechanism, regulation, and related diseases. MedComm (Beijing) 2024; 5:e662. [PMID: 39144468 PMCID: PMC11322596 DOI: 10.1002/mco2.662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2024] [Accepted: 06/30/2024] [Indexed: 08/16/2024] Open
Abstract
Maturation of the secondary antibody repertoire requires class-switch recombination (CSR), which switches IgM to other immunoglobulins (Igs), and somatic hypermutation, which promotes the production of high-affinity antibodies. Following immune response or infection within the body, activation of T cell-dependent and T cell-independent antigens triggers the activation of activation-induced cytidine deaminase, initiating the CSR process. CSR has the capacity to modify the functional properties of antibodies, thereby contributing to the adaptive immune response in the organism. Ig CSR defects, characterized by an abnormal relative frequency of Ig isotypes, represent a rare form of primary immunodeficiency. Elucidating the molecular basis of Ig diversification is essential for a better understanding of diseases related to Ig CSR defects and could provide clues for clinical diagnosis and therapeutic approaches. Here, we review the most recent insights on the diversification of five Ig isotypes and choose several classic diseases, including hyper-IgM syndrome, Waldenström macroglobulinemia, hyper-IgD syndrome, selective IgA deficiency, hyper-IgE syndrome, multiple myeloma, and Burkitt lymphoma, to illustrate the mechanism of Ig CSR deficiency. The investigation into the underlying mechanism of Ig CSR holds significant potential for the advancement of increasingly precise diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Jia‐Chen Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Ke Zhang
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Xu Zhang
- Department of RespiratoryThe First Affiliated Hospital of Yangtze UniversityJingzhouChina
| | - Fei Guan
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Hu Zeng
- Department of ImmunologyMayo Clinic College of Medicine and ScienceRochesterUSA
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama InstituteYokohamaJapan
| | - Pamela Lee
- Department of Paediatrics and Adolescent MedicineLKS Faculty of MedicineThe University of Hong KongHong KongChina
| | - Fabio Candotti
- Division of Immunology and AllergyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | | | | | - Kamel Benlagha
- Institut de Recherche Saint‐LouisUniversité de ParisParisFrance
| | - Jia‐Hui Lei
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Huamei Forsman
- Department of Rheumatology and Inflammation ResearchInstitute of Medicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Lu Yang
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Wei Xiao
- Department of RespiratoryThe First Affiliated Hospital of Yangtze UniversityJingzhouChina
| | - Zheng Liu
- Department of Otolaryngology‐Head and Neck SurgeryTongji Hospital, Tongji Medical College, HuazhongUniversity of Science and TechnologyWuhanChina
| | - Chao‐Hong Liu
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
2
|
Della Mina E, Jackson KJL, Crawford AJI, Faulks ML, Pathmanandavel K, Acquarola N, O'Sullivan M, Kerre T, Naesens L, Claes K, Goodnow CC, Haerynck F, Kracker S, Meyts I, D'Orsogna LJ, Ma CS, Tangye SG. A Novel Heterozygous Variant in AICDA Impairs Ig Class Switching and Somatic Hypermutation in Human B Cells and is Associated with Autosomal Dominant HIGM2 Syndrome. J Clin Immunol 2024; 44:66. [PMID: 38363477 PMCID: PMC10873450 DOI: 10.1007/s10875-024-01665-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/21/2024] [Indexed: 02/17/2024]
Abstract
B cells and their secreted antibodies are fundamental for host-defense against pathogens. The generation of high-affinity class switched antibodies results from both somatic hypermutation (SHM) of the immunoglobulin (Ig) variable region genes of the B-cell receptor and class switch recombination (CSR) which alters the Ig heavy chain constant region. Both of these processes are initiated by the enzyme activation-induced cytidine deaminase (AID), encoded by AICDA. Deleterious variants in AICDA are causal of hyper-IgM syndrome type 2 (HIGM2), a B-cell intrinsic primary immunodeficiency characterised by recurrent infections and low serum IgG and IgA levels. Biallelic variants affecting exons 2, 3 or 4 of AICDA have been identified that impair both CSR and SHM in patients with autosomal recessive HIGM2. Interestingly, B cells from patients with autosomal dominant HIGM2, caused by heterozygous variants (V186X, R190X) located in AICDA exon 5 encoding the nuclear export signal (NES) domain, show abolished CSR but variable SHM. We herein report the immunological and functional phenotype of two related patients presenting with common variable immunodeficiency who were found to have a novel heterozygous variant in AICDA (L189X). This variant led to a truncated AID protein lacking the last 10 amino acids of the NES at the C-terminal domain. Interestingly, patients' B cells carrying the L189X variant exhibited not only greatly impaired CSR but also SHM in vivo, as well as CSR and production of IgG and IgA in vitro. Our findings demonstrate that the NES domain of AID can be essential for SHM, as well as for CSR, thereby refining the correlation between AICDA genotype and SHM phenotype as well as broadening our understanding of the pathophysiology of HIGM disorders.
Collapse
Affiliation(s)
- Erika Della Mina
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | - Katherine J L Jackson
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Alexander J I Crawford
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Megan L Faulks
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
| | - Karrnan Pathmanandavel
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | - Nicolino Acquarola
- Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Michael O'Sullivan
- Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Murdoch, WA, Australia
- Department of Immunology, Perth Children's Hospital, Perth, WA, Australia
| | - Tessa Kerre
- Department of Hematology, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Primary Immunodeficiency Ghent (CPIG), Jeffrey Modell Diagnosis and Research Center, ERN Rita Network Center, Ghent University Hospital, Ghent, Belgium
| | - Leslie Naesens
- Center for Primary Immunodeficiency Ghent (CPIG), Jeffrey Modell Diagnosis and Research Center, ERN Rita Network Center, Ghent University Hospital, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Karlien Claes
- Center for Primary Immunodeficiency Ghent (CPIG), Jeffrey Modell Diagnosis and Research Center, ERN Rita Network Center, Ghent University Hospital, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Christopher C Goodnow
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | - Filomeen Haerynck
- Center for Primary Immunodeficiency Ghent (CPIG), Jeffrey Modell Diagnosis and Research Center, ERN Rita Network Center, Ghent University Hospital, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sven Kracker
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, 75015, Paris, France
- Université Paris Cité, 75015, Paris, France
| | - Isabelle Meyts
- Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Louvain, Belgium
- Pediatric Immunodeficiency, Department of Pediatrics, University Hospitals Leuven, Louvain, Belgium
| | - Lloyd J D'Orsogna
- Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Murdoch, WA, Australia
- School of Medicine, University of Western Australia, Nedlands, WA, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | - Stuart G Tangye
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia.
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia.
| |
Collapse
|
3
|
Bohn MK, Schneider R, Jung B, Adeli K. Pediatric reference interval verification for 16 biochemical markers on the Alinity ci system in the CALIPER cohort of healthy children and adolescents. Clin Chem Lab Med 2023; 61:2033-2040. [PMID: 37114851 PMCID: PMC10695436 DOI: 10.1515/cclm-2023-0256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023]
Abstract
OBJECTIVES Special chemistry parameters are useful in the diagnosis and management of inherited disorders, liver disease, and immunopathology. Evidence-based pediatric reference intervals (RIs) are required for appropriate clinical decision-making and need to be verified as new assays are developed. This study aimed to evaluate the applicability of pediatric RIs established for biochemical markers on the ARCHITECT for use on newer Alinity assays. METHODS An initial method validation was completed for 16 assays, including precision, linearity, and method comparison. Sera collected from approximately 100 healthy children and adolescents as part of the Canadian Laboratory Initiative on Pediatric Reference Intervals (CALIPER) were also analyzed on the Alinity c system. Percentage of results within established ARCHITECT RIs were calculated and considered verified if ≥90 % fell within established limits. New RIs were established for three electrolytes, glucose, and lactate wherein no data were previously reported. RESULTS Of the 11 assays for which CALIPER pediatric RIs were previously established on ARCHITECT assays, 10 met the verification criteria. Alpha-1-antitrypsin did not meet verification criterion and a new RI was established. For the other 5 assays, de novo RIs were derived following analysis of 139-168 samples from healthy children and adolescents. None required age- and sex-partitioning. CONCLUSIONS Herein, pediatric RIs were verified or established for 16 chemistry markers in the CALIPER cohort on Alinity assays. Findings support excellent concordance between ARCHITECT and Alinity assays with one exception (alpha-1-antitrypsin) as well as robustness of age- and sex-specific patterns originally reported by CALIPER in healthy Canadian children and adolescents.
Collapse
Affiliation(s)
- Mary Kathryn Bohn
- CALIPER Program, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | - Benjamin Jung
- CALIPER Program, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Khosrow Adeli
- CALIPER Program, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Kenney HM, Rangel-Moreno J, Peng Y, Chen KL, Bruno J, Embong A, Pritchett E, Fox JI, Becerril-Villanueva E, Gamboa-Domínguez A, Quataert S, Muthukrishnan G, Wood RW, Korman BD, Anolik JH, Xing L, Ritchlin CT, Schwarz EM, Wu CL. Multi-omics analysis identifies IgG2b class-switching with ALCAM-CD6 co-stimulation in joint-draining lymph nodes during advanced inflammatory-erosive arthritis. Front Immunol 2023; 14:1237498. [PMID: 37691918 PMCID: PMC10485835 DOI: 10.3389/fimmu.2023.1237498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Defective lymphatic drainage and translocation of B-cells in inflamed (Bin) joint-draining lymph node sinuses are pathogenic phenomena in patients with severe rheumatoid arthritis (RA). However, the molecular mechanisms underlying this lymphatic dysfunction remain poorly understood. Herein, we utilized multi-omic spatial and single-cell transcriptomics to evaluate altered cellular composition (including lymphatic endothelial cells, macrophages, B-cells, and T-cells) in the joint-draining lymph node sinuses and their associated phenotypic changes and cell-cell interactions during RA development using the tumor necrosis factor transgenic (TNF-Tg) mouse model. Methods Popliteal lymph nodes (PLNs) from wild-type (n=10) and TNF-Tg male mice with "Early" (5 to 6-months of age; n=6) and "Advanced" (>8-months of age; n=12) arthritis were harvested and processed for spatial transcriptomics. Single-cell RNA sequencing (scRNAseq) was performed in PLNs from the TNF-Tg cohorts (n=6 PLNs pooled/cohort). PLN histopathology and ELISPOT along with ankle histology and micro-CT were evaluated. Histopathology of human lymph nodes and synovia was performed for clinical correlation. Results Advanced PLN sinuses exhibited an increased Ighg2b/Ighm expression ratio (Early 0.5 ± 0.1 vs Advanced 1.4 ± 0.5 counts/counts; p<0.001) that significantly correlated with reduced talus bone volumes in the afferent ankle (R2 = 0.54, p<0.001). Integration of single-cell and spatial transcriptomics revealed the increased IgG2b+ plasma cells localized in MARCO+ peri-follicular medullary sinuses. A concomitant decreased Fth1 expression (Early 2.5 ± 0.74 vs Advanced 1.0 ± 0.50 counts, p<0.001) within Advanced PLN sinuses was associated with accumulation of iron-laden Prussian blue positive macrophages in lymph nodes and synovium of Advanced TNF-Tg mice, and further validated in RA clinical samples. T-cells were increased 8-fold in Advanced PLNs, and bioinformatic pathway assessment identified the interaction between ALCAM+ macrophages and CD6+ T-cells as a plausible co-stimulatory mechanism to promote IgG2b class-switching. Discussion Collectively, these data support a model of flare in chronic TNF-induced arthritis in which loss of lymphatic flow through affected joint-draining lymph nodes facilitates the interaction between effluxing macrophages and T-cells via ALCAM-CD6 co-stimulation, initiating IgG2b class-switching and plasma cell differentiation of the expanded Bin population. Future work is warranted to investigate immunoglobulin clonality and potential autoimmune consequences, as well as the efficacy of anti-CD6 therapy to prevent these pathogenic events.
