1
|
Xue M, Lin H, Lynch T, Bereza-Malcolm L, Sinnathurai P, Thomas R, Keen H, Hill C, Lester S, Wechalekar M, March L. Exploring the association between circulating endothelial protein C receptor and disease activity of rheumatoid arthritis in a pilot study. Rheumatol Adv Pract 2024; 8:rkae096. [PMID: 39184533 PMCID: PMC11343369 DOI: 10.1093/rap/rkae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/28/2024] [Indexed: 08/27/2024] Open
Abstract
Objectives To investigate whether circulating endothelial protein C receptor (EPCR) is associated with disease activity and inflammatory markers in rheumatoid arthritis. Methods Thirty-eight RA patients and 21 healthy controls (HC) were recruited via the A3BC biobank. Peripheral blood mononuclear cells and plasma were isolated from the blood of these participants. Plasma soluble (s)EPCR, IL-6, IL-17 and sCD14 were measured by enzyme-linked immunosorbent assay, cell membrane-associated (m)EPCR by flow cytometry; EPCR gene H3 single nucleotide polymorphism (SNP), which contributes to high plasma sEPCR levels, by PCR and DNA sequencing. Data were analysed using FlowJo10 and GraphPad Prism 10. Results RA patients had higher levels of mEPCR on T cells and plasma sEPCR compared with HC. No difference in the EPCR gene H3 SNP G genotype frequency was found between RA and HC. This SNP was significantly correlated with higher sEPCR levels in HC but not in RA patients. In RA, plasma sEPCR levels were positively correlated with IL-6, IL-17, sCD14, anti-CCP and rheumatoid factor. In contrast, mEPCR levels on T cells and natural killer cells (NK) were inversely associated with disease activity measures including 28/66 swollen joint count, 28/68 tender joint count and/or DAS28-CRP/ESR scores, and positively correlated with EPCR gene H3 SNP, which was also correlated with lower disease activity measures in RA. Conclusion Our findings suggest that EPCR may play an important role in RA, with plasma sEPCR being potentially associated with inflammatory markers and mEPCR and the EPCR gene H3 SNP possibly related to disease activity measures.
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Arthritis Research Laboratory, Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Haiyan Lin
- Sutton Arthritis Research Laboratory, Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Tom Lynch
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Lara Bereza-Malcolm
- Sutton Arthritis Research Laboratory, Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Premarani Sinnathurai
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
- Department of Rheumatology, Royal North Shore Hospital, Syndey, NSW, Australia
| | - Ranjeny Thomas
- Frazer Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Helen Keen
- Medical School, The University of Western Australia, Perth, WA, Australia
- Department of Rheumatology, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Catherine Hill
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Rheumatology Research Group, Paediatrics, and Paediatric Rheumatology, Basil Hetzel Institute and The Queen Elizabeth Hospital, Adelaide, SA, Australia
| | - Susan Lester
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Rheumatology Research Group, Paediatrics, and Paediatric Rheumatology, Basil Hetzel Institute and The Queen Elizabeth Hospital, Adelaide, SA, Australia
| | - Mihir Wechalekar
- Rheumatology Synovial Tissue Translational Research Group, Flinders University, Adelaide, SA, Australia
- Rheumatology Unit, Flinders Medical Centre, Adelaide, SA, Australia
| | - Lyn March
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
- Department of Rheumatology, Royal North Shore Hospital, Syndey, NSW, Australia
| |
Collapse
|
2
|
O’Hehir ZD, Lynch T, O’Neill S, March L, Xue M. Endothelial Protein C Receptor and Its Impact on Rheumatic Disease. J Clin Med 2024; 13:2030. [PMID: 38610795 PMCID: PMC11012567 DOI: 10.3390/jcm13072030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Endothelial Protein C Receptor (EPCR) is a key regulator of the activated protein C anti-coagulation pathway due to its role in the binding and activation of this protein. EPCR also binds to other ligands such as Factor VII and X, γδ T-cells, plasmodium falciparum erythrocyte membrane protein 1, and Secretory group V Phospholipases A2, facilitating ligand-specific functions. The functions of EPCR can also be regulated by soluble (s)EPCR that competes for the binding sites of membrane-bound (m)EPCR. sEPCR is created when mEPCR is shed from the cell surface. The propensity of shedding alters depending on the genetic haplotype of the EPCR gene that an individual may possess. EPCR plays an active role in normal homeostasis, anti-coagulation pathways, inflammation, and cell stemness. Due to these properties, EPCR is considered a potential effector/mediator of inflammatory diseases. Rheumatic diseases such as rheumatoid arthritis and systemic lupus erythematosus are autoimmune/inflammatory conditions that are associated with elevated EPCR levels and disease activity, potentially driven by EPCR. This review highlights the functions of EPCR and its contribution to rheumatic diseases.
