1
|
Illingworth EJ, Rychlik KA, Maertens A, Sillé FCM. Sex-specific transcriptomic effects of low-dose inorganic arsenic exposure on bone marrow-derived macrophages. Toxicology 2025; 510:153988. [PMID: 39515575 DOI: 10.1016/j.tox.2024.153988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/19/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Both tissue-resident macrophages and monocytes recruited from the bone marrow that transform into tissue-resident cells play critical roles in mediating homeostasis as well as in the pathology of inflammatory diseases. Inorganic arsenic (iAs) is the most common drinking water contaminant worldwide and represents a major public health concern. There are numerous diseases caused by iAs exposure in which macrophages are involved, including cardiovascular disease, cancer, and increased risk of (respiratory) infectious diseases. Notably, prenatal iAs exposure is also associated with negative birth outcomes and developmental immunotoxicity (DIT) contributing to long-term adverse outcomes of these immune-related diseases. Therefore, understanding the effects of iAs exposure on macrophages, particularly during immune development or tissue injury and inflammation, can help us better grasp the full range of arsenic immunotoxicity and better design therapeutic targets for iAs-induced diseases particularly in exposed populations. In contrast to prior published studies which often only focused on the effect of iAs on mature macrophages after development, in this study, we analyzed the transcriptome of M0-, M1- and M2-polarized male and female murine bone marrow-derived macrophages (BMDMs) which were exposed to iAs during the differentiation phase, as a model to study iAs (developmental) immunotoxicity. We identified differentially expressed genes by iAs in a sex- and stimulation-dependent manner and used bioinformatics tools to predict protein-protein interactions, transcriptional regulatory networks, and associated biological processes. Overall, our data suggest that M1-stimulated, especially female-derived, BMDMs are most susceptible to iAs exposure during differentiation. Most notably, we observed significant downregulation of major proinflammatory transcription factors, like IRF8, and its downstream targets, as well as genes encoding proteins involved in pattern recognition and antigen presentation, such as TLR7, TLR8, and H2-D1, potentially providing causal insight regarding the role of (early-life) arsenic exposure in perturbing immune responses to infectious diseases. We also observed significant downregulation of genes involved in processes crucial to coordinating a proinflammatory response including leukocyte migration, differentiation, and cytokine and chemokine production and response. Finally, we discovered that 24 X-linked genes were dysregulated in iAs-exposed female stimulation groups compared to only 3 across the iAs-exposed male stimulation groups. These findings elucidate the potential mechanisms underlying the sex-differential iAs-associated immune-related disease risk.
Collapse
Affiliation(s)
- Emily J Illingworth
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Kristal A Rychlik
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Public Health Program, School of Health Professions, Mayborn College of Health Sciences, University of Mary Hardin-Baylor, Belton, TX, USA
| | - Alexandra Maertens
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Fenna C M Sillé
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Varady SRS, Greiner D, Roh-Johnson M. Macrophage subtypes inhibit breast cancer proliferation in culture. Mol Biol Cell 2025; 36:br2. [PMID: 39602294 PMCID: PMC11742110 DOI: 10.1091/mbc.e24-06-0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/11/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024] Open
Abstract
Macrophages are a highly plastic cell type that adopt distinct subtypes and functional states depending on environmental cues. These functional states can vary widely, with distinct macrophages capable of displaying opposing functions. We sought to understand how macrophage subtypes that exist on two ends of a spectrum influence the function of other cells. We used a coculture system with primary human macrophages to probe the effects of macrophage subtypes on breast cancer cell proliferation. Our studies revealed a surprising phenotype in which both macrophage subtypes inhibited cancer cell proliferation compared with cancer cells alone. Of particular interest, using two different proliferation assays with two different breast cancer cell lines, we showed that differentiating macrophages into a "protumor" subtype inhibited breast cancer cell proliferation. These findings are inconsistent with the prevailing interpretation that "protumor" macrophages promote cancer cell proliferation and suggest a re-evaluation of how these interpretations are made.
