1
|
Alcaide-Ruggiero L, Cugat R, Domínguez JM. Proteoglycans in Articular Cartilage and Their Contribution to Chondral Injury and Repair Mechanisms. Int J Mol Sci 2023; 24:10824. [PMID: 37446002 DOI: 10.3390/ijms241310824] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Proteoglycans are vital components of the extracellular matrix in articular cartilage, providing biomechanical properties crucial for its proper functioning. They are key players in chondral diseases, specifically in the degradation of the extracellular matrix. Evaluating proteoglycan molecules can serve as a biomarker for joint degradation in osteoarthritis patients, as well as assessing the quality of repaired tissue following different treatment strategies for chondral injuries. Despite ongoing research, understanding osteoarthritis and cartilage repair remains unclear, making the identification of key molecules essential for early diagnosis and effective treatment. This review offers an overview of proteoglycans as primary molecules in articular cartilage. It describes the various types of proteoglycans present in both healthy and damaged cartilage, highlighting their roles. Additionally, the review emphasizes the importance of assessing proteoglycans to evaluate the quality of repaired articular tissue. It concludes by providing a visual and narrative description of aggrecan distribution and presence in healthy cartilage. Proteoglycans, such as aggrecan, biglycan, decorin, perlecan, and versican, significantly contribute to maintaining the health of articular cartilage and the cartilage repair process. Therefore, studying these proteoglycans is vital for early diagnosis, evaluating the quality of repaired cartilage, and assessing treatment effectiveness.
Collapse
Affiliation(s)
- Lourdes Alcaide-Ruggiero
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad de Córdoba, Hospital Clínico Veterinario, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014 Córdoba, Spain
- Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023 Barcelona, Spain
| | - Ramón Cugat
- Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023 Barcelona, Spain
- Instituto Cugat y Mutualidad de Futbolistas Españoles, Delegación Catalana, 08023 Barcelona, Spain
| | - Juan Manuel Domínguez
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad de Córdoba, Hospital Clínico Veterinario, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014 Córdoba, Spain
- Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023 Barcelona, Spain
| |
Collapse
|
2
|
Horbert V, Xin L, Föhr P, Huber R, Burgkart RH, Kinne RW. In Vitro Cartilage Regeneration with a Three-Dimensional Polyglycolic Acid (PGA) Implant in a Bovine Cartilage Punch Model. Int J Mol Sci 2021; 22:11769. [PMID: 34769199 PMCID: PMC8583898 DOI: 10.3390/ijms222111769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022] Open
Abstract
Resorbable polyglycolic acid (PGA) chondrocyte grafts are clinically established for human articular cartilage defects. Long-term implant performance was addressed in a standardized in vitro model. PGA implants (+/- bovine chondrocytes) were placed inside cartilage rings punched out of bovine femoral trochleas (outer Ø 6 mm; inner defect Ø 2 mm) and cultured for 84 days (12 weeks). Cartilage/PGA hybrids were subsequently analyzed by histology (hematoxylin/eosin; safranin O), immunohistochemistry (aggrecan, collagens 1 and 2), protein assays, quantitative real-time polymerase chain reactions, and implant push-out force measurements. Cartilage/PGA hybrids remained vital with intact matrix until 12 weeks, limited loss of proteoglycans from "host" cartilage or cartilage-PGA interface, and progressively diminishing release of proteoglycans into the supernatant. By contrast, the collagen 2 content in cartilage and cartilage-PGA interface remained approximately constant during culture (with only little collagen 1). Both implants (+/- cells) displayed implant colonization and progressively increased aggrecan and collagen 2 mRNA, but significantly decreased push-out forces over time. Cell-loaded PGA showed significantly accelerated cell colonization and significantly extended deposition of aggrecan. Augmented chondrogenic differentiation in PGA and cartilage/PGA-interface for up to 84 days suggests initial cartilage regeneration. Due to the PGA resorbability, however, the model exhibits limitations in assessing the "lateral implant bonding".
Collapse
Affiliation(s)
- Victoria Horbert
- Experimental Rheumatology Unit, Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany; (V.H.); (L.X.)
| | - Long Xin
- Experimental Rheumatology Unit, Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany; (V.H.); (L.X.)
