1
|
Liao HJ, Chen HT, Chang CH. Peptides for Targeting Chondrogenic Induction and Cartilage Regeneration in Osteoarthritis. Cartilage 2024:19476035241276406. [PMID: 39291443 PMCID: PMC11556548 DOI: 10.1177/19476035241276406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
OBJECTS Osteoarthritis (OA) is a widespread degenerative joint condition commonly occurring in older adults. Currently, no disease-modifying drugs are available, and safety concerns associated with commonly used traditional medications have been identified. In this review, a significant portion of research in this field is concentrated on cartilage, aiming to discover methods to halt cartilage breakdown or facilitate cartilage repair. METHODS Researchers have mainly investigated the cartilage, seeking methods to promote its repair. This review focuses on peptide-based molecules known for their ability to selectively bind to growth factor cytokines and components of the cartilage extracellular matrix. RESULTS Chondroinductive peptides, synthetically producible, boast superior reproducibility, stability, modifiability, and yield efficiency over natural biomaterials. This review outlines a chondroinductive peptide design, molecular mechanisms, and their application in cartilage tissue engineering and also compares their efficacy in chondrogenesis in vitro and in vivo. CONCLUSIONS In this paper, we will summarize the application of peptides engineered to regenerate cartilage by acting as scaffolds, functional molecules, or both and discuss additional possibilities for peptides. This review article provides an overview of our current understanding of chondroinductive peptides for treating OA-affected cartilage and explores the delivery systems used for regeneration. These advancements may hold promise for enhancing or even replacing current treatment methodologies.
Collapse
Affiliation(s)
- Hsiu-Jung Liao
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City
| | - Hui-Ting Chen
- Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung
| | - Chih-Hung Chang
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan
| |
Collapse
|
2
|
Wolfe PN, Stoker AM, Leary E, Crist BD, Bozynski CC, Cook JL. Evaluation of Serum and Urine Biomarker Panels for Developmental Dysplasia of the Hip Prior to Onset of Secondary Osteoarthritis. Cartilage 2024; 15:164-174. [PMID: 37051936 PMCID: PMC11368892 DOI: 10.1177/19476035231163032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 04/14/2023] Open
Abstract
OBJECTIVE Evaluate serum and urine biomarker panels for their capabilities in discriminating between individuals (13- to 34-years-olds) with healthy hips versus those with developmental dysplasia of the hip (DDH) prior to diagnosis of secondary hip osteoarthritis (OA). DESIGN Urine and serum were collected from individuals (15-33 years old) with DDH, prior to and following diagnosis of hip OA, and from age-matched healthy-hip controls. Samples were analyzed for panels of protein biomarkers with potential for differentiation of hip status using receiver operator characteristic curve (area under curve [AUC]) assessments. RESULTS Multiple urine and serum biomarker panels effectively differentiated individuals with DDH from healthy-hip controls in a population at risk for developing secondary hip OA with the best performing panel demonstrating an AUC of 0.959. The panel comprised of two serum and two urinary biomarkers provided the highest combined values for sensitivity, 0.85, and specificity, 1.00, while a panel of four serum biomarkers provided the highest sensitivity, 0.93, while maintaining adequate specificity, 0.71. CONCLUSION Results of this study indicate that panels of protein biomarkers measured in urine and serum may be able to differentiate young adults with DDH from young adults with healthy hips. These data suggest the potential for clinical application of a routine diagnostic method for cost-effective and timely screening for DDH in at-risk populations. Further development and validation of these biomarker panels may result in highly sensitive and specific tools for early diagnosis, staging, and prognostication of DDH, as well as treatment decision making and monitoring capabilities. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Preston N. Wolfe
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, USA
| | - Aaron M. Stoker
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, USA
| | - Emily Leary
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, USA
- School of Medicine, University of Missouri, Columbia, MO, USA
| | - Brett D. Crist
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, USA
| | - Chantelle C. Bozynski
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, USA
| | - James L. Cook
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, USA
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, USA
| |
Collapse
|
3
|
Wood MK, Daoud A, Talor MV, Kalinoski HM, Hughes DM, Jaime CM, Hooper JE, Won T, Čiháková D. Programmed Death Ligand 1-Expressing Macrophages and Their Protective Role in the Joint During Arthritis. Arthritis Rheumatol 2024; 76:553-565. [PMID: 37997621 DOI: 10.1002/art.42749] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/04/2023] [Accepted: 10/09/2023] [Indexed: 11/25/2023]
Abstract
OBJECTIVE Arthritis associated with immune checkpoint inhibitor therapies highlights the importance of immune checkpoint expression for joint homeostasis. We investigated the role of programmed death ligand (PD-L) 1 in the synovium using a collagen-induced arthritis (CIA) mouse model. METHODS We blocked PD-L1 using blocking antibodies during CIA and assessed the arthritis severity by clinical and histologic scoring. PD-L1 expression and the origin of synovial macrophages were investigated using flow cytometry and parabiosis. We used Cre-Lox mice to ascertain the protective role of PD-L1-expressing macrophages in arthritis. The immune profile of human and murine synovial PD-L1+ macrophages was determined by reverse transcriptase-polymerase chain reaction, flow cytometry, and single-cell RNA sequencing. RESULTS Anti-PD-L1 antibody treatment during CIA worsened arthritis with increased immune cell infiltration compared with isotype control, supporting the regulatory role of PD-L1 in the joint. The main cells expressing PD-L1 in the synovium were macrophages. Using parabiosis, we showed that synovial PD-L1+ macrophages were both locally proliferating and partially replaced by the circulation. PD-L1+ macrophages had increased levels of MER proto-oncogene tyrosine kinase (MerTK) and interleukin (IL)-10 expression during acute CIA. Genetic depletion of PD-L1 on macrophages in LyzcrePD-L1fl/fl mice resulted in worsened CIA compared with controls. We found that human PD-L1+ macrophages in the synovium of healthy individuals and patients with rheumatoid arthritis express MerTK and IL-10. CONCLUSION PD-L1+ macrophages with efferocytotic and anti-inflammatory characteristics protect the synovium from severe arthritis in the CIA mouse model. Tissue-protective, PD-L1-expressing macrophages are also present in the human synovium at homeostasis and during rheumatoid arthritis.
