1
|
Liu D, van der Zalm AP, Koster J, Bootsma S, Oyarce C, van Laarhoven HWM, Bijlsma MF. Predictive biomarkers for response to TGF- β inhibition in resensitizing chemo(radiated) esophageal adenocarcinoma. Pharmacol Res 2024; 207:107315. [PMID: 39059615 DOI: 10.1016/j.phrs.2024.107315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/26/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Epithelial-mesenchymal transition (EMT) has been identified as a driver of therapy resistance, particularly in esophageal adenocarcinoma (EAC), where transforming growth factor beta (TGF-β) can induce this process. Inhibitors of TGF-β may counteract the occurrence of mesenchymal, resistant tumor cell populations following chemo(radio)therapy and improve treatment outcomes in EAC. Here, we aimed to identify predictive biomarkers for the response to TGF-β targeting. In vitro approximations of neoadjuvant treatment were applied to publicly available primary EAC cell lines. TGF-β inhibitors fresolimumab and A83-01 were employed to inhibit EMT, and mesenchymal markers were quantified via flow cytometry to assess efficacy. Our results demonstrated a robust induction of mesenchymal cell states following chemoradiation, with TGF-β inhibition leading to variable reductions in mesenchymal markers. The cell lines were clustered into responders and non-responders. Genomic expression profiles were obtained through RNA-seq analysis. Differentially expressed gene (DEG) analysis identified 10 positively- and 23 negatively-associated hub genes, which were bioinformatically identified. Furthermore, the correlation of DEGs with response to TGF-β inhibition was examined using public pharmacogenomic databases, revealing 9 positively associated and 11 negatively associated DEGs. Among these, ERBB2, EFNB1, and TNS4 were the most promising candidates. Our findings reveal a distinct gene expression pattern associated with the response to TGF-β inhibition in chemo(radiated) EAC. The identified DEGs and predictive markers may assist patient selection in clinical studies investigating TGF-β targeting.
Collapse
Affiliation(s)
- Dajia Liu
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | - Amber P van der Zalm
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Jan Koster
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Sanne Bootsma
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | - Cesar Oyarce
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Hanneke W M van Laarhoven
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| | - Maarten F Bijlsma
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Audun Klingen T, Chen Y, Aas H, Akslen LA. DDR2 expression in breast cancer is associated with blood vessel invasion, basal-like tumors, tumor associated macrophages, regulatory T cells, detection mode and prognosis. Hum Pathol 2024; 150:29-35. [PMID: 38914168 DOI: 10.1016/j.humpath.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Discoidin Domain Receptor 2 (DDR2) is a receptor tyrosine kinase for collagen, stimulating epithelial-mesenchymal transition and stiffness in breast cancer. Here, we investigated levels of DDR2 in breast tumor cells in relation to vascular invasion, TIL subsets, macrophages, molecular tumor subtypes, modes of detection and prognosis. This retrospective, population-based series of invasive breast carcinomas from the Norwegian Screening Program in Vestfold County (Norway), period 2004-2009, included 200 screening patients and 82 cases detected in screening intervals. DDR2 was examined on core needle biopsies using a semi-quantitative, immunohistochemical staining index and dichotomized as low or high DDR2 expression. Counts of macrophages and TIL subsets were dichotomized based on immunohistochemistry using TMA. We also recorded blood or lymphatic vessel invasion (BVI or LVI) as present or absent by immunohistochemistry. High expression of DDR2 in tumor cells showed significant relation with high counts of CD163+ macrophages (p < 0.001) and FOXP3 TILs (p = 0.011), presence of BVI (p = 0.028), high tumor cell proliferation by Ki67 (p = 0.033), ER negativity (p = 0.001), triple-negative cases (p = 0.038), basal-like features (p < 0.001) as well as interval detection (p < 0.001). By multivariate analysis, high DDR2 expression was related to reduced recurrence-free survival (HR, 2.3, p = 0.017), when examined together with histologic grading, lymph node assessment, tumor diameter, BVI, and molecular tumor subtype. This study supports a link between high DDR2 expression, high counts of macrophages by CD163 (tumor associated) and regulatory T cells by FOXP3 together with the presence of BVI, possibly indicating increased tumor motility and intravasation in aggressive breast tumors.
Collapse
MESH Headings
- Humans
- Female
- Breast Neoplasms/pathology
- Retrospective Studies
- Tumor-Associated Macrophages/immunology
- Tumor-Associated Macrophages/pathology
- Biomarkers, Tumor/analysis
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Neoplasm Invasiveness
- Middle Aged
- Immunohistochemistry
- Discoidin Domain Receptor 2
- Aged
- Lymphocytes, Tumor-Infiltrating/pathology
- Lymphocytes, Tumor-Infiltrating/immunology
- Norway
- Prognosis
- Receptors, Cell Surface/analysis
- Kaplan-Meier Estimate
- Antigens, CD
- Antigens, Differentiation, Myelomonocytic/analysis
- Antigens, Differentiation, Myelomonocytic/metabolism
- Biopsy, Large-Core Needle
- Proportional Hazards Models
- Predictive Value of Tests
- Forkhead Transcription Factors/analysis
- Macrophages/pathology
- Tumor Microenvironment
Collapse
Affiliation(s)
- Tor Audun Klingen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Norway; Department of Pathology, Vestfold Hospital Trust, Norway.
| | - Ying Chen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Norway; Department of pathology, Fürst Medical Laboratory, Norway.
| | - Hans Aas
- Department of Surgery, Vestfold Hospital Trust, Norway.
| | - Lars A Akslen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Norway; Department of Pathology, Haukeland University Hospital, Norway.
| |
Collapse
|
3
|
Diep CH, Spartz A, Truong TH, Dwyer AR, El-Ashry D, Lange CA. Progesterone Receptor Signaling Promotes Cancer Associated Fibroblast Mediated Tumorigenicity in ER+ Breast Cancer. Endocrinology 2024; 165:bqae092. [PMID: 39041201 PMCID: PMC11492492 DOI: 10.1210/endocr/bqae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/27/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Breast cancer progression involves intricate interactions between cancer cells and the tumor microenvironment (TME). This study elucidates the critical role of progesterone receptor (PR) signaling in mediating the protumorigenic effects of cancer-associated fibroblasts (CAFs) on estrogen receptor-positive (ER+) luminal breast cancer cells. We demonstrate that CAFs produce physiologically relevant levels of estrogen and progesterone, which significantly contribute to breast cancer tumorigenicity. Specifically, CAF conditioned media (CM) promoted PR-dependent anchorage-independent growth, tumorsphere formation/stem cell expansion, and CD44 upregulation. CAF cells formed co-clusters more frequently with PR+ breast cancer cells relative to PR-null models. While both PR isoforms mediated these actions, PR-A was a dominant driver of tumorsphere formation/stemness, while PR-B induced robust CD44 expression and CAF/tumor cell co-cluster formation. CD44 knockdown impaired CAF/tumor cell co-clustering. Fibroblast growth factor 2 (FGF2), also secreted by CAFs, phosphorylated PR (Ser294) in a MAPK-dependent manner and activated PR to enhance CD44 expression and breast cancer tumorigenicity. The FGF receptor (FGFR) inhibitor PD173074 diminished CAF- and FGF2-dependent PR activation, tumorsphere formation, and co-clustering. In summary, this study reveals a novel mechanism through which stromal CAFs orchestrate elevated PR signaling in ER+ luminal breast cancer via secretion of both progesterone and FGF2, a potent activator of ERK1/2. Understanding tumor cell/TME interactions provides insights into potential therapeutic strategies aimed at disrupting PR- and/or FGF2/FGFR-dependent signaling pathways to prevent early metastasis in patients with ER+ breast cancer.
Collapse
Affiliation(s)
- Caroline H Diep
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Angela Spartz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Thu H Truong
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Amy R Dwyer
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dorraya El-Ashry
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicine, Division of Hematology, Oncology & Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Li X, Yang L, Jiang F, Jiao X. Integration of Radiomics and Immune-Related Genes Signatures for Predicting Axillary Lymph Node Metastasis in Breast Cancer. Clin Breast Cancer 2024:S1526-8209(24)00179-4. [PMID: 39019727 DOI: 10.1016/j.clbc.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND To develop a radiogenomics nomogram for predicting axillary lymph node (ALN) metastasis in breast cancer and reveal underlying associations between radiomics features and biological pathways. MATERIALS AND METHODS This study included 1062 breast cancer patients, 90 patients with both DCE-MRI and gene expression data. The optimal immune-related genes and radiomics features associated with ALN metastasis were firstly calculated, and corresponding feature signatures were constructed to further validate their performances in predicting ALN metastasis. The radiogenomics nomogram for predicting the risk of ALN metastasis was established by integrating radiomics signature, immune-related genes (IRG) signature, and critical clinicopathological factors. Gene modules associated with key radiomics features were identified by weighted gene co-expression network analysis (WGCNA) and submitted to functional enrichment analysis. Gene set variation analysis (GSVA) and correlation analysis were performed to investigate the associations between radiomics features and biological pathways. RESULTS The radiogenomics nomogram showed promising predictive power for predicting ALN metastasis, with AUCs of 0.973 and 0.928 in the training and testing groups, respectively. WGCNA and functional enrichment analysis revealed that gene modules associated with key radiomics features were mainly enriched in breast cancer metastasis-related pathways, such as focal adhesion, ECM-receptor interaction, and cell adhesion molecules. GSVA also identified pathway activities associated with radiomics features such as glycogen synthesis, integration of energy metabolism. CONCLUSION The radiogenomics nomogram can serve as an effective tool to predict the risk of ALN metastasis. This study provides further evidence that radiomics phenotypes may be driven by biological pathways related to breast cancer metastasis.
Collapse
Affiliation(s)
- Xue Li
- College of Biomedical Engineering, Taiyuan University of Technology, Jinzhong, Shanxi, China
| | - Lifeng Yang
- College of Computer Science and Technology, Taiyuan University of Technology, Jinzhong, Shanxi, China
| | - Fa Jiang
- College of Biomedical Engineering, Taiyuan University of Technology, Jinzhong, Shanxi, China
| | - Xiong Jiao
- College of Biomedical Engineering, Taiyuan University of Technology, Jinzhong, Shanxi, China.
| |
Collapse
|
5
|
Worley J, Noh H, You D, Turunen MM, Ding H, Paull E, Griffin AT, Grunn A, Zhang M, Guillan K, Bush EC, Brosius SJ, Hibshoosh H, Mundi PS, Sims P, Dalerba P, Dela Cruz FS, Kung AL, Califano A. Identification and Pharmacological Targeting of Treatment-Resistant, Stem-like Breast Cancer Cells for Combination Therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.08.562798. [PMID: 38798673 PMCID: PMC11118419 DOI: 10.1101/2023.11.08.562798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tumors frequently harbor isogenic yet epigenetically distinct subpopulations of multi-potent cells with high tumor-initiating potential-often called Cancer Stem-Like Cells (CSLCs). These can display preferential resistance to standard-of-care chemotherapy. Single-cell analyses can help elucidate Master Regulator (MR) proteins responsible for governing the transcriptional state of these cells, thus revealing complementary dependencies that may be leveraged via combination therapy. Interrogation of single-cell RNA sequencing profiles from seven metastatic breast cancer patients, using perturbational profiles of clinically relevant drugs, identified drugs predicted to invert the activity of MR proteins governing the transcriptional state of chemoresistant CSLCs, which were then validated by CROP-seq assays. The top drug, the anthelmintic albendazole, depleted this subpopulation in vivo without noticeable cytotoxicity. Moreover, sequential cycles of albendazole and paclitaxel-a commonly used chemotherapeutic -displayed significant synergy in a patient-derived xenograft (PDX) from a TNBC patient, suggesting that network-based approaches can help develop mechanism-based combinatorial therapies targeting complementary subpopulations.