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Peter Föhr
- Biomechanics Laboratory, Chair of Orthopedics and Sport Orthopedics, Technische Universität München, 81675 Munich, Germany; (P.F.); (R.H.B.)
| | - René Huber
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany;
| | - Rainer H. Burgkart
- Biomechanics Laboratory, Chair of Orthopedics and Sport Orthopedics, Technische Universität München, 81675 Munich, Germany; (P.F.); (R.H.B.)
| | - Raimund W. Kinne
- Experimental Rheumatology Unit, Orthopedic Professorship, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany; (V.H.); (L.X.)
| |
Collapse
|
3
|
Szustak M, Gendaszewska-Darmach E. Nanocellulose-Based Scaffolds for Chondrogenic Differentiation and Expansion. Front Bioeng Biotechnol 2021; 9:736213. [PMID: 34485266 PMCID: PMC8415884 DOI: 10.3389/fbioe.2021.736213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Nanocellulose deserves special attention among the large group of biocompatible biomaterials. It exhibits good mechanical properties, which qualifies it for potential use as a scaffold imitating cartilage. However, the reconstruction of cartilage is a big challenge due to this tissue's limited regenerative capacity resulting from its lack of vascularization, innervations, and sparsely distributed chondrocytes. This feature restricts the infiltration of progenitor cells into damaged sites. Unfortunately, differentiated chondrocytes are challenging to obtain, and mesenchymal stem cells have become an alternative approach to promote chondrogenesis. Importantly, nanocellulose scaffolds induce the differentiation of stem cells into chondrocyte phenotypes. In this review, we present the recent progress of nanocellulose-based scaffolds promoting the development of cartilage tissue, especially within the emphasis on chondrogenic differentiation and expansion.
Collapse
Affiliation(s)
| | - Edyta Gendaszewska-Darmach
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
4
|
Mostakhdemin M, Nand A, Ramezani M. Articular and Artificial Cartilage, Characteristics, Properties and Testing Approaches-A Review. Polymers (Basel) 2021; 13:2000. [PMID: 34207194 PMCID: PMC8234542 DOI: 10.3390/polym13122000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 12/25/2022] Open
Abstract
The design and manufacture of artificial tissue for knee joints have been highlighted recently among researchers which necessitates an apt approach for its assessment. Even though most re-searches have focused on specific mechanical or tribological tests, other aspects have remained underexplored. In this review, elemental keys for design and testing artificial cartilage are dis-cussed and advanced methods addressed. Articular cartilage structure, its compositions in load-bearing and tribological properties of hydrogels, mechanical properties, test approaches and wear mechanisms are discussed. Bilayer hydrogels as a niche in tissue artificialization are presented, and recent gaps are assessed.
Collapse
Affiliation(s)
- Mohammad Mostakhdemin
- Department of Mechanical Engineering, Auckland University of Technology, Auckland 1142, New Zealand
| | - Ashveen Nand
- School of Environmental and Animal Sciences, Unitec Institute of Technology, Auckland 1025, New Zealand;
- School of Healthcare and Social Practice, Unitec Institute of Technology, Auckland 1025, New Zealand
| | - Maziar Ramezani
- Department of Mechanical Engineering, Auckland University of Technology, Auckland 1142, New Zealand
| |
Collapse
|
5
|
Aoki E, Asawa Y, Hikita A, Hoshi K. Establishment of a new technique for the fabrication of regenerative cartilage with a microslicer device to prepare three dimensional diced cartilage. Biomed Res 2021; 41:67-80. [PMID: 32307400 DOI: 10.2220/biomedres.41.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chondrocytes are utilized to cartilage regeneration by being harvested through enzymatic digestion and expanded by monolayer culture. However, these procedures will cause deterioration and dedifferentiation of the chondrocytes. In addition, scaffolds are often needed to provide the cartilage with mechanical strength and three-dimensional structures. We tried to use diced cartilage prepared using a micro-slicer without digestion, monolayer culture or scaffolds. In this study, an appropriate culture condition to induce the fusion of diced cartilage in vitro and cartilage regeneration in vitro and in vivo was determined to realize a scaffold-free cartilage regeneration. As a result, diced cartilages aggregated when they were cultured more than 5 weeks in the media containing 10% fetal bovine serum (FBS). Diced cartilage cultured for 7 weeks with the media containing 10%, followed by the culture with the media containing insulin-like growth factor-1 for 5 weeks in the ultralow attachment plate showed most prominent cartilage formation both in vitro and in vivo. The volume of regenerated cartilage was 2.14 times larger than that of the original cartilage. These results indicated that large regenerative cartilage from a small amount of cartilage was achieved without deterioration or dedifferentiation.