Collapse
Affiliation(s)
- Sophia R. S. Varady
- Department of Biochemistry, University of Utah School of Medicine; Salt Lake City, UT 84112
| | - Daniel Greiner
- Department of Biochemistry, University of Utah School of Medicine; Salt Lake City, UT 84112
| | - Minna Roh-Johnson
- Department of Biochemistry, University of Utah School of Medicine; Salt Lake City, UT 84112
| |
Collapse
|
3
|
Zhao Q, Li B, Zhang X, Zhao H, Xue W, Yuan Z, Xu S, Duan G. M2 macrophage-derived lncRNA NORAD in EVs promotes NSCLC progression via miR-520g-3p/SMIM22/GALE axis. NPJ Precis Oncol 2024; 8:185. [PMID: 39215037 PMCID: PMC11364787 DOI: 10.1038/s41698-024-00675-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) constitutes the majority of lung cancer cases, accounting for over 80%. RNAs in EVs play a pivotal role in various biological and pathological processes mediated by extracellular vesicle (EV). Long non-coding RNAs (lncRNAs) are widely associated with cancer-related functions, including cell proliferation, migration, invasion, and drug resistance. Tumor-associated macrophages are recognized as pivotal contributors to tumorigenesis. Given these insights, this study aims to uncover the impact of lncRNA NORAD in EVs derived from M2 macrophages in NSCLC cell lines and xenograft mouse models of NSCLC. EVs were meticulously isolated and verified based on their morphology and specific biomarkers. The interaction between lncRNA NORAD and SMIM22 was investigated using immunoprecipitation. The influence of SMIM22/GALE or lncRNA NORAD in EVs on glycolysis was assessed in NSCLC cell lines. Additionally, we evaluated the effects of M2 macrophage-derived lncRNA NORAD in EVs on cell proliferation and apoptosis through colony formation and flow cytometry assays. Furthermore, the impact of M2 macrophage-derived lncRNA NORAD in EVs on tumor growth was confirmed using xenograft tumor animal models. The results underscored the potential role of M2 macrophage-derived lncRNA NORAD in EVs in NSCLC. SMIM22/GALE promoted glycolysis and the proliferation of NSCLC cells. Furthermore, lncRNA NORAD in EVs targeted SMIM22 and miR-520g-3p in NSCLC cells. Notably, lncRNA NORAD in EVs promoted the proliferation of NSCLC cells and facilitated NSCLC tumor growth through the miR-520g-3p axis. In conclusion, M2 macrophage-derived lncRNA NORAD in EVs promotes NSCLC progression through the miR-520g-3p/SMIM22/GALE axis.
Collapse
Affiliation(s)
- Qingtao Zhao
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Bin Li
- Hebei Bio-High Technology Development Co.Ltd, Shijiazhuang, Hebei Province, China
| | - Xiaopeng Zhang
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Huanfen Zhao
- Department of Pathology, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Wenfei Xue
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Zheng Yuan
- Department of Nursing, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Shun Xu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Guochen Duan
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei Province, China.
| |
Collapse
|
4
|
Li J, Kong Z, Qi Y, Wang W, Su Q, Huang W, Zhang Z, Li S, Du E. Single-cell and bulk RNA-sequence identified fibroblasts signature and CD8 + T-cell - fibroblast subtype predicting prognosis and immune therapeutic response of bladder cancer, based on machine learning: bioinformatics multi-omics study. Int J Surg 2024; 110:4911-4931. [PMID: 38759695 PMCID: PMC11325897 DOI: 10.1097/js9.0000000000001516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/14/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are found in primary and advanced tumours. They are primarily involved in tumour progression through complex mechanisms with other types of cells in the tumour microenvironment. However, essential fibroblasts-related genes (FRG) in bladder cancer still need to be explored, and there is a shortage of an ideal predictive model or molecular subtype for the progression and immune therapeutic assessment for bladder cancer, especially muscular-invasive bladder cancer based on the FRG. MATERIALS AND METHODS CAF-related genes of bladder cancer were identified by analysing single-cell RNA sequence datasets, and bulk transcriptome datasets and gene signatures were used to characterize them. Then, 10 types of machine learning algorithms were utilised to determine the hallmark FRG and construct the FRG index (FRGI) and subtypes. Further molecular subtypes combined with CD8+ T-cells were established to predict the prognosis and immune therapy response. RESULTS Fifty-four BLCA-related FRG were screened by large-scale scRNA-sequence datasets. The machine learning algorithm established a 3-genes FRGI. High FRGI represented a worse outcome. Then, FRGI combined clinical variables to construct a nomogram, which shows high predictive performance for the prognosis of bladder cancer. Furthermore, the BLCA datasets were separated into two subtypes - fibroblast hot and cold types. In five independent BLCA cohorts, the fibroblast hot type showed worse outcomes than the cold type. Multiple cancer-related hallmark pathways are distinctively enriched in these two types. In addition, high FRGI or fibroblast hot type shows a worse immune therapeutic response. Then, four subtypes called CD8-FRG subtypes were established under the combination of FRG signature and activity of CD8+ T-cells, which turned out to be effective in predicting the prognosis and immune therapeutic response of bladder cancer in multiple independent datasets. Pathway enrichment analysis, multiple gene signatures, and epigenetic alteration characterize the CD8-FRG subtypes and provide a potential combination strategy method against bladder cancer. CONCLUSIONS In summary, the authors established a novel FRGI and CD8-FRG subtype by large-scale datasets and organised analyses, which could accurately predict clinical outcomes and immune therapeutic response of BLCA after surgery.