Collapse
Affiliation(s)
- H. Mark Kenney
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Javier Rangel-Moreno
- Department of Medicine, Division of Allergy, Immunology, Rheumatology, University of Rochester Medical Center, Rochester, NY, United States
| | - Yue Peng
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Kiana L. Chen
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Jennifer Bruno
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Abdul Embong
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Elizabeth Pritchett
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY, United States
| | - Jeffrey I. Fox
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Enrique Becerril-Villanueva
- Psychoimmunology Laboratory, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Mexico City, Mexico
| | - Armando Gamboa-Domínguez
- Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Sally Quataert
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, United States
| | - Ronald W. Wood
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
- Department of Urology, University of Rochester Medical Center, Rochester, NY, United States
| | - Benjamin D. Korman
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Medicine, Division of Allergy, Immunology, Rheumatology, University of Rochester Medical Center, Rochester, NY, United States
| | - Jennifer H. Anolik
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Medicine, Division of Allergy, Immunology, Rheumatology, University of Rochester Medical Center, Rochester, NY, United States
| | - Lianping Xing
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Christopher T. Ritchlin
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Medicine, Division of Allergy, Immunology, Rheumatology, University of Rochester Medical Center, Rochester, NY, United States
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Medicine, Division of Allergy, Immunology, Rheumatology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Urology, University of Rochester Medical Center, Rochester, NY, United States
| | - Chia-Lung Wu
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
5
|
Zheng X, Dozmorov MG, Strohlein CE, Bastacky S, Sawalha AH. Ezh2 Knockout in B Cells Impairs Plasmablast Differentiation and Ameliorates Lupus-like Disease in MRL/lpr Mice. Arthritis Rheumatol 2023; 75:1395-1406. [PMID: 36897808 PMCID: PMC10492897 DOI: 10.1002/art.42492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/25/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
OBJECTIVES EZH2 regulates B cell development and differentiation. We previously demonstrated increased EZH2 expression in peripheral blood mononuclear cells from lupus patients. The goal of this study was to evaluate the role of EZH2 expression in B cells in the pathogenesis of lupus. METHODS We generated an MRL/lpr mouse with floxed Ezh2, which was crossed with CD19-Cre mice to examine the effect of B cell EZH2 deficiency in MRL/lpr lupus-prone mice. Differentiation of B cells was assessed using flow cytometry. Single-cell RNA sequencing and single-cell B cell receptor sequencing were performed. In vitro B cell culture with an X-box binding protein 1 (XBP1) inhibitor was performed. EZH2 and XBP1 messenger RNA levels in CD19+ B cells isolated from lupus patients and healthy controls were analyzed. RESULTS We show that Ezh2 deletion in B cells significantly decreased autoantibody production and improved glomerulonephritis. B cell development was altered in the bone marrow and spleen of EZH2-deficient mice. Differentiation of germinal center B cells and plasmablasts was impaired. Single-cell RNA sequencing showed that XBP1, a key transcription factor in B cell development, is down-regulated in the absence of EZH2. Inhibiting XBP1 in vitro impairs plasmablast development similar to EZH2 deficiency in mice. Single-cell B cell receptor RNA sequencing revealed defective immunoglobulin class-switch recombination in EZH2-deficient mice. In human lupus B cells, we observed a strong correlation between EZH2 and XBP1 messenger RNA expression levels. CONCLUSION EZH2 overexpression in B cells contributes to disease pathogenesis in lupus.
Collapse
Affiliation(s)
- Xiaoqing Zheng
- Department of Pediatrics, Division of Rheumatology, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
| | - Colleen E Strohlein
- Department of Pediatrics, Division of Rheumatology, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sheldon Bastacky
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Amr H Sawalha
- Department of Pediatrics, Division of Rheumatology, Children's Hospital of Pittsburgh, Department of Medicine, Division of Rheumatology and Clinical Immunology, Lupus Center of Excellence, and Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
6
|
Vergoossen DLE, Ruiter AM, Keene KR, Niks EH, Tannemaat MR, Strijbos E, Lipka AF, van der Zijde ECJ, van Tol MJD, Bakker JA, Wevers BA, Westerberg E, Borges LS, Tong OC, Richman DP, Illa I, Punga AR, Evoli A, van der Maarel SM, Verschuuren JJ, Huijbers MG. Enrichment of serum IgG4 in MuSK myasthenia gravis patients. J Neuroimmunol 2022; 373:577978. [PMID: 36240543 DOI: 10.1016/j.jneuroim.2022.577978] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Abstract
Muscle-specific kinase (MuSK) myasthenia gravis (MG) is a neuromuscular autoimmune disease belonging to a growing group of IgG4 autoimmune diseases (IgG4-AIDs), in which the majority of pathogenic autoantibodies are of the IgG4 subclass. The more prevalent form of MG with acetylcholine receptor (AChR) antibodies is caused by IgG1-3 autoantibodies. A dominant role for IgG4 in autoimmune disease is intriguing due to its anti-inflammatory characteristics. It is unclear why MuSK autoantibodies are predominantly IgG4. We hypothesized that MuSK MG patients have a general predisposition to generate IgG4 responses, therefore resulting in high levels of circulating IgG4. To investigate this, we quantified serum Ig isotypes and IgG subclasses using nephelometric and turbidimetric assays in MuSK MG and AChR MG patients not under influence of immunosuppressive treatment. Absolute serum IgG1 was increased in both MuSK and AChR MG patients compared to healthy donors. In addition, only MuSK MG patients on average had significantly increased and enriched serum IgG4. Although more MuSK MG patients had elevated serum IgG4, for most the IgG4 serum levels fell within the normal range. Correlation analyses suggest MuSK-specific antibodies do not solely explain the variation in IgG4 levels. In conclusion, although serum IgG4 levels are slightly increased, the levels do not support ubiquitous IgG4 responses in MuSK MG patients as the underlying cause of dominant IgG4 MuSK antibodies.
Collapse
Affiliation(s)
- Dana L E Vergoossen
- Department of Human Genetics, Leiden University Medical Centre LUMC, Einthovenweg 20, 2300 RC Leiden, the Netherlands
| | - Annabel M Ruiter
- Department of Neurology, Leiden University Medical Centre LUMC, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Kevin R Keene
- Department of Neurology, Leiden University Medical Centre LUMC, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Erik H Niks
- Department of Neurology, Leiden University Medical Centre LUMC, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Martijn R Tannemaat
- Department of Neurology, Leiden University Medical Centre LUMC, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Ellen Strijbos
- Department of Neurology, Leiden University Medical Centre LUMC, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Alexander F Lipka
- Department of Neurology, Leiden University Medical Centre LUMC, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Els C Jol van der Zijde
- Willem-Alexander Children's Hospital, Leiden University Medical Centre LUMC, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Maarten J D van Tol
- Willem-Alexander Children's Hospital, Leiden University Medical Centre LUMC, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Jaap A Bakker
- Department of Clinical Chemistry, Leiden University Medical Centre LUMC, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Brigitte A Wevers
- Department of Clinical Chemistry, Leiden University Medical Centre LUMC, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Elisabet Westerberg
- Clinical Neurophysiology, Department of Medical Sciences, Uppsala University, Akademiska sjukhuset, Ingång 85, 3rd floor, 751 85 Uppsala, Sweden
| | - Lúcia S Borges
- Department of Neurology, University of California Davis, 1515 Newton Court, Davis, CA 95618, USA
| | - Olivia C Tong
- Department of Neurology, University of California Davis, 1515 Newton Court, Davis, CA 95618, USA
| | - David P Richman
- Department of Neurology, University of California Davis, 1515 Newton Court, Davis, CA 95618, USA
| | - Isabel Illa
- Neuromuscular diseases Neurology department, Hospital Sant Pau UAB, Avenida Pare Claret N° 167, Barcelona 08025, Spain
| | - Anna Rostedt Punga
- Clinical Neurophysiology, Department of Medical Sciences, Uppsala University, Akademiska sjukhuset, Ingång 85, 3rd floor, 751 85 Uppsala, Sweden
| | - Amelia Evoli
- Department of Neurology, Università Cattolica del Sacro Cuore, Largo A. Gemelli 1, 00168 Rome, Italy
| | - Silvère M van der Maarel
- Department of Human Genetics, Leiden University Medical Centre LUMC, Einthovenweg 20, 2300 RC Leiden, the Netherlands
| | - Jan J Verschuuren
- Department of Neurology, Leiden University Medical Centre LUMC, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Maartje G Huijbers
- Department of Human Genetics, Leiden University Medical Centre LUMC, Einthovenweg 20, 2300 RC Leiden, the Netherlands; Department of Neurology, Leiden University Medical Centre LUMC, Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
7
|
Akarsu A, Halaçlı S, Tan Ç, Kuşkonmaz B, Küpesiz A, Çetinkaya D, Sanal Ö, Tezcan İ, Çağdaş D. A single-center study points to diverse features and outcome in patients with Hyperimmunoglobulin M Syndrome and Class- Switch Recombination defects. Scand J Immunol 2022; 96:e13213. [PMID: 36808635 DOI: 10.1111/sji.13213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/03/2022] [Accepted: 08/14/2022] [Indexed: 11/27/2022]
Abstract
Isotype class-switch recombination (CSR), somatic hypermutation (SHM), B cell signalling and DNA repair mechanisms defects are responsible for high IgM. The hyperimmunoglobulin M (HIGM) phenotype and CSR-related defects are now classified under primary antibody defects, combined immunodeficiencies or syndromic immunodeficiencies groups. The aim of the study is to evaluate the diverse phenotypic/genotypic/laboratory characteristics and outcome of patients with CSR defects and HIGM-related defects. We enrolled 50 patients. The most common gene defect was Activation-induced cytidine deaminase (AID) deficiency (n = 18), followed by CD40 Ligand (CD40L) (n = 14) and CD40 (n = 3) deficiency. Median ages at first symptom and diagnosis were significantly lower in CD40L deficiency (8.5 and 30 months, respectively) than AID deficiency (30 and 114 months, respectively) (p = .001 and p = .008, respectively). Frequent clinical symptoms were recurrent (66%) and severe (14.9%) infections, and/or autoimmune/non-infectious inflammatory features (48.4%). Eosinophilia and neutropenia were at a higher rate in CD40L deficiency patients (77.8%, p = .002 and 77.8%, p = .002, respectively) when compared to AID deficiency. Median serum IgM level was low in 28.6% of CD40L deficiency patients. It was significantly lower when compared to AID deficiency (p < 0.001). Six patients (CD40L deficiency n = 4, CD40 deficiency n = 2) underwent hematopoietic stem cell transplantation. Five were alive at the last visit. Four patients two patients with CD40L deficiency, one with CD40 deficiency and one with AID deficiency had novel mutations. In conclusion; patients with CSR defects and HIGM phenotype may present with a wide range of clinical manifestations and laboratory findings. Low IgM, neutropenia and eosinophilia were prominent in patients with CD40L deficiency. Characterization of genetic defect-specific clinical and laboratory features may ease the diagnosis, prevent the underdiagnoses of patients and ameliorate the outcome.