Collapse
Affiliation(s)
- Erika Aoki
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo
| | - Yukiyo Asawa
- Division of Tissue Engineering, The University of Tokyo Hospital
| | - Atsuhiko Hikita
- Division of Tissue Engineering, The University of Tokyo Hospital
| | - Kazuto Hoshi
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo.,Division of Tissue Engineering, The University of Tokyo Hospital.,Department of Oral-maxillofacial Surgery, Dentistry and Orthodontics, The University of Tokyo Hospital
| |
Collapse
|
6
|
Gutiérrez-Hernández JM, Castorena-Alejandro C, Pozos-Guillén A, Toriz-González G, Flores H, Escobar-García DM. Gene expression profile involved in signaling and apoptosis of osteoblasts in contact with cellulose/MWCNTs scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111531. [PMID: 33255084 DOI: 10.1016/j.msec.2020.111531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/16/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022]
Abstract
The aim of this work was to evaluate the expression profile of genes involved in signaling, intracellular and extracellular Ca+2 concentration and apoptosis pathways of osteoblasts in contact with a scaffold made of a composite of BCN/MWCNTs. Osteoblasts were cultivated on BCN, MWCNTs and their mixtures. Osteoblast RNA was extracted for sintering cDNA to amplify genes of interest by PCR; intra- and extracellular calcium (Ca2+) was also quantified. Regarding the genes that participate in the regulation paths (MAPK and NF-KB), it was found that only the expression of NF-KB was affected in all treatments. The expression of VEGFA increased, except in the treatment of high concentration of MWCNTs, where remained unchanged. The expression of genes Apaf-1 and Bcl-2/Bax and TP53 increased as compared to the control (except for TP53 in BC and C1/MWCNTs) indicating that cells are responding to the presence of BCN-MWCNTs composites scaffolds. The results suggest that osteoblast developed a modification in the expression profile of genes that actively participate in cellular processes such as proliferation, vasculogenesis and apoptosis, which may be modulated by the increase of intra- and extracellular Ca2+ concentration.
Collapse
Affiliation(s)
| | - Claudia Castorena-Alejandro
- Basic Sciences Laboratory, Faculty of Dentistry, Autonomous University of San Luis Potosi, 78290 SLP, Mexico
| | - Amaury Pozos-Guillén
- Basic Sciences Laboratory, Faculty of Dentistry, Autonomous University of San Luis Potosi, 78290 SLP, Mexico
| | - Guillermo Toriz-González
- Department of Wood, Cellulose and Paper Research, University of Guadalajara, 45110 Guadalajara, Mexico; Transdisciplinar Institute for Research and Services, University of Guadalajara, 45150 Guadalajara, Mexico
| | - Héctor Flores
- Basic Sciences Laboratory, Faculty of Dentistry, Autonomous University of San Luis Potosi, 78290 SLP, Mexico
| | - Diana María Escobar-García
- Basic Sciences Laboratory, Faculty of Dentistry, Autonomous University of San Luis Potosi, 78290 SLP, Mexico.
| |
Collapse
|
7
|
Horbert V, Xin L, Foehr P, Brinkmann O, Bungartz M, Burgkart RH, Graeve T, Kinne RW. In Vitro Analysis of Cartilage Regeneration Using a Collagen Type I Hydrogel (CaReS) in the Bovine Cartilage Punch Model. Cartilage 2019; 10:346-363. [PMID: 29463136 PMCID: PMC6585298 DOI: 10.1177/1947603518756985] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE Limitations of matrix-assisted autologous chondrocyte implantation to regenerate functional hyaline cartilage demand a better understanding of the underlying cellular/molecular processes. Thus, the regenerative capacity of a clinically approved hydrogel collagen type I implant was tested in a standardized bovine cartilage punch model. METHODS Cartilage rings (outer diameter 6 mm; inner defect diameter 2 mm) were prepared from the bovine trochlear groove. Collagen implants (± bovine chondrocytes) were placed inside the cartilage rings and cultured up to 12 weeks. Cartilage-implant constructs were analyzed by histology (hematoxylin/eosin; safranin O), immunohistology (aggrecan, collagens 1 and 2), and for protein content, RNA expression, and implant push-out force. RESULTS Cartilage-implant constructs revealed vital morphology, preserved matrix integrity throughout culture, progressive, but slight proteoglycan loss from the "host" cartilage or its surface and decreasing proteoglycan release into the culture supernatant. In contrast, collagen 2 and 1 content of cartilage and cartilage-implant interface was approximately constant over time. Cell-free and cell-loaded implants showed (1) cell migration onto/into the implant, (2) progressive deposition of aggrecan and constant levels of collagens 1 and 2, (3) progressively increased mRNA levels for aggrecan and collagen 2, and (4) significantly augmented push-out forces over time. Cell-loaded implants displayed a significantly earlier and more long-lasting deposition of aggrecan, as well as tendentially higher push-out forces. CONCLUSION Preserved tissue integrity and progressively increasing cartilage differentiation and push-out forces for up to 12 weeks of cultivation suggest initial cartilage regeneration and lateral bonding of the implant in this in vitro model for cartilage replacement materials.