Collapse
Affiliation(s)
- Jingxian Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University
| | - Zheng Kong
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University
| | - Yuanjiong Qi
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University
| | - Wei Wang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University
| | - Qiang Su
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University
| | - Wei Huang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University
| | - Zhihong Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University
| | - Shuai Li
- Department of Colorectal Surgery, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - E Du
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University
| |
Collapse
|
5
|
Varady SR, Greiner D, Roh-Johnson M. Macrophage subtypes inhibit breast cancer proliferation in culture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.01.596963. [PMID: 38853881 PMCID: PMC11160732 DOI: 10.1101/2024.06.01.596963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Macrophages are a highly plastic cell type that adopt distinct subtypes and functional states depending on environmental cues. These functional states can vary wildly, with distinct macrophages capable of displaying opposing functions. We sought to understand how macrophage subtypes that exist on two ends of a spectrum influence the function of other cells. We used a co-culture system with primary human macrophages to probe the effects of macrophage subtypes on breast cancer cell proliferation. Our studies revealed a surprising phenotype in which both macrophage subtypes inhibited cancer cell proliferation compared to cancer cells alone. Of particular interest, using two different proliferation assays with two different breast cancer cell lines, we showed that differentiating macrophages into a "pro-tumor" subtype inhibited breast cancer cell proliferation. These findings are inconsistent with the prevailing interpretation that "pro-tumor" macrophages promote cancer cell proliferation and suggest a re-evaluation of how these interpretations are made.
Collapse
Affiliation(s)
- Sophia R.S. Varady
- Department of Biochemistry, University of Utah School of Medicine; Salt Lake City, UT, 84112, USA
| | - Daniel Greiner
- Department of Biochemistry, University of Utah School of Medicine; Salt Lake City, UT, 84112, USA
| | - Minna Roh-Johnson
- Department of Biochemistry, University of Utah School of Medicine; Salt Lake City, UT, 84112, USA
| |
Collapse
|
6
|
Chen S, Lei J, Mou H, Zhang W, Jin L, Lu S, Yinwang E, Xue Y, Shao Z, Chen T, Wang F, Zhao S, Chai X, Wang Z, Zhang J, Zhang Z, Ye Z, Li B. Multiple influence of immune cells in the bone metastatic cancer microenvironment on tumors. Front Immunol 2024; 15:1335366. [PMID: 38464516 PMCID: PMC10920345 DOI: 10.3389/fimmu.2024.1335366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/07/2024] [Indexed: 03/12/2024] Open
Abstract
Bone is a common organ for solid tumor metastasis. Malignant bone tumor becomes insensitive to systemic therapy after colonization, followed by poor prognosis and high relapse rate. Immune and bone cells in situ constitute a unique immune microenvironment, which plays a crucial role in the context of bone metastasis. This review firstly focuses on lymphatic cells in bone metastatic cancer, including their function in tumor dissemination, invasion, growth and possible cytotoxicity-induced eradication. Subsequently, we examine myeloid cells, namely macrophages, myeloid-derived suppressor cells, dendritic cells, and megakaryocytes, evaluating their interaction with cytotoxic T lymphocytes and contribution to bone metastasis. As important components of skeletal tissue, osteoclasts and osteoblasts derived from bone marrow stromal cells, engaging in 'vicious cycle' accelerate osteolytic bone metastasis. We also explain the concept tumor dormancy and investigate underlying role of immune microenvironment on it. Additionally, a thorough review of emerging treatments for bone metastatic malignancy in clinical research, especially immunotherapy, is presented, indicating current challenges and opportunities in research and development of bone metastasis therapies.
Collapse
Affiliation(s)
- Shixin Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiangchu Lei
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Haochen Mou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Lingxiao Jin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Senxu Lu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Eloy Yinwang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yucheng Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhenxuan Shao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Tao Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Fangqian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shenzhi Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xupeng Chai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zenan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiahao Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zengjie Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Binghao Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Firmanty P, Doligalska M, Krol M, Taciak B. Deciphering the Dual Role of Heligmosomoides polygyrus Antigens in Macrophage Modulation and Breast Cancer Cell Growth. Vet Sci 2024; 11:69. [PMID: 38393087 PMCID: PMC10891978 DOI: 10.3390/vetsci11020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
In our study, we explored how parasitic nematodes, specifically Heligmosomoides polygyrus, influence the immune response, focusing on their potential role in tumor growth. The study aimed to understand the mechanisms by which these parasites modify immune cell activation, particularly in macrophages, and how this might create an environment conducive to tumor growth. Our methods involved analyzing the effects of H. polygyrus excretory-secretory antigens on macrophage activation and their subsequent impact on breast cancer cell lines EMT6 and 4T1. We observed that these antigens significantly increased the expression of genes associated with both pro-inflammatory and anti-inflammatory molecules, such as inducible nitric oxide synthase, TNF-α, (Tumor Necrosis Factor) Il-6 (Interleukin), and arginase. Additionally, we observed changes in the expression of macrophage surface receptors like CD11b, F4/80, and TLR4 (Toll-like receptor 4). Our findings indicate that the antigens from H. polygyrus markedly alter macrophage behavior and increase the proliferation of breast cancer cells in a laboratory setting. This study contributes to a deeper understanding of the complex interactions between parasitic infections and cancer development, highlighting the need for further research in this area to develop potential new strategies for cancer treatment.
