1
|
Truszkiewicz A, Bartusik-Aebisher D, Zalejska-Fiolka J, Kawczyk-Krupka A, Aebisher D. Cellular Lactate Spectroscopy Using 1.5 Tesla Clinical Apparatus. Int J Mol Sci 2022; 23:ijms231911355. [PMID: 36232656 PMCID: PMC9570142 DOI: 10.3390/ijms231911355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/11/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022] Open
Abstract
Cellular lactate is a key cellular metabolite and marker of anaerobic glycolysis. Cellular lactate uptake, release, production from glucose and glycogen, and interconversion with pyruvate are important determinants of cellular energy. It is known that lactate is present in the spectrum of neoplasms and low malignancy (without necrotic lesions). Also, the appearance of lactate signals is associated with anaerobic glucose, mitochondrial dysfunction, and other inflammatory responses. The aim of this study was the detection of lactate in cell cultures with the use of proton magnetic resonance (1H MRS) and a 1.5 Tesla clinical apparatus (MR OPTIMA 360), characterized as a medium-field system. In this study, selected metabolites, together with cellular lactate, were identified with the use of an appropriate protocol and management algorithm. This paper describes the results obtained for cancer cell cultures. This medium-field system has proven the possibility of detecting small molecules, such as lactate, with clinical instruments. 1H MRS performed using clinical MR apparatus is a useful tool for clinical analysis.
Collapse
Affiliation(s)
- Adrian Truszkiewicz
- Department of Photomedicine and Physical Chemistry, Medical College of The University of Rzeszow, University of Rzeeszów, 35-310 Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The University of Rzeszow, University of Rzeszów, 35-310 Rzeszów, Poland
| | - Jolanta Zalejska-Fiolka
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Aleksandra Kawczyk-Krupka
- Center for Laser Diagnostics and Therapy, Department of Internal Medicine, Angiology and Physical Medicine, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The University of Rzeszow, University of Rzeeszów, 35-310 Rzeszów, Poland
- Correspondence:
| |
Collapse
|
2
|
Iorio E, Podo F, Leach MO, Koutcher J, Blankenberg FG, Norfray JF. A novel roadmap connecting the 1H-MRS total choline resonance to all hallmarks of cancer following targeted therapy. Eur Radiol Exp 2021; 5:5. [PMID: 33447887 PMCID: PMC7809082 DOI: 10.1186/s41747-020-00192-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/29/2020] [Indexed: 11/15/2022] Open
Abstract
This review describes a cellular adaptive stress signalling roadmap connecting the 1H magnetic resonance spectroscopy (MRS) total choline peak at 3.2 ppm (tCho) to cancer response after targeted therapy (TT). Recent research on cell signalling, tCho metabolism, and TT of cancer has been retrospectively re-examined. Signalling research describes how the unfolded protein response (UPR), a major stress signalling network, transduces, regulates, and rewires the total membrane turnover in different cancer hallmarks after a TT stress. In particular, the UPR signalling maintains or increases total membrane turnover in all pro-survival hallmarks, whilst dramatically decreases turnover during apoptosis, a pro-death hallmark. Recent research depicts the TT-induced stress as a crucial event responsible for interrupting UPR pro-survival pathways, leading to an UPR-mediated cell death. The 1H-MRS tCho resonance represents the total mobile precursors and products during the enzymatic modification of phosphatidylcholine membrane abundance. The tCho profile represents a biomarker that noninvasively monitors TT-induced enzymatic changes in total membrane turnover in a wide variety of existing and new anticancer treatments targeting specific layers of the UPR signalling network. Our overview strongly suggests further evaluating and validating the 1H-MRS tCho peak as a powerful noninvasive imaging biomarker of cancer response in TT clinical trials.
Collapse
Affiliation(s)
- Egidio Iorio
- High Resolution NMR Unit-Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Roma, Italy.
| | - Franca Podo
- High Resolution NMR Unit-Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Roma, Italy
| | - Martin O Leach
- MRI Unit, Royal Marsden Hospital, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Jason Koutcher
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Joseph F Norfray
- Emeritus, Chicago Northside MRI Center, 2818 N. Sheridan Rd, Chicago, IL, 60657, USA
| |
Collapse
|
3
|
Hedtke V, Bakovic M. Choline transport for phospholipid synthesis: An emerging role of choline transporter-like protein 1. Exp Biol Med (Maywood) 2019; 244:655-662. [PMID: 30776907 DOI: 10.1177/1535370219830997] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
IMPACT STATEMENT This review will provide a summary of recent advances in choline transport research and highlight important novel areas of focus in the field.
Collapse
Affiliation(s)
- Vera Hedtke
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
4
|
Karayazi Atici Ö, Urbanska A, Gopinathan SG, Boutillon F, Goffin V, Shemanko CS. ATM Is Required for the Prolactin-Induced HSP90-Mediated Increase in Cellular Viability and Clonogenic Growth After DNA Damage. Endocrinology 2018; 159:907-930. [PMID: 29186352 DOI: 10.1210/en.2017-00652] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023]
Abstract
Prolactin (PRL) acts as a survival factor for breast cancer cells, but the PRL signaling pathway and the mechanism are unknown. Previously, we identified the master chaperone, heat shock protein 90 (HSP90) α, as a prolactin-Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) target gene involved in survival, and here we investigated the role of HSP90 in the mechanism of PRL-induced viability in response to DNA damage. The ataxia-telangiectasia mutated kinase (ATM) protein plays a critical role in the cellular response to double-strand DNA damage. We observed that PRL increased viability of breast cancer cells treated with doxorubicin or etoposide. The increase in cellular resistance is specific to the PRL receptor, because the PRL receptor antagonist, Δ1-9-G129R-hPRL, prevented the increase in viability. Two different HSP90 inhibitors, 17-allylamino-17-demethoxygeldanamycin and BIIB021, reduced the PRL-mediated increase in cell viability of doxorubicin-treated cells and led to a decrease in JAK2, ATM, and phosphorylated ATM protein levels. Inhibitors of JAK2 (G6) and ATM (KU55933) abolished the PRL-mediated increase in cell viability of DNA-damaged cells, supporting the involvement of each, as well as the crosstalk of ATM with the PRL pathway in the context of DNA damage. Drug synergism was detected between the ATM inhibitor (KU55933) and doxorubicin and between the HSP90 inhibitor (BIIB021) and doxorubicin. Short interfering RNA directed against ATM prevented the PRL-mediated increase in cell survival in two-dimensional cell culture, three-dimensional collagen gel cultures, and clonogenic cell survival, after doxorubicin treatment. Our results indicate that ATM contributes to the PRL-JAK2-STAT5-HSP90 pathway in mediating cellular resistance to DNA-damaging agents.