Collapse
Affiliation(s)
- Victoria Horbert
- Experimental Rheumatology Unit,
Department of Orthopedics, Jena University Hospital, Waldkrankenhaus “Rudolf Elle”,
Eisenberg, Germany
| | - Long Xin
- Experimental Rheumatology Unit,
Department of Orthopedics, Jena University Hospital, Waldkrankenhaus “Rudolf Elle”,
Eisenberg, Germany,Department of Orthopedics, Tongde
Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Peter Foehr
- Biomechanics Laboratory, Department of
Orthopedics and Sportsorthopedics, Klinikum rechts der Isar, Technische Universität
München, Munich, Germany
| | - Olaf Brinkmann
- Chair of Orthopedics, Department of
Orthopedics, Jena University Hospital, Waldkrankenhaus “Rudolf Elle”, Eisenberg,
Germany
| | - Matthias Bungartz
- Chair of Orthopedics, Department of
Orthopedics, Jena University Hospital, Waldkrankenhaus “Rudolf Elle”, Eisenberg,
Germany
| | - Rainer H. Burgkart
- Biomechanics Laboratory, Department of
Orthopedics and Sportsorthopedics, Klinikum rechts der Isar, Technische Universität
München, Munich, Germany
| | | | - Raimund W. Kinne
- Experimental Rheumatology Unit,
Department of Orthopedics, Jena University Hospital, Waldkrankenhaus “Rudolf Elle”,
Eisenberg, Germany,Raimund W. Kinne, Experimental Rheumatology
Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus
“Rudolf Elle”, Klosterlausnitzer Straße 81, D-07607, Eisenberg, Germany.
| |
Collapse
|
8
|
Walter SG, Ossendorff R, Schildberg FA. Articular cartilage regeneration and tissue engineering models: a systematic review. Arch Orthop Trauma Surg 2019; 139:305-316. [PMID: 30382366 DOI: 10.1007/s00402-018-3057-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Cartilage regeneration and restoration is a major topic in orthopedic research as cartilaginous degeneration and damage is associated with osteoarthritis and joint destruction. This systematic review aims to summarize current research strategies in cartilage regeneration research. MATERIALS AND METHODS A Pubmed search for models investigating single-site cartilage defects as well as chondrogenesis was conducted and articles were evaluated for content by title and abstract. Finally, only manuscripts were included, which report new models or approaches of cartilage regeneration. RESULTS The search resulted in 2217 studies, 200 of which were eligible for inclusion in this review. The identified manuscripts consisted of a large spectrum of research approaches spanning from cell culture to tissue engineering and transplantation as well as sophisticated computational modeling. CONCLUSIONS In the past three decades, knowledge about articular cartilage and its defects has multiplied in clinical and experimental settings and the respective body of research literature has grown significantly. However, current strategies for articular cartilage repair have not yet succeeded to replicate the structure and function of innate articular cartilage, which makes it even more important to understand the current strategies and their impact. Therefore, the purpose of this review was to globally summarize experimental strategies investigating cartilage regeneration in vitro as well as in vivo. This will allow for better referencing when designing new models or strategies and potentially improve research translation from bench to bedside.
Collapse
Affiliation(s)
- Sebastian G Walter
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Robert Ossendorff
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Frank A Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany.
| |
Collapse
|
9
|
Duchi S, Doyle S, Eekel T, D O'Connell C, Augustine C, Choong P, Onofrillo C, Di Bella C. Protocols for Culturing and Imaging a Human Ex Vivo Osteochondral Model for Cartilage Biomanufacturing Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E640. [PMID: 30791632 PMCID: PMC6416585 DOI: 10.3390/ma12040640] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 01/01/2023]
Abstract
Cartilage defects and diseases remain major clinical issues in orthopaedics. Biomanufacturing is now a tangible option for the delivery of bioscaffolds capable of regenerating the deficient cartilage tissue. However, several limitations of in vitro and experimental animal models pose serious challenges to the translation of preclinical findings into clinical practice. Ex vivo models are of great value for translating in vitro tissue engineered approaches into clinically relevant conditions. Our aim is to obtain a viable human osteochondral (OC) model to test hydrogel-based materials for cartilage repair. Here we describe a detailed step-by-step framework for the generation of human OC plugs, their culture in a perfusion device and the processing procedures for histological and advanced microscopy imaging. Our ex vivo OC model fulfils the following requirements: the model is metabolically stable for a relevant culture period of 4 weeks in a perfusion bioreactor, the processing procedures allowed for the analysis of 3 different tissues or materials (cartilage, bone and hydrogel) without compromising their integrity. We determined a protocol and the settings for a non-linear microscopy technique on label free sections. Furthermore, we established a clearing protocol to perform light sheet-based observations on the cartilage layer without the need for tedious and destructive histological procedures. Finally, we showed that our OC system is a clinically relevant in terms of cartilage regeneration potential. In conclusion, this OC model represents a valuable preclinical ex vivo tool for studying cartilage therapies, such as hydrogel-based bioscaffolds, and we envision it will reduce the number of animals needed for in vivo testing.