Collapse
Affiliation(s)
- Ayşegül Akarsu
- Hacettepe University Faculty of Medicine, Department of Pediatric Immunology, Ankara, Turkey
| | - Sevil Halaçlı
- Hacettepe University, Health Science Institute, Institute of Child Health, Department of Pediatric Immunology, Ankara, Turkey
| | - Çağman Tan
- Hacettepe University, Health Science Institute, Institute of Child Health, Department of Pediatric Immunology, Ankara, Turkey
| | - Barış Kuşkonmaz
- Hacettepe University Faculty of Medicine, Department of Pediatric Hematology, Ankara, Turkey
| | - Alphan Küpesiz
- Akdeniz University Faculty of Medicine, Department of Pediatric Hematology, Antalya, Turkey
| | - Duygu Çetinkaya
- Hacettepe University Faculty of Medicine, Department of Pediatric Hematology, Ankara, Turkey
| | - Özden Sanal
- Hacettepe University Faculty of Medicine, Department of Pediatric Immunology, Ankara, Turkey
| | - İlhan Tezcan
- Hacettepe University Faculty of Medicine, Department of Pediatric Immunology, Ankara, Turkey
| | - Deniz Çağdaş
- Hacettepe University Faculty of Medicine, Department of Pediatric Immunology, Ankara, Turkey
| |
Collapse
|
8
|
Vlachiotis S, Abolhassani H. Transcriptional regulation of B cell class-switch recombination: the role in development of noninfectious complications. Expert Rev Clin Immunol 2022; 18:1145-1154. [DOI: 10.1080/1744666x.2022.2123795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Stelios Vlachiotis
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Della Mina E, Tangye SG. Atypical Autosomal Recessive AID Deficiency-Yet Another Piece of the Hyper-IgM Puzzle. J Clin Immunol 2022; 42:713-715. [PMID: 35332417 DOI: 10.1007/s10875-022-01255-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Erika Della Mina
- Immunology and Immunodeficiency Laboratory, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales, 2010, Australia
- St. Vincent's Clinical School, UNSW Sydney, Darlinghurst, New South Wales, 2010, Australia
| | - Stuart G Tangye
- Immunology and Immunodeficiency Laboratory, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales, 2010, Australia.
- St. Vincent's Clinical School, UNSW Sydney, Darlinghurst, New South Wales, 2010, Australia.
| |
Collapse
|
10
|
Dirks J, Haase G, Cantaert T, Frey L, Klaas M, Rickert CH, Girschick H, Meffre E, Morbach H. A Novel AICDA Splice-Site Mutation in Two Siblings with HIGM2 Permits Somatic Hypermutation but Abrogates Mutational Targeting. J Clin Immunol 2022; 42:771-782. [PMID: 35246784 PMCID: PMC9166864 DOI: 10.1007/s10875-022-01233-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/14/2022] [Indexed: 11/29/2022]
Abstract
Hyper-IgM syndrome type 2 (HIGM2) is a B cell intrinsic primary immunodeficiency caused by mutations in AICDA encoding activation-induced cytidine deaminase (AID) which impair immunoglobulin class switch recombination (CSR) and somatic hypermutation (SHM). Whereas autosomal-recessive AID-deficiency (AR-AID) affects both CSR and SHM, the autosomal-dominant form (AD-AID) due to C-terminal heterozygous variants completely abolishes CSR but only partially affects SHM. AR-AID patients display enhanced germinal center (GC) reactions and autoimmune manifestations, which are not present in AD-AID, suggesting that SHM but not CSR regulates GC reactions and peripheral B cell tolerance. Herein, we describe two siblings with HIGM2 due to a novel homozygous AICDA mutation (c.428-1G > T) which disrupts the splice acceptor site of exon 4 and results in the sole expression of a truncated AID variant that lacks 10 highly conserved amino acids encoded by exon 4 (AID-ΔE4a). AID-ΔE4a patients suffered from defective CSR and enhanced GC reactions and were therefore indistinguishable from other AR-AID patients. However, the AID-ΔE4a variant only partially affected SHM as observed in AD-AID patients. In addition, AID-ΔE4a but not AD-AID patients revealed impaired targeting of mutational hotspot motives and distorted mutational patterns. Hence, qualitative defects in AID function and altered SHM rather than global decreased SHM activity may account for the disease phenotype in these patients.
Collapse
Affiliation(s)
- Johannes Dirks
- Pediatric Immunology, University Childrens' Hospital Würzburg, Würzburg, Germany
| | - Gabriele Haase
- Pediatric Immunology, University Childrens' Hospital Würzburg, Würzburg, Germany
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Lea Frey
- Institute of Pathology, Würzburg University, Würzburg, Germany
| | - Moritz Klaas
- Pediatric Rheumatology, Vivantes Hospital Friedrichshain, Berlin, Germany
| | | | - Hermann Girschick
- Pediatric Rheumatology, Vivantes Hospital Friedrichshain, Berlin, Germany
- German Center for Growth and Development "DEUZWEG", Berlin, Germany
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Henner Morbach
- Pediatric Immunology, University Childrens' Hospital Würzburg, Würzburg, Germany.
- Center for Rare Diseases - Reference Center Northern Bavaria (ZESE), Würzburg, Germany.
| |
Collapse
|
11
|
Su N, Hu CB, Shao T, Jin CY, Li H, Ji JF, Qin LL, Fan DD, Lin AF, Xiang LX, Shao JZ. Functional role of CD40 and CD154 costimulatory signals in IgZ-mediated immunity against bacterial infection. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100038. [DOI: 10.1016/j.fsirep.2021.100038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 01/18/2023] Open
|
12
|
Abolhassani H, Wang Y, Hammarström L, Pan-Hammarström Q. Hallmarks of Cancers: Primary Antibody Deficiency Versus Other Inborn Errors of Immunity. Front Immunol 2021; 12:720025. [PMID: 34484227 PMCID: PMC8416062 DOI: 10.3389/fimmu.2021.720025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/28/2021] [Indexed: 01/15/2023] Open
Abstract
Inborn Errors of Immunity (IEI) comprise more than 450 inherited diseases, from which selected patients manifest a frequent and early incidence of malignancies, mainly lymphoma and leukemia. Primary antibody deficiency (PAD) is the most common form of IEI with the highest proportion of malignant cases. In this review, we aimed to compare the oncologic hallmarks and the molecular defects underlying PAD with other IEI entities to dissect the impact of avoiding immune destruction, genome instability, and mutation, enabling replicative immortality, tumor-promoting inflammation, resisting cell death, sustaining proliferative signaling, evading growth suppressors, deregulating cellular energetics, inducing angiogenesis, and activating invasion and metastasis in these groups of patients. Moreover, some of the most promising approaches that could be clinically tested in both PAD and IEI patients were discussed.
Collapse
Affiliation(s)
- Hassan Abolhassani
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Yating Wang
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Qiang Pan-Hammarström
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
13
|
Ciuman RR. Understanding Human Body Maintenance, Protection, and Modification: Antibodies, Genetics, Stem Cells and Connected Artificial Intelligence Applications—Where Are We? Health (London) 2021. [DOI: 10.4236/health.2021.137059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Renner ED, Krätz CE, Orange JS, Hagl B, Rylaarsdam S, Notheis G, Durandy A, Torgerson TR, Ochs HD. Class Switch Recombination Defects: impact on B cell maturation and antibody responses. Clin Immunol 2020; 222:108638. [PMID: 33276124 DOI: 10.1016/j.clim.2020.108638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
To assess how B cell phenotype analysis correlates with antigen responses in patients with class switch recombination defects (CSRD) we quantified memory B cells by flow-cytometry and immunized CSRD patients with the neoantigen bacteriophage phiX174 (phage). CSRD patients showed uniformly absent or markedly reduced switched memory B cells (IgM-IgD-CD27+). CD40L patients had reduced CD27+ memory B cells (both non-switched and switched). In NEMO patients, results varied depending on the IKKγ gene variant. Three of four AID patients had normal percentages of CD27+ memory B cells while CD27+IgM-IgD- switched memory B cells were markedly reduced in all AID patients. Antibody response to phage was remarkably decreased with lack of memory amplification and class-switching in immunized CD40L, UNG deficient, and NEMO patients. Distinct B-cell phenotype pattern correlated with abnormal antibody responses to a T-cell dependent neoantigen, representing a powerful tool to identify CSRD patients.