Collapse
Affiliation(s)
- Patryk Firmanty
- Center of Cellular Immunotherapy, Warsaw University of Life Sciences, J. Ciszewskiego 8, b. 23, 02-786 Warsaw, Poland; (P.F.); (M.K.)
- Department of Parasitology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Maria Doligalska
- Department of Parasitology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Magdalena Krol
- Center of Cellular Immunotherapy, Warsaw University of Life Sciences, J. Ciszewskiego 8, b. 23, 02-786 Warsaw, Poland; (P.F.); (M.K.)
| | - Bartlomiej Taciak
- Center of Cellular Immunotherapy, Warsaw University of Life Sciences, J. Ciszewskiego 8, b. 23, 02-786 Warsaw, Poland; (P.F.); (M.K.)
| |
Collapse
|
8
|
Jiang B, Qiu M, Qin L, Tang J, Zhan S, Lin Q, Wei J, Liu Y, Zhou Z, Liang X, Cao J, Lian J, Mai Y, Jiang Y, Yu H. Associations between genetic variants in sphingolipid metabolism pathway genes and hepatitis B virus-related hepatocellular carcinoma survival. Front Oncol 2024; 13:1252158. [PMID: 38260847 PMCID: PMC10801735 DOI: 10.3389/fonc.2023.1252158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Background Although the sphingolipid metabolism pathway is known to play a significant role in tumor progression, there have been few studies on how genetic variants in the sphingolipid metabolism pathway genes affect the survival of patients with hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). Methods We utilized available genotyping data to conduct multivariate Cox proportional hazards regression model analysis, examining the associations of 12,188 single nucleotide polymorphisms (SNPs) in 86 sphingolipid metabolism pathway genes on the survival of 866 HBV-HCC patients, and the model was also used in additive interaction analysis. We used bioinformatics functional prediction and expression quantitative trait locus (eQTL) analysis to explore the potential functions of SNPs and to evaluate the association of SNPs with the corresponding mRNA expression, respectively. We also used the online database TIMER2.0 (http://timer.comp-genomics.org/) to analyze the relationship between the corresponding mRNA expression levels and immune cell infiltration. Results Our study found that GBA2 rs1570247 G>A was significantly associated with elevated survival of HBV-HCC patients [(hazards ratio (HR)=0.74, 95% confidence interval (CI)=0.64-0.86, P<0.001)]. And on an additive scale, a synergistic effect was observed between the GG genotype of rs1570247 and advanced BCLC stage. Among HBV-HCC patients with advanced BCLC stage, those carrying the GBA2 rs1570247 GG genotype exhibited a significantly elevated risk of mortality (HR=3.32, 95%CI=2.45-4.50). Further functional prediction and eQTL analysis revealed that rs1570247 were located in the 5' untranslated region of the GBA2, the A allele of SNP rs1570247 was associated with higher mRNA expression levels of GBA2 in normal liver tissues (P=0.009). Moreover, we observed a positive correlation between GBA2 mRNA expression and the infiltration level of B lymphocytes cell (R=0.331, P<0.001), while a negative correlation was noted between GBA2 mRNA expression and the infiltration level of macrophage M2 in HCC (R=-0.383, P<0.001). Conclusion Our findings suggest that GBA2 rs1570247 G>A in sphingolipid metabolism pathway may be a key factor for survival of HBV-HCC patients by regulating the expression of corresponding genes and affecting the infiltration level of immune cells.