Collapse
Affiliation(s)
- Serena Duchi
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital, Clinical Sciences Building, 29 Regent Street, 3065 Fitzroy, Australia.
- Department of Surgery, St Vincent's Hospital, University of Melbourne, Clinical Sciences Building, 29 Regent Street, 3065 Fitzroy, Australia.
| | - Stephanie Doyle
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital, Clinical Sciences Building, 29 Regent Street, 3065 Fitzroy, Australia.
- School of Engineering, Discipline of Electrical and Biomedical Engineering, RMIT University, 124 La Trobe Street, 3000 Melbourne, Australia.
| | - Timon Eekel
- University of Utrecht, Domplein 29, 3512 JE Utrecht, The Netherlands.
| | - Cathal D O'Connell
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital, Clinical Sciences Building, 29 Regent Street, 3065 Fitzroy, Australia.
| | - Cheryl Augustine
- Department of Surgery, St Vincent's Hospital, University of Melbourne, Clinical Sciences Building, 29 Regent Street, 3065 Fitzroy, Australia.
| | - Peter Choong
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital, Clinical Sciences Building, 29 Regent Street, 3065 Fitzroy, Australia.
- Department of Surgery, St Vincent's Hospital, University of Melbourne, Clinical Sciences Building, 29 Regent Street, 3065 Fitzroy, Australia.
- Department of Orthopaedics, St Vincent's Hospital, 41 Victoria Parade, 3065 Fitzroy, Australia.
| | - Carmine Onofrillo
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital, Clinical Sciences Building, 29 Regent Street, 3065 Fitzroy, Australia.
- Department of Surgery, St Vincent's Hospital, University of Melbourne, Clinical Sciences Building, 29 Regent Street, 3065 Fitzroy, Australia.
| | - Claudia Di Bella
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital, Clinical Sciences Building, 29 Regent Street, 3065 Fitzroy, Australia.
- Department of Surgery, St Vincent's Hospital, University of Melbourne, Clinical Sciences Building, 29 Regent Street, 3065 Fitzroy, Australia.
- Department of Orthopaedics, St Vincent's Hospital, 41 Victoria Parade, 3065 Fitzroy, Australia.
| |
Collapse
|
10
|
Bacakova L, Pajorova J, Bacakova M, Skogberg A, Kallio P, Kolarova K, Svorcik V. Versatile Application of Nanocellulose: From Industry to Skin Tissue Engineering and Wound Healing. NANOMATERIALS 2019; 9:nano9020164. [PMID: 30699947 PMCID: PMC6410160 DOI: 10.3390/nano9020164] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/08/2019] [Accepted: 01/24/2019] [Indexed: 12/29/2022]
Abstract
Nanocellulose is cellulose in the form of nanostructures, i.e., features not exceeding 100 nm at least in one dimension. These nanostructures include nanofibrils, found in bacterial cellulose; nanofibers, present particularly in electrospun matrices; and nanowhiskers, nanocrystals, nanorods, and nanoballs. These structures can be further assembled into bigger two-dimensional (2D) and three-dimensional (3D) nano-, micro-, and macro-structures, such as nanoplatelets, membranes, films, microparticles, and porous macroscopic matrices. There are four main sources of nanocellulose: bacteria (Gluconacetobacter), plants (trees, shrubs, herbs), algae (Cladophora), and animals (Tunicata). Nanocellulose has emerged for a wide range of industrial, technology, and biomedical applications, namely for adsorption, ultrafiltration, packaging, conservation of historical artifacts, thermal insulation and fire retardation, energy extraction and storage, acoustics, sensorics, controlled drug delivery, and particularly for tissue engineering. Nanocellulose is promising for use in scaffolds for engineering of blood vessels, neural tissue, bone, cartilage, liver, adipose tissue, urethra and dura mater, for repairing connective tissue and congenital heart defects, and for constructing contact lenses and protective barriers. This review is focused on applications of nanocellulose in skin tissue engineering and wound healing as a scaffold for cell growth, for delivering cells into wounds, and as a material for advanced wound dressings coupled with drug delivery, transparency and sensorics. Potential cytotoxicity and immunogenicity of nanocellulose are also discussed.