Collapse
Affiliation(s)
- Ödül Karayazi Atici
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anna Urbanska
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sesha Gopal Gopinathan
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Florence Boutillon
- Inserm U1151, Institut Necker Enfants Malades, Team "PRL/GH Pathophysiology," Faculty of Medicine Paris Descartes, Sorbonne Paris Cité, Paris cedex 14, France
| | - Vincent Goffin
- Inserm U1151, Institut Necker Enfants Malades, Team "PRL/GH Pathophysiology," Faculty of Medicine Paris Descartes, Sorbonne Paris Cité, Paris cedex 14, France
| | - Carrie S Shemanko
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Arlauckas SP, Popov AV, Delikatny EJ. Choline kinase alpha-Putting the ChoK-hold on tumor metabolism. Prog Lipid Res 2016; 63:28-40. [PMID: 27073147 PMCID: PMC5360181 DOI: 10.1016/j.plipres.2016.03.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/14/2016] [Accepted: 03/26/2016] [Indexed: 12/24/2022]
Abstract
It is well established that lipid metabolism is drastically altered during tumor development and response to therapy. Choline kinase alpha (ChoKα) is a key mediator of these changes, as it represents the first committed step in the Kennedy pathway of phosphatidylcholine biosynthesis and ChoKα expression is upregulated in many human cancers. ChoKα activity is associated with drug resistant, metastatic, and malignant phenotypes, and represents a robust biomarker and therapeutic target in cancer. Effective ChoKα inhibitors have been developed and have recently entered clinical trials. ChoKα's clinical relevance was, until recently, attributed solely to its production of second messenger intermediates of phospholipid synthesis. The recent discovery of a non-catalytic scaffolding function of ChoKα may link growth receptor signaling to lipid biogenesis and requires a reinterpretation of the design and validation of ChoKα inhibitors. Advances in positron emission tomography, magnetic resonance spectroscopy, and optical imaging methods now allow for a comprehensive understanding of ChoKα expression and activity in vivo. We will review the current understanding of ChoKα metabolism, its role in tumor biology and the development and validation of targeted therapies and companion diagnostics for this important regulatory enzyme. This comes at a critical time as ChoKα-targeting programs receive more clinical interest.
Collapse
Affiliation(s)
- Sean P Arlauckas
- Department of Radiology, 317 Anatomy-Chemistry Building, 3620 Hamilton Walk, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anatoliy V Popov
- Department of Radiology, 317 Anatomy-Chemistry Building, 3620 Hamilton Walk, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E James Delikatny
- Department of Radiology, 317 Anatomy-Chemistry Building, 3620 Hamilton Walk, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Chan KWY, Jiang L, Cheng M, Wijnen JP, Liu G, Huang P, van Zijl PCM, McMahon MT, Glunde K. CEST-MRI detects metabolite levels altered by breast cancer cell aggressiveness and chemotherapy response. NMR IN BIOMEDICINE 2016; 29:806-16. [PMID: 27100284 PMCID: PMC4873340 DOI: 10.1002/nbm.3526] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/27/2016] [Accepted: 02/29/2016] [Indexed: 05/08/2023]
Abstract
Chemical exchange saturation transfer (CEST) is an MRI contrast mechanism that detects the exchange of protons from distinct hydroxyl, amine, and amide groups to tissue water through the transfer of signal loss, with repeated exchange enhancing their effective signal. We applied CEST to detect systematically 15 common cellular metabolites in a panel of differentially aggressive human breast cancer cell lines. The highest CEST contrast was generated by creatine, myo-inositol, glutamate, and glycerophosphocholine, whose cellular concentrations decreased with increasing breast cancer aggressiveness. These decreased metabolite concentrations resulted in turn in a decreased CEST profile with increasing breast cancer aggressiveness in water-soluble extracts of breast cell lines. Treatment of both breast cancer cell lines with the chemotherapy drug doxorubicin resulted in increased metabolic CEST profiles, which correlated with significant increases in creatine, phosphocreatine, and glycerophosphocholine. CEST can detect breast cancer aggressiveness and response to chemotherapy in water-soluble extracts of breast cell lines. The presented results help shed light on possible contributions from CEST-active metabolites to the CEST contrast produced by breast cancers. The metabolic CEST profile may improve detection sensitivity over conventional MRS, and may have the potential to assess breast cancer aggressiveness and response to chemotherapy non-invasively using MRI if specialized metabolic CEST profile detection can be realized in vivo. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kannie W. Y. Chan
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lu Jiang
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Menglin Cheng
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jannie P. Wijnen
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Guanshu Liu
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Peng Huang
- Department of Oncology, Biostatistics and Bioinformatics Division, School of Medicine and Department of Biostatistics, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C. M. van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Michael T. McMahon
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- To whom correspondence may be addressed. ,
| | - Kristine Glunde
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- To whom correspondence may be addressed. ,
| |
Collapse
|
7
|
Chaumeil MM, Najac C, Ronen SM. Studies of Metabolism Using (13)C MRS of Hyperpolarized Probes. Methods Enzymol 2015; 561:1-71. [PMID: 26358901 DOI: 10.1016/bs.mie.2015.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
First described in 2003, the dissolution dynamic nuclear polarization (DNP) technique, combined with (13)C magnetic resonance spectroscopy (MRS), has since been used in numerous metabolic studies and has become a valuable metabolic imaging method. DNP dramatically increases the level of polarization of (13)C-labeled compounds resulting in an increase in the signal-to-noise ratio (SNR) of over 50,000 fold for the MRS spectrum of hyperpolarized compounds. The high SNR enables rapid real-time detection of metabolism in cells, tissues, and in vivo. This chapter will present a comprehensive review of the DNP approaches that have been used to monitor metabolism in living systems. First, the list of (13)C DNP probes developed to date will be presented, with a particular focus on the most commonly used probe, namely [1-(13)C] pyruvate. In the next four sections, we will then describe the different factors that need to be considered when designing (13)C DNP probes for metabolic studies, conducting in vitro or in vivo hyperpolarized experiments, as well as acquiring, analyzing, and modeling hyperpolarized (13)C data.