Collapse
Affiliation(s)
- Megan Kay Wood
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland
| | - Abdel Daoud
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | - David Matthew Hughes
- Johns Hopkins University School of Medicine, Baltimore, Maryland
- Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland
| | - Camille Marie Jaime
- Johns Hopkins University School of Medicine, Baltimore, Maryland
- Johns Hopkins University School of Medicine, Graduate Program in Immunology, Baltimore, Maryland
| | - Jody Elizabeth Hooper
- Johns Hopkins University School of Medicine, Baltimore, Maryland
- Stanford University School of Medicine, Stanford, California
| | - Taejoon Won
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniela Čiháková
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
4
|
Ter Mors B, Spieler V, Merino Asumendi E, Gantert B, Lühmann T, Meinel L. Bioresponsive Cytokine Delivery Responding to Matrix Metalloproteinases. ACS Biomater Sci Eng 2024; 10:29-37. [PMID: 37102329 DOI: 10.1021/acsbiomaterials.2c01320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Cytokines are regulated in acute and chronic inflammation, including rheumatoid arthritis (RA) and myocardial infarction (MI). However, the dynamic windows within which cytokine activity/inhibition is desirable in RA and MI change timely and locally during the disease. Therefore, traditional, static delivery regimens are unlikely to meet the idiosyncrasy of these highly dynamic pathophysiological and individual processes. Responsive delivery systems and biomaterials, sensing surrogate markers of inflammation (i.e., matrix metalloproteinases - MMPs) and answering with drug release, may present drug activity at the right time, manner, and place. This article discusses MMPs as surrogate markers for disease activity in RA and MI to clock drug discharge to MMP concentration profiles from MMP-responsive drug delivery systems and biomaterials.
Collapse
Affiliation(s)
- Björn Ter Mors
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Valerie Spieler
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Eduardo Merino Asumendi
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Benedikt Gantert
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), 97080 Würzburg, Germany
| |
Collapse
|
5
|
McBride DA, Kerr MD, Johnson WT, Nguyen A, Zoccheddu M, Yao M, Prideaux EB, Dorn NC, Wang W, Svensson MN, Bottini N, Shah NJ. Immunomodulatory Microparticles Epigenetically Modulate T Cells and Systemically Ameliorate Autoimmune Arthritis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2202720. [PMID: 36890657 PMCID: PMC10104670 DOI: 10.1002/advs.202202720] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 01/09/2023] [Indexed: 05/10/2023]
Abstract
Disease modifying antirheumatic drugs (DMARDs) have improved the prognosis of autoimmune inflammatory arthritides but a large fraction of patients display partial or nonresponsiveness to front-line DMARDs. Here, an immunoregulatory approach based on sustained joint-localized release of all-trans retinoic acid (ATRA), which modulates local immune activation and enhances disease-protective T cells and leads to systemic disease control is reported. ATRA imprints a unique chromatin landscape in T cells, which is associated with an enhancement in the differentiation of naïve T cells into anti-inflammatory regulatory T cells (Treg ) and suppression of Treg destabilization. Sustained release poly-(lactic-co-glycolic) acid (PLGA)-based biodegradable microparticles encapsulating ATRA (PLGA-ATRA MP) are retained in arthritic mouse joints after intra-articular (IA) injection. IA PLGA-ATRA MP enhance migratory Treg which in turn reduce inflammation and modify disease in injected and uninjected joints, a phenotype that is also reproduced by IA injection of Treg . PLGA-ATRA MP reduce proteoglycan loss and bone erosions in the SKG and collagen-induced arthritis mouse models of autoimmune arthritis. Strikingly, systemic disease modulation by PLGA-ATRA MP is not associated with generalized immune suppression. PLGA-ATRA MP have the potential to be developed as a disease modifying agent for autoimmune arthritis.
Collapse
Affiliation(s)
- David A. McBride
- Department of NanoengineeringUniversity of CaliforniaLa JollaSan DiegoCA92093USA
- Chemical Engineering ProgramUniversity of CaliforniaLa JollaSan DiegoCA92093USA
| | - Matthew D. Kerr
- Department of NanoengineeringUniversity of CaliforniaLa JollaSan DiegoCA92093USA
- Chemical Engineering ProgramUniversity of CaliforniaLa JollaSan DiegoCA92093USA
| | - Wade T. Johnson
- Department of NanoengineeringUniversity of CaliforniaLa JollaSan DiegoCA92093USA
| | - Anders Nguyen
- Department of Rheumatology and Inflammation ResearchSahlgrenska AcademyInstitute of MedicineUniversity of GothenburgGothenburg41346Sweden
| | - Martina Zoccheddu
- Department of MedicineDivision of RheumatologyAllergy and ImmunologyUniversity of CaliforniaLa JollaSan DiegoCA92093USA
| | - Mina Yao
- Department of Chemistry and BiochemistryUniversity of CaliforniaLa JollaSan DiegoCA92093USA
| | - Edward B. Prideaux
- Department of Chemistry and BiochemistryUniversity of CaliforniaLa JollaSan DiegoCA92093USA
| | - Nicholas C. Dorn
- Department of NanoengineeringUniversity of CaliforniaLa JollaSan DiegoCA92093USA
- Chemical Engineering ProgramUniversity of CaliforniaLa JollaSan DiegoCA92093USA
| | - Wei Wang
- Department of Chemistry and BiochemistryUniversity of CaliforniaLa JollaSan DiegoCA92093USA
- Department of Cellular and Molecular MedicineUniversity of CaliforniaLa JollaSan DiegoCA92093USA
| | - Mattias N.D. Svensson
- Department of Rheumatology and Inflammation ResearchSahlgrenska AcademyInstitute of MedicineUniversity of GothenburgGothenburg41346Sweden
| | - Nunzio Bottini
- Department of MedicineDivision of RheumatologyAllergy and ImmunologyUniversity of CaliforniaLa JollaSan DiegoCA92093USA
| | - Nisarg J. Shah
- Department of NanoengineeringUniversity of CaliforniaLa JollaSan DiegoCA92093USA
- Chemical Engineering ProgramUniversity of CaliforniaLa JollaSan DiegoCA92093USA
| |
Collapse
|
6
|
Liu JMH, Chen P, Uyeda MJ, Cieniewicz B, Sayitoglu EC, Thomas BC, Sato Y, Bacchetta R, Cepika AM, Roncarolo MG. Pre-clinical development and molecular characterization of an engineered type 1 regulatory T-cell product suitable for immunotherapy. Cytotherapy 2021; 23:1017-1028. [PMID: 34404616 PMCID: PMC8546780 DOI: 10.1016/j.jcyt.2021.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AIMS Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative therapeutic approach for many hematological disorders. However, allo-HSCT is frequently accompanied by a serious side effect: graft-versus-host disease (GVHD). The clinical use of allo-HSCT is limited by the inability of current immunosuppressive regimens to adequately control GvHD without impairing the graft-versus-leukemia effect (GvL) conferred by transplanted healthy immune cells. To address this, the authors have developed an engineered type 1 regulatory T-cell product called CD4IL-10 cells. CD4IL-10 cells are obtained through lentiviral transduction, which delivers the human IL10 gene into purified polyclonal CD4+ T cells. CD4IL-10 cells may provide an advantage over standard-of-care immunosuppressants because of the ability to suppress GvHD through continuous secretion of IL-10 and enhance the GvL effect in myeloid malignancies through targeted killing of malignant myeloid cells. METHODS Here the authors established a production process aimed at current Good Manufacturing Practice (cGMP) production for CD4IL-10 cells. RESULTS The authors demonstrated that the CD4IL-10 cell product maintains the suppressive and cytotoxic functions of previously described CD4IL-10 cells. In addition, RNA sequencing analysis of CD4IL-10 identified novel transcriptome changes, indicating that CD4IL-10 cells primarily upregulate cytotoxicity-related genes. These include four molecules with described roles in CD8+ T and natural killer cell-mediated cytotoxicity: CD244, KLRD1, KLRC1 and FASLG. Finally, it was shown that CD4IL-10 cells upregulate IL-22, which mediates wound healing and tissue repair, particularly in the gut. CONCLUSIONS Collectively, these results pave the way toward clinical translation of the cGMP-optimized CD4IL-10 cell product and uncover new molecules that have a role in the clinical application of CD4IL-10 cells.