Collapse
Affiliation(s)
- Zachary Daniel O’Hehir
- Sutton Arthritis Research Laboratory, Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney at Royal North Shore Hospital, Sydney, NSW 2065, Australia;
| | - Tom Lynch
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Sean O’Neill
- Department of Rheumatology, Royal North Shore Hospital, Syndey, NSW 2065, Australia;
| | - Lyn March
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
- Department of Rheumatology, Royal North Shore Hospital, Syndey, NSW 2065, Australia;
| | - Meilang Xue
- Sutton Arthritis Research Laboratory, Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney at Royal North Shore Hospital, Sydney, NSW 2065, Australia;
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| |
Collapse
|
3
|
Xue M, Lin H, Liang HPH, Bereza-Malcolm L, Lynch T, Sinnathurai P, Weiler H, Jackson C, March L. EPCR deficiency ameliorates inflammatory arthritis in mice by suppressing the activation and migration of T cells and dendritic cells. Rheumatology (Oxford) 2024; 63:571-580. [PMID: 37228024 PMCID: PMC10834933 DOI: 10.1093/rheumatology/kead230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/08/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
OBJECTIVES Endothelial protein C receptor (EPCR) is highly expressed in synovial tissues of patients with RA, but the function of this receptor remains unknown in RA. This study investigated the effect of EPCR on the onset and development of inflammatory arthritis and its underlying mechanisms. METHODS CIA was induced in EPCR gene knockout (KO) and matched wild-type (WT) mice. The onset and development of arthritis was monitored clinically and histologically. T cells, dendritic cells (DCs), EPCR and cytokines from EPCR KO and WT mice, RA patients and healthy controls (HCs) were detected by flow cytometry and ELISA. RESULTS EPCR KO mice displayed >40% lower arthritis incidence and 50% less disease severity than WT mice. EPCR KO mice also had significantly fewer Th1/Th17 cells in synovial tissues with more DCs in circulation. Lymph nodes and synovial CD4 T cells from EPCR KO mice expressed fewer chemokine receptors CXCR3, CXCR5 and CCR6 than WT mice. In vitro, EPCR KO spleen cells contained fewer Th1 and more Th2 and Th17 cells than WT and, in concordance, blocking EPCR in WT cells stimulated Th2 and Th17 cells. DCs generated from EPCR KO bone marrow were less mature and produced less MMP-9. Circulating T cells from RA patients expressed higher levels of EPCR than HC cells; blocking EPCR stimulated Th2 and Treg cells in vitro. CONCLUSION Deficiency of EPCR ameliorates arthritis in CIA via inhibition of the activation and migration of pathogenic Th cells and DCs. Targeting EPCR may constitute a novel strategy for future RA treatment.