Collapse
Affiliation(s)
- Binbin Jiang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Moqin Qiu
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Liming Qin
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, China
| | - Jingmei Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, China
| | - Shicheng Zhan
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, China
| | - Qiuling Lin
- Department of Clinical Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Junjie Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yingchun Liu
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zihan Zhou
- Department of Cancer Prevention and Control, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiumei Liang
- Department of Disease Process Management, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ji Cao
- Department of Cancer Prevention and Control, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jiawei Lian
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yuejiao Mai
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yanji Jiang
- Department of Scientific Research Dept, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hongping Yu
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
- Guangxi Health Commission, Key Cultivated Laboratory of Cancer Molecular Medicine, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
9
|
He C, Ding Y, Yang Y, Che G, Teng F, Wang H, Zhang J, Zhou D, Chen Y, Zhou Z, Wang H, Teng L. Stem cell landscape aids in tumor microenvironment identification and selection of therapeutic agents in gastric cancer. Cell Signal 2024; 113:110965. [PMID: 37935339 DOI: 10.1016/j.cellsig.2023.110965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/21/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
Gastric cancer stem cells (GCSCs) are strongly associated with the refractory characteristics of gastric cancer, including drug resistance, recurrence, and metastasis. The prognosis for advanced gastric cancer patients treated with multimodal therapy after surgery remains discouraging. GCSCs hold promise as therapeutic targets for GC patients. We obtained 26 sets of stem cell-related genes from the StemChecker database. The Consensus clustering algorithm was employed to discern three distinct stemness subtypes. Prognostic outcomes, components of the tumor microenvironment (TME), and responses to therapies were compared among these subtypes. Following this, a stemness-risk model was formulated using weighted gene correlation network analysis (WGCNA), alongside Cox regression and random survival forest analyses. The C2 subtype predominantly showed enrichment in negative prognostic CSC gene sets and demonstrated an immunosuppressive TME. This specific subtype exhibited minimal responsiveness to immunotherapies and demonstrated reduced sensitivity to drugs. Four pivotal genes were integrated into the construction of the stemness model. Gastric cancer patients with higher stemness-risk scores demonstrated poorer prognoses, a greater presence of immunosuppressive components in TME, and lower rates of treatment response. Subset analysis indicated that only the low-stemness risk subtype derives benefit from 5-fluorouracil-based adjuvant chemotherapy. The model's effectiveness in immunotherapeutic prediction was further validated in the PRJEB25780 cohort. Our study categorized gastric cancer patients into three stemness subtypes, each demonstrating distinct prognoses, components of TME infiltration, and varying sensitivity or resistance to standard chemotherapy or targeted therapy. We propose that the stemness risk model may help the development of well-grounded treatment recommendations and prognostic assessments.
Collapse
Affiliation(s)
- Chao He
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongfeng Ding
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Yang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gang Che
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fei Teng
- Zhejiang University, Hangzhou, China
| | - Haohao Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Zhang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Donghui Zhou
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanyan Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhan Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Haiyong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
10
|
Jung JI, Lee HS, Lee J, Kim EJ. Peanut sprout tea extract inhibits lung metastasis of 4T1 murine mammary carcinoma cells by suppressing the crosstalk between cancer cells and macrophages in BALB/c mice. Nutr Res Pract 2023; 17:917-933. [PMID: 37780222 PMCID: PMC10522819 DOI: 10.4162/nrp.2023.17.5.917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/09/2023] [Accepted: 06/07/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND/OBJECTIVES As peanuts germinate, the content of the components beneficial to health, such as resveratrol, increases within the peanut sprout. This study examined whether the ethanol extract of peanut sprout tea (PSTE) inhibits breast cancer growth and metastasis. MATERIALS/METHODS After orthotopically injecting 4T1 cells into BALB/c mice to induce breast cancer, 0, 30, or 60 mg/kg body weight/day of PSTE was administered orally. Angiogenesis-related protein expression in the tumors and the degree of metastasis were analyzed. 4T1 and RAW 264.7 cells were co-cultured, and reverse transcription polymerase chain reaction was performed to measure the crosstalk between breast cancer cells and macrophages. RESULTS PSTE reduced tumor growth and lung metastasis. In particular, PSTE decreased matrix metalloproteinase-9, platelet endothelial cell adhesion molecule-1, vascular endothelial growth factor-A, F4/80, CD11c, macrophage mannose receptor, macrophage colony-stimulating factor, and monocyte chemoattractant protein 1 expression in the tumors. Moreover, PSTE prevented 4T1 cell migration, invasion, and macrophage activity in RAW 264.7 cells. PSTE inhibited the crosstalk between 4T1 cells and RAW 264.7 cells and promoted the macrophage M1 subtype while inhibiting the M2 subtype. CONCLUSIONS These results suggest that PSTE blocks breast cancer growth and metastasis to the lungs. This may be because the PSTE treatment inhibits the crosstalk between mammary cancer cells and macrophages and inhibits the differentiation of macrophages into the M2 subtype.