Collapse
Affiliation(s)
- Myriam M Chaumeil
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Chloé Najac
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.
| |
Collapse
|
8
|
Park I, Mukherjee J, Ito M, Chaumeil MM, Jalbert LE, Gaensler K, Ronen SM, Nelson SJ, Pieper RO. Changes in pyruvate metabolism detected by magnetic resonance imaging are linked to DNA damage and serve as a sensor of temozolomide response in glioblastoma cells. Cancer Res 2014; 74:7115-24. [PMID: 25320009 PMCID: PMC4253720 DOI: 10.1158/0008-5472.can-14-0849] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent findings show that exposure to temozolomide (TMZ), a DNA-damaging drug used to treat glioblastoma (GBM), can suppress the conversion of pyruvate to lactate. To understand the mechanistic basis for this effect and its potential utility as a TMZ response biomarker, we compared the response of isogenic GBM cell populations differing only in expression of the DNA repair protein methyltransferase (MGMT), a TMZ-sensitivity determinant, after exposure to TMZ in vitro and in vivo. Hyperpolarized [1-((13))C]-pyruvate-based MRI was used to monitor temporal effects on pyruvate metabolism in parallel with DNA-damage responses and tumor cell growth. TMZ exposure decreased conversion of pyruvate to lactate only in MGMT-deficient cells. This effect coincided temporally with TMZ-induced increases in levels of the DNA-damage response protein pChk1. Changes in pyruvate to lactate conversion triggered by TMZ preceded tumor growth suppression and were not associated with changes in levels of NADH or lactate dehydrogenase activity in tumors. Instead, they were associated with a TMZ-induced decrease in the expression and activity of pyruvate kinase PKM2, a glycolytic enzyme that indirectly controls pyruvate metabolism. PKM2 silencing decreased PK activity, intracellular lactate levels, and conversion of pyruvate to lactate in the same manner as TMZ, and Chk1 silencing blocked the TMZ-induced decrease in PKM2 expression. Overall, our findings showed how TMZ-induced DNA damage is linked through PKM2 to changes in pyruvate metabolism, and how these changes can be exploited by MRI methods as an early sensor of TMZ therapeutic response.
Collapse
Affiliation(s)
- Ilwoo Park
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Joydeep Mukherjee
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California. Brain Tumor Research Centre, University of California, San Francisco, San Francisco, California
| | - Motokazu Ito
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California. Brain Tumor Research Centre, University of California, San Francisco, San Francisco, California
| | - Myriam M Chaumeil
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Llewellyn E Jalbert
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Karin Gaensler
- Department of Hematology/Oncology, University of California, San Francisco, San Francisco, California
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California.
| | - Sarah J Nelson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California.
| | - Russell O Pieper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California. Brain Tumor Research Centre, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
9
|
Metabolic Effects of Known and Novel HDAC and SIRT Inhibitors in Glioblastomas Independently or Combined with Temozolomide. Metabolites 2014; 4:807-30. [PMID: 25222834 PMCID: PMC4192694 DOI: 10.3390/metabo4030807] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/20/2014] [Accepted: 09/04/2014] [Indexed: 11/17/2022] Open
Abstract
Inhibition of protein deacetylation enzymes, alone or in combination with standard chemotherapies, is an exciting addition to cancer therapy. We have investigated the effect of deacetylase inhibition on the metabolism of glioblastoma cells. 1H NMR metabolomics analysis was used to determine the major metabolic changes following treatment of two distinct glioblastoma cell lines, U373 and LN229, with five different histone deacetylase (HDAC) inhibitors, as well as one inhibitor of NAD+-dependent protein deacetylases (SIRT). The addition of the standard glioblastoma chemotherapy agent, temozolomide, to the HDAC and SIRT treatments led to a reduction in cell survival, suggesting a possibility for combined treatment. This study shows that distinct glioblastoma cell lines, with different metabolic profiles and gene expression, experience dissimilar changes following treatment with protein deacetylase inhibitors. The observed effects of inhibitors on mitochondrial metabolism, glycolysis and fatty acid synthesis suggest possible roles of protein deacetylases in metabolism regulation. Metabolic markers of the effectiveness of anti-protein deacetylase treatments have been explored. In addition to known deacetylation inhibitors, three novel inhibitors have been introduced and tested. Finally, 1H NMR analysis of cellular metabolism is shown to be a fast, inexpensive method for testing drug effects.
Collapse
|
10
|
Wijnen JP, Jiang L, Greenwood TR, Cheng M, Döpkens M, Cao MD, Bhujwalla ZM, Krishnamachary B, Klomp DWJ, Glunde K. Silencing of the glycerophosphocholine phosphodiesterase GDPD5 alters the phospholipid metabolite profile in a breast cancer model in vivo as monitored by (31) P MRS. NMR IN BIOMEDICINE 2014; 27:692-9. [PMID: 24764256 PMCID: PMC4162314 DOI: 10.1002/nbm.3106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 03/06/2014] [Accepted: 03/09/2014] [Indexed: 05/18/2023]
Abstract
Abnormal choline phospholipid metabolism is an emerging hallmark of cancer, which is implicated in carcinogenesis and tumor progression. The malignant metabolic phenotype is characterized by high levels of phosphocholine (PC) and relatively low levels of glycerophosphocholine (GPC) in aggressive breast cancer cells. Phosphorus ((31) P) MRS is able to non-invasively detect these water-soluble metabolites of choline as well as ethanolamine phospholipid metabolism. Here we have investigated the effects of stably silencing glycerophosphoester diesterase domain containing 5 (GDPD5), which is an enzyme with glycerophosphocholine phosphodiesterase activity, in MDA-MB-231 breast cancer cells and orthotopic tumor xenografts. Tumors in which GDPD5 was stably silenced with GDPD5-specific shRNA contained increased levels of GPC and phosphoethanolamine (PE) compared with control tumors.