Collapse
Affiliation(s)
- Lucie Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4-Krc, Czech Republic.
| | - Julia Pajorova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4-Krc, Czech Republic.
| | - Marketa Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4-Krc, Czech Republic.
| | - Anne Skogberg
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Pasi Kallio
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Katerina Kolarova
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6-Dejvice, Czech Republic.
| | - Vaclav Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6-Dejvice, Czech Republic.
| |
Collapse
|
11
|
Krüger JP, Hondke S, Lau S, Endres M. Characterization of plasma fibronectin for migration, proliferation, and differentiation on human articular chondrocytes. J Tissue Eng Regen Med 2018; 13:537-545. [PMID: 30552734 DOI: 10.1002/term.2787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/06/2018] [Accepted: 12/06/2018] [Indexed: 11/07/2022]
Abstract
Plasma fibronectin (pFN) plays a crucial role in wound healing by binding to integrins and inducing cell migration. It is known to induce the migration and proliferation of mesenchymal progenitor cells in vitro, which play a key role during microfracture in cartilage repair. Endogenous chondrocytes from the native cartilage of the defect rim might aid in cartilage repair. In this study, the effect of pFN on proliferation, migration, and differentiation was tested on human articular chondrocytes. Results showed that treatment with pFN increased the migration of chondrocytes in a range of 1-30 μg/ml as tested with no effect on proliferation. TGFβ3-induced chondrogenesis was not affected by pFN. Especially, gene expression of matrix metalloproteinases was not increased by pFN. Plasma FN fragmentation due to storage conditions could be excluded by SDS-PAGE. Moreover, bioactivity of pFN did not alter during storage at 4°C and 40°C for up to 14 days. Taken together, pFN induces the migration but not proliferation of human articular chondrocytes with no inhibitory effect on chondrogenic differentiation. Additionally, no loss of activity or fragmentation of pFN was observed after lyophilization and storage, making pFN an interesting bioactive factor for chondrocyte recruitment.
Collapse
Affiliation(s)
| | | | - Skadi Lau
- TransTissue Technologies GmbH, Berlin, Germany
| | | |
Collapse
|
12
|
|
13
|
Sánchez-Téllez DA, Téllez-Jurado L, Rodríguez-Lorenzo LM. Hydrogels for Cartilage Regeneration, from Polysaccharides to Hybrids. Polymers (Basel) 2017; 9:E671. [PMID: 30965974 PMCID: PMC6418920 DOI: 10.3390/polym9120671] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022] Open
Abstract
The aims of this paper are: (1) to review the current state of the art in the field of cartilage substitution and regeneration; (2) to examine the patented biomaterials being used in preclinical and clinical stages; (3) to explore the potential of polymeric hydrogels for these applications and the reasons that hinder their clinical success. The studies about hydrogels used as potential biomaterials selected for this review are divided into the two major trends in tissue engineering: (1) the use of cell-free biomaterials; and (2) the use of cell seeded biomaterials. Preparation techniques and resulting hydrogel properties are also reviewed. More recent proposals, based on the combination of different polymers and the hybridization process to improve the properties of these materials, are also reviewed. The combination of elements such as scaffolds (cellular solids), matrices (hydrogel-based), growth factors and mechanical stimuli is needed to optimize properties of the required materials in order to facilitate tissue formation, cartilage regeneration and final clinical application. Polymer combinations and hybrids are the most promising materials for this application. Hybrid scaffolds may maximize cell growth and local tissue integration by forming cartilage-like tissue with biomimetic features.
Collapse
Affiliation(s)
- Daniela Anahí Sánchez-Téllez
- Instituto Politécnico Nacional-ESIQIE, Depto. Ing. en Metalurgia y Materiales, UPALM-Zacatenco, Mexico City 07738, Mexico.
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain.
| | - Lucía Téllez-Jurado
- Instituto Politécnico Nacional-ESIQIE, Depto. Ing. en Metalurgia y Materiales, UPALM-Zacatenco, Mexico City 07738, Mexico.
| | - Luís María Rodríguez-Lorenzo
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain.