Collapse
Affiliation(s)
- Jeremy Worley
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Heeju Noh
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Daoqi You
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mikko M Turunen
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Hongxu Ding
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Pharmacy Practice & Science, College of Pharmacy, University of Arizona, Tucson, Arizona, USA 85721
| | - Evan Paull
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Aaron T Griffin
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Adina Grunn
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Mingxuan Zhang
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Kristina Guillan
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Erin C Bush
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Samantha J Brosius
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hanina Hibshoosh
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA 10032
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, USA 10032
| | - Prabhjot S Mundi
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA 10032
| | - Peter Sims
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Piero Dalerba
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA 10032
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, USA 10032
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, USA 10032
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Filemon S Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew L Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrea Califano
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA 10032
- Department of Biochemistry & Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY USA 10032
| |
Collapse
|
6
|
Yahya MS, Abdel Hameed FF, Radwan NH, Abdelgawad IA, Soliman AF. Clinical assessment of TGFB1 and HP Relative Gene Expression in the Peripheral Blood of Prostate Cancer Patients. Asian Pac J Cancer Prev 2024; 25:709-717. [PMID: 38415559 PMCID: PMC11077105 DOI: 10.31557/apjcp.2024.25.2.709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Indexed: 02/29/2024] Open
Abstract
OBJECTIVE This study aimed to assess the relative gene expression level of transforming growth factor-β1 (TGFB1) and haptoglobin (HP) in the peripheral blood of prostate cancer (PCa) patients and evaluate their diagnostic ability. METHODS A total of 125 participants were enrolled in the present study. Among them, 75 PCa patients, 25 benign prostatic hyperplasia (BPH) patients, and 25 healthy volunteers served as the control group. The relative TGFB1 and HP gene expression level was quantified using real-time polymerase chain reaction. Further, free and total PSA levels were determined using electrochemiluminescence assays. RESULTS TGFB1 was significantly over-expressed, whereas HP was significantly downregulated in the peripheral blood of PCa patients compared to BPH and control groups (p-value ranges from 0.034 to <0.001). Moreover, the high expression level of TGFB1 was associated with an increased risk of PCa development with OR=1.412 (95%CI: 1.081-1.869, p= 0.012). TGFB1 and HP relative expression levels had lower diagnostic performance to differentiate PCa from normal and BPH individuals compared to PSA, however, the combination of the tested parameters improved the diagnostic efficacy. CONCLUSIONS TGFB1 and HP relative expression have moderate diagnostic efficacy in discriminating patients with PCa from BPH and healthy subjects. Furthermore, over-expression of TGFB1 may contribute to the pathogenesis of PCa.
Collapse
Affiliation(s)
- Mohammed S Yahya
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Fatma F Abdel Hameed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Noha H Radwan
- Department of Clinical and Chemical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Iman A Abdelgawad
- Department of Clinical and Chemical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ahmed F Soliman
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
7
|
Abdullah AR, Gamal El-Din AM, El-Mahdy HA, Ismail Y, El-Husseiny AA. The crucial role of fascin-1 in the pathogenesis, metastasis, and chemotherapeutic resistance of breast cancer. Pathol Res Pract 2024; 254:155079. [PMID: 38219494 DOI: 10.1016/j.prp.2023.155079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/16/2024]
Abstract
Breast cancer (BC) is the most common type of cancer in women to be diagnosed, and it is also the second leading cause of cancer death in women globally. It is the disease that causes the most life years adjusted for disability lost among women, making it a serious worldwide health issue. Understanding and interpreting carcinogenesis and metastatic pathways is critical for curing malignancy. Fascin-1 was recognized as an actin-bundling protein with parallel, rigid bundles as a result of the cross-linking of F-actin microfilaments. Increasing levels of fascin-1 have been associated with bad prognostic profiles, aggressiveness of clinical courses, and poor survival outcomes in a variety of human malignancies. Cancer cells that overexpress fascin-1 have higher capabilities for proliferation, invasion, migration, and metastasis. Fascin-1 is being considered as a potential target for therapy as well as a potential biomarker for diagnostics in a variety of cancer types. This review aims to provide an overview of the FSCN1 gene and its protein structure, elucidate its physiological and pathological roles, and throw light on its involvement in the initiation, development, and chemotherapeutic resistance of BC.
Collapse
Affiliation(s)
- Ahmed R Abdullah
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Ayman M Gamal El-Din
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Yahia Ismail
- Medical Oncology Department, National Cancer Institute (NCI), Cairo University, Cairo 11796, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt.
| |
Collapse
|
8
|
Seo Y, Seo M, Kim J. Effects of cilengitide derivatives on TGF-β1-induced epithelial-to-mesenchymal transition and invasion in gefitinib-resistant non-small cell lung cancer cells. Front Pharmacol 2023; 14:1277199. [PMID: 37927598 PMCID: PMC10622769 DOI: 10.3389/fphar.2023.1277199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
Long-term administration of tyrosine kinase inhibitors (TKIs) used for the treatment of non-small cell lung cancer (NSCLC) induces TKI resistance in cells. The appearance of resistant cells requires the combined administration of another therapeutic agent and may cause side effects in the gastrointestinal and central nervous system. In previous studies, we found that derivatives of cilengitide, a cyclic Arg-Gly-Asp (RGD) peptide, exert NSCLC apoptotic and anti-epithelial-mesenchymal transition (EMT) effects. In particular, cRGDwV and cRGDyV, which are cyclic peptides containing aromatic amino acids, were found to inhibit NSCLC cell growth, TGF-β1-induced EMT, and invasion. In this study, we confirmed the effects of cRGDwV and cRGDyV on proliferation, TGF-β1-induced EMT marker expression, migration, and invasion in gefitinib-resistant NSCLC A549 (A549GR) cells. In A549GR cells, cRGDwV and cRGDyV showed inhibitory effects on the expression of mesenchymal marker expression, migration, and invasion. These results indicate that cyclic RGD peptides containing aromatic amino acids can be used to inhibit mesenchymal marker expression as well as migration and invasion in gefitinib-resistant cells.
Collapse
Affiliation(s)
| | | | - Jiyeon Kim
- Department of Biomedical Laboratory Science, School of Health Science, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
9
|
Phung CD, Nguyen BL, Jeong J, Chang J, Jin SG, Choi H, Ku SK, Kim JO. Shaping the "hot" immunogenic tumor microenvironment by nanoparticles co-delivering oncolytic peptide and TGF-β1 siRNA for boosting checkpoint blockade therapy. Bioeng Transl Med 2023; 8:e10392. [PMID: 37693065 PMCID: PMC10487304 DOI: 10.1002/btm2.10392] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/24/2022] [Accepted: 07/16/2022] [Indexed: 09/12/2023] Open
Abstract
Induction of potent immune responses toward tumors remains challenging in cancer immunotherapy, in which it only showed benefits in a minority of patients with "hot" tumors, which possess pre-existing effector immune cells within the tumor. In this study, we proposed a nanoparticle-based strategy to fire up the "cold" tumor by upregulating the components associated with T and NK cell recruitment and activation and suppressing TGF-β1 secretion by tumor cells. Specifically, LTX-315, a first-in-class oncolytic cationic peptide, and TGF-β1 siRNA were co-entrapped in a polymer-lipid hybrid nanoparticle comprising PLGA, DSPE-mPEG, and DSPE-PEG-conjugated with cRGD peptide (LTX/siR-NPs). The LTX/siR-NPs showed significant inhibition of TGF-β1 expression, induction of type I interferon release, and triggering immunogenic cell death (ICD) in treated tumor cells, indicated via the increased levels of danger molecules, an in vitro setting. The in vivo data showed that the LTX/siR-NPs could effectively protect the LTX-315 peptide from degradation in serum, which highly accumulated in tumor tissue. Consequently, the LTX/siR-NPs robustly suppressed TGF-β1 production by tumor cells and created an immunologically active tumor with high infiltration of antitumor effector immune cells. As a result, the combination of LTX/siR-NP treatment with NKG2A checkpoint inhibitor therapy remarkably increased numbers of CD8+NKG2D+ and NK1.1+NKG2D+ within tumor masses, and importantly, inhibited the tumor growth and prolonged survival rate of treated mice. Taken together, this study suggests the potential of the LTX/siR-NPs for inflaming the "cold" tumor for potentiating the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Cao Dai Phung
- College of PharmacyYeungnam UniversityGyeongsanRepublic of Korea
| | - Bao Loc Nguyen
- College of PharmacyYeungnam UniversityGyeongsanRepublic of Korea
| | - Jee‐Heon Jeong
- Department of Precision Medicine, School of MedicineSungkyunkwan UniversitySuwonRepublic of Korea
| | - Jae‐Hoon Chang
- College of PharmacyYeungnam UniversityGyeongsanRepublic of Korea
| | - Sung Giu Jin
- Department of Pharmaceutical EngineeringDankook UniversityCheonanRepublic of Korea
| | - Han‐Gon Choi
- College of Pharmacy & Institute of Pharmaceutical Science and TechnologyHanyang UniversityAnsanRepublic of Korea
| | - Sae Kwang Ku
- College of Korean MedicineDaegu Haany UniversityGyeongsanRepublic of Korea
| | - Jong Oh Kim
- College of PharmacyYeungnam UniversityGyeongsanRepublic of Korea
| |
Collapse
|
10
|
Yoshimura T, Li C, Wang Y, Matsukawa A. The chemokine monocyte chemoattractant protein-1/CCL2 is a promoter of breast cancer metastasis. Cell Mol Immunol 2023:10.1038/s41423-023-01013-0. [PMID: 37208442 DOI: 10.1038/s41423-023-01013-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/17/2023] [Indexed: 05/21/2023] Open
Abstract
Breast cancer is the most prevalent cancer worldwide, and metastasis is the leading cause of death in cancer patients. Human monocyte chemoattractant protein-1 (MCP-1/CCL2) was isolated from the culture supernatants of not only mitogen-activated peripheral blood mononuclear leukocytes but also malignant glioma cells based on its in vitro chemotactic activity toward human monocytes. MCP-1 was subsequently found to be identical to a previously described tumor cell-derived chemotactic factor thought to be responsible for the accumulation of tumor-associated macrophages (TAMs), and it became a candidate target of clinical intervention; however, the role of TAMs in cancer development was still controversial at the time of the discovery of MCP-1. The in vivo role of MCP-1 in cancer progression was first evaluated by examining human cancer tissues, including breast cancers. Positive correlations between the level of MCP-1 production in tumors and the degree of TAM infiltration and cancer progression were established. The contribution of MCP-1 to the growth of primary tumors and metastasis to the lung, bone, and brain was examined in mouse breast cancer models. The results of these studies strongly suggested that MCP-1 is a promoter of breast cancer metastasis to the lung and brain but not bone. Potential mechanisms of MCP-1 production in the breast cancer microenvironment have also been reported. In the present manuscript, we review studies in which the role of MCP-1 in breast cancer development and progression and the mechanisms of its production were examined and attempt to draw a consensus and discuss the potential use of MCP-1 as a biomarker for diagnosis.
Collapse
Affiliation(s)
- Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan.
| | - Chunning Li
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Yuze Wang
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
11
|
Williams A, Gutgesell L, de Wet L, Selman P, Dey A, Avineni M, Kapoor I, Mendez M, Brown R, Lamperis S, Blajszczak C, Bueter E, Kregel S, Vander Griend DJ, Szmulewitz R. SOX 2 expression in prostate cancer drives resistance to nuclear hormone receptor signaling inhibition through the WEE1/CDK1 signaling axis. Cancer Lett 2023; 565:216209. [PMID: 37169162 DOI: 10.1016/j.canlet.2023.216209] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
The development of androgen receptor signaling inhibitor (ARSI) drug resistance in prostate cancer (PC) remains therapeutically challenging. Our group has described the role of sex determining region Y-box 2 (SOX2) overexpression in ARSI-resistant PC. Continuing this work, we report that NR3C1, the gene encoding glucocorticoid receptor (GR), is a novel SOX2 target in PC, positively regulating its expression. Similar to ARSI treatment, SOX2-positive PC cells are insensitive to GR signaling inhibition using a GR modulating therapy. To understand SOX2-mediated nuclear hormone receptor signaling inhibitor (NHRSI) insensitivity, we performed RNA-seq in SOX2-positive and -negative PC cells following NHRSI treatment. RNA-seq prioritized differentially regulated genes mediating the cell cycle, including G2 checkpoint WEE1 Kinase (WEE1) and cyclin-dependent kinase 1 (CDK1). Additionally, WEE1 and CDK1 were differentially expressed in PC patient tumors dichotomized by high vs low SOX2 gene expression. Importantly, pharmacological targeting of WEE1 (WEE1i) in combination with an ARSI or GR modulator re-sensitizes SOX2-positive PC cells to nuclear hormone receptor signaling inhibition in vitro, and WEE1i combined with ARSI significantly slowed tumor growth in vivo. Collectively, our data suggest SOX2 predicts NHRSI resistance, and simultaneously indicates the addition of WEE1i to improve therapeutic efficacy of NHRSIs in SOX2-positive PC.