Collapse
Affiliation(s)
- J P Wijnen
- The Johns Hopkins University In vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lodi A, Woods SM, Ronen SM. MR-detectable metabolic consequences of mitogen-activated protein kinase kinase (MEK) inhibition. NMR IN BIOMEDICINE 2014; 27:700-708. [PMID: 24706368 PMCID: PMC4154568 DOI: 10.1002/nbm.3109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/08/2014] [Accepted: 03/09/2014] [Indexed: 06/03/2023]
Abstract
Metabolic reprogramming is increasingly being viewed as a hallmark of cancer. Accordingly, metabolic readouts can serve as biomarkers of response to therapy. The goal of this study was to investigate some of the MRS-detectable metabolic consequences of mitogen-activated protein kinase kinase (MEK) inhibition. We investigated PC3 prostate cancer, MCF-7 breast cancer and A375 melanoma cells, and determined that, consistent with previous studies, MRS-detectable levels of phosphocholine decreased significantly in all cell lines (to 63%, 50% and 18% of the control, respectively) following MEK inhibition with U0126. This effect was mediated by a decrease in the expression of choline kinase α, the enzyme that catalyzes the phosphorylation of choline. In contrast, the impact of MEK inhibition on glycolysis was cell line dependent. A375 cells, which express mutant BRAF, demonstrated significant decreases in glucose uptake (to 36% of control) and lactate production (to 42% of control) in line with positron emission tomography data. In contrast, in PC3 and MCF-7 cells, increases in glucose uptake (to 198% and 192% of control, respectively) and lactate production (to 177% and 212% of control, respectively) were observed, in line with a previous hyperpolarized (13) C MRS study. This effect is probably mediated by the activation of the phosphoinositide 3-kinase pathway and AMP-activated protein kinase. Our findings demonstrate the value of translatable non-invasive MRS methods for the provision of information on cellular metabolism as an indication of the activation of potential feedback loops following MEK inhibition.
Collapse
Affiliation(s)
- Alessia Lodi
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
12
|
Chaumeil MM, Larson PEZ, Woods SM, Cai L, Eriksson P, Robinson AE, Lupo JM, Vigneron DB, Nelson SJ, Pieper RO, Phillips JJ, Ronen SM. Hyperpolarized [1-13C] glutamate: a metabolic imaging biomarker of IDH1 mutational status in glioma. Cancer Res 2014; 74:4247-57. [PMID: 24876103 DOI: 10.1158/0008-5472.can-14-0680] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mutations of the isocitrate dehydrogenase 1 (IDH1) gene are among the most prevalent in low-grade glioma and secondary glioblastoma, represent an early pathogenic event, and are associated with epigenetically driven modulations of metabolism. Of particular interest is the recently uncovered relationship between the IDH1 mutation and decreased activity of the branched-chain amino acid transaminase 1 (BCAT1) enzyme. Noninvasive imaging methods that can assess BCAT1 activity could therefore improve detection of mutant IDH1 tumors and aid in developing and monitoring new targeted therapies. BCAT1 catalyzes the transamination of branched-chain amino acids while converting α-ketoglutarate (α-KG) to glutamate. Our goal was to use (13)C magnetic resonance spectroscopy to probe the conversion of hyperpolarized [1-(13)C] α-KG to hyperpolarized [1-(13)C] glutamate as a readout of BCAT1 activity. We investigated two isogenic glioblastoma lines that differed only in their IDH1 status and performed experiments in live cells and in vivo in rat orthotopic tumors. Following injection of hyperpolarized [1-(13)C] α-KG, hyperpolarized [1-(13)C] glutamate production was detected both in cells and in vivo, and the level of hyperpolarized [1-(13)C] glutamate was significantly lower in mutant IDH1 cells and tumors compared with their IDH1-wild-type counterparts. Importantly however, in our cells the observed drop in hyperpolarized [1-(13)C] glutamate was likely mediated not only by a drop in BCAT1 activity, but also by reductions in aspartate transaminase and glutamate dehydrogenase activities, suggesting additional metabolic reprogramming at least in our model. Hyperpolarized [1-(13)C] glutamate could thus inform on multiple mutant IDH1-associated metabolic events that mediate reduced glutamate production.
Collapse
Affiliation(s)
| | | | | | - Larry Cai
- Departments of Radiology and Biomedical Imaging
| | | | - Aaron E Robinson
- Pathology, and Neurological Surgery, Helen Diller Research Center; and Brain Tumor Research Center, University of California San Francisco, San Francisco, California
| | | | | | | | - Russell O Pieper
- Neurological Surgery, Helen Diller Research Center; and Brain Tumor Research Center, University of California San Francisco, San Francisco, California
| | - Joanna J Phillips
- Pathology, and Neurological Surgery, Helen Diller Research Center; and Brain Tumor Research Center, University of California San Francisco, San Francisco, California
| | - Sabrina M Ronen
- Departments of Radiology and Biomedical Imaging, Brain Tumor Research Center, University of California San Francisco, San Francisco, California
| |
Collapse
|
13
|
Non-invasive in vivo assessment of IDH1 mutational status in glioma. Nat Commun 2014; 4:2429. [PMID: 24019001 DOI: 10.1038/ncomms3429] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/12/2013] [Indexed: 12/19/2022] Open
Abstract
Gain-of-function mutations of the isocitrate dehydrogenase 1 (IDH1) gene are among the most prevalent in low-grade gliomas and secondary glioblastoma. They lead to intracellular accumulation of the oncometabolite 2-hydroxyglutarate, represent an early pathogenic event and are considered a therapeutic target. Here we show, in this proof-of-concept study, that [1-(13)C] α-ketoglutarate can serve as a metabolic imaging agent for non-invasive, real-time, in vivo monitoring of mutant IDH1 activity, and can inform on IDH1 status. Using (13)C magnetic resonance spectroscopy in combination with dissolution dynamic nuclear polarization, the metabolic fate of hyperpolarized [1-(13)C] α-ketoglutarate is studied in isogenic glioblastoma cells that differ only in their IDH1 status. In lysates and tumours that express wild-type IDH1, only hyperpolarized [1-(13)C] α-ketoglutarate can be detected. In contrast, in cells that express mutant IDH1, hyperpolarized [1-(13)C] 2-hydroxyglutarate is also observed, both in cell lysates and in vivo in orthotopic tumours.