Collapse
Affiliation(s)
- Jae In Jung
- Industry Coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon 24252, Korea
| | - Hyun Sook Lee
- Department of Food Science & Nutrition, Dongseo University, Busan 47011, Korea
| | - Jaehak Lee
- Department of Applied Animal Science, Kangwon National University, Chuncheon 24341, Korea
| | - Eun Ji Kim
- Industry Coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
11
|
Illingworth EJ, Maertens A, Sillé FCM. Transcriptomic Effects of Low-Dose Inorganic Arsenic Exposure on Murine Bone Marrow-Derived Macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550543. [PMID: 37546857 PMCID: PMC10402011 DOI: 10.1101/2023.07.26.550543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Both tissue-resident macrophages and monocytes recruited from the bone marrow that transform into tissue-resident cells play critical roles in mediating homeostasis as well as in the pathology of inflammatory diseases. Inorganic arsenic (iAs) is the most common drinking water contaminant worldwide and represents a major public health concern. Several diseases that macrophages have implicated involvement in are caused by iAs exposure, including cardiovascular disease, cancer, and increased risk of infectious disease. Therefore, understanding the effects of iAs exposure on macrophages can help us better grasp the full range of arsenic immunotoxicity and better design therapeutic targets for iAs-induced diseases particularly in exposed populations. In this study, we analyzed the transcriptome of low dose iAs-exposed male and female murine bone marrow-derived macrophages (BMDMs) with either M0, M1, or M2 stimulation. We identified differentially expressed genes by iAs in a sex- and stimulation-dependent manner and used bioinformatics tools to predict protein-protein interactions, transcriptional regulatory networks, and associated biological processes. Overall, our data suggest that M1-stimulated, especially female-derived, BMDMs are most susceptible to iAs exposure. Most notably, we observed significant downregulation of major proinflammatory transcription factors, like IRF8, and its downstream targets, as well as genes encoding proteins involved in pattern recognition and antigen presentation, such as TLR7, TLR8, and H2-D1, potentially providing causal insight regarding arsenic's role in perturbing immune responses to infectious diseases. We also observed significant downregulation of genes involved in processes crucial to coordinating a proinflammatory response including leukocyte migration, differentiation, and cytokine and chemokine production and response. Finally, we discovered that 24 X-linked genes were dysregulated in iAs-exposed female stimulation groups compared to only 3 across the iAs-exposed male stimulation groups. These findings elucidate the potential mechanisms underlying the sex-differential iAs-associated immune-related disease risk.
Collapse
|
12
|
Marvin DL, Dijkstra J, Zulfiqar RM, Vermeulen M, Ten Dijke P, Ritsma L. TGF-β Type I Receptor Signaling in Melanoma Liver Metastases Increases Metastatic Outgrowth. Int J Mol Sci 2023; 24:ijms24108676. [PMID: 37240029 DOI: 10.3390/ijms24108676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 05/28/2023] Open
Abstract
Despite advances in treatment for metastatic melanoma patients, patients with liver metastasis have an unfavorable prognosis. A better understanding of the development of liver metastasis is needed. The multifunctional cytokine Transforming Growth Factor β (TGF-β) plays various roles in melanoma tumors and metastasis, affecting both tumor cells and cells from the surrounding tumor microenvironment. To study the role of TGF-β in melanoma liver metastasis, we created a model to activate or repress the TGF-β receptor pathway in vitro and in vivo in an inducible manner. For this, we engineered B16F10 melanoma cells to have inducible ectopic expression of a constitutively active (ca) or kinase-inactive (ki) TGF-β receptor I, also termed activin receptor-like kinase (ALK5). In vitro, stimulation with TGF-β signaling and ectopic caALK5 expression reduced B16F10 cell proliferation and migration. Contrasting results were found in vivo; sustained caALK5 expression in B16F10 cells in vivo increased the metastatic outgrowth in liver. Blocking microenvironmental TGF-β did not affect metastatic liver outgrowth of both control and caALK5 expressing B16F10 cells. Upon characterizing the tumor microenvironment of control and caALk5 expressing B16F10 tumors, we observed reduced (cytotoxic) T cell presence and infiltration, as well as an increase in bone marrow-derived macrophages in caALK5 expressing B16F10 tumors. This suggests that caALK5 expression in B16F10 cells induces changes in the tumor microenvironment. A comparison of newly synthesized secreted proteins upon caALK5 expression by B16F10 cells revealed increased secretion of matrix remodeling proteins. Our results show that TGF-β receptor activation in B16F10 melanoma cells can increase metastatic outgrowth in liver in vivo, possibly through remodeling of the tumor microenvironment leading to altered infiltration of immune cells. These results provide insights in the role of TGF-β signaling in B16F10 liver metastasis and could have implications regarding the use of TGF-β inhibitors for the treatment of melanoma patients with liver metastasis.