Collapse
Affiliation(s)
- Anthony Williams
- Department of Medicine, Section of Hematology & Oncology, The University of Chicago Medical Center, 5841 S Maryland Avenue, Chicago, IL, 60637, USA
| | - Lisa Gutgesell
- Department of Pathology, University of Illinois at Chicago, 909 S Wolcott Avenue, Chicago, IL, 60612, USA
| | - Larischa de Wet
- Department of Pathology, University of Illinois at Chicago, 909 S Wolcott Avenue, Chicago, IL, 60612, USA
| | - Phillip Selman
- Department of Medicine, Section of Hematology & Oncology, The University of Chicago Medical Center, 5841 S Maryland Avenue, Chicago, IL, 60637, USA
| | - Arunangsu Dey
- Department of Medicine, Section of Hematology & Oncology, The University of Chicago Medical Center, 5841 S Maryland Avenue, Chicago, IL, 60637, USA
| | - Mahati Avineni
- Department of Medicine, Section of Hematology & Oncology, The University of Chicago Medical Center, 5841 S Maryland Avenue, Chicago, IL, 60637, USA
| | - Isha Kapoor
- Department of Medicine, Section of Hematology & Oncology, The University of Chicago Medical Center, 5841 S Maryland Avenue, Chicago, IL, 60637, USA
| | - Megan Mendez
- Department of Medicine, Section of Hematology & Oncology, The University of Chicago Medical Center, 5841 S Maryland Avenue, Chicago, IL, 60637, USA
| | - Ryan Brown
- Department of Pathology, University of Illinois at Chicago, 909 S Wolcott Avenue, Chicago, IL, 60612, USA
| | - Sophia Lamperis
- Department of Medicine, Section of Hematology and Oncology, Northwestern University - Feinberg School of Medicine, 420 E Superior St, Chicago, IL, 60611, USA
| | - Chuck Blajszczak
- Department of Medicine, Section of Hematology & Oncology, The University of Chicago Medical Center, 5841 S Maryland Avenue, Chicago, IL, 60637, USA
| | - Eric Bueter
- Department of Medicine, Section of Hematology & Oncology, The University of Chicago Medical Center, 5841 S Maryland Avenue, Chicago, IL, 60637, USA; Committee on Cancer Biology, The University of Chicago Medical Center, 5841 S Maryland Avenue, Chicago, IL, 60637, USA
| | - Steve Kregel
- Department of Cancer Biology, Loyola University - Cardinal Bernardin Cancer Center, 2160 S 1st Ave, Maywood, IL, 60153, USA
| | - Donald J Vander Griend
- Department of Pathology, University of Illinois at Chicago, 909 S Wolcott Avenue, Chicago, IL, 60612, USA
| | - Russell Szmulewitz
- Department of Medicine, Section of Hematology & Oncology, The University of Chicago Medical Center, 5841 S Maryland Avenue, Chicago, IL, 60637, USA.
| |
Collapse
|
12
|
Hamel KM, Liimatta KQ, Belgodere JA, Bunnell BA, Gimble JM, Martin EC. Adipose-Derived Stromal/Stem Cell Response to Tumors and Wounds: Evaluation of Patient Age. Stem Cells Dev 2022; 31:579-592. [PMID: 35262397 PMCID: PMC9836707 DOI: 10.1089/scd.2021.0280] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/05/2022] [Indexed: 01/22/2023] Open
Abstract
Tumors were characterized as nonhealing wounds by Virchow in 1858 and Dvorak in 1986. Since then, researchers have analyzed tumors from a new perspective. The parallels between tumorigenesis and physiological wound healing can provide a new framework for developing antitumor therapeutics. One commonality between tumors and wounds is the involvement of the stromal environment, particularly adipose stromal/stem cells (ASCs). ASCs exhibit dual functions, in which they stimulate tumor progression and assist in tissue repair and regeneration. Numerous studies have focused on the role of ASCs in cancer and wound healing, but none to date has linked age, cancer, and wound healing. Furthermore, very few studies have focused on the role of donor-specific characteristics of ASCs, such as age and their role in facilitating ASC behavior in cancer and wound healing. This review article is designed to provide important insights into the impact of donor age on ASC tumor and wound response and their role in facilitating ASC behavior in cancer and wound healing.
Collapse
Affiliation(s)
- Katie M. Hamel
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Kara Q. Liimatta
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Jorge A. Belgodere
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Bruce A. Bunnell
- University of North Texas Health Sciences Center, Fort Worth, Texas, USA
| | | | - Elizabeth C. Martin
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
13
|
Villarreal-García V, Estupiñan-Jiménez JR, Vivas-Mejía PE, Gonzalez-Villasana V, Vázquez-Guillén JM, Reséndez-Pérez D. A vicious circle in breast cancer: The interplay between inflammation, reactive oxygen species, and microRNAs. Front Oncol 2022; 12:980694. [PMID: 36226048 PMCID: PMC9548555 DOI: 10.3389/fonc.2022.980694] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022] Open
Abstract
Breast cancer (BC) is the most common cancer in women worldwide. This highly heterogeneous disease is molecularly stratified into luminal A, luminal B, HER2, triple-negative/basal-like, and normal-like subtypes. An important aspect in BC progression is the activation of inflammatory processes. The activation of CD8+/Th1, NK, and M1 tumor associated macrophages (TAMs), leads to tumor destruction. In contrast, an anti-inflammatory response mediated by CD4+/Th2 and M2 TAMs will favor tumor progression. Inflammation also stimulates the production of inflammatory mediators like reactive oxygen species (ROS). In chronic inflammation, ROS activates oxidative stress and endothelial dysfunction. In cancer, ROS plays a dual role with anti-tumorigenic and pro-tumorigenic effects in cell signaling pathways that control proliferation, survival, apoptosis, and inflammation. MicroRNAs (miRNAs), which are known to be involved in BC progression and inflammation, can be regulated by ROS. At the same time, miRNAs regulate the expression of genes modulating oxidative stress. In this review, we will discuss the interplay between inflammation, ROS, and miRNAs as anticancer and tumor promoter molecules in BC. A clear understanding of the role of miRNAs in the regulation of ROS production and inflammation, may lead to new opportunities for therapy in BC.
Collapse
Affiliation(s)
- Valeria Villarreal-García
- Departmento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - José Roberto Estupiñan-Jiménez
- Departmento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Pablo E. Vivas-Mejía
- Department of Biochemestry, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Vianey Gonzalez-Villasana
- Departmento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - José Manuel Vázquez-Guillén
- Departamento de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Diana Reséndez-Pérez
- Departmento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
- Departamento de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| |
Collapse
|
14
|
Seo M, Kim J. Combination effect of cilengitide derivatives with gefitinib on
TGF
‐β1‐induced epithelial‐to‐mesenchymal transition in human non‐small cell lung cancer cells. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Minji Seo
- Department of Biomedical Laboratory Science School of Health Science, Dankook University Cheonan Republic of Korea
| | - Jiyeon Kim
- Department of Biomedical Laboratory Science School of Health Science, Dankook University Cheonan Republic of Korea
| |
Collapse
|
15
|
Närvä E, Taskinen ME, Lilla S, Isomursu A, Pietilä M, Weltner J, Isola J, Sihto H, Joensuu H, Zanivan S, Norman J, Ivaska J. MASTL is enriched in cancerous and pluripotent stem cells and influences OCT1/OCT4 levels. iScience 2022; 25:104459. [PMID: 35677646 PMCID: PMC9167974 DOI: 10.1016/j.isci.2022.104459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/04/2022] [Accepted: 05/13/2022] [Indexed: 11/01/2022] Open
Abstract
MASTL is a mitotic accelerator with an emerging role in breast cancer progression. However, the mechanisms behind its oncogenicity remain largely unknown. Here, we identify a previously unknown role and eminent expression of MASTL in stem cells. MASTL staining from a large breast cancer patient cohort indicated a significant association with β3 integrin, an established mediator of breast cancer stemness. MASTL silencing reduced OCT4 levels in human pluripotent stem cells and OCT1 in breast cancer cells. Analysis of the cell-surface proteome indicated a strong link between MASTL and the regulation of TGF-β receptor II (TGFBR2), a key modulator of TGF-β signaling. Overexpression of wild-type and kinase-dead MASTL in normal mammary epithelial cells elevated TGFBR2 levels. Conversely, MASTL depletion in breast cancer cells attenuated TGFBR2 levels and downstream signaling through SMAD3 and AKT pathways. Taken together, these results indicate that MASTL supports stemness regulators in pluripotent and cancerous stem cells.
Collapse
Affiliation(s)
- Elisa Närvä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Maria E. Taskinen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | | | - Aleksi Isomursu
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Mika Pietilä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Jere Weltner
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Jorma Isola
- Laboratory of Cancer Biology, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Harri Sihto
- Department of Pathology, University of Helsinki, 00290 Helsinki, Finland
| | - Heikki Joensuu
- University of Helsinki and Comprehensive Cancer Center, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Sara Zanivan
- CRUK Beatson Institute, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Jim Norman
- CRUK Beatson Institute, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
- Department of Life Technologies, University of Turku, 20520 Turku, Finland
- Western Finnish Cancer Center (FICAN West), University of Turku, 20520 Turku, Finland
- Foundation for the Finnish Cancer Institute, Tukholmankatu 8, Helsinki, Finland
| |
Collapse
|
16
|
Park K, Jeong J, Kim J. Synthesis and biological evaluation of cilengitide derivatives on
TGF
‐β1‐induced epithelial‐to‐mesenchymal transition in human non‐small cell lung cancer cells. Pept Sci (Hoboken) 2022. [DOI: 10.1002/pep2.24285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kyeong‐Yong Park
- Department of Integrated Material's Development CHA Meditech Co., Ltd Daejeon South Korea
| | - Jisu Jeong
- Department of Medical Laboratory Science, College of Health Science Dankook University Cheonan Republic of Korea
| | - Jiyeon Kim
- Department of Medical Laboratory Science, College of Health Science Dankook University Cheonan Republic of Korea
| |
Collapse
|
17
|
Combination Effect of Cilengitide with Erlotinib on TGF-β1-Induced Epithelial-to-Mesenchymal Transition in Human Non-Small Cell Lung Cancer Cells. Int J Mol Sci 2022; 23:ijms23073423. [PMID: 35408781 PMCID: PMC8999066 DOI: 10.3390/ijms23073423] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is important for morphogenesis during development and is mainly induced by transforming growth factor (TGF)-β. In lung cancer, EMT is characterized by the transformation of cancer cells into a mobile, invasive form that can transit to other organs. Here, using a non–small cell lung cancer (NSCLC) cell line, we evaluated the EMT-related effects of the epidermal growth factor receptor inhibitor erlotinib alone and in combination with cilengitide, a cyclic RGD-based integrin antagonist. Erlotinib showed anti-proliferative and inhibitory effects against the TGF-β1–induced EMT phenotype in NSCLC cells. Compared with erlotinib alone, combination treatment with cilengitide led to an enhanced inhibitory effect on TGF-β1–induced expression of mesenchymal markers and invasion in non–small cell lung cancer A549 cells. These results suggest that cilengitide could improve anticancer drug efficacy and contribute to improved treatment strategies to inhibit and prevent EMT-based cancer progression.
Collapse
|
18
|
Sanches SM, Braun AC, Calsavara VF, Barbosa PNVP, Chinen LTD. Comparison of hormonal receptor expression and HER2 status between circulating tumor cells and breast cancer metastases. Clinics (Sao Paulo) 2021; 76:e2971. [PMID: 34644733 PMCID: PMC8478133 DOI: 10.6061/clinics/2021/e2971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/19/2021] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES Breast cancer (BC) is the most common neoplasm in women. Biopsy of metastatic lesions is recommended to confirm estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) status as there are discrepancies in these patterns between primary tumors and metastases in up to 40% of the cases. Circulating tumor cells (CTCs) are related to BC outcomes and could potentially be an alternative to the invasive procedures of metastasis rebiopsy. ISET® technology is not currently employed to detect CTCs in patients with BC. Emerging data support that the characterization of CTC protein expression can refine its prognostic value. Transforming growth factor (TGF)-β plays a role in BC progression and invasiveness. Thus, in this study, we aimed to compare ER, PR, and HER2 expression in primary tumors, CTCs, and metastases and evaluate TGF-β type 1 receptor (TGF-β RI) expression in CTCs as prognostic factor for progression free survival (PFS) and overall survival (OS). METHODS This prospective study was conducted at the A.C. Camargo Cancer Center, Brazil. Blood samples were processed in ISET® (Isolation by SizE of Tumors, Rarecells, France) before computed tomography-guided biopsy of suspected metastatic lesions. Protein expression levels in CTCs were compared to those in primary tumors/metastases (medical records). RESULTS Of the 39 patients initially included, 27 underwent both biopsies of metastases and blood collection and were considered for analysis. The concordance rates for ER, PR, and HER2 expression between primary tumors and metastases were high. No loss of HER2 expression at any metastasis site and retention of the same pattern of protein expression in all triple-negative (TN) tumors (92.5%, 81.5% and 96.2% respectively) (p<0.0001) was observed. When metastases/CTCs were classified as TN/non-TN, CTCs showed high specificity (93%), accuracy (84.2%), and negative predictive value (88%). The median OS of patients without TGF-β RI expression in CTCs was 42.6 versus 20.8 months for TGF-β RI expression-positive ones (p>0.05). CONCLUSION The role of CTCs detected by ISET has not yet been established in BC. Here, we suggest that this methodology may be useful to evaluate metastasis in non-TN cases as well as TGF-β RI expression in CTCs, which may impact patient survival. Due to sample limitations, future studies must focus on specific BC subtypes and an expansion of the cohort.