Collapse
Affiliation(s)
- Jeffrey Mao-Hwa Liu
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Center for Definitive and Curative Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Ping Chen
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Center for Definitive and Curative Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Molly Javier Uyeda
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Center for Definitive and Curative Medicine, Stanford School of Medicine, Stanford, California, USA; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Brandon Cieniewicz
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Center for Definitive and Curative Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Ece Canan Sayitoglu
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Center for Definitive and Curative Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Benjamin Craig Thomas
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Center for Definitive and Curative Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Yohei Sato
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Center for Definitive and Curative Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Rosa Bacchetta
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Center for Definitive and Curative Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Alma-Martina Cepika
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Center for Definitive and Curative Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Maria Grazia Roncarolo
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Center for Definitive and Curative Medicine, Stanford School of Medicine, Stanford, California, USA; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, California, USA.
| |
Collapse
|
7
|
Uricoli B, Birnbaum LA, Do P, Kelvin JM, Jain J, Costanza E, Chyong A, Porter CC, Rafiq S, Dreaden EC. Engineered Cytokines for Cancer and Autoimmune Disease Immunotherapy. Adv Healthc Mater 2021; 10:e2002214. [PMID: 33690997 PMCID: PMC8651077 DOI: 10.1002/adhm.202002214] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/15/2021] [Indexed: 12/17/2022]
Abstract
Cytokine signaling is critical to a range of biological processes including cell development, tissue repair, aging, and immunity. In addition to acting as key signal mediators of the immune system, cytokines can also serve as potent immunotherapies with more than 20 recombinant products currently Food and Drug Administration (FDA)-approved to treat conditions including hepatitis, multiple sclerosis, arthritis, and various cancers. Yet despite their biological importance and clinical utility, cytokine immunotherapies suffer from intrinsic challenges that limit their therapeutic potential including poor circulation, systemic toxicity, and low tissue- or cell-specificity. In the past decade in particular, methods have been devised to engineer cytokines in order to overcome such challenges and here, the myriad strategies are reviewed that may be employed in order to improve the therapeutic potential of cytokine and chemokine immunotherapies with applications in cancer and autoimmune disease therapy, as well as tissue engineering and regenerative medicine. For clarity, these strategies are collected and presented as they vary across size scales, ranging from single amino acid substitutions, to larger protein-polymer conjugates, nano/micrometer-scale particles, and macroscale implants. Together, this work aims to provide readers with a timely view of the field of cytokine engineering with an emphasis on early-stage therapeutic approaches.
Collapse
Affiliation(s)
- Biaggio Uricoli
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Lacey A. Birnbaum
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Priscilla Do
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - James M. Kelvin
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Juhi Jain
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Emory School of Medicine, Atlanta, GA 30322, USA
| | - Emma Costanza
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Andrew Chyong
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Christopher C. Porter
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Emory School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Sarwish Rafiq
- Department of Hematology and Medical Oncology at Emory University School of Medicine
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Erik C. Dreaden
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Emory School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
8
|
McClurg O, Tinson R, Troeberg L. Targeting Cartilage Degradation in Osteoarthritis. Pharmaceuticals (Basel) 2021; 14:ph14020126. [PMID: 33562742 PMCID: PMC7916085 DOI: 10.3390/ph14020126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis is a common, degenerative joint disease with significant socio-economic impact worldwide. There are currently no disease-modifying drugs available to treat the disease, making this an important area of pharmaceutical research. In this review, we assessed approaches being explored to directly inhibit metalloproteinase-mediated cartilage degradation and to counteract cartilage damage by promoting growth factor-driven repair. Metalloproteinase-blocking antibodies are discussed, along with recent clinical trials on FGF18 and Wnt pathway inhibitors. We also considered dendrimer-based approaches being developed to deliver and retain such therapeutics in the joint environment. These may reduce systemic side effects while improving local half-life and concentration. Development of such targeted anabolic therapies would be of great benefit in the osteoarthritis field.
Collapse
|
9
|
Hussain MT, Iqbal AJ, Norling LV. The Role and Impact of Extracellular Vesicles in the Modulation and Delivery of Cytokines during Autoimmunity. Int J Mol Sci 2020; 21:E7096. [PMID: 32993051 PMCID: PMC7584003 DOI: 10.3390/ijms21197096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Cytokines and extracellular vesicles are two methods of initiating and maintaining cellular crosstalk. The role of cytokines in the initiation, progression, and resolution of inflammation has been well studied and more so, their pathophysiological role in the development of autoimmune disease. In recent years, the impact of extracellular vesicles on the progression of autoimmunity has become more widely appreciated. In this review, we discuss the mechanisms that allow extracellular vesicles of various sources to modulate cytokine production, and release, and how extracellular vesicles might be involved in the direct delivery and modulation of cytokine levels. Moreover, we explore what challenges are faced by current therapies and the promising future for extracellular vesicles as therapeutic agents in conditions driven by immune dysregulation.
Collapse
Affiliation(s)
- Mohammed Tayab Hussain
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London E1 4NS, UK;
| | - Asif Jilani Iqbal
- The Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Lucy Victoria Norling
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London E1 4NS, UK;
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
10
|
Lim N, Wen C, Vincent T. Molecular and structural imaging in surgically induced murine osteoarthritis. Osteoarthritis Cartilage 2020; 28:874-884. [PMID: 32305526 PMCID: PMC7327515 DOI: 10.1016/j.joca.2020.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/15/2020] [Accepted: 03/23/2020] [Indexed: 02/02/2023]
Abstract
Preclinical imaging in osteoarthritis is a rapidly growing area with three principal objectives: to provide rapid, sensitive tools to monitor the course of experimental OA longitudinally; to describe the temporal relationship between tissue-specific pathologies over the course of disease; and to use molecular probes to measure disease activity in vivo. Research in this area can be broadly divided into those techniques that monitor structural changes in tissues (microCT, microMRI, ultrasound) and those that detect molecular disease activity (positron emission tomography (PET), optical and optoacoustic imaging). The former techniques have largely evolved from experience in human joint imaging and have been refined for small animal use. Some of the latter tools, such as optical imaging, have been developed in preclinical models and may have translational benefit in the future for patient stratification and for monitoring disease progression and response to treatment. In this narrative review we describe these methodologies and discuss the benefits to animal research, understanding OA pathogenesis, and in the development of human biomarkers.