Collapse
Affiliation(s)
- Dieuwke L Marvin
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Jelmer Dijkstra
- Oncode Institute and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Rabia M Zulfiqar
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Michiel Vermeulen
- Oncode Institute and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Laila Ritsma
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
13
|
Zhu F, Zhang Q, Feng J, Zhang X, Li T, Liu S, Chen Y, Li X, Wu Q, Xue Y, Alitongbieke G, Pan Y. β-Glucan produced by Lentinus edodes suppresses breast cancer progression via the inhibition of macrophage M2 polarization by integrating autophagy and inflammatory signals. Immun Inflamm Dis 2023; 11:e876. [PMID: 37249285 PMCID: PMC10214582 DOI: 10.1002/iid3.876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/29/2023] [Accepted: 05/07/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND β-Glucan from Lentinus edodes (LNT), an edible mushroom, possesses strong anticancer activity. However, the therapeutic effects of LNT during the occurrence and progression of breast cancer and their underlying molecular mechanisms have not been elucidated. METHODS Mouse mammary tumor virus-polyoma middle tumor-antigen (MMTV-PyMT) transgenic mice were used as a breast cancer mouse model. Hematoxylin and eosin, immunohistochemical, and immunofluorescence staining were performed for histopathological analysis. Moreover, we developed an inflammatory cell model using tumor necrosis factor-α (TNF-α). Macrophage polarization was assessed using western blot analysis and immunofluorescence. RESULTS Orphan nuclear receptor 77 (Nur77) and sequestosome-1 (p62) were highly expressed and positively correlated with each other in breast cancer tissues. LNT significantly inhibited tumor growth, ameliorated inflammatory cell infiltration, and induced tumor cell apoptosis in PyMT transgenic mice. Moreover, LNT attenuated the ability of tumors to metastasize to lung tissue. Mechanistically, LNT treatment restrained macrophage polarization from M1 to M2 phenotype and promoted autophagic cell death by inhibiting Nur77 expression, AKT/mTOR signaling, and inflammatory signals in breast tumor cells. However, LNT did not exhibit a direct pro-autophagic effect on tumor cell death, except for its inhibitory effect on Nur77 expression. LNT-mediated autophagic tumor cell death depends on M1 macrophage polarization. In in vitro experiments, LNT inhibited the upregulation of p62, autophagy activation, and inflammatory signaling pathways in Nur77 cells. CONCLUSION LNT inhibited macrophage M2 polarization and subsequently blocked the AKT/mTOR and inflammatory signaling axes in breast cancer cells, thereby promoting autophagic tumor cell death. Thus, LNT may be a promising therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Fukai Zhu
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Qianru Zhang
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Jiexin Feng
- Breast Surgery DepartmentZhangzhou Hospital of Fujian Medical UniversityZhangzhouFujianPeople's Republic of China
| | - Xiuru Zhang
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Tingting Li
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Shuwen Liu
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Yanling Chen
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Xiumin Li
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Qici Wu
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Yu Xue
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Gulimiran Alitongbieke
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Yutian Pan
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| |
Collapse
|
14
|
Li Z, Wang YJ, Zhou J, Umakoshi M, Goto A. The prognostic role of M2 tumor-associated macrophages in non-small-cell lung cancer. Histol Histopathol 2022; 37:1167-1175. [PMID: 35638244 DOI: 10.14670/hh-18-474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lung cancer is a high-risk tumor and is a main cause of death worldwide. The tumor aggressiveness and degree of malignancy depend not only on the tumor itself, but also on the microenvironment. The inflammatory microenvironment is one of the key factors in promoting the progression of lung cancer. It has been found that macrophages are the most abundant immune cells in the tumor microenvironment, with strong plasticity and heterogeneity. Tumor-Associated Macrophages (TAMs) are important components of the tumor immune microenvironment. TAMs are thought to be polarized into two main phenotypes: inflammatory or classically activated (M1) and antiinflammatory or alternatively activated (M2) macrophages. Their phenotype and function change according to environment and the appearance of tumor cells. M2 macrophages have been reported to be protumorigenic, because they can promote the formation of blood vessels in the tumor microenvironment, helping tumor cells escape the body's immune defense and promote their growth, by releasing a variety of cytokines, including chemokines, inflammatory factors and growth factor. However, the prognostic impact of TAMs and their phenotypes in non-small-cell lung cancer (NSCLC) remains to be fully elucidated. Some reports of the association between the characteristics of macrophages in lung tumor and patients' survival outcomes show contradicting results. In order to explore the prognostic role of TAMs in NSCLS, the association between the phenotype, density and distribution of macrophages and the prognosis of human NSCLC, as well as the potential mechanisms of M2 macrophages leading to poor prognosis in NSCLC, are reviewed in this study.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China.,Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Yun-Jie Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Jian Zhou
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Michinobu Umakoshi
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita, Japan.