Collapse
|
19
|
Schuler LA, Murdoch FE. Endogenous and Therapeutic Estrogens: Maestro Conductors of the Microenvironment of ER+ Breast Cancers. Cancers (Basel) 2021; 13:3725. [PMID: 34359625 PMCID: PMC8345134 DOI: 10.3390/cancers13153725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/25/2022] Open
Abstract
Estrogen receptor alpha (ERα) marks heterogeneous breast cancers which display a repertoire of somatic genomic mutations and an immune environment that differs from other breast cancer subtypes. These cancers also exhibit distinct biological behaviors; despite an overall better prognosis than HER2+ or triple negative breast cancers, disseminated dormant cells can lead to disease recurrence decades after the initial diagnosis and treatment. Estrogen is the best studied driver of these cancers, and antagonism or reduction of estrogen activity is the cornerstone of therapeutic approaches. In addition to reducing proliferation of ERα+ cancer cells, these treatments also alter signals to multiple other target cells in the environment, including immune cell subpopulations, cancer-associated fibroblasts, and endothelial cells via several distinct estrogen receptors. In this review, we update progress in our understanding of the stromal cells populating the microenvironments of primary and metastatic ER+ tumors, the effects of estrogen on tumor and stromal cells to modulate immune activity and the extracellular matrix, and net outcomes in experimental and clinical studies. We highlight new approaches that will illuminate the unique biology of these cancers, provide the foundation for developing new treatment and prevention strategies, and reduce mortality of this disease.
Collapse
Affiliation(s)
- Linda A. Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | | |
Collapse
|
20
|
Gorbacheva AM, Uvarova AN, Ustiugova AS, Bhattacharyya A, Korneev KV, Kuprash DV, Mitkin NA. EGR1 and RXRA transcription factors link TGF-β pathway and CCL2 expression in triple negative breast cancer cells. Sci Rep 2021; 11:14120. [PMID: 34239022 PMCID: PMC8266896 DOI: 10.1038/s41598-021-93561-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/28/2021] [Indexed: 02/03/2023] Open
Abstract
Transforming growth factor beta (TGF-β) is the main cytokine responsible for the induction of the epithelial-mesenchymal transition of breast cancer cells, which is a hallmark of tumor transformation to the metastatic phenotype. Recently, research demonstrated that the chemokine CCL2 gene expression level directly correlates with the TGF-β activity in breast cancer patients. CCL2 attracts tumor-associated macrophages and is, therefore, considered as an important inductor of breast cancer progression; however, the precise mechanisms underlying its regulation by TGF-β are unknown. Here, we studied the behavior of the CCL2 gene in MDA-MB-231 and HCC1937 breast cancer cells representing mesenchymal-like phenotype activated by TGF-β. Using bioinformatics, deletion screening and point mutagenesis, we identified binding sites in the CCL2 promoter and candidate transcription factors responsible for its regulation by TGF-β. Among these factors, only the knock-down of EGR1 and RXRA made CCL2 promoter activity independent of TGF-β. These factors also demonstrated binding to the CCL2 promoter in a TGF-β-dependent manner in a chromatin immunoprecipitation assay, and point mutations in the EGR1 and RXRA binding sites totally abolished the effect of TGF-β. Our results highlight the key role of EGR1 and RXRA transcription factors in the regulation of CCL2 gene in response to TGF-β pathway.
Collapse
Affiliation(s)
- Alisa M Gorbacheva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Aksinya N Uvarova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alina S Ustiugova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Arindam Bhattacharyya
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Kirill V Korneev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Dmitry V Kuprash
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Biological Faculty, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Nikita A Mitkin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
21
|
Ferreira LP, Gaspar VM, Mendes L, Duarte IF, Mano JF. Organotypic 3D decellularized matrix tumor spheroids for high-throughput drug screening. Biomaterials 2021; 275:120983. [PMID: 34186236 DOI: 10.1016/j.biomaterials.2021.120983] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
Decellularized extracellular matrix (dECM) is emerging as a valuable tool for generating 3D in vitro tumor models that better recapitulate tumor-stroma interactions. However, the development of dECM-3D heterotypic microtumors exhibiting a controlled morphology is yet to be materialized. Precisely controlling microtumors morphologic features is key to avoid an inaccurate evaluation of therapeutics performance during preclinical screening. To address this, herein we employed ultra-low adhesion surfaces for bioengineering organotypic 3D metastatic breast cancer-fibroblast models enriched with dECM microfibrillar fragments, as a bottom-up strategy to include major matrix components and their associated biomolecular cues during the early stages of 3D microtissue spheroids assembly, simulating pre-existing ECM presence in the in vivo setting. This biomimetic approach enabled the self-assembly of dECM-3D tumor-stroma spheroids with tunable size and reproducible morphology. Along time, dECM enriched and stroma-rich microtumors exhibited necrotic core formation, secretion of key biomarkers and higher cancer-cell specific resistance to different chemotherapeutics in comparison to standard spheroids. Exometabolomics profiling of dECM-Spheroid in vitro models further identified important breast cancer metabolic features including glucose/pyruvate consumption and lactate excretion, which suggest an intense glycolytic activity, recapitulating major hallmarks of the native microenvironment. Such organotypic dECM-enriched microtumors overcome the morphologic variability generally associated with cell-laden dECM models, while providing a scalable testing platform that can be foreseeable leveraged for high-throughput screening of candidate therapeutics.
Collapse
Affiliation(s)
- Luís P Ferreira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Luís Mendes
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Iola F Duarte
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
22
|
Mogus JP, LaPlante CD, Bansal R, Matouskova K, Schneider BR, Daniele E, Silva SJ, Hagen MJ, Dunphy KA, Jerry DJ, Schneider SS, Vandenberg LN. Exposure to Propylparaben During Pregnancy and Lactation Induces Long-Term Alterations to the Mammary Gland in Mice. Endocrinology 2021; 162:bqab041. [PMID: 33724348 PMCID: PMC8121128 DOI: 10.1210/endocr/bqab041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 12/13/2022]
Abstract
The mammary gland is a hormone sensitive organ that is susceptible to endocrine-disrupting chemicals (EDCs) during the vulnerable periods of parous reorganization (ie, pregnancy, lactation, and involution). Pregnancy is believed to have long-term protective effects against breast cancer development; however, it is unknown if EDCs can alter this effect. We examined the long-term effects of propylparaben, a common preservative used in personal care products and foods, with estrogenic properties, on the parous mouse mammary gland. Pregnant BALB/c mice were treated with 0, 20, 100, or 10 000 µg/kg/day propylparaben throughout pregnancy and lactation. Unexposed nulliparous females were also evaluated. Five weeks post-involution, mammary glands were collected and assessed for changes in histomorphology, hormone receptor expression, immune cell number, and gene expression. For several parameters of mammary gland morphology, propylparaben reduced the effects of parity. Propylparaben also increased proliferation, but not stem cell number, and induced modest alterations to expression of ERα-mediated genes. Finally, propylparaben altered the effect of parity on the number of several immune cell types in the mammary gland. These results suggest that propylparaben, at levels relevant to human exposure, can interfere with the effects of parity on the mouse mammary gland and induce long-term alterations to mammary gland structure. Future studies should address if propylparaben exposures negate the protective effects of pregnancy on mammary cancer development.
Collapse
Affiliation(s)
- Joshua P Mogus
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Charlotte D LaPlante
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Ruby Bansal
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Klara Matouskova
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Benjamin R Schneider
- Biospecimen Resource and Molecular Analysis Facility, Baystate Medical Center, Springfield, MA 01199, USA
| | - Elizabeth Daniele
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Shannon J Silva
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Mary J Hagen
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Karen A Dunphy
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - D Joseph Jerry
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
- Pioneer Valley Life Sciences Institute, Springfield, MA 01199, USA
| | - Sallie S Schneider
- Biospecimen Resource and Molecular Analysis Facility, Baystate Medical Center, Springfield, MA 01199, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
23
|
Apu MNH, Aktar MN, Rahman MM, Mostaid MS. Association of TGFB1 gene polymorphisms with cervical cancer in Bangladeshi women: A case-control study. Tumour Biol 2021; 43:27-35. [PMID: 33935123 DOI: 10.3233/tub-200061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES Genetic susceptibility to cervical cancer in relation to transforming growth factor beta 1 (TGFB1) gene polymorphisms has not been investigated extensively among the women in Bangladesh. So, the aim of this study was to find out the correlation of the polymorphisms of TGFB1 C509T (rs1800469) and T869C (rs1800470) with the risk of cervical cancer among the Bangladeshi women. STUDY DESIGN 134 cervical cancer patients and 102 age-sex matched healthy controls were included from two institutions in Bangladesh. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was used for genotyping two TGFB1 single nucleotide polymorphisms C509T (rs1800469) and T869C (rs1800470) in patients and controls. RESULTS No significant correlation was found between polymorphisms C509T (rs1800469) and T869C (rs1800470) of TGFB1 gene with cervical cancer in Bangladeshi women. In case of the cervical cancer patients who had first degree relatives with cancer were prone to carry the polymorphic version of the TGFB1 gene polymorphism at C509T (OR = 5.597, 95% CI = 1.224-25.597, p < 0.05) but may not result in the increase of developing cervical cancer. CONCLUSION In summary, two polymorphisms C509T and T869C of TGFB1 gene may not be associated with cervical cancer risk in Bangladeshi women.
Collapse
Affiliation(s)
- Mohd Nazmul Hasan Apu
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Most Nasrin Aktar
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Md Morshadur Rahman
- Department of Statistics, Faculty of Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Md Shaki Mostaid
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh.,Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| |
Collapse
|
24
|
Choi S, Yu J, Kim W, Park KS. N-cadherin mediates the migration of bone marrow-derived mesenchymal stem cells toward breast tumor cells. Theranostics 2021; 11:6786-6799. [PMID: 34093853 PMCID: PMC8171089 DOI: 10.7150/thno.59703] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Rationale: Bone marrow-derived mesenchymal stem cells (BM-MSCs) recruited into breast tumors regulate the behavior of tumor cells via various mechanisms and affect clinical outcomes. Although signaling molecules, such as transforming growth factor β (TGF-β), are known to transmit signals between BM-MSCs and breast tumor cells for recruiting BM-MSCs, it is unclear which specific intrinsic molecules involved in cell motility mediate the migration of BM-MSCs into breast tumor. It is also unclear as to how specific intrinsic molecules contribute to the migration. Methods: Conditioned medium (CM) from breast tumor cells (MCF-7 and MDA-MB-231) that simulates breast tumor secreting TGF-β was used to examine the migration of BM-MSCs into breast tumors. A three-dimensional migration assay was performed to investigate the collective migration of BM-MSCs, maintaining cell-cell adhesion, toward breast tumor cells. Results: N-cadherin formed adherens junction-like structures on the intercellular borders of BM-MSCs, and TGF-β increased the expression of N-cadherin on these borders. Knockdown of Smad4 impaired the TGF-β-mediated increase in N-cadherin expression in BM-MSCs, but inhibitors of non-canonical TGF-β pathways, such as extracellular signal-regulated kinases, Akt, and p38, did not affect it. siRNA-mediated knockdown of N-cadherin and Smad4 impaired the migration of BM-MSCs in response to TGF-β. Conditioned medium from breast tumor cells also enhanced the expression of N-cadherin in BM-MSCs, but inactivation of TGF-β type 1 receptor (TGFBR1) with SB505124 and TGFBR1 knockdown abolished the increase in N-cadherin expression. BM-MSCs collectively migrated toward CM from MDA-MB-231 in vitro while maintaining cell-cell adhesion through N-cadherin. Knockdown of N-cadherin abolished the migration of BM-MSCs toward the CM from breast tumor cells. Conclusion: In the present study, we identified N-cadherin, an intrinsic transmembrane molecule in adherens junction-like structures, on BM-MSCs as a mediator for the migration of these cells toward breast tumor. The expression of N-cadherin increases on the intercellular borders of BM-MSCs through the TGF-β canonical signaling and they collectively migrate in response to breast tumor cells expressing TGF-β via N-cadherin-dependent cell-cell adhesion. We, herein, introduce a novel promising strategy for controlling and re-engineering the breast tumor microenvironment.