Collapse
Affiliation(s)
- N.H. Lim
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, UK,Address correspondence and reprint requests to: N.H. Lim, Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, UK.
| | - C. Wen
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong
| | - T.L. Vincent
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, UK
| |
Collapse
|
11
|
Topping LM, Thomas BL, Rhys HI, Tremoleda JL, Foster M, Seed M, Voisin MB, Vinci C, Law HL, Perretti M, Norling LV, Azevedo HS, Nissim A. Targeting Extracellular Vesicles to the Arthritic Joint Using a Damaged Cartilage-Specific Antibody. Front Immunol 2020; 11:10. [PMID: 32117219 PMCID: PMC7033748 DOI: 10.3389/fimmu.2020.00010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/06/2020] [Indexed: 01/18/2023] Open
Abstract
The targeted delivery of therapies to diseased tissues offers a safe opportunity to achieve optimal efficacy while limiting systemic exposure. These considerations apply to many disease indications but are especially relevant for rheumatoid arthritis (RA), as RA is a systemic autoimmune disease which affects multiple joints. We have identified an antibody that is specific to damaged arthritic cartilage (anti-ROS-CII) that can be used to deliver treatments specifically to arthritic joints, yielding augmented efficacy in experimental arthritis. In the current study, we demonstrate that scaffolds enriched with bioactive payloads can be delivered precisely to an inflamed joint and achieve superior efficacy outcomes consistent with the pharmacological properties of these payloads. As a scaffold, we have used extracellular vesicles (EVs) prepared from human neutrophils (PMNs), which possess intrinsic anti-inflammatory properties and the ability to penetrate inflamed arthritic cartilage. EV fortified with anti-ROS-CII (EV/anti-ROS-CII) retained anti-ROS-CII specificity and bound exclusively to the damaged cartilage. Following systemic administration, EV/anti-ROS-CII (a) exhibited the ability to localize specifically in the arthritic joint in vivo and (b) was able to specifically target single (viral IL-10 or anti-TNF) or combined (viral IL-10 and anti-TNF) anti-inflammatory treatments to the arthritic joint, which accelerated attenuation of clinical and synovial inflammation. Overall, this study demonstrates the attainability of targeting a pro-resolving biological scaffold to the arthritic joint. The potential of targeting scaffolds such as EV, nanoparticles, or a combination thereof alongside combined therapeutics is paramount for designing systemically administered broad-spectrum of anti-inflammatory treatments.
Collapse
Affiliation(s)
- Louise M Topping
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.,Centre for Bioengineering, Life Sciences, Queen Mary University of London, London, United Kingdom
| | - Bethan L Thomas
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Hefin I Rhys
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Jordi L Tremoleda
- Barts and the London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Martyn Foster
- Experimental Pathology Consultancy, London, United Kingdom
| | - Michael Seed
- School of Health Sport and Bioscience, University of East London, London, United Kingdom
| | - Mathieu-Benoit Voisin
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Chiara Vinci
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Hannah L Law
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Mauro Perretti
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.,Centre for Bioengineering, Life Sciences, Queen Mary University of London, London, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| | - Lucy V Norling
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| | - Helena S Azevedo
- Centre for Bioengineering, Life Sciences, Queen Mary University of London, London, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom.,School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London, United Kingdom
| | - Ahuva Nissim
- Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.,Centre for Bioengineering, Life Sciences, Queen Mary University of London, London, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
12
|
Ren Y, Yang J, Li M, Huang N, Chen Y, Wu X, Wang X, Qiu S, Wang H, Li X. Viral IL-10 promotes cell proliferation and cell cycle progression via JAK2/STAT3 signaling pathway in nasopharyngeal carcinoma cells. Biotechnol Appl Biochem 2020; 67:929-938. [PMID: 31737947 DOI: 10.1002/bab.1856] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/13/2019] [Indexed: 11/09/2022]
Abstract
Epstein-Barr virus (EBV) is positively related to the morbidity of nasopharyngeal carcinoma (NPC) in Asia. After infection, EBV can produce several proteins, including viral interleukin-10 (vIL-10). But the mechanism by which vIL-10 contributes to NPC cell proliferation and cell cycle progression is not well understood. In this study, EBV negative and positive cell lines, and the JAK2/STAT3 signal pathway inhibitor AG490 were used to illustrate the role of vIL-10 in NPC. Cell proliferation and cell cycle were measured by CCK-8 and flow cytometry. The expression levels of related protein were measured by Western blotting. High concentrations of vIL-10 and IL-6 were found in the EBV positive patients. The expression level of IL-6 was positively related to the presence of concentration of vIL-10. vIL-10 can promote cancer cell proliferation and G1 to S phase transmission via upregulating the IL-6 protein level by activating the JAK2/STAT3 signal pathway. Furthermore, EBV can induce the formation of cytotoxic T cells, whereas vIL-10 can block the function of cytotoxic T cells. Taken together, these results suggest that vIL-10 promotes cell proliferation and cell cycle progression via JAK2/STAT3 signaling pathway in NPC.
Collapse
Affiliation(s)
- Yanxin Ren
- Department of Head and Neck Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Jie Yang
- Department of Head and Neck Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Mei Li
- Department of Pathology, Third Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Ning Huang
- Department of Pharmacology, Kunming Medical University, Kunming, People's Republic of China
| | - Yun Chen
- Department of Pathology, Third Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Xifang Wu
- Department of Head and Neck Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Xiaoli Wang
- Department of Radiation Oncology, Third Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Shun Qiu
- Department of Head and Neck Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Hu Wang
- Department of Head and Neck Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Xiaojiang Li
- Department of Head and Neck Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| |
Collapse
|
13
|
Molecular transport in articular cartilage - what have we learned from the past 50 years? Nat Rev Rheumatol 2019; 14:393-403. [PMID: 29899547 DOI: 10.1038/s41584-018-0033-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Developing therapeutic molecules that target chondrocytes and locally produced inflammatory factors within arthritic cartilage is an active area of investigation. The extensive studies that have been conducted over the past 50 years have enabled the accurate prediction and reliable optimization of the transport of a wide variety of molecules into cartilage. In this Review, the factors that can be used to tune the transport kinetics of therapeutics are summarized. Overall, the most crucial factor when designing new therapeutic molecules is solute size. The diffusivity and partition coefficient of a solute both decrease with increasing solute size as indicated by molecular mass or by hydrodynamic radius. Surprisingly, despite having an effective pore size of ~6 nm, molecules of ~16 nm radius can diffuse through the cartilage matrix. Alteration of the shape or charge of a solute and the application of physiological loading to cartilage can be used to predictably improve solute transport kinetics, and this knowledge can be used to improve the development of therapeutic agents for osteoarthritis that target the cartilage.