Collapse
|
14
|
Chesnelong C, Chaumeil MM, Blough MD, Al-Najjar M, Stechishin OD, Chan JA, Pieper RO, Ronen SM, Weiss S, Luchman HA, Cairncross JG. Lactate dehydrogenase A silencing in IDH mutant gliomas. Neuro Oncol 2013; 16:686-95. [PMID: 24366912 DOI: 10.1093/neuonc/not243] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Mutations of the isocitrate dehydrogenase 1 and 2 gene (IDH1/2) were initially thought to enhance cancer cell survival and proliferation by promoting the Warburg effect. However, recent experimental data have shown that production of 2-hydroxyglutarate by IDH mutant cells promotes hypoxia-inducible factor (HIF)1α degradation and, by doing so, may have unexpected metabolic effects. METHODS We used human glioma tissues and derived brain tumor stem cells (BTSCs) to study the expression of HIF1α target genes in IDH mutant ((mt)) and IDH wild-type ((wt)) tumors. Focusing thereafter on the major glycolytic enzyme, lactate dehydrogenase A (LDHA), we used standard molecular methods and pyrosequencing-based DNA methylation analysis to identify mechanisms by which LDHA expression was regulated in human gliomas. RESULTS We found that HIF1α-responsive genes, including many essential for glycolysis (SLC2A1, PDK1, LDHA, SLC16A3), were underexpressed in IDH(mt) gliomas and/or derived BTSCs. We then demonstrated that LDHA was silenced in IDH(mt) derived BTSCs, including those that did not retain the mutant IDH1 allele (mIDH(wt)), matched BTSC xenografts, and parental glioma tissues. Silencing of LDHA was associated with increased methylation of the LDHA promoter, as was ectopic expression of mutant IDH1 in immortalized human astrocytes. Furthermore, in a search of The Cancer Genome Atlas, we found low expression and high methylation of LDHA in IDH(mt) glioblastomas. CONCLUSION To our knowledge, this is the first demonstration of downregulation of LDHA in cancer. Although unexpected findings, silencing of LDHA and downregulation of several other glycolysis essential genes raise the intriguing possibility that IDH(mt) gliomas have limited glycolytic capacity, which may contribute to their slow growth and better prognosis.
Collapse
Affiliation(s)
- Charles Chesnelong
- Department of Clinical Neurosciences, Foothills Hospital, Calgary, Alberta, Canada (C.C., M.D.B., M.A.-N., J.A.C., S.W., J.G.C.); Department of Cell Biology and Anatomy, Health Research Innovation Centre, Calgary, Alberta, Canada (O.D.S., S.W., H.A.L.); Department of Pathology & Laboratory Medicine, Foothills Hospital, Calgary, Alberta, Canada (J.A.C.); Southern Alberta Cancer Research Institute, Health Research Innovation Centre, Calgary, Alberta, Canada (C.C., M.D.B., M.A.-N., J.A.C., S.W., H.A.L., J.G.C.); Hotchkiss Brain Institute, Health Research Innovation Centre, Calgary, Alberta, Canada (O.D.S., S.W., H.A.L.); Department of Radiology and Biomedical Imaging, San Francisco, California (M.M.C., S.M.R.); Brain Tumor Research Center, Department of Neurological Surgery, San Francisco, California (R.O.P)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Esmaeili M, Bathen TF, Engebråten O, Mælandsmo GM, Gribbestad IS, Moestue SA. Quantitative (31)P HR-MAS MR spectroscopy for detection of response to PI3K/mTOR inhibition in breast cancer xenografts. Magn Reson Med 2013; 71:1973-81. [PMID: 23878023 DOI: 10.1002/mrm.24869] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/11/2013] [Indexed: 12/20/2022]
Abstract
PURPOSE Phospholipid metabolites are of importance in cancer studies, and have been suggested as candidate metabolic biomarkers for response to targeted anticancer drugs. The purpose of this study was to develop a phosphorus ((31) P) high resolution magic angle spinning magnetic resonance spectroscopy protocol for quantification of phosphorylated metabolites in intact cancer tissue. METHODS (31) P spectra were acquired on a 14.1 T spectrometer with a triplet (1) H/(13) C/(31) P MAS probe. Quantification of metabolites was performed using the PULCON principle. Basal-like and luminal-like breast cancer xenografts were treated with the dual PI3K/mTOR inhibitor BEZ235, and the impact of treatment on the concentration of phosphocholine, glycerophosphocholine, phosphoethanolamine and glycerophosphoethanolamine was evaluated. RESULTS In basal-like xenografts, BEZ235 treatment induced a significant decrease in phosphoethanolamine (-25.6%, P = 0.01) whilst phosphocholine (16.5%, P = 0.02) and glycerophosphocholine (37.3%, P < 0.001) were significantly increased. The metabolic changes could partially be explained by increased levels of phospholipase A2 group 4A (PLA2G4A). CONCLUSION (31) P high resolution magic angle spinning magnetic resonance spectroscopy is a useful method for quantitative assessment of metabolic responses to PI3K inhibition. Using the PULCON principle for quantification, the levels of phosphocholine, glycerophosphocholine, phosphoethanolamine, and glycerophosphoethanolamine could be evaluated with high precision and accuracy.
Collapse
Affiliation(s)
- Morteza Esmaeili
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | | | | | | | | |
Collapse
|
16
|
Ward CS, Eriksson P, Izquierdo-Garcia JL, Brandes AH, Ronen SM. HDAC inhibition induces increased choline uptake and elevated phosphocholine levels in MCF7 breast cancer cells. PLoS One 2013; 8:e62610. [PMID: 23626839 PMCID: PMC3633900 DOI: 10.1371/journal.pone.0062610] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 03/26/2013] [Indexed: 11/18/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors have emerged as effective antineoplastic agents in the clinic. Studies from our lab and others have reported that magnetic resonance spectroscopy (MRS)-detectable phosphocholine (PC) is elevated following SAHA treatment, providing a potential noninvasive biomarker of response. Typically, elevated PC is associated with cancer while a decrease in PC accompanies response to antineoplastic treatment. The goal of this study was therefore to elucidate the underlying biochemical mechanism by which HDAC inhibition leads to elevated PC. We investigated the effect of SAHA on MCF-7 breast cancer cells using 13C MRS to monitor [1,2-13C] choline uptake and phosphorylation to PC. We found that PC synthesis was significantly higher in treated cells, representing 154±19% of control. This was within standard deviation of the increase in total PC levels detected by 31P MRS (129±7% of control). Furthermore, cellular choline kinase activity was elevated (177±31%), while cytidylyltransferase activity was unchanged. Expression of the intermediate-affinity choline transporter SLC44A1 and choline kinase α increased (144% and 161%, respectively) relative to control, as determined by mRNA microarray analysis with protein-level confirmation by Western blotting. Taken together, our findings indicate that the increase in PC levels following SAHA treatment results from its elevated synthesis. Additionally, the concentration of glycerophosphocholine (GPC) increased significantly with treatment to 210±45%. This is likely due to the upregulated expression of several phospholipase A2 (PLA2) isoforms, resulting in increased PLA2 activity (162±18%) in SAHA-treated cells. Importantly, the levels of total choline (tCho)-containing metabolites, comprised of choline, PC and GPC, are readily detectable clinically using 1H MRS. Our findings thus provide an important step in validating clinically translatable non-invasive imaging methods for follow-up diagnostics of HDAC inhibitor treatment.