Collapse
Affiliation(s)
- Sanghyuk Choi
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jinyeong Yu
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Wootak Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ki-Sook Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- East-West Medical Research Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
25
|
Jeong J, Kim J. Cyclic RGD Pentapeptide Cilengitide Enhances Efficacy of Gefitinib on TGF-β1-Induced Epithelial-to-Mesenchymal Transition and Invasion in Human Non-Small Cell Lung Cancer Cells. Front Pharmacol 2021; 12:639095. [PMID: 33967774 PMCID: PMC8104086 DOI: 10.3389/fphar.2021.639095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
During non-small cell lung cancer (NSCLC) progression, transforming growth factor (TGF)-β mediated epithelial-to-mesenchymal transition (EMT) is an important process leading to high mortality and poor prognosis. The EMT is a fundamental process for morphogenesis characterized by the transformation of cancer cells into invasive forms that can be transferred to other organs during human lung cancer progression. Gefitinib, an epidermal growth factor receptor (EGFR) inhibitor, has shown anti-proliferative effects in EGFR-mutated NSCLC cells and an inhibitory effect on migration and invasion of NSCLC cells to other organs. In this study, we evaluated the combinatorial treatment effect of cilengitide, a cyclic RGD pentapeptide, on TGF-β1-induced EMT phenotype and invasion. Gefitinib suppressed the expression of TGF-β1-induced mesenchymal markers by inhibiting Smad and non-Smad signaling pathways. Cilengitide enhanced the inhibitory effect of gefitinib on TGF-β1-induced expression of mesenchymal markers, phosphorylation of Smad2/3, and invasion of NSCLC A549 cells. We suggested that the use of cilengitide can improve the efficacy of anti-cancer drugs in combination drug-based chemotherapy. These results provide an improved therapeutic strategy for treating and preventing EMT-related disorders, such as NSCLC, lung fibrosis, cancer metastasis, and relapse.
Collapse
Affiliation(s)
- Jisu Jeong
- Department of Medical Laboratory Science, School of Health Science, Dankook University, Cheonan, Korea
| | - Jiyeon Kim
- Department of Medical Laboratory Science, School of Health Science, Dankook University, Cheonan, Korea
| |
Collapse
|
26
|
Lala PK, Nandi P, Hadi A, Halari C. A crossroad between placental and tumor biology: What have we learnt? Placenta 2021; 116:12-30. [PMID: 33958236 DOI: 10.1016/j.placenta.2021.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 01/06/2023]
Abstract
Placenta in certain species including the human has evolved as a highly invasive tumor-like organ invading the uterus aned its vasculature to derive oxygen and nutrients for the fetus and exchange waste products. While several excellent reviews have been written comparing hemochorial placentation with tumors, no comprehensive review is available dealing with mechanistic insights into what makes them different, and what tumor biologists can learn from placental biologists, and vice versa. In this review, we analyze the structure-function relationship of the human placenta, emphasizing the functional need of the spatio-temporally orchestrated trophoblast invasiveness for fetal development and growth, and pathological consequences of aberrant invasiveness for fetal and maternal health. We then analyze similarities and differences between the placenta and invasive tumors in terms of hallmarks of cancer, some key molecules regulating their invasive functions, and how placental cancers (choriocarcinomas) or other cancers become refractory or even addicted to these invasion-restraining molecules. We cite in vitro models of human trophoblast and choriocarcinoma cell lines utilized to study mechanisms in normal placental development as well as those responsible for tumor progression. We discuss the pathobiology of hyper-invasive placentas and show thattrophoblastic neoplasias are a unique and heterogeneous class of tumors. We delve into the questions as to why metastasis from other organs rarely occurs at the placental site and whether pregnancy makes the mother more or less vulnerable to cancer-related morbidity/mortality. We attempt to compare trophoblast stem cells and cancer stem cells. Finally, we leave the readers with some thoughts as foods of future investigations.
Collapse
Affiliation(s)
- Peeyush K Lala
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Westernat Ontario, London, Ontario, N6A5C1, Canada; Associate Scientist, Children's Health Research Institute, University of Western Ontario, London, Ontario, Canada N6C2V5.
| | - Pinki Nandi
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Westernat Ontario, London, Ontario, N6A5C1, Canada.
| | - Ali Hadi
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Westernat Ontario, London, Ontario, N6A5C1, Canada.
| | - Chidambra Halari
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Westernat Ontario, London, Ontario, N6A5C1, Canada.
| |
Collapse
|
27
|
Liu Y, Guo W. SOX factors as cell-state regulators in the mammary gland and breast cancer. Semin Cell Dev Biol 2021; 114:126-133. [PMID: 33583737 DOI: 10.1016/j.semcdb.2021.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 12/27/2022]
Abstract
Emerging evidence has shown that several SOX family transcription factors are key regulators of stem/progenitor cell fates in the mammary gland. These cell-fate regulators are often upregulated in breast cancer and contribute to tumor initiation and progression. They induce lineage plasticity and the epithelial-mesenchymal transition, which promotes tumor invasion, metastasis, and therapeutic resistance. SOX factors act through modulating multiple oncogenic signaling pathways in breast cancer. In addition to the cell-autonomous functions, new evidence suggests they can shape the tumor immune microenvironment. Here, we will review the molecular and functional evidence linking SOX factors with mammary gland development and discuss how these cell-fate regulators are co-opted in breast cancer.
Collapse
Affiliation(s)
- Yu Liu
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wenjun Guo
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
28
|
Rosas E, Roberts JT, O’Neill KI, Christenson JL, Williams MM, Hanamura T, Spoelstra NS, Vahrenkamp JM, Gertz J, Richer JK. A Positive Feedback Loop Between TGFβ and Androgen Receptor Supports Triple-negative Breast Cancer Anoikis Resistance. Endocrinology 2021; 162:6027912. [PMID: 33294922 PMCID: PMC7806239 DOI: 10.1210/endocr/bqaa226] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Indexed: 12/13/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype with peak recurrence as metastatic disease within the first few years of diagnosis. Androgen receptor (AR) expression is increased in anchorage-independent cells in TNBC preclinical models. Both AR knockdown and inhibition lead to reduced TNBC invasion in vitro, reduced tumorigenicity, and less recurrence in vivo in preclinical models. Transforming growth factor β (TGFβ) pathway gene signatures also increased during anchorage-independent survival both in vitro and in vivo in preclinical models and in circulating tumor cells (CTCs) from patients during emergence of chemo resistant disease. We hypothesized that a positive loop between AR and TGFβ signaling facilitates TNBC anchorage-independent survival. We find that multiple components of the TGFβ pathway, including TGFβ1 and 3, as well as pathway activity measured by nuclear localization and transcriptional activity of phosphorylated Smad3, are enhanced in anchorage-independent conditions. Further, exogenous TGFβ increased AR protein while TGFβ inhibition decreased AR and TNBC viability, particularly under anchorage-independent culture conditions. ChIP-seq experiments revealed AR binding to TGFB1 and SMAD3 regulatory regions in MDA-MB-453 cells. In clinical datasets, TGFB3 and AR positively correlate and high expression of both genes together corresponded to significantly worse recurrence-free and overall survival in both ER-negative and basal-like breast cancer. Finally, inhibiting both AR and TGFβ decreased cell survival, particularly under anchorage-independent conditions. These findings warrant further investigations into whether combined inhibition of AR and TGFβ pathways might decrease metastatic recurrence rates and mortality from TNBC.
Collapse
Affiliation(s)
- Emmanuel Rosas
- Molecular Biology Graduate Program, Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Justin T Roberts
- Molecular Biology Graduate Program, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kathleen I O’Neill
- Molecular Biology Graduate Program, Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jessica L Christenson
- Molecular Biology Graduate Program, Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michelle M Williams
- Molecular Biology Graduate Program, Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Toru Hanamura
- Molecular Biology Graduate Program, Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicole S Spoelstra
- Molecular Biology Graduate Program, Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jeffery M Vahrenkamp
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jennifer K Richer
- Molecular Biology Graduate Program, Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Correspondence: Jennifer K. Richer, Department of Pathology, University of Colorado Anschutz Medical Campus, 12800 E 19th Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
29
|
Ma L, Gonzalez-Junca A, Zheng Y, Ouyang H, Illa-Bochaca I, Horst KC, Krings G, Wang Y, Fernandez-Garcia I, Chou W, Barcellos-Hoff MH. Inflammation Mediates the Development of Aggressive Breast Cancer Following Radiotherapy. Clin Cancer Res 2021; 27:1778-1791. [PMID: 33402361 DOI: 10.1158/1078-0432.ccr-20-3215] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/23/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Women treated with radiotherapy before 30 years of age have increased risk of developing breast cancer at an early age. Here, we sought to investigate mechanisms by which radiation promotes aggressive cancer. EXPERIMENTAL DESIGN The tumor microenvironment (TME) of breast cancers arising in women treated with radiotherapy for Hodgkin lymphoma was compared with that of sporadic breast cancers. To investigate radiation effects on carcinogenesis, we analyzed tumors arising from Trp53-null mammary transplants after irradiation of the target epithelium or host using immunocompetent and incompetent mice, some of which were treated with aspirin. RESULTS Compared with age-matched specimens of sporadic breast cancer, radiation-preceded breast cancers (RP-BC) were characterized by TME rich in TGFβ, cyclooxygenase 2, and myeloid cells, indicative of greater immunosuppression, even when matched for triple-negative status. The mechanism by which radiation impacts TME construction was investigated in carcinomas arising in mice bearing Trp53-null mammary transplants. Immunosuppressive TMEs (iTME) were recapitulated in mice irradiated before transplantation, which implicated systemic immune effects. In nu/nu mice lacking adaptive immunity irradiated before Trp53-null mammary transplantation, cancers also established an iTME, which pointed to a critical role for myeloid cells. Consistent with this, irradiated mammary glands contained more macrophages and human cells cocultured with polarized macrophages underwent dysplastic morphogenesis mediated by IFNγ. Treating mice with low-dose aspirin for 6 months postirradiation prevented establishment of an iTME and resulted in less aggressive tumors. CONCLUSIONS These data show that radiation acts via nonmutational mechanisms to promote markedly immunosuppressive features of aggressive, RP-BCs.
Collapse
Affiliation(s)
- Lin Ma
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Alba Gonzalez-Junca
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Yufei Zheng
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Haoxu Ouyang
- Department of Radiation Oncology, New York University School of Medicine, New York, New York
| | - Irineu Illa-Bochaca
- Department of Radiation Oncology, New York University School of Medicine, New York, New York
| | - Kathleen C Horst
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Gregor Krings
- Department of Pathology, University of California, San Francisco, San Francisco, California
| | - Yinghao Wang
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | | | - William Chou
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
30
|
Le L, Tokumaru Y, Oshi M, Asaoka M, Yan L, Endo I, Ishikawa T, Futamura M, Yoshida K, Takabe K. Th2 cell infiltrations predict neoadjuvant chemotherapy response of estrogen receptor-positive breast cancer. Gland Surg 2021; 10:154-165. [PMID: 33633972 DOI: 10.21037/gs-20-571] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background High infiltration of Th2 is linked to breast cancer progression and metastasis through the induction of cytokine release and T-cell anergy. The estrogen receptor (ER)-positive subtype, which accounts for 70% of breast cancer, is known to respond less to neoadjuvant chemotherapy (NAC) due to its low potential for proliferation. We hypothesized that Th2 high tumors are highly proliferative, and thus more likely to respond to NAC in ER-positive breast cancer. Methods We obtained clinicopathological data and overall survival information on 1,069 breast cancer patients from The Cancer Genome Atlas (TCGA). Computational algorithms and CIBERSORT were used to estimate immune cell infiltration. Additionally, xCell was used for validation. Results Th2 high tumors did not consistently associate with an unfavorable immune cell composition and tumor immune microenvironment but were found to be significantly elevated in the cancer stage. Th2 high tumors also correlated with high Nottingham pathological grade, as well as with Ki-67 and proliferation score in ER-positive subtypes. High Th2 tumors achieved a pathological complete response (pCR) significantly higher in ER-positive breast cancer. Conclusions In conclusion, high levels of Th2 are associated with aggressive features of breast cancer. Th2 levels may be a biomarker in patient selection for NAC in ER-positive breast cancer.