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Arthritis Research Laboratory, Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
- Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Haiyan Lin
- Sutton Arthritis Research Laboratory, Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
- Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Hai Po Helena Liang
- Sutton Arthritis Research Laboratory, Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Lara Bereza-Malcolm
- Sutton Arthritis Research Laboratory, Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
- Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Tom Lynch
- Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Premarani Sinnathurai
- Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Hartmut Weiler
- Versiti Blood Research Institute, Versiti, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christopher Jackson
- Sutton Arthritis Research Laboratory, Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Lyn March
- Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney and the Northern Sydney Local Health District, Sydney, NSW, Australia
| |
Collapse
|
4
|
Pascual-García S, Martínez-Peinado P, López-Jaén AB, Navarro-Blasco FJ, Montoyo-Pujol YG, Roche E, Peiró G, Sempere-Ortells JM. Analysis of Novel Immunological Biomarkers Related to Rheumatoid Arthritis Disease Severity. Int J Mol Sci 2023; 24:12351. [PMID: 37569732 PMCID: PMC10418816 DOI: 10.3390/ijms241512351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Rheumatoid factor (RF) and anti-citrullinated protein antibodies (ACPAs) are the most frequently used rheumatoid arthritis (RA) diagnostic markers, but they are unable to anticipate the patient's evolution or response to treatment. The aim of this study was to identify possible severity biomarkers to predict an upcoming flare-up or remission period. To address this objective, sera and anticoagulated blood samples were collected from healthy controls (HCs; n = 39) and from early RA (n = 10), flare-up (n = 5), and remission (n = 16) patients. We analyzed leukocyte phenotype markers, regulatory T cells, cell proliferation, and cytokine profiles. Flare-up patients showed increased percentages of cluster of differentiation (CD)3+CD4- lymphocytes (p < 0.01) and granulocytes (p < 0.05) but a decreased natural killer (NK)/T lymphocyte ratio (p < 0.05). Analysis of leukocyte markers by principal component analysis (PCA) and receiver operating characteristic (ROC) curves showed that CD45RO+ (p < 0.0001) and CD45RA+ (p < 0.0001) B lymphocyte expression can discriminate between HCs and early RA patients, while CD3+CD4- lymphocyte percentage (p < 0.0424) and CD45RA+ (p < 0.0424), CD62L+ (p < 0.0284), and CD11a+ (p < 0.0185) B lymphocyte expression can differentiate between flare-up and RA remission subjects. Thus, the combined study of these leukocyte surface markers could have potential as disease severity biomarkers for RA, whose fluctuations could be related to the development of the characteristic pro-inflammatory environment.
Collapse
Affiliation(s)
- Sandra Pascual-García
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | | | - Ana B. López-Jaén
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Francisco J. Navarro-Blasco
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
- Rheumatology Unit, University General Hospital of Elche, 03203 Elche, Spain
| | - Yoel G. Montoyo-Pujol
- Medical Oncology Department, Dr. Balmis University General Hospital, Pintor Baeza 12, 03010 Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
| | - Enrique Roche
- Biochemistry and Cell Therapy Unit, Institute of Bioengineering, Miguel Hernandez University of Elche, 03202 Elche, Spain
| | - Gloria Peiró
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
- Pathology Department, Dr. Balmis University General Hospital, Pintor Baeza 12, 03010 Alicante, Spain
| | - José M. Sempere-Ortells
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
| |
Collapse
|
5
|
Liu X, Huo Y, Zhao J, Wang G, Liu H, Yin F, Pang C, Wang Y, Bai L. Endothelial cell protein C receptor regulates neutrophil extracellular trap-mediated rheumatoid arthritis disease progression. Int Immunopharmacol 2022; 112:109249. [PMID: 36152537 DOI: 10.1016/j.intimp.2022.109249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 12/01/2022]
Abstract
Endothelial cell protein C receptor (EPCR) is a 46 kDa transmembrane protein receptor, expressed in most immune cells (T cells, monocytes, dendritic cells, polymorphonuclear neutrophils [PMN]). EPCR reportedly plays a vital role in rheumatoid arthritis (RA). Our results confirmed that EPCR expression exists in the PMN of RA patients, and animal experiments demonstrated that down-regulation of EPCR expression affects disease progression in collagen-induced arthritis (CIA) mice. PMN is the immune cell type that first enters the site of inflammation in the early stages of inflammation. In the early stage of RA, PMN cells migrate into the joint cavity and function in the process of RA synovial inflammation, aggravating the bone destruction found in RA and mediating the progression of RA disease progression. We verified the differences in EPCR expression in PMN cells between RA and osteoarthritis (OA) patients by Western blot and then confirmed this difference in animals. We found that CIA mice treated with PMN-neutralizing antibody intervention had reduced disease performance. On this basis, EPCR was knocked down at the same time. The therapeutic effect of PMN-neutralizing antibody treatment was subsequently diminished. To explore the relationship between EPCR and PMN in RA, we used immunofluorescence to detect the expression of PMN-neutrophil extracellular traps (NETs) in RA patients and used EPCR neutralizing antibodies as an intervention. The results showed that the formation of PMN-NETs in RA patients increased. Finally, through in vitro intervention experiments involving EPCR and PMN transcriptome analysis of the peripheral blood of RA patients, we concluded that EPCR may regulate the formation of PMN-NETs in RA patients through the activated protein C (APC)-EPCR signaling pathway, thereby affecting the progression of disease in RA patients.