Collapse
|
14
|
Lofchy LA, Vu VP, Banda NK, Ramirez JR, Smith WJ, Gifford G, Gaikwad H, Scheinman RI, Simberg D. Evaluation of Targeting Efficiency of Joints with Anticollagen II Antibodies. Mol Pharm 2019; 16:2445-2451. [PMID: 31091104 DOI: 10.1021/acs.molpharmaceut.9b00059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diseases of the joints affect over 10% of the world's population, resulting in significant morbidity. There is an unmet need in strategies for specific delivery of therapeutics to the joints. Collagen type II is synthesized by chondrocytes and is mainly restricted to the cartilage and tendons. Arthrogen-CIA is a commercially available anticollagen II antibody cocktail that reacts with 5 different epitopes on human, bovine, and mouse collagen II. Arthrogen has been used for induction of experimental rheumatoid arthritis (RA) in mice because of high complement activation on the cartilage surface. Native collagen II might serve as a useful target for potential delivery of therapeutics to the joint. To evaluate the efficiency and specificity of targeting collagen II, Arthrogen was labeled with near-infrared (NIR) dye IRDye 800 or IRDye 680. Using ex vivo NIR imaging, we demonstrate that Arthrogen efficiently and specifically accumulated in the limb joints regardless of the label dye or injection route (intravenous and subcutaneous). After subcutaneous injection, the mean fluorescence of the hind limb joints was 19 times higher than that of the heart, 8.7 times higher than that of the liver, and 3.7 times higher than that of the kidney. Control mouse IgG did not show appreciable accumulation. Microscopically, the antibody accumulated on the cartilage surface of joints and on endosteal surfaces. A monoclonal antibody against a single epitope of collagen II showed similar binding affinity and elimination half-life, but about three times lower targeting efficiency than Arthrogen in vitro and ex vivo, and about two times lower targeting efficiency in vivo. We suggest that an antibody against multiple epitopes of collagen II could be developed into a highly effective and specific targeting strategy for diseases of the joints or spine.
Collapse
Affiliation(s)
| | | | - Nirmal K Banda
- Division of Rheumatology, School of Medicine , University of Colorado Denver , Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Joseline Ramos Ramirez
- Division of Rheumatology, School of Medicine , University of Colorado Denver , Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | | | | | | | | | | |
Collapse
|
15
|
Murer P, Neri D. Antibody-cytokine fusion proteins: A novel class of biopharmaceuticals for the therapy of cancer and of chronic inflammation. N Biotechnol 2019; 52:42-53. [PMID: 30991144 DOI: 10.1016/j.nbt.2019.04.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 12/23/2022]
Abstract
Antibody-cytokine fusion proteins represent a novel class of biopharmaceuticals, with the potential to increase the therapeutic index of cytokine 'payloads' and to promote leukocyte infiltration at the site of disease. In this review, we present a survey of immunocytokines that have been used in preclinical models of cancer and in clinical trials. In particular, we highlight how antibody format, choice of target antigen and cytokine engineering, as well as combination strategies, may have a profound impact on therapeutic performance. Moreover, by using anti-inflammatory cytokines, antibody fusion strategies can conveniently be employed for the treatment of auto-immune and chronic inflammatory conditions.
Collapse
Affiliation(s)
- Patrizia Murer
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland.
| |
Collapse
|
16
|
Schultz C. Targeting the extracellular matrix for delivery of bioactive molecules to sites of arthritis. Br J Pharmacol 2018; 176:26-37. [PMID: 30311636 DOI: 10.1111/bph.14516] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 09/01/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022] Open
Abstract
Modifications to the extracellular matrix (ECM) can be either causal or consequential of disease processes including arthritis and cancer. In arthritis, the cartilage ECM is adversely affected by the aberrant behaviours of inflammatory cells, synoviocytes and chondrocytes, which secrete a plethora of cytokines and degradative proteases. In cancer, the ECM and stromal cells are linked to disease severity, and metalloproteinases are implicated in metastasis. There have been some successes in the field of targeted therapies, but efficacy depends upon the type and stage of disease. ECM targets are becoming increasingly attractive for drug delivery, owing to changes in ECM structure and composition in the diseased state, and the long in vivo half-life of its components. This review will highlight various strategies for targeting therapeutics to arthritic joints, including antibody and peptide-mediated drug delivery platforms to aid delivery to the ECM and retention at disease sites. LINKED ARTICLES: This article is part of a themed section on Translating the Matrix. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.1/issuetoc.
Collapse
Affiliation(s)
- Christopher Schultz
- Centre for Biochemical Pharmacology, Queen Mary University of London, Charterhouse Square Campus, London, UK
| |
Collapse
|
17
|
Vasilenko EA, Mokhonov VV, Gorshkova EN, Astrakhantseva IV. Bispecific Antibodies: Formats and Areas of Application. Mol Biol 2018. [DOI: 10.1134/s0026893318020176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Abstract
As of May 1, 2017, 74 antibody-based molecules have been approved by a regulatory authority in a major market. Additionally, there are 70 and 575 antibody-based molecules in phase III and phase I/II clinical trials, respectively. These total 719 antibody-based clinical stage molecules include 493 naked IgGs, 87 antibody-drug conjugates, 61 bispecific antibodies, 37 total Fc fusion proteins, 17 radioimmunoglobulins, 13 antibody fragments, and 11 immunocytokines. New uses for these antibodies are being discovered each year. For oncology, many of the exciting new approaches involve antibody modulation of T-cells. There are over 80 antibodies in clinical trials targeting T cell checkpoints, 26 T-cell-redirected bispecific antibodies, and 145 chimeric antigen receptor (CAR) cell-based candidates (all currently in phase I or II clinical trials), totaling more than 250 T cell interacting clinical stage antibody-based candidates. Finally, significant progress has been made recently on routes of delivery, including delivery of proteins across the blood-brain barrier, oral delivery to the gut, delivery to the cellular cytosol, and gene- and viral-based delivery of antibodies. Thus, there are currently at least 864 antibody-based clinical stage molecules or cells, with incredible diversity in how they are constructed and what activities they impart. These are followed by a next wave of novel molecules, approaches, and new methods and routes of delivery, demonstrating that the field of antibody-based biologics is very innovative and diverse in its approaches to fulfill their promise to treat unmet medical needs.