Collapse
Affiliation(s)
- Lan Le
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY, USA
| | - Yoshihisa Tokumaru
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Masanori Oshi
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Department of Gastroenterological Surgery, Yokohama City University, Yokohama, Japan
| | - Mariko Asaoka
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University, Yokohama, Japan
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
| | - Manabu Futamura
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY, USA.,Department of Gastroenterological Surgery, Yokohama City University, Yokohama, Japan.,Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan.,Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
31
|
Kumari S, Mukherjee S, Sinha D, Abdisalaam S, Krishnan S, Asaithamby A. Immunomodulatory Effects of Radiotherapy. Int J Mol Sci 2020; 21:E8151. [PMID: 33142765 PMCID: PMC7663574 DOI: 10.3390/ijms21218151] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Radiation therapy (RT), an integral component of curative treatment for many malignancies, can be administered via an increasing array of techniques. In this review, we summarize the properties and application of different types of RT, specifically, conventional therapy with x-rays, stereotactic body RT, and proton and carbon particle therapies. We highlight how low-linear energy transfer (LET) radiation induces simple DNA lesions that are efficiently repaired by cells, whereas high-LET radiation causes complex DNA lesions that are difficult to repair and that ultimately enhance cancer cell killing. Additionally, we discuss the immunogenicity of radiation-induced tumor death, elucidate the molecular mechanisms by which radiation mounts innate and adaptive immune responses and explore strategies by which we can increase the efficacy of these mechanisms. Understanding the mechanisms by which RT modulates immune signaling and the key players involved in modulating the RT-mediated immune response will help to improve therapeutic efficacy and to identify novel immunomodulatory drugs that will benefit cancer patients undergoing targeted RT.
Collapse
Affiliation(s)
- Sharda Kumari
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| | - Shibani Mukherjee
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| | - Debapriya Sinha
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| | - Salim Abdisalaam
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA;
| | - Aroumougame Asaithamby
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| |
Collapse
|
32
|
Lee YT, Tan YJ, Falasca M, Oon CE. Cancer-Associated Fibroblasts: Epigenetic Regulation and Therapeutic Intervention in Breast Cancer. Cancers (Basel) 2020; 12:E2949. [PMID: 33066013 PMCID: PMC7600259 DOI: 10.3390/cancers12102949] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the leading cause of cancer-related mortality in women worldwide. Cancer-associated fibroblasts (CAFs) are a heterogeneous population of cells in the solid tumour microenvironment. These cells are positively linked to breast cancer progression. Breast CAFs can be categorised into distinct subtypes according to their roles in breast carcinogenesis. Epigenetic modifications change gene expression patterns as a consequence of altered chromatin configuration and DNA accessibility to transcriptional machinery, without affecting the primary structure of DNA. Epigenetic dysregulation in breast CAFs may enhance breast cancer cell survival and ultimately lead to therapeutic resistance. A growing body of evidence has described epigenetic modulators that target histones, DNA, and miRNA as a promising approach to treat cancer. This review aims to summarise the current findings on the mechanisms involved in the epigenetic regulation in breast CAFs and discusses the potential therapeutic strategies via targeting these factors.
Collapse
Affiliation(s)
- Yeuan Ting Lee
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia; (Y.T.L.); (Y.J.T.)
| | - Yi Jer Tan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia; (Y.T.L.); (Y.J.T.)
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Chern Ein Oon
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia; (Y.T.L.); (Y.J.T.)
| |
Collapse
|
33
|
Xiao J, McGill JR, Stanton K, Kassner JD, Choudhury S, Schlegel R, Sauna ZE, Pohlmann PR, Agarwal S. Efficient Propagation of Circulating Tumor Cells: A First Step for Probing Tumor Metastasis. Cancers (Basel) 2020; 12:cancers12102784. [PMID: 32998338 PMCID: PMC7599955 DOI: 10.3390/cancers12102784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Cancer metastasis is responsible for most cancer-associated death. During metastasis, cells that escape the primary tumor into the circulatory system are known as circulating tumor cells. Previous attempts at growing circulating tumor cells in the lab have been hindered by low success rates. Using the novel system first reported here, we demonstrate a 100% (12/12 samples) success rate in culturing circulating tumor cells from metastatic breast cancer patients. Once propagated, we characterized the expression profiles of our cultures, verifying their origins as breast cancer cells. Furthermore, exploratory analysis identifies several key pathways and genes previously known to be associated with breast cancer progression and metastasis. Finally, we demonstrate that cultures grown in the presence of CD45+ cells exhibited higher growth potential ex vivo. Based on this system, we suggest that a reconsideration of the parameters for circulating tumor cell isolation should be undertaken. Abstract Circulating tumor cells (CTCs) represent a unique population of cells that can be used to investigate the mechanistic underpinnings of metastasis. Unfortunately, current technologies designed for the isolation and capture of CTCs are inefficient. Existing literature for in vitro CTC cultures report low (6−20%) success rates. Here, we describe a new method for the isolation and culture of CTCs. Once optimized, we employed the method on 12 individual metastatic breast cancer patients and successfully established CTC cultures from all 12 samples. We demonstrate that cells propagated were of breast and epithelial origin. RNA-sequencing and pathway analysis demonstrated that CTC cultures were distinct from cells obtained from healthy donors. Finally, we observed that CTC cultures that were associated with CD45+ leukocytes demonstrated higher viability. The presence of CD45+ leukocytes significantly enhanced culture survival and suggests a re-evaluation of the methods for CTC isolation and propagation. Routine access to CTCs is a valuable resource for identifying genetic and molecular markers of metastasis, personalizing the treatment of metastatic cancer patients and developing new therapeutics to selectively target metastatic cells.
Collapse
Affiliation(s)
- Jerry Xiao
- Lombardi Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA; (J.X.); (P.R.P.)
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20007, USA; (S.C.); (R.S.)
| | - Joseph R. McGill
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (J.R.M.); (Z.E.S.)
| | - Kelly Stanton
- Department of Pathology, Yale University, New Haven, CT 06511, USA;
| | - Joshua D. Kassner
- Department of Medicine, Medstar Hospital, Georgetown University Medical Center, Washington, DC 20007, USA;
| | - Sujata Choudhury
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20007, USA; (S.C.); (R.S.)
| | - Richard Schlegel
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20007, USA; (S.C.); (R.S.)
| | - Zuben E. Sauna
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (J.R.M.); (Z.E.S.)
| | - Paula R. Pohlmann
- Lombardi Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA; (J.X.); (P.R.P.)
- Department of Medicine, Medstar Hospital, Georgetown University Medical Center, Washington, DC 20007, USA;
| | - Seema Agarwal
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20007, USA; (S.C.); (R.S.)
- Correspondence: ; Tel.: +1-202-687-2644
| |
Collapse
|
34
|
Multiomic blood correlates of genetic risk identify presymptomatic disease alterations. Proc Natl Acad Sci U S A 2020; 117:21813-21820. [PMID: 32817414 DOI: 10.1073/pnas.2001429117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Transitions from health to disease are characterized by dysregulation of biological networks under the influence of genetic and environmental factors, often over the course of years to decades before clinical symptoms appear. Understanding these dynamics has important implications for preventive medicine. However, progress has been hindered both by the difficulty of identifying individuals who will eventually go on to develop a particular disease and by the inaccessibility of most disease-relevant tissues in living individuals. Here we developed an alternative approach using polygenic risk scores (PRSs) based on genome-wide association studies (GWAS) for 54 diseases and complex traits coupled with multiomic profiling and found that these PRSs were associated with 766 detectable alterations in proteomic, metabolomic, and standard clinical laboratory measurements (clinical labs) from blood plasma across several thousand mostly healthy individuals. We recapitulated a variety of known relationships (e.g., glutamatergic neurotransmission and inflammation with depression, IL-33 with asthma) and found associations directly suggesting therapeutic strategies (e.g., Ω-6 supplementation and IL-13 inhibition for amyotrophic lateral sclerosis) and influences on longevity (leukemia inhibitory factor, ceramides). Analytes altered in high-genetic-risk individuals showed concordant changes in disease cases, supporting the notion that PRS-associated analytes represent presymptomatic disease alterations. Our results provide insights into the molecular pathophysiology of a range of traits and suggest avenues for the prevention of health-to-disease transitions.
Collapse
|
35
|
Park KY, Kim J. Cyclic pentapeptide cRGDfK enhances the inhibitory effect of sunitinib on TGF-β1-induced epithelial-to-mesenchymal transition in human non-small cell lung cancer cells. PLoS One 2020; 15:e0232917. [PMID: 32810161 PMCID: PMC7433881 DOI: 10.1371/journal.pone.0232917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023] Open
Abstract
In human lung cancer progression, the EMT process is characterized by the transformation of cancer cells into invasive forms that migrate to other organs. Targeting to EMT-related molecules is emerging as a novel therapeutic approach for the prevention of lung cancer cell migration and invasion. Traf2- and Nck-interacting kinase (TNIK) has recently been considered as an anti-proliferative target molecule to regulate the Wnt signaling pathway in several types of cancer cells. In the present study, we evaluated the inhibitory effect of a tyrosine kinase inhibitor sunitinib and the integrin-αⅤβ3 targeted cyclic peptide (cRGDfK) on EMT in human lung cancer cells. Sunitinib strongly inhibited the TGF-β1-activated EMT through suppression of Wnt signaling, Smad and non-Smad signaling pathways. In addition, the cRGDfK also inhibited the expression of TGFβ1-induced mesenchymal marker genes and proteins. The anti-EMT effect of sunitinib was enhanced when cRGDfK was treated together. When sunitinib was treated with cRGDfK, the mRNA and protein expression levels of mesenchymal markers were decreased compared to the treatment with sunitinib alone. Co-treatment of cRGDfK has shown the potential to improve the efficacy of anticancer agents in combination with therapeutic agents that may be toxic at high concentrations. These results provide new and improved therapies for treating and preventing EMT-related disorders, such as lung fibrosis and cancer metastasis, and relapse.
Collapse
Affiliation(s)
- Kyeong-Yong Park
- Department of Integrated Material’s Development, CHA Meditech Co., Ltd, Daejeon, Republic of Korea
| | - Jiyeon Kim
- Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan, Republic of Korea
- * E-mail:
| |
Collapse
|
36
|
Li P, Wang QS, Zhai Y, Xiong RP, Chen X, Liu P, Peng Y, Zhao Y, Ning YL, Yang N, Zhou YG. Ski mediates TGF-β1-induced fibrosarcoma cell proliferation and promotes tumor growth. J Cancer 2020; 11:5929-5940. [PMID: 32922535 PMCID: PMC7477421 DOI: 10.7150/jca.46074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/20/2020] [Indexed: 11/05/2022] Open
Abstract
Background: TGF-β1 promotes cell proliferation in only some tumors and exerts bidirectional regulatory effects on the proliferation of fibroblasts. This study intends to explore whether the mechanism is related to increased expression of Ski. Methods: Cell proliferation of the fibrosarcoma cell line L929 was assessed with an ELISA BrdU kit. The mRNA and protein expression levels of the corresponding factors were measured by RT-qPCR, immunohistochemistry or Western blotting in vitro and in vivo. Additionally, c-Ski was knocked down using RNAi. The expression of Ski in human dermatofibrosarcoma protuberans (DFSP) specimens was measured by immunohistochemistry. Results: TGF-β1 promoted the continued proliferation of L929 cells in a dose-dependent manner, with increased c-Ski expression levels. Conversely, inhibition of c-Ski significantly abrogated this unidirectional effect, significantly inhibited the decrease in p21 protein levels and did not affect the increase in p-Smad2/3 levels upon TGF-β1 treatment. Similarly, inhibition of c-Ski significantly abrogated the growth-promoting effect of TGF-β1 on xenograft tumors. Furthermore, we found that high expression of Ski in DFSP was correlated with a low degree of tumor differentiation. Conclusions: Our data reveal that high c-Ski expression is a cause of TGF-β1-promoted proliferation in fibrosarcoma tumor cells and show that inhibiting Ski expression might be effective for treating tumors with high Ski levels.