Collapse
Affiliation(s)
- Ellen D Renner
- University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, WA, USA; Translational Immunology, Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Zentrum München, Munich, Augsburg, Germany
| | - Carolin E Krätz
- University Children's Hospital, Dr. von Haunersches Kinderspital, Ludwig Maximilian University, Munich, Germany; Translational Immunology, Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Zentrum München, Munich, Augsburg, Germany
| | - Jordan S Orange
- Columbia University, Department of Pediatrics, New York, United States of America
| | - Beate Hagl
- University Children's Hospital, Dr. von Haunersches Kinderspital, Ludwig Maximilian University, Munich, Germany; Translational Immunology, Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Zentrum München, Munich, Augsburg, Germany
| | - Stacey Rylaarsdam
- University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, WA, USA
| | - Gundula Notheis
- University Children's Hospital, Dr. von Haunersches Kinderspital, Ludwig Maximilian University, Munich, Germany; Translational Immunology, Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Zentrum München, Munich, Augsburg, Germany
| | - Anne Durandy
- Laboratory of Human Lymphohaematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Troy R Torgerson
- University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, WA, USA
| | - Hans D Ochs
- University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, WA, USA.
| |
Collapse
|
15
|
Barmettler S, Coffey K, Smith MJ, Chong HJ, Pozos TC, Seroogy CM, Walter J, Abraham RS. Functional Confirmation of DNA Repair Defect in Ataxia Telangiectasia (AT) Infants Identified by Newborn Screening for Severe Combined Immunodeficiency (NBS SCID). THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 9:723-732.e3. [PMID: 32818697 DOI: 10.1016/j.jaip.2020.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND The introduction of newborn screening for severe combined immunodeficiencies (NBS SCID) in 2010 was a significant public health milestone. Although SCID was the primary target, several other conditions associated with severe T-cell lymphopenia have subsequently been identified as secondary targets. The differential diagnosis in infants with an abnormal T-cell receptor excision circle result on NBS SCID who do not meet criteria for typical SCID is often broad, and often the evaluation of these conditions requires immunological and functional testing, in conjunction with genetic analysis, to obtain an accurate diagnosis and develop an appropriate management and treatment plan. OBJECTIVE We describe here 3 infants identified by NBS SCID, who required additional workup as they did not have a typical SCID phenotype and meet the relevant diagnostic criteria. Genetic testing identified pathogenic variants in ATM in all 3 patients, and the pathogenicity of the variants was confirmed by a functional flow cytometry assay. METHODS The patients underwent immunological and genetic workup to identify an underlying cause of their abnormal NBS SCID. Ataxia telangiectasia (AT) was suspected based on clinical and family history, and immunological analyses. The diagnosis was confirmed in all patients with a rapid functional flow cytometric assay and genetic testing. RESULTS A rapid functional flow cytometry assay was used as a diagnostic and confirmatory tool, in conjunction with genetic testing, to make a diagnosis of AT. Experimental validation of the causal relationship between genotype and phenotype allowed for expeditious diagnosis, which facilitated early discussions with families regarding prognosis, treatment, and management. CONCLUSIONS Even with increased rapidity and access to genetic results, functional testing is required for clinical diagnosis in infants identified by NBS SCID who do not fit into the classic categories or have novel genetic variants to confirm the diagnosis. Consideration should be given to the use of functional assays as an essential component of an integrated evaluation to characterize the genetics and mechanisms of inborn errors of immunity.
Collapse
Affiliation(s)
- Sara Barmettler
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, Mass.
| | - Kara Coffey
- Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh Medical Center, Pittsburgh, Pa
| | - Matthew J Smith
- Department of Pathology and Laboratory Medicine, Division of Hematology Research, Mayo Clinic, Rochester, Minn
| | - Hey Jin Chong
- Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh Medical Center, Pittsburgh, Pa
| | - Tamara C Pozos
- Department of Clinical Immunology, Children's Minnesota Minneapolis, Minneapolis, Minn
| | - Christine M Seroogy
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Jolan Walter
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, Mass; Division of Pediatric Allergy and Immunology, University of South Florida, Tampa, Fla; Division of Pediatric Allergy and Immunology, Johns Hopkins All Children's Hospital, St. Petersburg, Fla
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| |
Collapse
|
16
|
Toledano H, Orenstein N, Sofrin E, Ruhrman-Shahar N, Amarilyo G, Basel-Salmon L, Shuldiner AR, Smirin-Yosef P, Aronson M, Al-Tarrah H, Bazak L, Gonzaga-Jauregui C, Tabori U, Wimmer K, Goldberg Y. Paediatric systemic lupus erythematosus as a manifestation of constitutional mismatch repair deficiency. J Med Genet 2019; 57:505-508. [PMID: 31501241 DOI: 10.1136/jmedgenet-2019-106303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/01/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022]
Abstract
Biallelic mutations in any of the four mismatch repair genes MSH2, MSH6, MLH1 and PMS2 result in one of the most aggressive childhood cancer predisposition syndromes, termed constitutional mismatch repair deficiency (CMMRD) syndrome. In addition to a very high tumour risk, the CMMRD phenotype is often characterised by the presence of signs reminiscent of neurofibromatosis type 1. Although paediatric systemic lupus erythematosus (pSLE) has been reported so far in three patients with CMMRD, it has not been considered a diagnostic feature of the syndrome. We report here two additional female patients with pSLE and CMMRD due to biallelic pathogenic variants in MSH6 Hence, there are a total of five out of approximately 200 (2.5%) currently reported patients with CMMRD that also have pSLE, suggesting pSLE should raise the suspicion of a diagnosis of CMMRD, especially if supported by additional indicative features.
Collapse
Affiliation(s)
- Helen Toledano
- Department of Pediatric Hematology Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Naama Orenstein
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Genetic Clinic, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Efrat Sofrin
- Pediatric Genetic Clinic, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | | | - Gil Amarilyo
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Lina Basel-Salmon
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Recanati Genetics Institute, Rabin Medical Center, Petah Tikva, Israel
| | | | - Pola Smirin-Yosef
- Department of Molecular Biology, Genomic Bioinformatics Laboratory, Ariel University, Ariel, Israel
| | - Melyssa Aronson
- Zane Cohen Centre, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Haematology-Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hibs Al-Tarrah
- Zane Cohen Centre, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Lili Bazak
- Recanati Genetics Institute, Rabin Medical Center, Petah Tikva, Israel
| | | | - Uri Tabori
- Zane Cohen Centre, Mount Sinai Hospital, Toronto, Ontario, Canada.,The Arthur and Sonia Labbatt Brain Tumour Research Centre, The Hospital for Sick Children, Institute of Medical Sciences, The University of Toronto, Toronto, Ontario, Canada
| | - Katharina Wimmer
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Yael Goldberg
- Recanati Genetics Institute, Rabin Medical Center, Petah Tikva, Israel
| |
Collapse
|
17
|
Moazzami B, Yazdani R, Azizi G, Kiaei F, Tafakori M, Modaresi M, Shirzadi R, Mahdaviani SA, Sohani M, Abolhassani H, Aghamohammadi A. Respiratory Complications in Patients with Hyper IgM Syndrome. J Clin Immunol 2019; 39:557-568. [DOI: 10.1007/s10875-019-00650-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/21/2019] [Indexed: 12/19/2022]
|
18
|
Yazdani R, Abolhassani H, Kiaee F, Habibi S, Azizi G, Tavakol M, Chavoshzadeh Z, Mahdaviani SA, Momen T, Gharagozlou M, Movahedi M, Hamidieh AA, Behniafard N, Nabavi M, Bemanian MH, Arshi S, Molatefi R, Sherkat R, Shirkani A, Amin R, Aleyasin S, Faridhosseini R, Jabbari-Azad F, Mohammadzadeh I, Ghaffari J, Shafiei A, Kalantari A, Mansouri M, Mesdaghi M, Babaie D, Ahanchian H, Khoshkhui M, Soheili H, Eslamian MH, Cheraghi T, Dabbaghzadeh A, Tavassoli M, Kalmarzi RN, Mortazavi SH, Kashef S, Esmaeilzadeh H, Tafaroji J, Khalili A, Zandieh F, Sadeghi-Shabestari M, Darougar S, Behmanesh F, Akbari H, Zandkarimi M, Abolnezhadian F, Fayezi A, Moghtaderi M, Ahmadiafshar A, Shakerian B, Sajedi V, Taghvaei B, Safari M, Heidarzadeh M, Ghalebaghi B, Fathi SM, Darabi B, Bazregari S, Bazargan N, Fallahpour M, Khayatzadeh A, Javahertrash N, Bashardoust B, Zamani M, Mohsenzadeh A, Ebrahimi S, Sharafian S, Vosughimotlagh A, Tafakoridelbari M, Rahim M, Ashournia P, Razaghian A, Rezaei A, Samavat A, Mamishi S, Khazaei HA, Mohammadi J, Negahdari B, Parvaneh N, Rezaei N, Lougaris V, Giliani S, Plebani A, Ochs HD, Hammarström L, Aghamohammadi A. Comparison of Common Monogenic Defects in a Large Predominantly Antibody Deficiency Cohort. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:864-878.e9. [DOI: 10.1016/j.jaip.2018.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022]
|
19
|
França TT, Barreiros LA, Al-Ramadi BK, Ochs HD, Cabral-Marques O, Condino-Neto A. CD40 ligand deficiency: treatment strategies and novel therapeutic perspectives. Expert Rev Clin Immunol 2019; 15:529-540. [PMID: 30681380 DOI: 10.1080/1744666x.2019.1573674] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION CD40 ligand (CD40L) deficiency or X-linked Hyper-IgM syndrome is a severe primary immunodeficiency caused by mutations in the CD40L gene. Despite currently available treatments, CD40L-deficient patients remain susceptible to life-threatening infections and have poor long term survival. Areas covered: Here, we discuss clinical and immunological characteristics of CD40L deficiency as well as current therapeutic strategies used for patient management. This review highlights that beyond B cell defects, patients' susceptibility to opportunistic pathogens might be due to impaired T cell and innate immune responses. In this context, we discuss how better knowledge of CD40L function and regulation may result in the development of new treatments. Expert opinion: Despite the introduction of hematopoietic stem-cell transplantation, immunoglobulin replacement, granulocyte colony-stimulating factor (G-CSF) administration, and prophylactic antibiotic therapies, life-threatening infections still cause high morbidity and mortality among CD40L-deficient patients. The reasons for this inadequate response to current therapies remains poorly understood, but recent reports suggest the involvement of CD40L-CD40 interaction in early stages of the innate immune system ontogeny. The development of novel gene therapeutic approaches and the use of redirected immunotherapies represent alternative treatment methods that could offer reduced morbidity and mortality rates for patients with CD40L deficiency.