- Department Polymeric Nanomaterials and Biomaterials, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
14
|
Peck Y, Leom LT, Low PFP, Wang DA. Establishment of an in vitro three-dimensional model for cartilage damage in rheumatoid arthritis. J Tissue Eng Regen Med 2017; 12:e237-e249. [PMID: 28079986 DOI: 10.1002/term.2399] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/15/2016] [Accepted: 01/09/2017] [Indexed: 11/09/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that leads to progressive joint destruction. To further understand the process of rheumatoid cartilage damage, an in vitro model consisting of an interactive tri-culture of synovial fibroblasts (SFs), LPS-stimulated macrophages and a primary chondrocyte-based tissue-engineered construct was established. The tissue-engineered construct has a composition similar to that of human cartilage, which is rich in collagen type II and proteoglycans. Data generated from this model revealed that healthy chondrocytes were activated in the presence of SFs and macrophages. The activated chondrocytes subsequently displayed aberrant behaviours as seen in a disease state such as increased apoptosis, decreased gene expression for matrix components such as type II collagen and aggrecan, increased gene expression for tissue-degrading enzymes (MMP-1, -3, -13 and ADAMTS-4, -5), and upregulation of inflammatory mediator gene expression (TNF-α, IL-1β, IL-6 and IKBKB). Additionally, the inclusion of SFs and macrophages in the model enabled both cell types to more closely replicate an in vivo role in mediating cartilage destruction. This is evidenced by extensive matrix loss, detected in the model through immunostaining and biochemical analysis. Subsequent drug treatment with celecoxib has shown that the model was able to respond to the therapeutic effects of this drug by reversing cartilage damage. This study showed that the model was able to recapitulate certain pathological features of an RA cartilage. If properly validated, this model potentially can be used for screening new therapeutic drugs and strategies, thereby contributing to the improvement of anti-rheumatic treatment. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yvonne Peck
- Division of BioEngineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Li Ting Leom
- Division of BioEngineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Pei Fen Patricia Low
- Division of BioEngineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Dong-An Wang
- Division of BioEngineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
15
|
The Effect of Thickness of Resorbable Bacterial Cellulose Membrane on Guided Bone Regeneration. MATERIALS 2017; 10:ma10030320. [PMID: 28772680 PMCID: PMC5503340 DOI: 10.3390/ma10030320] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/14/2017] [Accepted: 03/17/2017] [Indexed: 11/25/2022]
Abstract
This study introduces the effect of the thickness of a bacterial cellulose membrane by comparing the bone regeneration effect on rat skulls when using a collagen membrane and different thicknesses of resorbable bacterial cellulose membranes for guided bone regeneration. Barrier membranes of 0.10 mm, 0.15 mm, and 0.20 mm in thickness were made using bacterial cellulose produced as microbial fermentation metabolites. Mechanical strength was investigated, and new bone formation was evaluated through animal experimental studies. Experimental animals were sacrificed after having 2 weeks and 8 weeks of recovery, and specimens were processed for histologic and histomorphometric analyses measuring the area of bone regeneration (%) using an image analysis program. In 2 weeks, bone-like materials and fibrous connective tissues were observed in histologic analysis. In 8 weeks, all experimental groups showed the arrangement of osteoblasts surrounding the supporting body on the margin and center of the bone defect region. However, the amount of new bone formation was significantly higher (p < 0.05) in bacterial cellulose membrane with 0.10 mm in thickness compared to the other experimental groups. Within the limitations of this study, a bacterial cellulose membrane with 0.10 mm thickness induced the most effective bone regeneration.
Collapse
|
16
|
Nanocellulose and Proteins: Exploiting Their Interactions for Production, Immobilization, and Synthesis of Biocompatible Materials. ADVANCES IN POLYMER SCIENCE 2015. [DOI: 10.1007/12_2015_322] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Laurén P, Lou YR, Raki M, Urtti A, Bergström K, Yliperttula M. Technetium-99m-labeled nanofibrillar cellulose hydrogel for in vivo drug release. Eur J Pharm Sci 2014; 65:79-88. [PMID: 25245005 DOI: 10.1016/j.ejps.2014.09.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 07/14/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
Abstract
Nanoscale celluloses have recently gained an increasing interest in modern medicine. In this study, we investigated the properties of plant derived nanofibrillar cellulose (NFC) as an injectable drug releasing hydrogel in vivo. We demonstrated a reliable and efficient method of technetium-99m-NFC labeling, which enables us to trace the in vivo localization of the hydrogel. The release and distribution of study compounds from the NFC hydrogel after subcutaneous injection in the pelvic region of BALB/c mice were examined with a multimodality imaging device SPECT/CT. The drug release profiles were simulated by 1-compartmental models of Phoenix® WinNonlin®. The NFC hydrogel remained intact at the injection site during the study. The study compounds are more concentrated at the injection site when administered with the NFC hydrogel compared with saline solutions. In addition, the NFC hydrogel reduced the elimination rate of a large compound, technetium-99m-labeled human serum albumin by 2 folds, but did not alter the release rate of a small compound (123)I-β-CIT (a cocaine analogue). In conclusion, the NFC hydrogels is easily prepared and readily injected, and it has potential use as a matrix for controlled release or local delivery of large compounds. The interactions between NFC and specific therapeutic compounds are possible and should be investigated further.