Collapse
|
19
|
Fercher C, Keshvari S, McGuckin MA, Barnard RT. Evolution of the magic bullet: Single chain antibody fragments for the targeted delivery of immunomodulatory proteins. Exp Biol Med (Maywood) 2017; 243:166-183. [PMID: 29256259 DOI: 10.1177/1535370217748575] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Immunocytokines are fusion proteins that combine the specific antigen binding capacities of an antibody or derivative thereof and the potent bioactivity of a cytokine partner. These novel biopharmaceuticals have been directed to various targets of oncological as well as non-oncological origin and a handful of promising constructs are currently advancing in the clinical trial pipeline. Several factors such as the choice of a disease specific antigen, the antibody format and the modulatory nature of the payload are crucial, not only for therapeutic efficacy and safety but also for the commercial success of such a product. In this review, we provide an overview of the basic principles and obstacles in immunocytokine design with a specific focus on single chain antibody fragment-based constructs that employ interleukins as the immunoactive component. Impact statement Selective activation of the immune system in a variety of malignancies represents an attractive approach when existing strategies have failed to provide adequate treatment options. Immunocytokines as a novel class of bifunctional protein therapeutics have emerged recently and generated promising results in preclinical and clinical studies. In order to harness their full potential, multiple different aspects have to be taken into consideration. Several key points of these fusion constructs are discussed here and should provide an outline for the development of novel products based on an overview of selected formats.
Collapse
Affiliation(s)
- Christian Fercher
- 1 School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Sahar Keshvari
- 2 Inflammatory Diseases Biology and Therapeutics, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Michael A McGuckin
- 2 Inflammatory Diseases Biology and Therapeutics, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Ross T Barnard
- 1 School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.,3 Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
20
|
Schwarz S, Mrosewski I, Silawal S, Schulze-Tanzil G. The interrelation of osteoarthritis and diabetes mellitus: considering the potential role of interleukin-10 and in vitro models for further analysis. Inflamm Res 2017; 67:285-300. [PMID: 29196771 DOI: 10.1007/s00011-017-1121-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 11/12/2017] [Accepted: 11/24/2017] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Today, not only the existence of an interrelation between obesity/adipositas and osteoarthritis (OA) but also the association of OA and diabetes mellitus (DM) are widely recognized. Nevertheless, shared influence factors facilitating OA development in DM patients still remain speculative up until now. To supplement the analysis of clinical data, appropriate in vitro models could help to identify shared pathogenetic pathways. Informative in vitro studies could later be complemented by in vivo data obtained from suitable animal models. MATERIALS AND METHODS Therefore, this detailed review of available literature was undertaken to discuss and compare the results of currently published in vitro studies focusing on the interrelation between OA, the metabolic syndrome and DM and to propose models to further study the molecular pathways. RESULTS The survey of literature presented here supports the hypothesis that the pathogenesis of OA in DM is based on imbalanced molecular pathways with a putative crucial role of antiinflammatory cytokines such as IL-10. CONCLUSION Future development of versatile micro-scaled in vitro models such as combining DM and OA on chip could allow the identification of common pathogenetic pathways and might help to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Silke Schwarz
- Department of Anatomy, Paracelsus Medical University, Prof. Ernst Nathan Str. 1, 90419, Nuremberg, Germany.,Institute of Anatomy, Paracelsus Medical University, Salzburg, Austria
| | - Ingo Mrosewski
- MVZ Limbach Laboratories, Aroser Allee 84, 13407, Berlin, Germany
| | - Sandeep Silawal
- Department of Anatomy, Paracelsus Medical University, Prof. Ernst Nathan Str. 1, 90419, Nuremberg, Germany.,Institute of Anatomy, Paracelsus Medical University, Salzburg, Austria
| | - Gundula Schulze-Tanzil
- Department of Anatomy, Paracelsus Medical University, Prof. Ernst Nathan Str. 1, 90419, Nuremberg, Germany. .,Institute of Anatomy, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
21
|
Behrendt P, Häfelein K, Preusse-Prange A, Bayer A, Seekamp A, Kurz B. IL-10 ameliorates TNF-α induced meniscus degeneration in mature meniscal tissue in vitro. BMC Musculoskelet Disord 2017; 18:197. [PMID: 28511649 PMCID: PMC5434535 DOI: 10.1186/s12891-017-1561-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/09/2017] [Indexed: 12/19/2022] Open
Abstract
Background Joint inflammation causes meniscus degeneration and can exacerbate post-traumatic meniscus injuries by extracellular matrix degradation, cellular de-differentiation and cell death. The aim of this study was to examine whether anti-inflammatory interleukin-10 exerts protective effects in an in vitro model of TNF-α-induced meniscus degeneration. Methods Meniscus tissue was harvested from the knees of adult cows. After 24 h of equilibrium explants were simultaneously treated with bovine TNF-α and IL-10. After an incubation time of 72 h cell death was measured histomorphometrically (nuclear blebbing, NB) and release of glycosaminoglycans (GAG, DMMB assay) and nitric oxide (NO, Griess-reagent) were analysed. Transcription levels (mRNA) of matrix degrading enzymes, collagen type X (COL10A1) and nitric oxide synthetase 2 (NOS2) were measured by quantitative real time PCR. TNF-α-dependent formation of the aggrecanase-specific aggrecan neoepitope NITEGE was visualised by immunostaining. Differences between groups were calculated using a one-way ANOVA with a Bonferroni post hoc test. Results Administration of IL-10 significantly prevented the TNF-α-related cell death (P .001), release of NO (P .003) and NOS2 expression (P .04). Release of GAG fragments (P .001), NITEGE formation and expression of MMP3 (P .007), -13 (P .02) and ADAMTS4 (P .001) were significantly reduced. The TNF-α-dependent increase in COL10A1 expression was also antagonized by IL-10 (P .02). Conclusion IL-10 prevented crucial mechanisms of meniscal degeneration induced by a key cytokine of OA, TNF-α. Administration of IL-10 might improve the biological regeneration and provide a treatment approach in degenerative meniscus injuries and in conditions of post-traumatic sports injuries.
Collapse
Affiliation(s)
- P Behrendt
- Department of Orthopaedics and Trauma Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| | - K Häfelein
- Institute of Anatomy, Christian Albrechts-University, Kiel, Germany
| | - A Preusse-Prange
- Institute of Anatomy, Christian Albrechts-University, Kiel, Germany
| | - A Bayer
- Department of Cardiovascular Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - A Seekamp
- Department of Orthopaedics and Trauma Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - B Kurz
- Institute of Anatomy, Christian Albrechts-University, Kiel, Germany
| |
Collapse
|
22
|
Schönrich G, Abdelaziz MO, Raftery MJ. Herpesviral capture of immunomodulatory host genes. Virus Genes 2017; 53:762-773. [PMID: 28451945 DOI: 10.1007/s11262-017-1460-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/18/2017] [Indexed: 12/27/2022]
Abstract
Herpesviruses have acquired numerous genes from their hosts. Although these homologs are not essential for viral replication, they often have important immunomodulatory functions that ensure viral persistence in the host. Some of these viral molecules are called virokines as they mimic cellular cytokines of their host such as interleukin-10 (cIL-10). In recent years, many viral homologs of IL-10 (vIL-10s) have been discovered in the genome of members of the order Herpesvirales. For some, gene and protein structure as well as biological activity and potential use in the clinical context have been explored. Besides virokines, herpesviruses have also captured genes encoding membrane-bound host immunomodulatory proteins such as major histocompatibility complex (MHC) molecules. These viral MHC mimics also retain many of the functions of the cellular genes, in particular directly or indirectly modulating the activity of natural killer cells. The mechanisms underlying capture of cellular genes by large DNA viruses are still enigmatic. In this review, we provide an update of the advances in the field of herpesviral gene piracy and discuss possible scenarios that could explain how the gene transfer from host to viral genome was achieved.