Collapse
Affiliation(s)
- Ping Li
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Qiu-Shi Wang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China.,Department of Pathology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Yu Zhai
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Ren-Ping Xiong
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Xing Chen
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Ping Liu
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Yan Peng
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Yan Zhao
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Ya-Lei Ning
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Nan Yang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Yuan-Guo Zhou
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| |
Collapse
|
37
|
Critical Analysis of Genome-Wide Association Studies: Triple Negative Breast Cancer Quae Exempli Causa. Int J Mol Sci 2020; 21:ijms21165835. [PMID: 32823908 PMCID: PMC7461549 DOI: 10.3390/ijms21165835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Genome-wide association studies (GWAS) are useful in assessing and analyzing either differences or variations in DNA sequences across the human genome to detect genetic risk factors of diseases prevalent within a target population under study. The ultimate goal of GWAS is to predict either disease risk or disease progression by identifying genetic risk factors. These risk factors will define the biological basis of disease susceptibility for the purposes of developing innovative, preventative, and therapeutic strategies. As single nucleotide polymorphisms (SNPs) are often used in GWAS, their relevance for triple negative breast cancer (TNBC) will be assessed in this review. Furthermore, as there are different levels and patterns of linkage disequilibrium (LD) present within different human subpopulations, a plausible strategy to evaluate known SNPs associated with incidence of breast cancer in ethnically different patient cohorts will be presented and discussed. Additionally, a description of GWAS for TNBC will be presented, involving various identified SNPs correlated with miRNA sites to determine their efficacies on either prognosis or progression of TNBC in patients. Although GWAS have identified multiple common breast cancer susceptibility variants that individually would result in minor risks, it is their combined effects that would likely result in major risks. Thus, one approach to quantify synergistic effects of such common variants is to utilize polygenic risk scores. Therefore, studies utilizing predictive risk scores (PRSs) based on known breast cancer susceptibility SNPs will be evaluated. Such PRSs are potentially useful in improving stratification for screening, particularly when combining family history, other risk factors, and risk prediction models. In conclusion, although interpretation of the results from GWAS remains a challenge, the use of SNPs associated with TNBC may elucidate and better contextualize these studies.
Collapse
|
38
|
Augustine TN, Pather K, Mak D, Klonaros D, Xulu K, Dix-Peek T, Duarte R, van der Spuy WJ. Ex vivo interaction between blood components and hormone-dependent breast cancer cells induces alterations associated with epithelial-mesenchymal transition and thrombosis. Ultrastruct Pathol 2020; 44:262-272. [PMID: 32252581 DOI: 10.1080/01913123.2020.1749197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The prevalence of breast cancer is steadily increasing with metastasis and thromboembolic complications identified as the most common causes of death. The acquisition of an aggressive phenotype by hormone-dependent breast cancers is mediated by Transforming Growth Factor Beta 1 (TGF-β1) expression and is associated with epithelial-mesenchymal transition (EMT) and, potentially, increased propensity for thrombosis. We investigated this phenomenon by assessing the effect of platelet-rich plasma (PRP) and whole blood (WB) on parameters of EMT and hypercoagulation in vitro. MCF-7 breast cancer cells were cultured under standard conditions, followed by co-culture with PRP or WB. Cells were processed for real-time PCR (TGF-β1 and vimentin), electron microscopy or immunocytochemistry (TGF-β1). Micrographs were qualitatively assessed, and real-time PCR data analyzed with PAST Statistical Software. The addition of blood components heightened TGF-β1 immunolocalization and significantly increased corresponding gene expression. Both PRP and WB significantly increased vimentin expression and induced a shape change from a typical epithelial phenotype to a spindle-shape morphology, indicative of EMT. Fibrin fiber, network and plaque formation indicated a hypercoagulatory environment. The results thus show that in preparation for hematogenous metastasis, hormone-dependent breast cancer cells assume an aggressive phenotype associated with EMT, simultaneously increasing the propensity for the formation of thrombo-emboli.
Collapse
Affiliation(s)
- T N Augustine
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, South Africa
| | - K Pather
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, South Africa
| | - D Mak
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, South Africa
| | - D Klonaros
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, South Africa
| | - K Xulu
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, South Africa
| | - T Dix-Peek
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, South Africa
| | - R Duarte
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, South Africa
| | - W J van der Spuy
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, South Africa
| |
Collapse
|
39
|
Haibe Y, Kreidieh M, El Hajj H, Khalifeh I, Mukherji D, Temraz S, Shamseddine A. Resistance Mechanisms to Anti-angiogenic Therapies in Cancer. Front Oncol 2020; 10:221. [PMID: 32175278 PMCID: PMC7056882 DOI: 10.3389/fonc.2020.00221] [Citation(s) in RCA: 213] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor growth and metastasis rely on tumor vascular network for the adequate supply of oxygen and nutrients. Tumor angiogenesis relies on a highly complex program of growth factor signaling, endothelial cell (EC) proliferation, extracellular matrix (ECM) remodeling, and stromal cell interactions. Numerous pro-angiogenic drivers have been identified, the most important of which is the vascular endothelial growth factor (VEGF). The importance of pro-angiogenic inducers in tumor growth, invasion and extravasation make them an excellent therapeutic target in several types of cancers. Hence, the number of anti-angiogenic agents developed for cancer treatment has risen over the past decade, with at least eighty drugs being investigated in preclinical studies and phase I-III clinical trials. To date, the most common approaches to the inhibition of the VEGF axis include the blockade of VEGF receptors (VEGFRs) or ligands by neutralizing antibodies, as well as the inhibition of receptor tyrosine kinase (RTK) enzymes. Despite promising preclinical results, anti-angiogenic monotherapies led only to mild clinical benefits. The minimal benefits could be secondary to primary or acquired resistance, through the activation of alternative mechanisms that sustain tumor vascularization and growth. Mechanisms of resistance are categorized into VEGF-dependent alterations, non-VEGF pathways and stromal cell interactions. Thus, complementary approaches such as the combination of these inhibitors with agents targeting alternative mechanisms of blood vessel formation are urgently needed. This review provides an updated overview on the pathophysiology of angiogenesis during tumor growth. It also sheds light on the different pro-angiogenic and anti-angiogenic agents that have been developed to date. Finally, it highlights the preclinical evidence for mechanisms of angiogenic resistance and suggests novel therapeutic approaches that might be exploited with the ultimate aim of overcoming resistance and improving clinical outcomes for patients with cancer.
Collapse
Affiliation(s)
- Yolla Haibe
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Malek Kreidieh
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Hiba El Hajj
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Ibrahim Khalifeh
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Deborah Mukherji
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Sally Temraz
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Ali Shamseddine
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| |
Collapse
|
40
|
Suggestive evidence of protective haplotype within TGF-B1 gene region in breast density utilizing fine mapping analysis. Meta Gene 2020. [DOI: 10.1016/j.mgene.2019.100631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
41
|
Zhang K, Tan X, Guo L. The long non-coding RNA DANCR regulates the inflammatory phenotype of breast cancer cells and promotes breast cancer progression via EZH2-dependent suppression of SOCS3 transcription. Mol Oncol 2020; 14:309-328. [PMID: 31860165 PMCID: PMC6998389 DOI: 10.1002/1878-0261.12622] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 11/27/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNA (lncRNA) is involved in the regulation of tumorigenesis and metastasis. In this study, we focused on the clinical relevance, biological effects, and molecular mechanisms of the lncRNA differentiation antagonizing non-protein coding RNA (DANCR) in breast cancer. We compared the expression of DANCR between breast cancer and normal tissues, and between breast cancer cell lines and normal breast epithelial cells using quantitative real-time PCR (qRT-PCR) analysis. By knocking down and overexpressing DANCR, we assessed its significance in regulating viability (MTT assay), migration/invasion (Transwell assay), epithelial-mesenchymal transition (western blot), stemness (mammosphere formation assay and western blot), and production of inflammatory cytokines (qRT-PCR and ELISA) of breast cancer cells in vitro, as well as xenograft growth in vivo. Furthermore, using ChIP and RNA immunoprecipitation, we examined the reciprocal regulation between DANCR and suppressor of cytokine signaling 3 (SOCS3) in breast cancer. DANCR was significantly up-regulated in tissue samples from patients with breast cancer, as well as in breast cancer cell lines, as compared with normal tissues and breast epithelial cells, respectively. The highest DANCR expression levels were associated with advanced tumor grades or lymph node metastasis. DANCR was necessary and sufficient to control multiple malignant phenotypes of breast cancer cells in vitro and xenograft growth in vivo. Mechanistically, DANCR promoted the binding of enhancer of zeste homolog 2 (EZH2) to the promoter of SOCS3, thereby epigenetically inhibiting SOCS3 expression. Functionally, SOCS3 up-regulation or EZH2 inhibition could rescue multiple malignant phenotypes induced by DANCR. Our data indicate that DANCR is a pleiotropic oncogenic lncRNA in breast cancer. Boosting SOCS3 expression may reverse the oncogenic activities of DANCR and thus provide a therapeutic strategy for breast cancer treatment.
Collapse
Affiliation(s)
- Ke‐Jing Zhang
- Department of Breast SurgeryXiangya HospitalClinical Research Center For Breast Cancer Control and Prevention in Hunan ProvinceCentral South UniversityChangshaChina
| | - Xiao‐Lang Tan
- Department of OncologyChangsha Central HospitalChina
| | - Lei Guo
- Department of Breast SurgeryXiangya HospitalClinical Research Center For Breast Cancer Control and Prevention in Hunan ProvinceCentral South UniversityChangshaChina
| |
Collapse
|
42
|
Fenizia C, Bottino C, Corbetta S, Fittipaldi R, Floris P, Gaudenzi G, Carra S, Cotelli F, Vitale G, Caretti G. SMYD3 promotes the epithelial-mesenchymal transition in breast cancer. Nucleic Acids Res 2019; 47:1278-1293. [PMID: 30544196 PMCID: PMC6379668 DOI: 10.1093/nar/gky1221] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 12/20/2022] Open
Abstract
SMYD3 is a methylase previously linked to cancer cell invasion and migration. Here we show that SMYD3 favors TGFβ-induced epithelial–mesenchymal transition (EMT) in mammary epithelial cells, promoting mesenchymal and EMT transcription factors expression. SMYD3 directly interacts with SMAD3 but it is unnecessary for SMAD2/3 phosphorylation and nuclear translocation. Conversely, SMYD3 is indispensable for SMAD3 direct association to EMT genes regulatory regions. Accordingly, SMYD3 knockdown or its pharmacological blockade with the BCI121 inhibitor dramatically reduce TGFβ-induced SMAD3 association to the chromatin. Remarkably, BCI121 treatment attenuates mesenchymal genes transcription in the mesenchymal-like MDA-MB-231 cell line and reduces their invasive ability in vivo, in a zebrafish xenograft model. In addition, clinical datasets analysis revealed that higher SMYD3 levels are linked to a less favorable prognosis in claudin-low breast cancers and to a reduced metastasis free survival in breast cancer patients. Overall, our data point at SMYD3 as a pivotal SMAD3 cofactor that promotes TGFβ-dependent mesenchymal gene expression and cell migration in breast cancer, and support SMYD3 as a promising pharmacological target for anti-cancer therapy.
Collapse
Affiliation(s)
- Claudio Fenizia
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Cinzia Bottino
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Silvia Corbetta
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Raffaella Fittipaldi
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Pamela Floris
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Germano Gaudenzi
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Silvia Carra
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Franco Cotelli
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Giovanni Vitale
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Istituto Auxologico Italiano IRCCS, Milan, Italy.,Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - Giuseppina Caretti
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
43
|
Choi S, Yu J, Park A, Dubon MJ, Do J, Kim Y, Nam D, Noh J, Park KS. BMP-4 enhances epithelial mesenchymal transition and cancer stem cell properties of breast cancer cells via Notch signaling. Sci Rep 2019; 9:11724. [PMID: 31409851 PMCID: PMC6692307 DOI: 10.1038/s41598-019-48190-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/26/2019] [Indexed: 01/07/2023] Open
Abstract
Bone morphogenetic protein (BMP) signaling and Notch signaling play important roles in tumorigenesis in various organs and tissues, including the breast. BMP-4 enhanced epithelial mesenchymal transition (EMT) and stem cell properties in both mammary epithelial cell line and breast carcinoma cell line. BMP-4 increased the expression of EMT biomarkers, such as fibronectin, laminin, N-cadherin, and Slug. BMP-4 also activated Notch signaling in these cells and increased the sphere forming efficiency of the non-transformed mammary epithelial cell line MCF-10A. In addition, BMP-4 upregulated the sphere forming efficiency, colony formation efficiency, and the expression of cancer stem cell markers, such as Nanog and CD44, in the breast carcinoma cell line MDA-MB-231. Inhibition of Notch signaling downregulated EMT and stem cell properties induced by BMP-4. Down-regulation of Smad4 using siRNA impaired the BMP-4-induced activation of Notch signaling, as well as the BMP-4-mediated EMT. These results suggest that EMT and stem cell properties are increased in mammary epithelial cells and breast cancer cells through the activation of Notch signaling in a Smad4-dependent manner in response to BMP-4.