Collapse
Affiliation(s)
- Patrick Laurén
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, P.O. Box 56, FI-00014 University of Helsinki, Finland.
| | - Yan-Ru Lou
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, P.O. Box 56, FI-00014 University of Helsinki, Finland
| | - Mari Raki
- Centre for Drug Research, Faculty of Pharmacy, P.O. Box 56, FI-00014 University of Helsinki, Finland
| | - Arto Urtti
- Centre for Drug Research, Faculty of Pharmacy, P.O. Box 56, FI-00014 University of Helsinki, Finland
| | - Kim Bergström
- Centre for Drug Research, Faculty of Pharmacy, P.O. Box 56, FI-00014 University of Helsinki, Finland
| | - Marjo Yliperttula
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, P.O. Box 56, FI-00014 University of Helsinki, Finland
| |
Collapse
|
18
|
Large, stratified, and mechanically functional human cartilage grown in vitro by mesenchymal condensation. Proc Natl Acad Sci U S A 2014; 111:6940-5. [PMID: 24778247 DOI: 10.1073/pnas.1324050111] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The efforts to grow mechanically functional cartilage from human mesenchymal stem cells have not been successful. We report that clinically sized pieces of human cartilage with physiologic stratification and biomechanics can be grown in vitro by recapitulating some aspects of the developmental process of mesenchymal condensation. By exposure to transforming growth factor-β, mesenchymal stem cells were induced to condense into cellular bodies, undergo chondrogenic differentiation, and form cartilagenous tissue, in a process designed to mimic mesenchymal condensation leading into chondrogenesis. We discovered that the condensed mesenchymal cell bodies (CMBs) formed in vitro set an outer boundary after 5 d of culture, as indicated by the expression of mesenchymal condensation genes and deposition of tenascin. Before setting of boundaries, the CMBs could be fused into homogenous cellular aggregates giving rise to well-differentiated and mechanically functional cartilage. We used the mesenchymal condensation and fusion of CMBs to grow centimeter-sized, anatomically shaped pieces of human articular cartilage over 5 wk of culture. For the first time to our knowledge biomechanical properties of cartilage derived from human mesenchymal cells were comparable to native cartilage, with the Young's modulus of >800 kPa and equilibrium friction coeffcient of <0.3. We also demonstrate that CMBs have capability to form mechanically strong cartilage-cartilage interface in an in vitro cartilage defect model. The CMBs, which acted as "lego-like" blocks of neocartilage, were capable of assembling into human cartilage with physiologic-like structure and mechanical properties.
Collapse
|
19
|
Dunzel A, Rüdiger T, Pretzel D, Kopsch V, Endres M, Kaps C, Föhr P, Burgkart RH, Linß S, Kinne RW. [The bovine cartilage punch model: a tool for the in vitro analysis of biomaterials and cartilage regeneration]. DER ORTHOPADE 2013; 42:254-61. [PMID: 23508463 DOI: 10.1007/s00132-012-1954-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND The limited regeneration capacity of hyaline articular cartilage requires detailed studies concerning the tissue integration of cartilage transplants with meaningful but time and/or resource-consuming and in part ethically problematic animal models or, alternatively, with in vitro test systems for implant materials. MATERIAL AND METHODS The present study describes a regeneration model with bovine cartilage rings (outer Ø 6 mm, central defect Ø 2 mm) for insertion, cultivation and biomechanical or histological testing of cartilage replacement materials (HE and safranin O staining). In this study, resorbable polymers composed of polyglycolic acid (PGA) were analyzed. RESULTS Biomechanical testing showed a continuous decrease of the push-out force for the PGA inserts from the cartilage rings, probably due to the resorbability of the material. Histologically, clear immigration of cells into cell-free PGA was observed even after 4 weeks of culture, but in particular after 10 weeks. In addition, storage of proteoglycans was interpreted as an initial sign of the formation of new matrix. CONCLUSION Thus, the new regeneration model is in principle suitable for the testing of biomaterials, but shows limitations in assessing the "lateral bonding" of resorbable materials.
Collapse
Affiliation(s)
- A Dunzel
- AG Experimentelle Rheumatologie, Lehrstuhl für Orthopädie, Universitätsklinikum Jena, Klosterlausnitzer Str. 81, 07607 Eisenberg, Deutschland
| | | | | | | | | | | | | | | | | | | |
Collapse
|