Collapse
Affiliation(s)
- Tabata T França
- a Department of Immunology, Institute of Biomedical Sciences , University of São Paulo , São Paulo , Brazil
| | - Lucila A Barreiros
- a Department of Immunology, Institute of Biomedical Sciences , University of São Paulo , São Paulo , Brazil
| | - Basel K Al-Ramadi
- b Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences , UAE University , Al Ain , United Arab Emirates
| | - Hans D Ochs
- c Department of Pediatrics , University of Washington School of Medicine, and Seattle Children's Research Institute , Seattle , WA , USA
| | - Otavio Cabral-Marques
- d Department of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine , University of Freiburg , Freiburg , Germany
| | - Antonio Condino-Neto
- a Department of Immunology, Institute of Biomedical Sciences , University of São Paulo , São Paulo , Brazil
| |
Collapse
|
20
|
Al Ismail A, Husain A, Kobayashi M, Honjo T, Begum NA. Depletion of recombination-specific cofactors by the C-terminal mutant of the activation-induced cytidine deaminase causes the dominant negative effect on class switch recombination. Int Immunol 2019; 29:525-537. [PMID: 29136157 DOI: 10.1093/intimm/dxx061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is essential for class-switch recombination (CSR) and somatic hypermutation (SHM) of immunoglobulin genes. Studies on in vitro mutagenized AID as well as its mutations in human patients with hyper-IgM (HIGM)-syndrome type II revealed that C-terminal AID mutations were defective in CSR whereas their DNA cleavage and SHM activities remained intact. The C-terminal mutants of AID were speculated to exert the dominant negative effect on wild-type (WT) AID whereas its mechanism remains unknown. We generated the JP41 (R190X) mutation in one allele and a null mutation on the other allele in a mouse B cell line (CH12F3-2A) using CRISPR/Cas9 genome-editing tools and studied the effect of JP41 expression on the function of exogenously introduced WT AID fused with estrogen receptor (AIDER) in AIDJP41/∆/AIDER CH12F3-2A cells. We found that JP41 expression strongly suppressed not only CSR but also Igh/c-Myc chromosomal translocations by AIDER. We showed that the dominant negative effect is not evident at the DNA cleavage step but obvious at both deletional and inversional recombination steps. We also confirmed the dominant negative effect of other C-terminal mutants, JP8Bdel (R183X) and P20 (34-aa insertion at residue 182) in AID-deficient spleen B cells. Finally, we showed that the expression of JP41 reduced the binding of AIDER with its cofactors (hnRNP L, SERBP1 and hnRNP U). Together, these data indicate that dominant negative effect of JP41 on CSR is likely due to the depletion of the CSR-specific RNA-binding proteins from WT AID.
Collapse
Affiliation(s)
- Azza Al Ismail
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida-Konoe cho, Sakyo-ku, Kyoto, Japan
| | - Afzal Husain
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida-Konoe cho, Sakyo-ku, Kyoto, Japan
| | - Maki Kobayashi
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida-Konoe cho, Sakyo-ku, Kyoto, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida-Konoe cho, Sakyo-ku, Kyoto, Japan
| | - Nasim A Begum
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida-Konoe cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
21
|
|
22
|
Yazdani R, Fekrvand S, Shahkarami S, Azizi G, Moazzami B, Abolhassani H, Aghamohammadi A. The hyper IgM syndromes: Epidemiology, pathogenesis, clinical manifestations, diagnosis and management. Clin Immunol 2018; 198:19-30. [PMID: 30439505 DOI: 10.1016/j.clim.2018.11.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 11/11/2018] [Indexed: 12/17/2022]
Abstract
Hyper Immunoglobulin M syndrome (HIGM) is a rare primary immunodeficiency disorder characterized by low or absent levels of serum IgG, IgA, IgE and normal or increased levels of serum IgM. Various X-linked and autosomal recessive/dominant mutations have been reported as the underlying cause of the disease. Based on the underlying genetic defect, the affected patients present a variety of clinical manifestations including pulmonary and gastrointestinal complications, autoimmune disorders, hematologic abnormalities, lymphoproliferation and malignancies which could be controlled by multiple relevant therapeutic approaches. Herein, the epidemiology, pathogenesis, clinical manifestations, diagnosis, management, prognosis and treatment in patients with HIGM syndrome have been reviewed.
Collapse
Affiliation(s)
- Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Sepideh Shahkarami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Bobak Moazzami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
23
|
Smith T, Cunningham-Rundles C. Primary B-cell immunodeficiencies. Hum Immunol 2018; 80:351-362. [PMID: 30359632 DOI: 10.1016/j.humimm.2018.10.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/05/2018] [Accepted: 10/21/2018] [Indexed: 12/13/2022]
Abstract
Primary B-cell immunodeficiencies refer to diseases resulting from impaired antibody production due to either molecular defects intrinsic to B-cells or a failure of interaction between B-cells and T-cells. Patients typically have recurrent infections and can vary with presentation and complications depending upon where the defect has occurred in B-cell development or the degree of functional impairment. In this review, we describe B-cell specific immune defects categorized by presence or absence of peripheral B-cells, immunoglobulins isotypes and evidence of antibody impairment.
Collapse
Affiliation(s)
- Tukisa Smith
- Division of Allergy and Clinical Immunology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029-6574, United States; The Rockefeller University, Laboratory of Biochemical Genetics and Metabolism, 1230 York Avenue, Box 179, New York, NY 10065, United States.
| | - Charlotte Cunningham-Rundles
- Division of Allergy and Clinical Immunology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029-6574, United States.
| |
Collapse
|
24
|
Tesch VK, IJspeert H, Raicht A, Rueda D, Dominguez-Pinilla N, Allende LM, Colas C, Rosenbaum T, Ilencikova D, Baris HN, Nathrath MHM, Suerink M, Januszkiewicz-Lewandowska D, Ragab I, Azizi AA, Wenzel SS, Zschocke J, Schwinger W, Kloor M, Blattmann C, Brugieres L, van der Burg M, Wimmer K, Seidel MG. No Overt Clinical Immunodeficiency Despite Immune Biological Abnormalities in Patients With Constitutional Mismatch Repair Deficiency. Front Immunol 2018; 9:1506. [PMID: 30013564 PMCID: PMC6036136 DOI: 10.3389/fimmu.2018.01506] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/18/2018] [Indexed: 11/13/2022] Open
Abstract
Immunoglobulin class-switch recombination (CSR) and somatic hypermutations (SHMs) are prerequisites for antibody and immunoglobulin receptor maturation and adaptive immune diversity. The mismatch repair (MMR) machinery, consisting of homologs of MutSα, MutLα, and MutSβ (MSH2/MSH6, MLH1/PMS2, and MSH2/MSH3, respectively) and other proteins, is involved in CSR, primarily acting as a backup for nonhomologous end-joining repair of activation-induced cytidine deaminase-induced DNA mismatches and, furthermore, in addition to error-prone polymerases, in the repair of SHM-induced DNA breaks. A varying degree of antibody formation defect, from IgA or selective IgG subclass deficiency to common variable immunodeficiency and hyper-IgM syndrome, has been detected in a small number of patients with constitutional mismatch repair deficiency (CMMRD) due to biallelic loss-of-function mutations in one of the MMR genes (PMS2, MSH6, MLH1, or MSH2). To elucidate the clinical relevance of a presumed primary immunodeficiency (PID) in CMMRD, we systematically collected clinical history and laboratory data of a cohort of 15 consecutive, unrelated patients (10 not previously reported) with homozygous/compound heterozygous mutations in PMS2 (n = 8), MSH6 (n = 5), and MLH1 (n = 2), most of whom manifested with typical malignancies during childhood. Detailed descriptions of their genotypes, phenotypes, and family histories are provided. Importantly, none of the patients showed any clinical warning signs of PID (infections, immune dysregulation, inflammation, failure to thrive, etc.). Furthermore, we could not detect uniform or specific patterns of laboratory abnormalities. The concentration of IgM was increased in 3 out of 12, reduced in 3 out of 12, and normal in 6 out of 12 patients, while concentrations of IgG and IgG subclasses, except IgG4, and of IgA, and specific antibody formation were normal in most. Class-switched B memory cells were reduced in 5 out of 12 patients, and in 9 out of 12 also the CD38hiIgM− plasmablasts were reduced. Furthermore, results of next generation sequencing-based analyses of antigen-selected B-cell receptor rearrangements showed a significantly reduced frequency of SHM and an increased number of rearranged immunoglobulin heavy chain (IGH) transcripts that use IGHG3, IGHG1, and IGHA1 subclasses. T cell subsets and receptor repertoires were unaffected. Together, neither clinical nor routine immunological laboratory parameters were consistently suggestive of PID in these CMMRD patients, but previously shown abnormalities in SHM and rearranged heavy chain transcripts were confirmed.
Collapse
Affiliation(s)
- Victoria K Tesch
- Research Unit Pediatric Hematology and Immunology, Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Hanna IJspeert
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Andrea Raicht
- Research Unit Pediatric Hematology and Immunology, Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Daniel Rueda
- Hereditary Cancer Laboratory, University Hospital Doce de Octubre, i+12 Research Institute, Madrid, Spain
| | - Nerea Dominguez-Pinilla
- Department of Pediatric Hematology and Oncology, Virgen de la Salud Hospital, Toledo, Spain.,i+12 Research Institute, University Hospital Doce de Octubre, Madrid, Spain
| | - Luis M Allende
- Department of Immunology, University Hospital Doce de Octubre, i+12 Research Institute, Madrid, Spain
| | | | | | - Denisa Ilencikova
- Department of Pediatrics, Comenius University Bratislava, Bratislava, Slovakia
| | - Hagit N Baris
- The Genetics Institute, Rambam Health Care Campus, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Michaela H M Nathrath
- Pediatric Hematology and Oncology, Klinikum Kassel, Kassel, Germany.,Pediatric Oncology Center, Department of Pediatrics, Technische Universität München, Munich, Germany
| | - Manon Suerink
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Iman Ragab
- Pediatrics Department, Hematology-Oncology Unit, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amedeo A Azizi
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Soeren S Wenzel
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Johannes Zschocke
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Wolfgang Schwinger
- Research Unit Pediatric Hematology and Immunology, Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, Medical University Heidelberg, Heidelberg, Germany
| | - Claudia Blattmann
- Department of Hematology, Oncology, and Immunology, Olgahospital Stuttgart, Stuttgart, Germany
| | - Laurence Brugieres
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Katharina Wimmer
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Markus G Seidel
- Research Unit Pediatric Hematology and Immunology, Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| |
Collapse
|
25
|
Garcia-Prat M, Vila-Pijoan G, Martos Gutierrez S, Gala Yerga G, García Guantes E, Martínez-Gallo M, Martín-Nalda A, Soler-Palacín P, Hernández-González M. Age-specific pediatric reference ranges for immunoglobulins and complement proteins on the Optilite ™ automated turbidimetric analyzer. J Clin Lab Anal 2018; 32:e22420. [PMID: 29603375 DOI: 10.1002/jcla.22420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/02/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Measurement of immunoglobulins and complement proteins are frontline tests used in the assessment of immune system integrity, and reference values can vary with age. Their measurement provides an insight into the function of the innate and adaptive immune systems. METHODS We generated pediatric reference ranges for IgG, IgA, IgM, IgD, the IgG and IgA subclasses, and C3 and C4 using the Optilite™ turbidimetric analyzer. RESULTS The concentrations of IgG, IgA, and IgD showed an increase with age, as expected, while IgM remained stable between the age groups. For the IgG subclasses, no significant differences were observed in IgG1 or IgG3, while IgG2 and IgG4 concentrations increased steadily with age. The concentration of IgG2 plateaued at 15-18 years, while IgG4 plateaued at 10-14 years. The trend of concentrations across all groups was IgG1 > IgG2 > IgG3 > IgG4. For both IgA1 and IgA2, concentrations increased significantly with age, plateauing at 15-18 years. The median IgA1 concentration was greater than IgA2 across all groups. There was a good correlation between the total IgG or IgA concentration and summation of their subclasses (R2 = 0.89, P < .0001, slope y = 0.98x + 14.51 mg/dL and R2 = 0.91, P < .0001, slope y = 1.35x-3.28 mg/dL, respectively). The concentration of C3 and C4 remained stable across the groups, with no significant differences observed. CONCLUSION We have generated age-specific reference ranges in healthy children for C3, C4, IgG, IgA, IgM, IgD and the IgG and IgA subclasses using the Optilite™ turbidimetric analyzer. These ranges will help identify individuals with abnormal concentrations, thus will aid in the diagnosis of both primary and secondary immunological disorders.