Collapse
Affiliation(s)
- Xuanqi Liu
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Baotou Medical College, Baotou 014010, China; Baotou Medical College, Inner Mongolia University of Science and Technology. Baotou 014000, China
| | - Yinping Huo
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Baotou Medical College, Baotou 014010, China; Baotou Medical College, Inner Mongolia University of Science and Technology. Baotou 014000, China
| | - Jingyang Zhao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Baotou Medical College, Baotou 014010, China; The Central Lab, the First Affiliated Hospital of Baotou Medical College (Inner Mongolia Autoimmune Key Laboratory), Baotou 014010, China; Baotou Medical College, Inner Mongolia University of Science and Technology. Baotou 014000, China
| | - Guan Wang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Baotou Medical College, Baotou 014010, China; Baotou Medical College, Inner Mongolia University of Science and Technology. Baotou 014000, China
| | - Huiyang Liu
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Baotou Medical College, Baotou 014010, China; Baotou Medical College, Inner Mongolia University of Science and Technology. Baotou 014000, China
| | - Fangrui Yin
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Baotou Medical College, Baotou 014010, China; The Central Lab, the First Affiliated Hospital of Baotou Medical College (Inner Mongolia Autoimmune Key Laboratory), Baotou 014010, China; Baotou Medical College, Inner Mongolia University of Science and Technology. Baotou 014000, China
| | - Chunyan Pang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Baotou Medical College, Baotou 014010, China; The Central Lab, the First Affiliated Hospital of Baotou Medical College (Inner Mongolia Autoimmune Key Laboratory), Baotou 014010, China; Baotou Medical College, Inner Mongolia University of Science and Technology. Baotou 014000, China
| | - Yongfu Wang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Baotou Medical College, Baotou 014010, China; The Central Lab, the First Affiliated Hospital of Baotou Medical College (Inner Mongolia Autoimmune Key Laboratory), Baotou 014010, China; Baotou Medical College, Inner Mongolia University of Science and Technology. Baotou 014000, China
| | - Li Bai
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Baotou Medical College, Baotou 014010, China; The Central Lab, the First Affiliated Hospital of Baotou Medical College (Inner Mongolia Autoimmune Key Laboratory), Baotou 014010, China; Baotou Medical College, Inner Mongolia University of Science and Technology. Baotou 014000, China.
| |
Collapse
|
6
|
Magisetty J, Kondreddy V, Keshava S, Das K, Esmon CT, Pendurthi UR, Rao LVM. Selective inhibition of activated protein C anticoagulant activity protects against hemophilic arthropathy in mice. Blood 2022; 139:2830-2841. [PMID: 35143636 PMCID: PMC9074403 DOI: 10.1182/blood.2021013119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/26/2022] [Indexed: 11/20/2022] Open
Abstract
Recurrent spontaneous or trauma-related bleeding into joints in hemophilia leads to hemophilic arthropathy (HA), a debilitating joint disease. Treatment of HA consists of preventing joint bleeding by clotting factor replacement, and in extreme cases, orthopedic surgery. We recently showed that administration of endothelial cell protein C receptor (EPCR) blocking monoclonal antibodies (mAb) markedly reduced the severity of HA in factor VIII (FVIII)-/- mice. EPCR blocking inhibits activated protein C (APC) generation and EPCR-dependent APC signaling. The present study was aimed to define the role of inhibition of APC anticoagulant activity, APC signaling, or both in suppressing HA. FVIII-/- mice were treated with a single dose of isotype control mAb, MPC1609 mAb, that inhibits anticoagulant, and signaling properties of APC, or MAPC1591 mAb that only blocks the anticoagulant activity of APC. Joint bleeding was induced by needle puncture injury. HA was evaluated by monitoring joint bleeding, change in joint diameter, and histopathological analysis of joint tissue sections for synovial hypertrophy, macrophage infiltration, neoangiogenesis, cartilage degeneration, and chondrocyte apoptosis. No significant differences were observed between MPC1609 and MAPC1591 in inhibiting APC anticoagulant activity in vitro and equally effective in correcting acute bleeding induced by the saphenous vein incision in FVIII-/- mice. Administration of MAPC1591, and not MPC1609, markedly reduced the severity of HA. MAPC1591 inhibited joint bleed-induced inflammatory cytokine interleukin-6 expression and vascular leakage in joints, whereas MPC1609 had no significant effect. Our data show that an mAb that selectively inhibits APC's anticoagulant activity without compromising its cytoprotective signaling offers a therapeutic potential alternative to treat HA.