Collapse
Affiliation(s)
- Günther Schönrich
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Mohammed O Abdelaziz
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Martin J Raftery
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
23
|
Behrendt P, Preusse-Prange A, Klüter T, Haake M, Rolauffs B, Grodzinsky AJ, Lippross S, Kurz B. IL-10 reduces apoptosis and extracellular matrix degradation after injurious compression of mature articular cartilage. Osteoarthritis Cartilage 2016; 24:1981-1988. [PMID: 27349464 DOI: 10.1016/j.joca.2016.06.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/25/2016] [Accepted: 06/13/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of this study was to examine whether anti-inflammatory interleukin-10 (IL-10) exerts chondroprotective effects in an in vitro model of a single mechanical injury of mature articular cartilage. METHOD Articular cartilage was harvested from the femoro-patellar groove of adult cows (Bos taurus) and cultured w/o bovine IL-10. After 24 h of equilibration explants were subjected to an axial unconfined compression (50% strain, velocity 2 mm/s, held for 10 s). After 96 h cell death was measured histomorphometrically (nuclear blebbing, NB) and the release of glycosaminoglycans (GAG, DMMB assay) and nitric oxide (NO, Griess-reagent) were analyzed. mRNA levels of matrix degrading enzymes and nitric oxide synthetase were measured by quantitative real time PCR. Differences between groups were calculated using a one-way ANOVA with a Bonferroni post hoc test. RESULTS Injurious compression significantly increased the number of cells with NB, release of GAG and nitric oxide and expression of MMP-3, -13, ADAMTS-4 and NOS2. Administration of IL-10 significantly reduced the injury related cell death and release of GAG and NO, respectively. Expression of MMP-3, -13, ADAMTS-4 and NOS2 were significantly reduced. CONCLUSION Joint injury is a complex process involving specific mechanical effects on cartilage as well as induction of an inflammatory environment. IL-10 prevented crucial mechanisms of chondrodegeneration induced by an injurious single compression. IL-10 might be a multipurpose drug candidate for the treatment of cartilage-related sports injuries or osteoarthritis (OA).
Collapse
Affiliation(s)
- P Behrendt
- Department of Trauma Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Germany.
| | - A Preusse-Prange
- Institute of Anatomy, Christian Albrechts-University, Kiel, Germany.
| | - T Klüter
- Department of Trauma Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Germany.
| | - M Haake
- Institute of Anatomy, Christian Albrechts-University, Kiel, Germany.
| | - B Rolauffs
- Siegfried Weller Institute for Trauma Research & Clinic for Trauma and Restorative Surgery, BG Trauma Clinic Tuebingen, University of Tuebingen, Tuebingen, Germany; Department of Orthopedics and Trauma Surgery, Albert Ludwigs University of Freiburg, Freiburg, Germany.
| | - A J Grodzinsky
- Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - S Lippross
- Department of Trauma Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Germany.
| | - B Kurz
- Institute of Anatomy, Christian Albrechts-University, Kiel, Germany.
| |
Collapse
|
24
|
Hughes C, Nissim A. Progress and clinical potential of antibody-targeted therapy for arthritic damage. Expert Rev Proteomics 2016; 13:539-43. [DOI: 10.1080/14789450.2016.1188008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Safdari Y, Ahmadzadeh V, Khalili M, Jaliani HZ, Zarei V, Erfani-Moghadam V. Use of single chain antibody derivatives for targeted drug delivery. Mol Med 2016; 22:258-270. [PMID: 27249008 DOI: 10.2119/molmed.2016.00043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/22/2016] [Indexed: 01/01/2023] Open
Abstract
Single chain antibodies (scFvs), which contain only the variable domains of full-length antibodies, are relatively small molecules that can be used for selective drug delivery. In this review, we display how scFv antibodies help improve the specificity and efficiency of drugs. Small interfering RNA (siRNA) delivery using scFv-drug fusion peptides, siRNA delivery using scFv-conjugated nanoparticles, targeted delivery using scFv-viral peptide- fusion proteins, use of scFv in fusion with cell penetrating peptides for effective targeted drug delivery, scFv-mediated targeted delivery of inorganic nanoparticles, scFv-mediated increase of tumor killing activity of granulocytes, use of scFv for tumor imaging, site-directed conjugation of scFv molecules to drug carrier systems, use of scFv to relieve pain, use of scFv for increasing drug loading efficiency are among the topics that are discussed here.
Collapse
Affiliation(s)
- Yaghoub Safdari
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vahideh Ahmadzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Khalili
- Golestan Research Center of Gastroenterology and Hepatology (GRCGH), Golestan University of Medical Sciences, Gorgan, Iran
| | - Hossein Zarei Jaliani
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Vahid Zarei
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Vahid Erfani-Moghadam
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
26
|
Broeren MGA, de Vries M, Bennink MB, Arntz OJ, Blom AB, Koenders MI, van Lent PLEM, van der Kraan PM, van den Berg WB, van de Loo FAJ. Disease-Regulated Gene Therapy with Anti-Inflammatory Interleukin-10 Under the Control of the CXCL10 Promoter for the Treatment of Rheumatoid Arthritis. Hum Gene Ther 2016; 27:244-54. [PMID: 26711533 DOI: 10.1089/hum.2015.127] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Disease-inducible promoters for the treatment of rheumatoid arthritis (RA) have the potential to provide regulated expression of therapeutic proteins in arthritic joints. In this study, we set out to identify promoters of human genes that are upregulated during RA and are suitable to drive the expression of relevant amounts of anti-inflammatory interleukin (IL)-10. Microarray analysis of RA synovial biopsies compared with healthy controls yielded a list of 22 genes upregulated during RA. Of these genes, CXCL10 showed the highest induction in lipopolysaccharide-stimulated synovial cells. The CXCL10 promoter was obtained from human cDNA and cloned into a lentiviral vector carrying firefly luciferase to determine the promoter inducibility in primary synovial cells and in THP-1 cells. The promoter activation was strongest 8-12 hr after stimulation with the proinflammatory cytokine tumor necrosis factor (TNF)-α and was reinducible after 96 hr. In addition, the CXCL10 promoter showed a significant response to RA patient serum, compared with sera from healthy individuals. The luciferase gene was replaced with IL-10 to determine the therapeutic properties of the CXCL10p-IL10 lentiviral vector. Primary synovial cells transduced with CXCL10p-IL10 showed a great increase in IL-10 production after stimulation, which reduced the release of proinflammatory cytokines TNF-α and IL-1β. We conclude that the selected proximal promoter of the CXCL10 gene responds to inflammatory mediators present in the serum of patients with RA and that transduction with the lentiviral CXCL10p-IL10 vector reduces inflammatory cytokine production by primary synovial cells from patients with RA. CXCL10 promoter-regulated IL-10 overexpression can thus provide disease-inducible local gene therapy suitable for RA.