Collapse
Affiliation(s)
- Marina Garcia-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit (UPIIP), Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Jeffrey Model Foundation Excellence Center, Barcelona, Spain
| | - Gemma Vila-Pijoan
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Immunology Division, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Hospital Universitari, Vall d'Hebron, Barcelona, Spain
| | - Susana Martos Gutierrez
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Immunology Division, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Hospital Universitari, Vall d'Hebron, Barcelona, Spain
| | - Guadalupe Gala Yerga
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Immunology Division, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Hospital Universitari, Vall d'Hebron, Barcelona, Spain
| | - Esther García Guantes
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Immunology Division, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Hospital Universitari, Vall d'Hebron, Barcelona, Spain
| | - Mónica Martínez-Gallo
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Immunology Division, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Hospital Universitari, Vall d'Hebron, Barcelona, Spain
| | - Andrea Martín-Nalda
- Pediatric Infectious Diseases and Immunodeficiencies Unit (UPIIP), Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Jeffrey Model Foundation Excellence Center, Barcelona, Spain
| | - Pere Soler-Palacín
- Pediatric Infectious Diseases and Immunodeficiencies Unit (UPIIP), Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Jeffrey Model Foundation Excellence Center, Barcelona, Spain
| | - Manuel Hernández-González
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Immunology Division, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Hospital Universitari, Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
26
|
Glaesener S, Jaenke C, Habener A, Geffers R, Hagendorff P, Witzlau K, Imelmann E, Krueger A, Meyer-Bahlburg A. Decreased production of class-switched antibodies in neonatal B cells is associated with increased expression of miR-181b. PLoS One 2018; 13:e0192230. [PMID: 29389970 PMCID: PMC5794184 DOI: 10.1371/journal.pone.0192230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/18/2018] [Indexed: 01/11/2023] Open
Abstract
The increased susceptibility to infections of neonates is caused by an immaturity of the immune system as a result of both qualitative and quantitative differences between neonatal and adult immune cells. With respect to B cells, neonatal antibody responses are known to be decreased. Accountable for this is an altered composition of the neonatal B cell compartment towards more immature B cells. However, it remains unclear whether the functionality of individual neonatal B cell subsets is altered as well. In the current study we therefore compared phenotypical and functional characteristics of corresponding neonatal and adult B cell subpopulations. No phenotypic differences could be identified with the exception of higher IgM expression in neonatal B cells. Functional analysis revealed differences in proliferation, survival, and B cell receptor signaling. Most importantly, neonatal B cells showed severely impaired class-switch recombination (CSR) to IgG and IgA. This was associated with increased expression of miR-181b in neonatal B cells. Deficiency of miR-181b resulted in increased CSR. With this, our results highlight intrinsic differences that contribute to weaker B cell antibody responses in newborns.
Collapse
Affiliation(s)
- Stephanie Glaesener
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Christine Jaenke
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Anika Habener
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Petra Hagendorff
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Katrin Witzlau
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Esther Imelmann
- Institute for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Andreas Krueger
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Almut Meyer-Bahlburg
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- * E-mail:
| |
Collapse
|
27
|
Hauck F, Voss R, Urban C, Seidel MG. Intrinsic and extrinsic causes of malignancies in patients with primary immunodeficiency disorders. J Allergy Clin Immunol 2018; 141:59-68.e4. [DOI: 10.1016/j.jaci.2017.06.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/19/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022]
|
28
|
Ghraichy M, Galson JD, Kelly DF, Trück J. B-cell receptor repertoire sequencing in patients with primary immunodeficiency: a review. Immunology 2017; 153:145-160. [PMID: 29140551 DOI: 10.1111/imm.12865] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/25/2017] [Accepted: 11/07/2017] [Indexed: 12/17/2022] Open
Abstract
The advent of next-generation sequencing (NGS) now allows a detailed assessment of the adaptive immune system in health and disease. In particular, high-throughput B-cell receptor (BCR) repertoire sequencing provides detailed information about the functionality and abnormalities of the B-cell system. However, it is mostly unknown how the BCR repertoire is altered in the context of primary immunodeficiencies (PID) and whether findings are consistent throughout phenotypes and genotypes. We have performed an extensive literature search of the published work on BCR repertoire sequencing in PID patients, including several forms of predominantly antibody disorders and combined immunodeficiencies. It is somewhat surprising that BCR repertoires, even from severe clinical phenotypes, often show only mild abnormalities and that diversity or immunoglobulin gene segment usage is generally preserved to some extent. Despite the great variety of wet laboratory and analytical methods that were used in the different studies, several findings are common to most investigated PIDs, such as the increased usage of gene segments that are associated with self-reactivity. These findings suggest that BCR repertoire characteristics may be used to assess the functionality of the B-cell compartment irrespective of the underlying defect. With the use of NGS approaches, there is now the opportunity to apply BCR repertoire sequencing to multiple patients and explore the PID BCR repertoire in more detail. Ultimately, using BCR repertoire sequencing in translational research could aid the management of PID patients by improving diagnosis, estimating functionality of the immune system and improving assessment of prognosis.
Collapse
Affiliation(s)
- Marie Ghraichy
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Jacob D Galson
- Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Dominic F Kelly
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Johannes Trück
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Cao J, Liu L, Zhang Y, Xiao J, Wang Y. The influence of HK2 blood group antigen on human B cell activation for ABOi-KT conditions. BMC Immunol 2017; 18:49. [PMID: 29246114 PMCID: PMC5732526 DOI: 10.1186/s12865-017-0233-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 12/06/2017] [Indexed: 02/08/2023] Open
Abstract
Background It is well known that ABO blood group system incompatible kidney transplantation (ABOi-KT) is an effective strategy for end-stage renal disease. The main barrier for ABOi-KT is how to keep host B cell activation and blood group antibody titer in low levels. Moreover, the mechanism of B cell activation induced by blood group antigen was unclear in ABOi-KT. Results In this study, HK2 cells were identified to express blood group B antigen when cocultured with lymphocytes of blood group A. Optical microscope observation demonstrated that HK2 cells in coculture group gradually decreased. Furthermore, flow cytometer assay identified that T cell phenotypes (CD3+, CD3+CD4+ and CD3+CD8+) had no significant change and B cell phenotypes (CD19+ and CD138+) were all significantly enhanced (3.07 and 3.02 folds) at day 4. In addition, immunoturbidimetry analysis demonstrated that blood group B antibody was significantly increased to 2.35 fold at day 4, IgG was significantly increased to 3.60 and 2.81 folds at days 4 and 8 respectively, while IgM had no significant change at the measured time points. Conclusions Taken together, B cells were activated and secreted blood group B antibody after treatment with HK2 expressing blood group B antigen. The results of this study maybe useful for further determination of the mechanism of B cell activation after ABO incompatible kidney endothelial cells stimulation. Electronic supplementary material The online version of this article (10.1186/s12865-017-0233-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingsong Cao
- Institute of Pathogenic Biology, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China.,Clinical research center, Institute of Pathogenic Biology, Medical College, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, China
| | - Luogen Liu
- Clinical research center, Institute of Pathogenic Biology, Medical College, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, China
| | - Yunsheng Zhang
- Clinical research center, Institute of Pathogenic Biology, Medical College, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, China
| | - Jianhua Xiao
- Institute of Pathogenic Biology, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China. .,Clinical research center, Institute of Pathogenic Biology, Medical College, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, China.
| | - Yi Wang
- Clinical research center, Institute of Pathogenic Biology, Medical College, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, China. .,Urinary surgery, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
30
|
Meng X, Yang B, Suen WC. Prospects for modulating the CD40/CD40L pathway in the therapy of the hyper-IgM syndrome. Innate Immun 2017; 24:4-10. [PMID: 29132233 DOI: 10.1177/1753425917739681] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The critical role of the CD40/CD40L pathway in B-cell proliferation, immunoglobulin (Ig) isotype switching and germinal center formation has been studied and described extensively in previous literature. Interruption of the CD40/CD40L signal causes hyper-IgM (HIGM) syndrome, which has been classified and recognized as a group of rare inherited immune deficiency disorders. Defects in CD40 and CD40L interactions or in downstream signaling molecules, including activation-induced cytidine deaminase, uracyl-DNA-glycosylase, NF-κB and DNA repair enzymes, result in an increased level of serum IgM and a significantly decreased or absent level of IgA, IgG and IgE that is accompanied by severe recurrent infections and autoimmune diseases. Many genetic defects in HIGM have been identified and, as a result, it is possible for patients to be definitively diagnosed by gene sequencing and to delineate the immunological features of the patients. Modifying the CD40/CD40L signaling pathway may offer the possibility of restoring the normal serum Ab production and curing the immunodeficiency. Hematopoietic stem cell transplantation has achieved a high rate of success using a sibling donor. In addition, successful examples of treating other immunodeficiencies using gene therapy indicated that there was a possibility of eradicating HIGM with this approach. In this review, we summarize the current drugs and a variety of therapeutic approaches for the treatment of the HIGM syndrome by interfering with the defective CD40/CD40L pathway.