Collapse
Affiliation(s)
- Jhansi Magisetty
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX; and
| | - Vijay Kondreddy
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX; and
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX; and
| | - Kaushik Das
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX; and
| | - Charles T Esmon
- Coagulation Biology Laboratory, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Usha R Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX; and
| | - L Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX; and
| |
Collapse
|
7
|
Xue M, Lin H, Liang HPH, McKelvey K, Zhao R, March L, Jackson C. Deficiency of protease-activated receptor (PAR) 1 and PAR2 exacerbates collagen-induced arthritis in mice via differing mechanisms. Rheumatology (Oxford) 2021; 60:2990-3003. [PMID: 33823532 DOI: 10.1093/rheumatology/keaa701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/17/2020] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES Protease-activated receptor (PAR) 1 and PAR2 have been implicated in RA, however their exact role is unclear. Here, we detailed the mechanistic impact of these receptors on the onset and development of inflammatory arthritis in murine CIA and antigen-induced arthritis (AIA) models. METHODS CIA or AIA was induced in PAR1 or PAR2 gene knockout (KO) and matched wild type mice. The onset and development of arthritis was monitored clinically and histologically. Immune cells, cytokines and MMPs were detected by ELISA, zymography, flow cytometry, western blot or immunohistochemistry. RESULTS In CIA, PAR1KO and PAR2KO exacerbated arthritis, in opposition to their effects in AIA. These deficient mice had high plasma levels of IL-17, IFN-γ, TGF-β1 and MMP-13, and lower levels of TNF-α; T cells and B cells were higher in both KO spleen and thymus, and myeloid-derived suppressor cells were lower only in PAR1KO spleen, when compared with wild type cells. Th1, Th2 and Th17 cells were lower in PAR1KO spleens cells, whereas Th1 and Th2 cells were lower and Th17 cells higher in both KO thymus cells, when compared with wild type cells. PAR1KO synovial fibroblasts proliferated faster and produced the most abundant MMP-9 amongst three type cells in the control, lipopolysaccharides or TNF stimulated conditions. CONCLUSION This is the first study demonstrated that deficiency of PAR1 or PAR2 aggravates inflammatory arthritis in CIA. Furthermore, the protective functions of PAR1 and PAR2 in CIA likely occur via differing mechanisms involving immune cell differentiation and cytokines/MMPs.
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Sydney, NSW, Australia
| | - Haiyan Lin
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Sydney, NSW, Australia
| | - Hai Po Helena Liang
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Sydney, NSW, Australia
| | - Kelly McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Ruilong Zhao
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Sydney, NSW, Australia
| | - Lyn March
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Sydney, NSW, Australia
| | - Christopher Jackson
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Sydney, NSW, Australia
| |
Collapse
|
8
|
Li J, Tang RS, Shi Z, Li JQ. Nuclear factor‐κB in rheumatoid arthritis. Int J Rheum Dis 2020; 23:1627-1635. [PMID: 32965792 DOI: 10.1111/1756-185x.13958] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 02/02/2023]
Affiliation(s)
- Jie Li
- School of Medicine, University of Electronic Science and Technology of China & department of Pharmacy, Sichuan Provincial People's Hospital, Chengdu, China
| | - Rong-Shuang Tang
- School of Medicine, University of Electronic Science and Technology of China & department of Pharmacy, Sichuan Provincial People's Hospital, Chengdu, China
| | - Zhou Shi
- School of Medicine, University of Electronic Science and Technology of China & department of Pharmacy, Sichuan Provincial People's Hospital, Chengdu, China
| | - Jin-Qi Li
- School of Medicine, University of Electronic Science and Technology of China & department of Pharmacy, Sichuan Provincial People's Hospital, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province & Sichuan Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
9
|