Collapse
Affiliation(s)
- Mathijs G A Broeren
- Experimental Rheumatology, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Marieke de Vries
- Experimental Rheumatology, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Miranda B Bennink
- Experimental Rheumatology, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Onno J Arntz
- Experimental Rheumatology, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Arjen B Blom
- Experimental Rheumatology, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Marije I Koenders
- Experimental Rheumatology, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Peter L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Wim B van den Berg
- Experimental Rheumatology, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Fons A J van de Loo
- Experimental Rheumatology, Radboud University Medical Center , Nijmegen, The Netherlands
| |
Collapse
|
27
|
Bootz F, Neri D. Immunocytokines: a novel class of products for the treatment of chronic inflammation and autoimmune conditions. Drug Discov Today 2016; 21:180-189. [PMID: 26526566 PMCID: PMC5144993 DOI: 10.1016/j.drudis.2015.10.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/21/2015] [Accepted: 10/15/2015] [Indexed: 12/18/2022]
Abstract
Antibody-cytokine fusion proteins, often referred to as immunocytokines, represent a novel class of biopharmaceutical agents that combine the disease-homing activity of certain antibodies with the immunomodulatory properties of cytokine payloads. Originally, immunocytokines were mainly developed for cancer therapy applications. More recently, however, the use of anti-inflammatory cytokines for the treatment of chronic inflammatory conditions and to treat autoimmune diseases has been considered. This review analyzes basic principles in the design of immunocytokines and describes the most advanced products in preclinical and clinical development.
Collapse
Affiliation(s)
- Franziska Bootz
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir Prelog Weg 1-5/10, CH-8093 Zürich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir Prelog Weg 1-5/10, CH-8093 Zürich, Switzerland.
| |
Collapse
|
28
|
Lim NH, Vincent TL, Nissim A. In vivo optical imaging of early osteoarthritis using an antibody specific to damaged arthritic cartilage. Arthritis Res Ther 2015; 17:376. [PMID: 26703223 PMCID: PMC4718036 DOI: 10.1186/s13075-015-0898-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/10/2015] [Indexed: 02/07/2023] Open
Abstract
Background The lack of specific and sensitive serum and radiographic biomarkers for early diagnosis of osteoarthritis (OA) as well as for monitoring subtle changes in disease activity in clinical trials has hampered the development of treatments for OA. We previously showed that 1-11E, a human single chain fragment variable (scFv) specific to collagen type II that has been post-translationally modified by reactive oxidants (ROS-CII), binds exclusively to arthritic cartilage. Here we test the validity of 1-11E as a radiographic biomarker for early disease in experimental OA. Methods Murine OA was induced by destabilisation of the medial meniscus (DMM) in adult male mice. Immunohistochemistry of destabilised or sham-operated knees was performed from 2 to 8 weeks post-surgery with Cy5.5-labelled 1-11E and negative control scFv, C7. Prospective in vivo optical images were taken 4 and 8 weeks post-DMM following intra-articular injection of Cy5.5-labelled scFvs, or intravenous injection of Cy5.5-labelled full length monoclonal antibodies (mAbs). Results Specific cartilage staining with 1-11E was apparent as early as 4 weeks post-DMM at the time of earlier cartilage degradation assessed by histology. Prospective in vivo optical images taken 4 and 8 weeks post-DMM following local intra-articular injection of Cy5.5-labelled scFv (n = 7) showed specific in vivo retention of Cys5.5-1-11E scFv following local administration into the knee joint (tissue half-life >78 hours, n = 7, signal to noise ratio (SNR) > 2.1). Specific localization of Cys-5.5-1-11E-mAb to DMM knees (SNR >1.65) was also observed (p < 0.01, n = 8, SNR >1.65). In both cases the SNR increased with time post-DMM. Conclusions 1-11E binds specifically to early osteoarthritic cartilage and can be used as a radiographic biomarker following local or systemic delivery to facilitate early diagnosis and monitor disease progression in OA.
Collapse
Affiliation(s)
- Ngee Han Lim
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.
| | - Tonia L Vincent
- Arthritis Research UK Centre for OA Pathogenesis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK.
| | - Ahuva Nissim
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
29
|
Massage-like stroking boosts the immune system in mice. Sci Rep 2015; 5:10913. [PMID: 26046935 PMCID: PMC4650642 DOI: 10.1038/srep10913] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/01/2015] [Indexed: 01/16/2023] Open
Abstract
Recent clinical evidence suggests that the therapeutic effect of massage involves the immune system and that this can be exploited as an adjunct therapy together with standard drug-based approaches. In this study, we investigated the mechanisms behind these effects exploring the immunomodulatory function of stroking as a surrogate of massage-like therapy in mice. C57/BL6 mice were stroked daily for 8 days either with a soft brush or directly with a gloved hand and then analysed for differences in their immune repertoire compared to control non-stroked mice. Our results show that hand- but not brush-stroked mice demonstrated a significant increase in thymic and splenic T cell number (p < 0.05; p < 0.01). These effects were not associated with significant changes in CD4/CD8 lineage commitment or activation profile. The boosting effects on T cell repertoire of massage-like therapy were associated with a decreased noradrenergic innervation of lymphoid organs and counteracted the immunosuppressive effect of hydrocortisone in vivo. Together our results in mice support the hypothesis that massage-like therapies might be of therapeutic value in the treatment of immunodeficiencies and related disorders and suggest a reduction of the inhibitory noradrenergic tone in lymphoid organs as one of the possible explanations for their immunomodulatory function.
Collapse
|
30
|
Ferrari M, Onuoha SC, Pitzalis C. Trojan horses and guided missiles: targeted therapies in the war on arthritis. Nat Rev Rheumatol 2015; 11:328-37. [DOI: 10.1038/nrrheum.2015.17] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Ray K. Hitting the target: delivering IL-10 to treat experimental arthritis. Nat Rev Rheumatol 2014; 10:511. [DOI: 10.1038/nrrheum.2014.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|