Collapse
Affiliation(s)
- Sanghyuk Choi
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Jinyeong Yu
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Aran Park
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Maria Jose Dubon
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Jungbeom Do
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Youngjae Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Donghyun Nam
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Jinok Noh
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Ki-Sook Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea. .,East-West Medical Research Institute, Kyung Hee University, Seoul, 02447, Korea. .,College of Medicine, Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
44
|
Lee S. Human serum albumin: A nanomedicine platform targeting breast cancer cells. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Targeting the phosphoinositide 3-kinase/AKT pathways by small molecules and natural compounds as a therapeutic approach for breast cancer cells. Mol Biol Rep 2019; 46:4809-4816. [PMID: 31313132 DOI: 10.1007/s11033-019-04929-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022]
Abstract
The phosphoinositide 3-kinase/AKT/mTOR (PI3K/AkT/mTOR) pathway plays a pivotal role in the uncontrolled growth, migration and development of human breast cancer. The elevated expression of TGF-β1 increases the PI3K/AkT/mTOR activity in human breast cancer tissue and potentially motivates tumor metastasis and resistance to chemotherapy. Here, we investigated whether treatment with PI3K/AkT/mTOR dual inhibitor NVP-BEZ235 alone or in combination with caffeic acid phenyl ester (CAPE) could prevent TGF-β1 effects on breast cancer cells. MCF-7 human breast cancer cells were exposed to TGF-β1 for 14 days and then were treated with/without NVP-BEZ235 and/or CAPE. Cell viability, apoptosis, CXCR4 surface expression and mRNA levels of CXCR4 and TWIST-1 were analyzed in all treated groups. We found that treatment of human breast cancer cells with a combination of NVP-BEZ235 and CAPE increased induction of cellular death. Although flow cytometry analysis demonstrated that NVP-BEZ235 alone treatment reduced CXCR4 expression while increasing CXCR4 mRNA level; when NVP-BEZ235 was combined with CAPE, inhibition of CXCR4 surface expression and enhancement of CXCR4 mRNA expression was diminished. In addition, TWIST-1 mRNA expression was down regulated in samples treated with both NVP-BEZ235 and CAPE. These altogether signified that NVP-BEZ235 in combination with CAPE showed improved therapeutic efficacy in breast cancer cells by decreasing apoptotic resistance and reduction of CXCR4 and TWIST-1 expression at mRNA level could be one of mechanism of action.
Collapse
|
46
|
Bahiraee A, Ebrahimi R, Halabian R, Aghabozorgi AS, Amani J. The role of inflammation and its related microRNAs in breast cancer: A narrative review. J Cell Physiol 2019; 234:19480-19493. [PMID: 31025369 DOI: 10.1002/jcp.28742] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/27/2019] [Accepted: 04/10/2019] [Indexed: 12/21/2022]
Abstract
Breast cancer is recognized as the most common type of cancer among women with a high rate of mortality all over the world. Over the past years, growing attention has been regarded to realize more about the mechanisms underlying the disease process. It is revealed that the progression of breast cancer may be strongly linked to chronic inflammation owing to the role of inflammatory factors in genetic instability and subsequent cancer predisposition. Although the association between breast cancer and inflammatory pathways has been well-defined now, only recent evidence pointed towards the inflammation-related microRNAs (miRNAs) as potential biomarkers and therapeutic targets involved in the crosstalk of multiple pathways during breast cancer development. Moreover, the practical interactions between these miRNAs and inflammatory factors are also a little characterized. In this review, we intended to describe the effects of predominant inflammatory pathways such as cytokines, phosphoinositide 3-kinase/protein kinase B, and nuclear factor kappa B in association with tumor promoting and tumor suppressing miRNAs on breast cancer progression. Providing new studies in the field of combining biomarkers for early diagnosis, prognosis, and monitoring breast cancer are very important. Notably, understanding the underlying mechanisms of miRNAs as a possible link between inflammation and tumorigenesis may offer a novel insight for combating this epidemic.
Collapse
Affiliation(s)
- Alireza Bahiraee
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reyhane Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amirsaeed Sabeti Aghabozorgi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Gomig THB, Cavalli IJ, Souza RLRD, Vieira E, Lucena ACR, Batista M, Machado KC, Marchini FK, Marchi FA, Lima RS, de Andrade Urban C, Cavalli LR, Ribeiro EMDSF. Quantitative label-free mass spectrometry using contralateral and adjacent breast tissues reveal differentially expressed proteins and their predicted impacts on pathways and cellular functions in breast cancer. J Proteomics 2019; 199:1-14. [PMID: 30772490 DOI: 10.1016/j.jprot.2019.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/27/2019] [Accepted: 02/11/2019] [Indexed: 02/08/2023]
Abstract
Proteins play an essential role in the biological processes associated with cancer. Their altered expression levels can deregulate critical cellular pathways and interactive networks. In this study, the mass spectrometry-based label-free quantification followed by functional annotation was performed to investigate the most significant deregulated proteins among tissues of primary breast tumor (PT) and axillary metastatic lymph node (LN) and corresponding non-tumor tissues contralateral (NCT) and adjacent (ANT) from patients diagnosed with invasive ductal carcinoma. A total of 462 proteins was observed as differentially expressed (DEPs) among the groups analyzed. A high level of similarity was observed in the proteome profile of both non-tumor breast tissues and DEPs (n = 12) were mainly predicted in the RNA metabolism. The DEPs among the malignant and non-tumor breast tissues [n = 396 (PTxNCT) and n = 410 (LNxNCT)] were related to pathways of the LXR/RXR, NO, eNOS, eIF2 and sirtuins, tumor-related functions, fatty acid metabolism and oxidative stress. Remarkable similarity was observed between both malignant tissues, which the DEPs were related to metastatic capabilities. Altogether, our findings revealed differential proteomic profiles that affected cancer associated and interconnected signaling processes. Validation studies are recommended to demonstrate the potential of individual proteins and/or pathways as biological markers in breast cancer. SIGNIFICANCE: The proteomic analysis of this study revealed high similarity in the proteomic profile of the contralateral and adjacent non-tumor breast tissues. Significant differences were identified among the proteome of the malignant and non-tumor tissue groups of the same patients, providing relevant insights into the hallmarks, signaling pathways, biological functions, and interactive protein networks that act during tumorigenesis and breast cancer progression. These proteins are suggested as targets of relevant interest to be explored as potential biological markers related to tumor development and metastatic progression in the breast cancer disease.
Collapse
Affiliation(s)
| | | | | | - Evelyn Vieira
- Genetics Department, Federal University of Parana, Curitiba, Brazil
| | | | - Michel Batista
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil; Mass Spectrometry Facility - RPT02H, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | | | - Fabricio Klerynton Marchini
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil; Mass Spectrometry Facility - RPT02H, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | | | | | | | - Luciane Regina Cavalli
- Research Institute Pele Pequeno Principe, Curitiba, Brazil; Lombardi Comprehensive Cancer Center, Georgetown University, USA
| | | |
Collapse
|
48
|
Jones KM, Karanam B, Jones-Triche J, Sandey M, Henderson HJ, Samant RS, Temesgen S, Yates C, Bedi D. Phage Ligands for Identification of Mesenchymal-Like Breast Cancer Cells and Cancer-Associated Fibroblasts. Front Oncol 2019; 8:625. [PMID: 30619759 PMCID: PMC6304394 DOI: 10.3389/fonc.2018.00625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 12/03/2018] [Indexed: 11/18/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is believed to be crucial for primary tumors to escape their original residence and invade and metastasize. To properly define EMT, there is a need for ligands that can identify this phenomenon in tumor tissue and invivo. A phage-display selection screening was performed to select novel binding phage peptides for identification of EMT in breast cancer. Epithelial breast cancer cell line, MCF-7 was transformed to mesenchymal phenotype by TGF-β treatment and was used for selection. Breast fibroblasts were used for subtractive depletion and breast cancer metastatic cell lines MDA-MB-231, T47D-shNMI were used for specificity assay. The binding peptides were identified, and their binding capacities were confirmed by phage capture assay, phage-based ELISA, immunofluorescence microscopy. The phage peptide bearing the 7-amino acid sequence, LGLRGSL, demonstrated selective binding to EMT phenotypic cells (MCF-7/TGF-β and MDA-MB-231) as compared to epithelial subtype, MCF-7, T47D and breast fibroblasts (Hs578T). The selected phage was also able to identify metastatic breast cancer tumor in breast cancer tissue microarray (TMA). These studies suggest that the selected phage peptide LGLRGSL identified by phage-display library, showed significant ability to bind to mesenchymal-like breast cancer cells/ tissues and can serve as a novel probe/ligand for metastatic breast cancer diagnostic and imaging.
Collapse
Affiliation(s)
- Kelvin M Jones
- Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, United States
| | - Balasubramanyam Karanam
- Department of Biology, Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
| | | | - Maninder Sandey
- Department of Pathobiology, Auburn University, Auburn, AL, United States
| | - Henry J Henderson
- Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, United States
| | - Rajeev S Samant
- Department of Pathobiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Samuel Temesgen
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, United States
| | - Clayton Yates
- Department of Biology, Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
| | - Deepa Bedi
- Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, United States
| |
Collapse
|
49
|
Locy H, de Mey S, de Mey W, De Ridder M, Thielemans K, Maenhout SK. Immunomodulation of the Tumor Microenvironment: Turn Foe Into Friend. Front Immunol 2018; 9:2909. [PMID: 30619273 PMCID: PMC6297829 DOI: 10.3389/fimmu.2018.02909] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/27/2018] [Indexed: 12/23/2022] Open
Abstract
Immunotherapy, where the patient's own immune system is exploited to eliminate tumor cells, has become one of the most prominent new cancer treatment options in the last decade. The main hurdle for classical cancer vaccines is the need to identify tumor- and patient specific antigens to include in the vaccine. Therefore, in situ vaccination represents an alternative and promising approach. This type of immunotherapy involves the direct intratumoral administration of different immunomodulatory agents and uses the tumor itself as the source of antigen. The ultimate aim is to convert an immunodormant tumor microenvironment into an immunostimulatory one, enabling the immune system to eradicate all tumor lesions in the body. In this review we will give an overview of different strategies, which can be exploited for the immunomodulation of the tumor microenvironment and their emerging role in the treatment of cancer patients.
Collapse
Affiliation(s)
- Hanne Locy
- Laboratory of Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Sven de Mey
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Wout de Mey
- Laboratory of Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Mark De Ridder
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Sarah K. Maenhout
- Laboratory of Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
50
|
Sun JP, Ge QX, Ren Z, Sun XF, Xie SP. Down-regulation of HOXB5 inhibits TGF-β-induced migration and invasion in hepatocellular carcinoma cells via inactivation of the PI3K/Akt pathway. RSC Adv 2018; 8:41415-41421. [PMID: 35559288 PMCID: PMC9091567 DOI: 10.1039/c8ra06860g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/22/2018] [Indexed: 11/30/2022] Open
Abstract
HOXB5, a member of the HOX gene family, is a developmental gene which encodes homeoproteins and is known to be a crucial player in development of enteric nervous systems. Recently, HOXB5 was reported to be associated with cancer progression. However, the specific effect of HOXB5 in hepatocellular carcinoma (HCC) remains unclear. In this study, we demonstrated the important role of HOXB5 in HCC. We showed that HOXB5 was up-regulated in HCC tissues and cell lines. Furthermore, down-regulation of HOXB5 inhibited TGF-β-induced HCC cell migration and invasion in vitro and suppressed tumor metastasis in vivo. We also found that the PI3K/Akt pathway partly accounted for the mechanisms underlying the inhibitory effect of HOXB5 down-regulation on TGF-β-induced HCC progression. Taken together, these findings demonstrated that down-regulation of HOXB5 inhibits TGF-β-induced migration and invasion in HCC cells via inactivation of the PI3K/Akt pathway. Thus, HOXB5 may be a novel therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Jin-Ping Sun
- Department of Gastroenterology, Huaihe Hospital of Henan University No. 115 Ximen Street, Longting District Kaifeng 475000 China +86-371-23906892 +86-371-23906892
| | - Quan-Xing Ge
- Department of Gastroenterology, Huaihe Hospital of Henan University No. 115 Ximen Street, Longting District Kaifeng 475000 China +86-371-23906892 +86-371-23906892
| | - Zheng Ren
- Department of Gastroenterology, Huaihe Hospital of Henan University No. 115 Ximen Street, Longting District Kaifeng 475000 China +86-371-23906892 +86-371-23906892
| | - Xin-Fang Sun
- Department of Gastroenterology, Huaihe Hospital of Henan University No. 115 Ximen Street, Longting District Kaifeng 475000 China +86-371-23906892 +86-371-23906892
| | - Shu-Ping Xie
- Department of Gastroenterology, Huaihe Hospital of Henan University No. 115 Ximen Street, Longting District Kaifeng 475000 China +86-371-23906892 +86-371-23906892
| |
Collapse
|