Collapse
Affiliation(s)
- Christopher S. Ward
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - Pia Eriksson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - Jose L. Izquierdo-Garcia
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - Alissa H. Brandes
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - Sabrina M. Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Lodi A, Woods SM, Ronen SM. Treatment with the MEK inhibitor U0126 induces decreased hyperpolarized pyruvate to lactate conversion in breast, but not prostate, cancer cells. NMR IN BIOMEDICINE 2013; 26:299-306. [PMID: 22945392 PMCID: PMC3529990 DOI: 10.1002/nbm.2848] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 05/04/2023]
Abstract
Alterations in cell metabolism are increasingly being recognized as a hallmark of cancer and are being exploited for the development of diagnostic tools and targeted therapeutics. Recently, ¹³C MRS-detectable hyperpolarized pyruvate to lactate conversion has been validated in models as a noninvasive imaging method for the detection of tumors and treatment response, and has successfully passed phase I clinical trials. To date, response to treatment has been associated with a decrease in hyperpolarized lactate production. In this study, we monitored the effect of treatment with the mitogen-activated protein kinase (MEK) inhibitor U0126 in prostate and breast cancer cells. Following treatment, we observed a 31% decrease in the flux of hyperpolarized ¹³C label in treated MCF-7 breast cancer cells relative to controls. In contrast, and unexpectedly, the flux increased to 167% in treated PC3 prostate cancer cells. To mechanistically explain these observations, we investigated treatment-induced changes in the different factors known to affect the pyruvate to lactate conversion. NADH (nicotinamide adenine dinucleotide, reduced form) levels remained unchanged, whereas lactate dehydrogenase expression and activity, as well as intracellular lactate, increased in both cell lines, providing an explanation for the elevated hyperpolarized lactate observed in PC3 cells. The expression of MCT1, which mediates pyruvate transport, decreased in treated MCF-7, but not PC3, cells. This identifies pyruvate transport as rate limiting in U0126-treated MCF-7 cells and explains the decrease in hyperpolarized lactate observed in these cells following treatment. Our findings highlight the complexity of interactions between MEK and metabolism, and the need for mechanistic validation before hyperpolarized ¹³C MRS can be used to monitor treatment-induced molecular responses.
Collapse
Affiliation(s)
- Alessia Lodi
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158-2512, USA
| | | | | |
Collapse
|
18
|
Rodrigues LM, Chung YL, Al Saffar NMS, Sharp SY, Jackson LE, Banerji U, Stubbs M, Leach MO, Griffiths JR, Workman P. Effects of HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) on NEU/HER2 overexpressing mammary tumours in MMTV-NEU-NT mice monitored by Magnetic Resonance Spectroscopy. BMC Res Notes 2012; 5:250. [PMID: 22621282 PMCID: PMC3412754 DOI: 10.1186/1756-0500-5-250] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 05/23/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The importance of ERBB2/NEU/HER2 in the response of breast tumours to the heat shock protein 90 (HSP90) inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG; tanespimycin) has been demonstrated in the clinic. ERBB2 is an oncoprotein client that is highly dependent on HSP90. This and other oncogenic client proteins (e.g. B-RAF, C-RAF, ALK and CDK4) are depleted by 17-AAG in both animal tumours and patients. Here we investigate by Magnetic Resonance Spectroscopy (MRS) the metabolic response of 17-AAG in spontaneous, NEU/HER2 driven mammary tumours in transgenic MMTV-NEU-NT mice and in cells isolated and cultured from these tumours. METHODS Mammary tumours were monitored by 31P MRS in vivo and in tumour extracts, comparing control and 17-AAG treated mice. A cell line derived from NEU/HER2 mammary tumours was also cultured and the effect of 17-AAG was measured by 31P MRS in cell extracts. Molecular biomarkers were assessed by immunoblotting in extracts from cells and tumours. For comparison of tumour volume, metabolite concentrations and Western blot band intensities, two-tailed unpaired t-tests were used. RESULTS The NEU/HER2 mammary tumours were very sensitive to 17-AAG and responded in a dose-dependent manner to 3 daily doses of 20, 40 and 80mg/kg of 17-AAG, all of which caused significant regression. At the higher doses, 31P MRS of tumour extracts showed significant decreases in phosphocholine (PC) and phosphoethanolamine (PE) whereas no significant changes were seen at the 20mg/kg dose. Extracts of isolated cells cultured from the mammary carcinomas showed a significant decrease in viable cell number and total PME after 17-AAG treatment. Western blots confirmed the expected action of 17-AAG in inducing HSP72 and significantly depleting HSP90 client proteins, including NEU/HER2 both in tumours and in isolated cells. CONCLUSIONS The data demonstrate the high degree of sensitivity of this clinically relevant NEU/HER2-driven tumour model to HSP90 inhibition by 17-AAG, consistent with the clinical data, and suggest that the metabolic signature of choline phospholipids obtained by MRS could be useful both as a preclinical and clinical tool for investigating surrogate markers of response to treatment.