Collapse
Affiliation(s)
- Xiangxue Meng
- 1 Sunshine Lake Pharma Co., Ltd, Dongguan 523867, PR China
| | - Bin Yang
- 2 Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, PR China
| | - Wen-Chen Suen
- 1 Sunshine Lake Pharma Co., Ltd, Dongguan 523867, PR China
| |
Collapse
|
31
|
Almejun MB, Borge M. Somatic Hypermutation Defects in Common Variable Immune Deficiency. Curr Allergy Asthma Rep 2017; 17:76. [PMID: 28983794 DOI: 10.1007/s11882-017-0745-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Common variable immunodeficiency (CVID) is a heterogeneous disorder characterized by impaired antibody production and recurrent infections. In the last 20 years, several groups have reported that B cells from CVID patients have an impaired somatic hypermutation (SHM). The reported frequency of this defect among CVID patient cohorts is highly variable and so is the methodology used to evaluate this process. Interestingly, the low level of SHM on B cells from CVID patients has been correlated with the presence of infectious and non-infectious complications. In this review, an overview of the studies regarding SHM in CVID patients is presented. We highlight the importance of SHM studies in CVID patients as a clinical tool due to the reported association with clinical complications by several groups. We also considered SHM measurement useful to guide future investigations in order to identify genetic defects involved in the development of the disease.
Collapse
Affiliation(s)
- María Belén Almejun
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Academia Nacional de Medicina (ANM), Buenos Aires, Argentina. .,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Mercedes Borge
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Academia Nacional de Medicina (ANM), Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
32
|
Ghiasy S, Parvaneh L, Azizi G, Sadri G, Zaki dizaji M, Abolhassani H, Aghamohammadi A. The clinical significance of complete class switching defect in Ataxia telangiectasia patients. Expert Rev Clin Immunol 2017; 13:499-505. [DOI: 10.1080/1744666x.2017.1292131] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Saleh Ghiasy
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Parvaneh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Ghazal Sadri
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Zaki dizaji
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Fazel A, Kashef S, Aleyasin S, Harsini S, Karamizadeh Z, Zoghi S, Flores SK, Boztug K, Rezaei N. Novel AICDA mutation in a case of autosomal recessive hyper-IgM syndrome, growth hormone deficiency and autoimmunity. Allergol Immunopathol (Madr) 2017; 45:82-86. [PMID: 27789066 DOI: 10.1016/j.aller.2016.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/13/2016] [Accepted: 08/01/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND The Hyper-immunoglobulin M syndromes (HIGM) are a heterogeneous group of genetic disorders, which have been rarely reported to be associated with growth hormone deficiency (GHD). METHODS AND RESULTS A nine-year-old girl with recurrent urinary tract infections, diarrhoea, sinopulmonary infections, and failure to thrive since the age of six months had normal CD3+, CD4+, CD8+T lymphocytes, and CD19+B lymphocytes and natural killer (NK) cells, but extremely elevated IgM and significantly decreased IgG and IgA. In view of the patient's short stature, growth hormone evaluation was carried out and growth hormone deficiency established. The patient underwent Ig replacement therapy and received growth hormone therapy in addition to antibiotics and responded well. Furthermore, the patient developed benign cervical lymphadenopathy, as well as elevated erythrocyte sedimentation rate, positive autoantibodies to SSA-Ro, and severely dry eyes, which partially responded to both the punctate occlusion and systemic corticosteroids, at the age of seven years. Sequencing analysis of the exons from activation-induced cytidine deaminase (AICDA) gene revealed that the patient was homozygous for a single T to C transversion at position 455 in exon 4, which replaces a Valine with an Alanine. CONCLUSIONS To our knowledge, this is a new AICDA mutation, which has not been reported previously in HIGM. The mutation analysis could improve diagnosis of HIGM patients and also elaborating on the spectrum of AICDA mutations.
Collapse
Affiliation(s)
- A Fazel
- Allergy Research Center, Division of Pediatric Immunology and Allergy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - S Kashef
- Allergy Research Center, Division of Pediatric Immunology and Allergy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - S Aleyasin
- Allergy Research Center, Division of Pediatric Immunology and Allergy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - S Harsini
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Z Karamizadeh
- Division of Pediatric Endocrinology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - S Zoghi
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - S K Flores
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - K Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - N Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Sheffield, UK.
| |
Collapse
|
34
|
Stagi S, Gulino AV, Lapi E, Rigante D. Epigenetic control of the immune system: a lesson from Kabuki syndrome. Immunol Res 2016; 64:345-59. [PMID: 26411453 DOI: 10.1007/s12026-015-8707-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Kabuki syndrome (KS) is a rare multi-systemic disorder characterized by a distinct face, postnatal growth deficiency, mild-to-moderate intellectual disability, skeletal and visceral (mainly cardiovascular, renal, and skeletal) malformations, dermatoglyphic abnormalities. Its cause is related to mutations of two genes: KMT2D (histone-lysine N-methyltransferase 2D) and KDM6A (lysine-specific demethylase 6A), both functioning as epigenetic modulators through histone modifications in the course of embryogenesis and in several biological processes. Epigenetic regulation is defined as the complex of hereditable modifications to DNA and histone proteins that modulates gene expression in the absence of DNA nucleotide sequence changes. Different human disorders are caused by mutations of genes involved in the epigenetic regulation, and not surprisingly, all these share developmental defects, disturbed growth (in excess or defect), multiple congenital organ malformations, and also hematological and immunological defects. In particular, most KS patients show increased susceptibility to infections and have reduced serum immunoglobulin levels, while some suffer also from autoimmune manifestations, such as idiopathic thrombocytopenic purpura, hemolytic anemia, autoimmune thyroiditis, and vitiligo. Herein we review the immunological aspects of KS and propose a novel model to account for the immune dysfunction observed in this condition.
Collapse
Affiliation(s)
- Stefano Stagi
- Health Sciences Department, University of Florence, Anna Meyer Children's University Hospital, Florence, Italy.
| | | | - Elisabetta Lapi
- Health Sciences Department, University of Florence, Anna Meyer Children's University Hospital, Florence, Italy
| | - Donato Rigante
- Institute of Pediatrics, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica Sacro Cuore, Rome, Italy
| |
Collapse
|
35
|
Leven EA, Maffucci P, Ochs HD, Scholl PR, Buckley RH, Fuleihan RL, Geha RS, Cunningham CK, Bonilla FA, Conley ME, Ferdman RM, Hernandez-Trujillo V, Puck JM, Sullivan K, Secord EA, Ramesh M, Cunningham-Rundles C. Hyper IgM Syndrome: a Report from the USIDNET Registry. J Clin Immunol 2016; 36:490-501. [PMID: 27189378 PMCID: PMC5039943 DOI: 10.1007/s10875-016-0291-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/25/2016] [Indexed: 12/24/2022]
Abstract
PURPOSE The United States Immunodeficiency Network (USIDNET) patient registry was used to characterize the presentation, genetics, phenotypes, and treatment of patients with Hyper IgM Syndrome (HIGM). METHODS The USIDNET Registry was queried for HIGM patient data collected from October 1992 to July 2015. Data fields included demographics, criteria for diagnosis, pedigree analysis, mutations, clinical features, treatment and transplant records, laboratory findings, and mortality. RESULTS Fifty-two physicians entered data from 145 patients of ages 2 months to 62 years (median 12 years); 131 were males. Using patients' age at last entry, data from 2072 patient years are included. Mutations were recorded for 85 subjects; 82 were in CD40LG. Eighteen subjects had non-X-linked HIGM. 40 % had a normal serum IgM and 15 %, normal IgA. Infections were reported for 91 %, with pulmonary, ear, and sinus infections being the most common. 42 % had Pneumocystis jirovecii pneumonia; 6 % had Cryptosporidium. 41 % had neutropenia. 78 % experienced non-infectious complications: chronic diarrhea (n = 22), aphthous ulcers (n = 28), and neoplasms (n = 8) including colon cancer, adrenal adenoma, liver adenocarcinoma, pancreatic carcinoid, acute myeloid leukemia, hepatoma, and, in a female with an autosomal dominant gain of function mutation in PIK3CD, an ovarian dysgerminoma. Thirteen patients had a hematopoietic marrow or stem cell transplant; three had solid organ transplants. Thirteen were known to have died (median age = 14 years). CONCLUSIONS Analysis of the USIDNET Registry provides data on the common clinical features of this rare syndrome, and in contrast with previously published data, demonstrates longer survival times and reduced gastrointestinal manifestations.
Collapse
Affiliation(s)
- Emily A Leven
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Hans D Ochs
- Seattle Children's Hospital Seattle, Seattle, WA, USA
| | - Paul R Scholl
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | | | | | - Raif S Geha
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | - Jennifer M Puck
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
36
|
Murine germinal center B cells require functional Fms-like tyrosine kinase 3 signaling for IgG1 class-switch recombination. Proc Natl Acad Sci U S A 2015; 112:E6644-53. [PMID: 26627255 DOI: 10.1073/pnas.1514191112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Switched antibody classes are important for efficient immune responses. Aberrant antibody production to otherwise harmless antigens may result in autoimmunity. The protein kinase fms-like tyrosine kinase 3 receptor (Flt3) has an important role during early B-cell development, but the role of Flt3 in peripheral B cells has not been assessed before. Herein we describe a previously unappreciated role for Flt3 in IgG1 class-switch recombination (CSR) and production. We show that Flt3 is reexpressed on B-cell lymphoma 6(+) germinal center B cells in vivo and following LPS activation of peripheral B cells in vitro. Absence of Flt3 signaling in Flt3 ligand-deficient mice results in impaired IgG1 CSR and accumulation of IgM-secreting plasma cells. On activated B cells, Flt3 is coexpressed and functions in synergy with the common-gamma chain receptor family. B cells from Flt3 ligand-deficient mice have impaired IL-4R signaling, with reduced phosphorylation of signal transducer and activator of transcription (Stat) 6, and demonstrate a failure to initiate CSR to IgG1 with low expression of γ1 germ-line transcripts, resulting in impaired IgG1 production. Thus, functional synergy between Flt3 and IL-4R signaling is critical for Stat-mediated regulation of sterile γ1 germ-line transcripts and CSR to IgG1.