Bai L, Liu W, Guo P, Bai J, Liu Y, Hua Y, Pang C, Zhang W, Yin F, Wang Y. Elevated levels of soluble Endothelial protein C receptor in rheumatoid arthritis and block the therapeutic effect of protein C in collagen-induced arthritis. Int Immunopharmacol 2020; 81:106255. [PMID: 32007797 DOI: 10.1016/j.intimp.2020.106255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/16/2020] [Accepted: 01/24/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND Endothelial protein C receptor (EPCR) is a membranous protein that can be combined with a variety of ligands and plays important roles in anticoagulant and anti-inflammation. Recent reports have shown that surface EPCR expression on T cells is negatively associated with Th17 differentiation and is co-expressed with other immunosuppressive molecules, such as The programmed cell death 1 (PD-1) and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4). Hence, we hypothesized that EPCR may play a critical role in rheumatoid arthritis (RA) disease progression that is mediated by Th17 differentiation. In order to explore the role of EPCR on RA disease pathogenesis, we detected membranous EPCR (mEPCR) expression in CD4+ T cells and soluble EPCR (sEPCR) expression in the sera of RA patients. METHODS The proportion of CD4+/EPCR+ T cells in the peripheral blood of RA patients was detected by flow cytometry, and the expression of sEPCR in the sera of RA patients was detected by enzyme-linked immunosorbent assay (ELISA). For in vitro experiments, protein C (PC) and EPCR recombinant proteins were used to block peripheral blood mononuclear cell (PBMC) activation and to detect Th17 differentiation. For in vivo experiments in DBA/1 mice with collagen-induced arthritis (CIA), we administered PC and EPCR recombinant proteins, monitored disease progression, and evaluated the role of EPCR in disease progression. RESULTS The proportion of CD4+/EPCR+ T cells in the peripheral blood of RA patients was lower than that of osteoarthritis (OA) patients, while the expression level of sEPCR in the sera of RA patients was concomitantly higher than that in OA patients. Subsequent analysis revealed that sEPCR expression was positively correlated with rheumatoid factors (RF) and other inflammatory indicators in RA patients. Further studies confirmed that sEPCR administration alleviated the progression of collagen-induced arthritis and partially blocked the therapeutic effect of PC in CIA mice. CONCLUSION Soluble EPCR is associated with RA disease progression and induces disease remission in CIA mice by inhibiting Th17 differentiation.
Collapse
Affiliation(s)
- Li Bai
- Department of Rheumatology, The First Affiliated Hospital of Baotou Medical College, Baotou 014010, China; Institute of Immunology and Rheumatology, Baotou Medical College (Inner Mongolia Key Laboratory of Autoimmunity), Baotou 014010, China; Baotou Medical College, Baotou 014010, China
| | - Wenjia Liu
- Department of Rheumatology, The First Affiliated Hospital of Baotou Medical College, Baotou 014010, China; Baotou Medical College, Baotou 014010, China
| | - Pengnian Guo
- Department of Orthopedic, The First Affiliated Hospital of Baotou Medical College, Baotou 014010, China
| | - Jingru Bai
- Department of Rheumatology, The First Affiliated Hospital of Baotou Medical College, Baotou 014010, China; Baotou Medical College, Baotou 014010, China
| | - Yuan Liu
- Department of Rheumatology, The First Affiliated Hospital of Baotou Medical College, Baotou 014010, China; Baotou Medical College, Baotou 014010, China
| | - Yana Hua
- Department of Rheumatology, The First Affiliated Hospital of Baotou Medical College, Baotou 014010, China; Baotou Medical College, Baotou 014010, China
| | - Chunyan Pang
- Department of Rheumatology, The First Affiliated Hospital of Baotou Medical College, Baotou 014010, China; Institute of Immunology and Rheumatology, Baotou Medical College (Inner Mongolia Key Laboratory of Autoimmunity), Baotou 014010, China; Baotou Medical College, Baotou 014010, China
| | - Wei Zhang
- Department of Rheumatology, The First Affiliated Hospital of Baotou Medical College, Baotou 014010, China; Institute of Immunology and Rheumatology, Baotou Medical College (Inner Mongolia Key Laboratory of Autoimmunity), Baotou 014010, China; Baotou Medical College, Baotou 014010, China
| | - Fangrui Yin
- Department of Rheumatology, The First Affiliated Hospital of Baotou Medical College, Baotou 014010, China; Institute of Immunology and Rheumatology, Baotou Medical College (Inner Mongolia Key Laboratory of Autoimmunity), Baotou 014010, China; Baotou Medical College, Baotou 014010, China
| | - Yongfu Wang
- Department of Rheumatology, The First Affiliated Hospital of Baotou Medical College, Baotou 014010, China; Institute of Immunology and Rheumatology, Baotou Medical College (Inner Mongolia Key Laboratory of Autoimmunity), Baotou 014010, China; Baotou Medical College, Baotou 014010, China.