Collapse
MESH Headings
- Animals
- Benzoquinones/pharmacology
- Benzoquinones/therapeutic use
- Biomarkers, Tumor/metabolism
- Cell Separation
- Cells, Cultured
- Dose-Response Relationship, Drug
- Female
- HSP90 Heat-Shock Proteins/antagonists & inhibitors
- HSP90 Heat-Shock Proteins/metabolism
- Lactams, Macrocyclic/pharmacology
- Lactams, Macrocyclic/therapeutic use
- Magnetic Resonance Spectroscopy/methods
- Mammary Neoplasms, Animal/drug therapy
- Mammary Neoplasms, Animal/metabolism
- Mammary Neoplasms, Animal/pathology
- Mammary Tumor Virus, Mouse/genetics
- Mice
- Mice, Transgenic
- Phosphatidylcholines/metabolism
- Phosphatidylethanolamines/metabolism
- Receptor, ErbB-2/metabolism
- Tumor Burden/drug effects
Collapse
Affiliation(s)
- Loreta M Rodrigues
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Yuen-Li Chung
- Cancer Research UK and EPSRC Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey, SM2 5PT, UK
| | - Nada M S Al Saffar
- Cancer Research UK and EPSRC Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey, SM2 5PT, UK
| | - Swee Y Sharp
- Cancer Research UK Centre for Cancer Therapeutics, The Institute for Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | - Laura E Jackson
- Cancer Research UK and EPSRC Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey, SM2 5PT, UK
| | - Udai Banerji
- Cancer Research UK Centre for Cancer Therapeutics, The Institute for Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | - Marion Stubbs
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Martin O Leach
- Cancer Research UK and EPSRC Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey, SM2 5PT, UK
| | - John R Griffiths
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Paul Workman
- Cancer Research UK Centre for Cancer Therapeutics, The Institute for Cancer Research, Sutton, Surrey, SM2 5NG, UK
| |
Collapse
|
19
|
Cuperlovic-Culf M, Ferguson D, Culf A, Morin P, Touaibia M. 1H NMR metabolomics analysis of glioblastoma subtypes: correlation between metabolomics and gene expression characteristics. J Biol Chem 2012; 287:20164-75. [PMID: 22528487 DOI: 10.1074/jbc.m111.337196] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common form of malignant glioma, characterized by unpredictable clinical behaviors that suggest distinct molecular subtypes. With the tumor metabolic phenotype being one of the hallmarks of cancer, we have set upon to investigate whether GBMs show differences in their metabolic profiles. (1)H NMR analysis was performed on metabolite extracts from a selection of nine glioblastoma cell lines. Analysis was performed directly on spectral data and on relative concentrations of metabolites obtained from spectra using a multivariate regression method developed in this work. Both qualitative and quantitative sample clustering have shown that cell lines can be divided into four groups for which the most significantly different metabolites have been determined. Analysis shows that some of the major cancer metabolic markers (such as choline, lactate, and glutamine) have significantly dissimilar concentrations in different GBM groups. The obtained lists of metabolic markers for subgroups were correlated with gene expression data for the same cell lines. Metabolic analysis generally agrees with gene expression measurements, and in several cases, we have shown in detail how the metabolic results can be correlated with the analysis of gene expression. Combined gene expression and metabolomics analysis have shown differential expression of transporters of metabolic markers in these cells as well as some of the major metabolic pathways leading to accumulation of metabolites. Obtained lists of marker metabolites can be leveraged for subtype determination in glioblastomas.
Collapse
|
20
|
McIntyre DJO, Madhu B, Lee SH, Griffiths JR. Magnetic resonance spectroscopy of cancer metabolism and response to therapy. Radiat Res 2012; 177:398-435. [PMID: 22401303 DOI: 10.1667/rr2903.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Magnetic resonance spectroscopy allows noninvasive in vivo measurements of biochemical information from living systems, ranging from cultured cells through experimental animals to humans. Studies of biopsies or extracts offer deeper insights by detecting more metabolites and resolving metabolites that cannot be distinguished in vivo. The pharmacokinetics of certain drugs, especially fluorinated drugs, can be directly measured in vivo. This review briefly describes these methods and their applications to cancer metabolism, including glycolysis, hypoxia, bioenergetics, tumor pH, and tumor responses to radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Dominick J O McIntyre
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.
| | | | | | | |
Collapse
|
21
|
Venkatesh HS, Chaumeil MM, Ward CS, Haas-Kogan DA, James CD, Ronen SM. Reduced phosphocholine and hyperpolarized lactate provide magnetic resonance biomarkers of PI3K/Akt/mTOR inhibition in glioblastoma. Neuro Oncol 2012; 14:315-25. [PMID: 22156546 PMCID: PMC3280799 DOI: 10.1093/neuonc/nor209] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 10/28/2011] [Indexed: 12/21/2022] Open
Abstract
The phosphatidylinositol-3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway is activated in more than88% of glioblastomas (GBM). New drugs targeting this pathway are currently in clinical trials. However, noninvasive assessment of treatment response remains challenging. By using magnetic resonance spectroscopy (MRS), PI3K/Akt/mTOR pathway inhibition was monitored in 3 GBM cell lines (GS-2, GBM8, and GBM6; each with a distinct pathway activating mutation) through the measurement of 2 mechanistically linked MR biomarkers: phosphocholine (PC) and hyperpolarized lactate.(31)P MRS studies showed that treatment with the PI3K inhibitor LY294002 induced significant decreases in PC to 34 %± 9% of control in GS-2 cells, 48% ± 5% in GBM8, and 45% ± 4% in GBM6. The mTOR inhibitor everolimus also induced a significant decrease in PC to 62% ± 14%, 57% ± 1%, and 58% ± 1% in GS-2, GBM8, and GBM6 cells, respectively. Using hyperpolarized (13)C MRS, we demonstrated that hyperpolarized lactate levels were significantly decreased following PI3K/Akt/mTOR pathway inhibition in all 3 cell lines to 51% ± 10%, 62% ± 3%, and 58% ± 2% of control with LY294002 and 72% ± 3%, 61% ± 2%, and 66% ± 3% of control with everolimus in GS-2, GBM8, and GBM6 cells, respectively. These effects were mediated by decreases in the activity and expression of choline kinase α and lactate dehydrogenase, which respectively control PC and lactate production downstream of HIF-1. Treatment with the DNA damaging agent temozolomide did not have an effect on either biomarker in any cell line. This study highlights the potential of PC and hyperpolarized lactate as noninvasive MR biomarkers of response to targeted inhibitors in GBM.