Collapse
|
37
|
Ouadani H, Ben-Mustapha I, Ben-ali M, Ben-khemis L, Larguèche B, Boussoffara R, Maalej S, Fetni I, Hassayoun S, Mahfoudh A, Mellouli F, Yalaoui S, Masmoudi H, Bejaoui M, Barbouche MR. Novel and recurrent AID mutations underlie prevalent autosomal recessive form of HIGM in consanguineous patients. Immunogenetics 2015; 68:19-28. [PMID: 26545377 DOI: 10.1007/s00251-015-0878-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
Immunoglobulin class switch recombination deficiencies (Ig-CSR-D) are characterized by normal or elevated serum IgM level and absence of IgG, IgA, and IgE. Most reported cases are due to X-linked CD40L deficiency. Activation-induced cytidine deaminase deficiency is the most frequent autosomal recessive form, whereas CD40 deficiency is more rare. Herein, we present the first North African study on hyper IgM (HIGM) syndrome including 16 Tunisian patients. Phenotypic and genetic studies allowed us to determine their molecular basis. Three CD40LG mutations have been identified including two novels (c.348_351dup and c.782_*2del) and one already reported mutation (g.6182G>A). No mutation has been found in another patient despite the lack of CD40L expression. Interestingly, three AICDA mutations have been identified in 11 patients. Two mutations were novel (c.91T>C and c.389A>C found in one and five patients respectively), and one previously reported splicing mutation (c.156+1T>G) was found in five patients. Only one CD40-deficient patient, bearing a novel mutation (c.109T>G), has been identified. Thus, unlike previous reports, AID deficiency is the most frequent underlying molecular basis (68%) of Ig-CSR-D in Tunisian patients. This finding and the presence of specific recurrent mutations are probably due to the critical role played by inbreeding in North African populations.
Collapse
Affiliation(s)
- Hanen Ouadani
- Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis and University Tunis El Manar, Tunis, Tunisia
| | - Imen Ben-Mustapha
- Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis and University Tunis El Manar, Tunis, Tunisia
| | - Meriem Ben-ali
- Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis and University Tunis El Manar, Tunis, Tunisia
| | - Leila Ben-khemis
- Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis and University Tunis El Manar, Tunis, Tunisia
| | - Beya Larguèche
- Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis and University Tunis El Manar, Tunis, Tunisia
| | | | - Sonia Maalej
- Department of Pneumology "D", Abderahman Mami Hospital, Ariana, Tunisia
| | - Ilhem Fetni
- Department of Pediatrics, Mongi Slim Hospital, Marsa, Tunisia
| | | | | | - Fethi Mellouli
- Department of Pediatrics, Bone Marrow Transplantation Center, Tunis, Tunisia
| | - Sadok Yalaoui
- Laboratory of Biology, Abderahman Mami Hospital, Ariana, Tunisia
| | - Hatem Masmoudi
- Laboratory of Immunology, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Mohamed Bejaoui
- Department of Pediatrics, Bone Marrow Transplantation Center, Tunis, Tunisia
| | - Mohamed-Ridha Barbouche
- Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis and University Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
38
|
Altered germinal center reaction and abnormal B cell peripheral maturation in PI3KR1-mutated patients presenting with HIGM-like phenotype. Clin Immunol 2015; 159:33-6. [DOI: 10.1016/j.clim.2015.04.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 01/01/2023]
|
39
|
Kamiya M, Soejima M, Iwai H, Miyasaka N, Kohsaka H. [Atherosclerotic and hemorrhagic diseases in a patient with primary immune deficiency]. NIHON RINSHO MEN'EKI GAKKAI KAISHI = JAPANESE JOURNAL OF CLINICAL IMMUNOLOGY 2015; 38:426-431. [PMID: 26725865 DOI: 10.2177/jsci.38.426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A 59-year-old man, who suffered from periodic fever with continuous elevation of the C-reactive protein (CRP) level was referred to our hospital. He had frequent respiratory infections and diarrhea since his childhood. The serum immunoglobulin (Ig) G level was low (537 mg/dl) while IgA and IgE were undetectable. The serum IgM level was elevated (737 mg/dl). Based on these clinical features, he was diagnosed with primary immune deficiency, hyper IgM syndrome. He had past histories of aortic aneurysm, which had been repaired surgically in his fifties. His persistent proteinuria made us to perform renal biopsy, which revealed nephrosclerotic changes. During the hospitalization, multiple events of subcortical brain hemorrhage, subarachnoid hemorrhage, and pulmonary alveolar hemorrhage occurred. Bleeding time and coagulation tests were normal. Antinuclear antibody, anti-neutrophil cytoplasmic antibody, or anti-cardiolipin antibody was absent. Herein, we described the first case of the immune deficiency associated with severe arteriosclerosis and hemorrhage.
Collapse
Affiliation(s)
- Mari Kamiya
- Department of Medicine and Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| | | | | | | | | |
Collapse
|
40
|
Azarsiz E, Karaca NE, Gunaydin NC, Gulez N, Ozturk C, Aksu G, Genel F, Kutukculer N. Do elevated serum IgM levels have to be included in probable diagnosis criteria of patients with ataxia-telangiectasia? Int J Immunopathol Pharmacol 2014; 27:421-7. [PMID: 25280033 DOI: 10.1177/039463201402700312] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ataxia-telangiectasia (AT) is a rare multisystem, neurodegenerative genetic disorder that is characterised by progressive neurological abnormalities, oculocutaneous telangiectasias and immunodeficiency. Delay in diagnosis or misdiagnosis is probable due to its wide clinical heterogeneity in infancy. Recurrent sinopulmonary infections are often the only presenting symptom and usually patients have decreased immunoglobulins. A total 10% of patients who present with decreased serum immunoglobulin G and A and with normal or elevated immunoglobulin M levels are often misdiagnosed as hyperimmunoglobulin M syndrome. Definitive diagnosis is made if a patient with progressive cerebellar ataxia has a disease causing mutation on the ATM gene. Ataxia-telangiectasia guideline of the European Society for Immunodeficiencies defines the probable diagnosis criteria. We evaluated twenty ataxia-telangiectasia patients (mean age 13.8±4.1 years) retrospectively who were followed-up for a mean of 38.6±27.0 months. Twelve patients had a family history of consanguinity. A total of 80% patients suffered from various infections. Neoplasms occurred in three of them. Patients showed immunological abnormalities as low IgG (45%), low IgA (65%) and elevated IgM (60%) levels. CD3+CD4+ T lymphocyte frequency was low in 45% patients. The mean AFP concentration at the diagnosis was 191.9±140.1 ng/mL and the raised IgM values did not show any statistically significant relationship with high AFP concentrations. Frequency of the elevated IgM concentrations in (60%) patients raises the concerns about thinking this finding has to be accepted as a probable diagnosis criterium.
Collapse
Affiliation(s)
- E Azarsiz
- Ege University, Faculty of Medicine, Department of Pediatric Immunology, Izmir, Turkey
| | - N E Karaca
- Ege University, Faculty of Medicine, Department of Pediatric Immunology, Izmir, Turkey
| | - N C Gunaydin
- Ege University, Faculty of Medicine, Department of Pediatric Immunology, Izmir, Turkey
| | - N Gulez
- Dr Behcet Uz Children's Hospital, Department of Pediatric Immunology, Izmir, Turkey
| | - C Ozturk
- Tepecik Training Hospital, Department of Pediatrics, Izmir, Turkey
| | - G Aksu
- Ege University, Faculty of Medicine, Department of Pediatric Immunology, Izmir, Turkey
| | - F Genel
- Dr Behcet Uz Children's Hospital, Department of Pediatric Immunology, Izmir, Turkey
| | - N Kutukculer
- Ege University, Faculty of Medicine, Department of Pediatric Immunology, Izmir, Turkey
| |
Collapse
|
41
|
Dingler FA, Kemmerich K, Neuberger MS, Rada C. Uracil excision by endogenous SMUG1 glycosylase promotes efficient Ig class switching and impacts on A:T substitutions during somatic mutation. Eur J Immunol 2014; 44:1925-35. [PMID: 24771041 PMCID: PMC4158878 DOI: 10.1002/eji.201444482] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/06/2014] [Accepted: 04/15/2014] [Indexed: 12/23/2022]
Abstract
Excision of uracil introduced into the immunoglobulin loci by AID is central to antibody diversification. While predominantly carried out by the UNG uracil‐DNA glycosylase as reflected by deficiency in immunoglobulin class switching in Ung−/− mice, the deficiency is incomplete, as evidenced by the emergence of switched IgG in the serum of Ung−/− mice. Lack of switching in mice deficient in both UNG and MSH2 suggested that mismatch repair initiated a backup pathway. We now show that most of the residual class switching in Ung−/− mice depends upon the endogenous SMUG1 uracil‐DNA glycosylase, with in vitro switching to IgG1 as well as serum IgG3, IgG2b, and IgA greatly diminished in Ung−/−Smug1−/− mice, and that Smug1 partially compensates for Ung deficiency over time. Nonetheless, using a highly MSH2‐dependent mechanism, Ung−/−Smug1−/− mice can still produce detectable levels of switched isotypes, especially IgG1. While not affecting the pattern of base substitutions, SMUG1 deficiency in an Ung−/− background further reduces somatic hypermutation at A:T base pairs. Our data reveal an essential requirement for uracil excision in class switching and in facilitating noncanonical mismatch repair for the A:T phase of hypermutation presumably by creating nicks near the U:G lesion recognized by MSH2.
Collapse
|
42
|
Costimulatory pathways: physiology and potential therapeutic manipulation in systemic lupus erythematosus. Clin Dev Immunol 2013; 2013:245928. [PMID: 24000287 PMCID: PMC3755444 DOI: 10.1155/2013/245928] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/08/2013] [Indexed: 02/07/2023]
Abstract
System lupus erythematosus (SLE) is an immune-complex-mediated autoimmune condition with protean immunological and clinical manifestation. While SLE has classically been advocated as a B-cell or T-cell disease, it is unlikely that a particular cell type is more pathologically predominant than the others. Indeed, SLE is characterized by an orchestrated interplay amongst different types of immunopathologically important cells participating in both innate and adaptive immunity including the dendritic cells, macrophages, neutrophils and lymphocytes, as well as traditional nonimmune cells such as endothelial, epithelial, and renal tubular cells. Amongst the antigen-presenting cells and lymphocytes, and between lymphocytes, the costimulatory pathways which involve mutual exchange of information and signalling play an essential role in initiating, perpetuating, and, eventually, attenuating the proinflammatory immune response. In this review, advances in the knowledge of established costimulatory pathways such as CD28/CTLA-4-CD80/86, ICOS-B7RP1, CD70-CD27, OX40-OX40L, and CD137-CD137L as well as their potential roles involved in the pathophysiology of SLE will be discussed. Attempts to target these costimulatory pathways therapeutically will pave more potential treatment avenues for patients with SLE. Preliminary laboratory and clinical evidence of the potential therapeutic value of manipulating these costimulatory pathways in SLE will also be discussed in this review.
Collapse
|
43
|
Peter HH. Adult-onset immunodeficiency--why is it important in rheumatology? Arthritis Res Ther 2013; 15:105. [PMID: 23363560 PMCID: PMC3745649 DOI: 10.1186/ar4121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|