| |
Collapse
|
10
|
Xue M, Dervish S, McKelvey KJ, March L, Wang F, Little CB, Jackson CJ. Activated protein C targets immune cells and rheumatoid synovial fibroblasts to prevent inflammatory arthritis in mice. Rheumatology (Oxford) 2019; 58:1850-1860. [DOI: 10.1093/rheumatology/key429] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
AbstractObjectivesTo investigate whether activated protein C (APC), a physiological anticoagulant can inhibit the inflammatory/invasive properties of immune cells and rheumatoid arthritis synovial fibroblasts (RASFs) in vitro and prevent inflammatory arthritis in murine antigen-induced arthritis (AIA) and CIA models.MethodsRASFs isolated from synovial tissues of patients with RA, human peripheral blood mononuclear cells (PBMCs) and mouse thymus cells were treated with APC or TNF-α/IL-17 and the following assays were performed: RASF proliferation and invasion by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and cell invasion assays, respectively; cytokines and signalling molecules using ELISA or western blot; Th1 and Th17 phenotypes in human PBMCs or mouse thymus cells by flow cytometry. The in vivo effect of APC was evaluated in AIA and CIA models.ResultsIn vitro, APC inhibited IL-1β, IL-17 and TNF-α production, IL-17-stimulated cell proliferation and invasion and p21 and nuclear factor κB activation in RASFs. In mouse thymus cells and human PBMCs, APC suppressed Th1 and Th17 phenotypes. In vivo, APC inhibited pannus formation, cartilage destruction and arthritis incidence/severity in both CIA and AIA models. In CIA, serum levels of IL-1β, IL-6, IL-17, TNF-α and soluble endothelial protein C receptor were significantly reduced by APC treatment. Blocking endothelial protein C receptor, the specific receptor for APC, abolished the early or preventative effect of APC in AIA.ConclusionAPC prevents the onset and development of arthritis in CIA and AIA models via suppressing inflammation, Th1/Th17 phenotypes and RASF invasion, which is likely mediated via endothelial protein C receptor.
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Arthritis Research Laboratories, Institute of Bone and Joint Research, Kolling Institute of Medical Research
| | - Suat Dervish
- Sutton Arthritis Research Laboratories, Institute of Bone and Joint Research, Kolling Institute of Medical Research
| | - Kelly J McKelvey
- Sutton Arthritis Research Laboratories, Institute of Bone and Joint Research, Kolling Institute of Medical Research
| | - Lyn March
- Department of Rheumatology, University of Sydney at Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Fang Wang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chris B Little
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute of Medical Research, University of Sydney at Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Christopher J Jackson
- Sutton Arthritis Research Laboratories, Institute of Bone and Joint Research, Kolling Institute of Medical Research
| |
Collapse
|
11
|
Samuchiwal SK, Balestrieri B. Harmful and protective roles of group V phospholipase A 2: Current perspectives and future directions. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:819-826. [PMID: 30308324 DOI: 10.1016/j.bbalip.2018.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022]
Abstract
Group V Phospholipase A2 (Pla2g5) is a member of the PLA2 family of lipid-generating enzymes. It is expressed in immune and non-immune cell types and is inducible during several pathologic conditions serving context-specific functions. In this review, we recapitulate the protective and detrimental functions of Pla2g5 investigated through preclinical and translational approaches. This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.
Collapse
Affiliation(s)
- Sachin K Samuchiwal
- Department of Medicine, Harvard Medical School, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Barbara Balestrieri
- Department of Medicine, Harvard Medical School, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Minhas N, Xue M, Jackson CJ. Activated protein C binds directly to Tie2: possible beneficial effects on endothelial barrier function. Cell Mol Life Sci 2017; 74:1895-1906. [PMID: 28005151 PMCID: PMC11107519 DOI: 10.1007/s00018-016-2440-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 11/28/2022]
Abstract
Activated protein C (APC) is a natural anticoagulant with strong anti-inflammatory, anti-apoptotic, and barrier stabilizing properties. These cytoprotective properties of APC are thought to be exerted through its pathway involving the binding of APC to endothelial protein C receptor and cleavage of protease-activated receptors. In this study, we found that APC enhanced endothelial barrier integrity via a novel pathway, by binding directly to and activating Tie2, a transmembrane endothelial tyrosine kinase receptor. Binding assays demonstrated that APC competed with the only known ligands of Tie2, the angiopoietins (Angs). APC bound directly to Tie2 (Kd ~3 nM), with markedly stronger binding affinity than Ang2. After binding, APC rapidly activated Tie2 to enhance endothelial barrier function as shown by Evan's blue dye transfer across confluent cell monolayers and in vivo studies. Blocking Tie2 restricted endothelial barrier integrity. This study highlights a novel mechanism by which APC binds directly to Tie2 to enhance endothelial barrier integrity, which helps to explain APC's protective effects in vascular leakage-related pathologies.