Collapse
Affiliation(s)
- Humsa S Venkatesh
- University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | |
Collapse
|
22
|
Su JS, Woods SM, Ronen SM. Metabolic consequences of treatment with AKT inhibitor perifosine in breast cancer cells. NMR IN BIOMEDICINE 2012; 25:379-88. [PMID: 22253088 PMCID: PMC3920667 DOI: 10.1002/nbm.1764] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 05/14/2023]
Abstract
Activation of the PI3K/Akt pathway is associated with the development of numerous human cancers. As a result, many emerging therapies target this pathway. Previous studies have shown that targeting the PI3K/Akt pathway at the level of PI3K is associated with a drop in phosphocholine (PCho) and a reduction in hyperpolarized lactate production. However, the consequences of targeting downstream of PI3K at the level of Akt have not been investigated. Perifosine is an anticancer alkylphospholipid used in clinical trials. It acts by inhibiting phosphorylation of Akt and has been shown to inhibit CTP-phosphocholine cytidyltransferase (CT). The goal of this study was to identify the MRS-detectable metabolic consequences of treatment with perifosine in MCF-7 breast cancer cells. We found that perifosine treatment led to a 51 ± 5% drop in PCho from 30 ± 5 to 15 ± 1 fmol/cell and a comparable drop in de novo synthesized PCho. This was associated with a drop in choline kinase (ChoK) activity and ChoKα expression. CT inhibition could not be ruled out but likely did not contribute to the change in PCho. We also found that intracellular lactate levels decreased from 2.7 ± 0.5 to 1.5 ± 0.3 fmol/cell and extracellular lactate levels dropped by a similar extent. These findings were consistent with a drop in lactate dehydrogenase expression and associated with a drop in activity of the hypoxia inducible factor (HIF)-1α. The drops in PCho and lactate production following perifosine treatment are therefore mediated downstream of Akt by the drop in HIF-1α, which serves as the transcription factor for both ChoK and lactate dehydrogenase. The metabolic changes were confirmed in a second breast cancer cell line, MDA-MB-231. Taken together, these findings indicate that PCho and lactate can serve as noninvasive metabolic biomarkers for monitoring the effects of inhibitors that target the PI3K/Akt pathway, independent of the step that leads to inhibition of HIF-1α.
Collapse
Affiliation(s)
- Judy S Su
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, California, USA
| | | | | |
Collapse
|
23
|
Abstract
Abnormal choline metabolism is emerging as a metabolic hallmark that is associated with oncogenesis and tumour progression. Following transformation, the modulation of enzymes that control anabolic and catabolic pathways causes increased levels of choline-containing precursors and breakdown products of membrane phospholipids. These increased levels are associated with proliferation, and recent studies emphasize the complex reciprocal interactions between oncogenic signalling and choline metabolism. Because choline-containing compounds are detected by non-invasive magnetic resonance spectroscopy (MRS), increased levels of these compounds provide a non-invasive biomarker of transformation, staging and response to therapy. Furthermore, enzymes of choline metabolism, such as choline kinase, present novel targets for image-guided cancer therapy.
Collapse
Affiliation(s)
- Kristine Glunde
- The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, 720 Rutland Avenue, 212 Traylor Building, Baltimore, Maryland 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21231, USA
| | - Zaver M. Bhujwalla
- The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, 720 Rutland Avenue, 212 Traylor Building, Baltimore, Maryland 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21231, USA
| | - Sabrina M. Ronen
- Department of Radiology, University of California San Francisco School of Medicine, UCSF Mission Bay Campus, Byers Hall, San Francisco, California CA94158-2330, USA
| |
Collapse
|
24
|
Lodi A, Ronen SM. Magnetic resonance spectroscopy detectable metabolomic fingerprint of response to antineoplastic treatment. PLoS One 2011; 6:e26155. [PMID: 22022547 PMCID: PMC3192145 DOI: 10.1371/journal.pone.0026155] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/21/2011] [Indexed: 01/10/2023] Open
Abstract
Targeted therapeutic approaches are increasingly being implemented in the clinic, but early detection of response frequently presents a challenge as many new therapies lead to inhibition of tumor growth rather than tumor shrinkage. Development of novel non-invasive methods to monitor response to treatment is therefore needed. Magnetic resonance spectroscopy (MRS) and magnetic resonance spectroscopic imaging are non-invasive imaging methods that can be employed to monitor metabolism, and previous studies indicate that these methods can be useful for monitoring the metabolic consequences of treatment that are associated with early drug target modulation. However, single-metabolite biomarkers are often not specific to a particular therapy. Here we used an unbiased 1H MRS-based metabolomics approach to investigate the overall metabolic consequences of treatment with the phosphoinositide 3-kinase inhibitor LY294002 and the heat shock protein 90 inhibitor 17AAG in prostate and breast cancer cell lines. LY294002 treatment resulted in decreased intracellular lactate, alanine fumarate, phosphocholine and glutathione. Following 17AAG treatment, decreased intracellular lactate, alanine, fumarate and glutamine were also observed but phosphocholine accumulated in every case. Furthermore, citrate, which is typically observed in normal prostate tissue but not in tumors, increased following 17AAG treatment in prostate cells. This approach is likely to provide further information about the complex interactions between signaling and metabolic pathways. It also highlights the potential of MRS-based metabolomics to identify metabolic signatures that can specifically inform on molecular drug action.
Collapse
Affiliation(s)
- Alessia Lodi
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - Sabrina M. Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
25
|
Moestue SA, Engebraaten O, Gribbestad IS. Metabolic effects of signal transduction inhibition in cancer assessed by magnetic resonance spectroscopy. Mol Oncol 2011; 5:224-41. [PMID: 21536506 DOI: 10.1016/j.molonc.2011.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/13/2011] [Accepted: 04/14/2011] [Indexed: 12/31/2022] Open
Abstract
Despite huge efforts in development of drugs targeting oncogenic signalling, the number of such drugs entering clinical practice to date remains limited. Rational use of biomarkers for drug candidate selection and early monitoring of response to therapy may accelerate this process. Magnetic resonance spectroscopy (MRS) can be used to assess metabolic effects of drug treatment both in vivo and in vitro, and technological advances are continuously increasing the utility of this non-invasive method. In this review, we summarise the use of MRS for monitoring the effect of targeted anticancer drugs, and discuss the potential role of MRS in the context of personalised cancer treatment.
Collapse
Affiliation(s)
- Siver Andreas Moestue
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | |
Collapse
|
26
|
Cuperlovic-Culf M, Chute IC, Culf AS, Touaibia M, Ghosh A, Griffiths S, Tulpan D, Léger S, Belkaid A, Surette ME, Ouellette RJ. 1H NMR metabolomics combined with gene expression analysis for the determination of major metabolic differences between subtypes of breast cell lines. Chem Sci 2011. [DOI: 10.1039/c1sc00382h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|