Collapse
Affiliation(s)
- Nikita Minhas
- Sutton Arthritis Research Laboratories, Institute of Bone and Joint Research, Kolling Institute of Medical Research, University of Sydney at Royal North Shore Hospital, Level 10, The Kolling Building, St. Leonards, NSW, 2065, Australia
| | - Meilang Xue
- Sutton Arthritis Research Laboratories, Institute of Bone and Joint Research, Kolling Institute of Medical Research, University of Sydney at Royal North Shore Hospital, Level 10, The Kolling Building, St. Leonards, NSW, 2065, Australia
| | - Christopher J Jackson
- Sutton Arthritis Research Laboratories, Institute of Bone and Joint Research, Kolling Institute of Medical Research, University of Sydney at Royal North Shore Hospital, Level 10, The Kolling Building, St. Leonards, NSW, 2065, Australia.
| |
Collapse
|
13
|
Menschikowski M, Hagelgans A, Nacke B, Jandeck C, Mareninova OA, Asatryan L, Siegert G. Epigenetic control of group V phospholipase A2 expression in human malignant cells. Tumour Biol 2015; 37:8097-105. [PMID: 26715269 DOI: 10.1007/s13277-015-4670-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/16/2015] [Indexed: 12/27/2022] Open
Abstract
Secreted phospholipases A2 (sPLA2) are suggested to play an important role in inflammation and tumorigenesis. Different mechanisms of epigenetic regulation are involved in the control of group IIA, III and X sPLA2s expression in cancer cells, but group V sPLA2 (GV-PLA2) in this respect has not been studied. Here, we demonstrate the role of epigenetic mechanisms in regulation of GV-PLA2 expression in different cell lines originating from leukaemia and solid cancers. In blood leukocytes from leukaemic patients, levels of GV-PLA2 transcripts were significantly lower in comparison to those from healthy individuals. Similarly, in DU-145 and PC-3 prostate and CAL-51 and MCF-7 mammary cancer cell lines, levels of GV-PLA2 transcripts were significantly lower in relation to those found in normal epithelial cells of prostate or mammary. By sequencing and methylation-specific high-resolution melting (MS-HRM) analyses of bisulphite-modified DNA, distinct CpG sites in the GV-PLA2 promoter region were identified that were differentially methylated in cancer cells in comparison to normal epithelial and endothelial cells. Spearman rank order analysis revealed a significant negative correlation between the methylation degree and the cellular expression of GV-PLA2 (r = -0.697; p = 0.01). The effects of demethylating agent (5-aza-2'-deoxycytidine) and histone deacetylase inhibitor (trichostatin A) on GV-PLA2 transcription in the analysed cells confirmed the importance of DNA methylation and histone modification in the regulation of the GV-PLA2 gene expression in leukaemic, prostate and mammary cancer cell lines. The exposure of tumour cells to human recombinant GV-PLA2 resulted in a reduced colony forming activity of MCF-7, HepG2 and PC-3 cells, but not of DU-145 cells suggesting a cell-type-dependent effect of GV-PLA2 on cell growth. In conclusion, our results suggest that epigenetic mechanisms such as DNA methylation and histone modification play an important role in downregulation of GV-PLA2 expression in cancer cells.
Collapse
Affiliation(s)
- Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Fetscherstr. 74, D-01307, Dresden, Germany.
| | - Albert Hagelgans
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Fetscherstr. 74, D-01307, Dresden, Germany
| | - Brit Nacke
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Fetscherstr. 74, D-01307, Dresden, Germany
| | - Carsten Jandeck
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Fetscherstr. 74, D-01307, Dresden, Germany
| | - Olga A Mareninova
- Veterans Affairs Greater Los Angeles Healthcare System and University of California at Los Angeles, Los Angeles, CA, USA
| | - Liana Asatryan
- Titus Family Department of Clinical Pharmacy, USC School of Pharmacy, Los Angeles, CA, USA
| | - Gabriele Siegert
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Fetscherstr. 74, D-01307, Dresden, Germany
| |
Collapse
|