| |
Collapse
|
15
|
Yang B, Su K, Sha G, Bai Q, Sun G, Chen H, Xie H, Jiang X. LINC00665 interacts with BACH1 to activate Wnt1 and mediates the M2 polarization of tumor-associated macrophages in GC. Mol Immunol 2022; 146:1-8. [PMID: 35395473 DOI: 10.1016/j.molimm.2022.03.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/27/2022] [Indexed: 01/25/2023]
Abstract
Gastric cancer (GC) remains one of the prevalent causes of cancer-related deaths globally. Long non-coding RNAs (lncRNAs) have been associated with different cancers. The polarization of macrophages towards the M2 (alternatively activated) phenotype promotes immunologic tolerance and can induce gastric tumorigenesis. Thus far, lncRNAs have been shown to modulate the differentiation of immune cells. Here, we investigated the biological effects of LINC00665 on the progression of GC and explored the mechanisms underlying its ability to mediate the polarization of macrophages towards the M2 phenotype. We report that the levels of LINC00665 were increased in GC tissues. Furthermore, this increase in LINC00665 expression could be associated with decreased overall survival (OS), progression-free survival (PFS), and post-progression survival (PPS). Using cell-based macrophage polarization models, we demonstrated that LINC00665 upregulation in GC cells facilitated the polarization of macrophages towards the M2 but not M1 (classically activated) phenotype. Furthermore, the loss of LINC00665 prevented the M2 polarization of macrophages. Mechanically, we identified that Wnt1 was the downstream target of LINC00665. Additionally, LINC00665 could directly interact with the transcription factor BTB domain and CNC homology 1 (BACH1). The interaction between LINC00665 and BACH1 resulted in the activation and binding of BACH1 to the Wnt1 promoters. Furthermore, BACH1 silencing could inhibit GC progression, which highlighted a crucial role for BACH1 in LINC00665-mediated Wnt1 activation. In addition, genetic Wnt1 overexpression effectively abolished the repression of Wnt signaling after BACH1 depletion and mediated GC development by supporting M2 macrophage polarization. In conclusion, we report that LINC00665 modulates M2 macrophage polarization and suggest that it may facilitate macrophage-dependent GC progression.
Collapse
Affiliation(s)
- Bo Yang
- Department of Oncology, Suqian Hospital of Traditional Chinese Medicine, Su qian, Jiang su, China
| | - Kun Su
- Department of Oncology, Suqian Hospital of Traditional Chinese Medicine, Su qian, Jiang su, China
| | - Guanyu Sha
- Radiation Treatment Center, Suqian Hospital Affiliated to Xuzhou Medical University, Su qian, Jiang su, China
| | - Qingqing Bai
- Department of Oncology, Suqian Hospital of Traditional Chinese Medicine, Su qian, Jiang su, China
| | - Gengxin Sun
- Department of Oncology, Suqian Hospital of Traditional Chinese Medicine, Su qian, Jiang su, China
| | - Huidong Chen
- Department of Oncology, Suqian Hospital of Traditional Chinese Medicine, Su qian, Jiang su, China
| | - Hongmei Xie
- Department of Oncology, Suqian Hospital of Traditional Chinese Medicine, Su qian, Jiang su, China
| | - Xuan Jiang
- Department of Oncology, Huai'an Second People's Hospital, Affiliated to Xuzhou Medical University, Huai an, Jiang su, China.
| |
Collapse
|
16
|
Espinosa Gonzalez M, Volk-Draper L, Bhattarai N, Wilber A, Ran S. Th2 cytokines IL-4, IL-13, and IL-10 promote differentiation of pro-lymphatic progenitors derived from bone marrow myeloid precursors. Stem Cells Dev 2022; 31:322-333. [PMID: 35442077 PMCID: PMC9232236 DOI: 10.1089/scd.2022.0004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Myeloid-lymphatic endothelial cell progenitors (M-LECP) are a subset of bone marrow (BM)-derived cells characterized by expression of M2-type macrophage markers. We previously showed significant contribution of M-LECP to tumor lymphatic formation and metastasis in human clinical breast tumors and corresponding mouse models. Since M2-type is induced in macrophages by immunosuppressive Th2 cytokines IL-4, IL-13, and IL-10, we hypothesized that these factors might promote pro-lymphatic specification of M-LECP during their differentiation from BM myeloid precursors. To test this hypothesis, we analyzed expression of Th2 cytokines and their receptors in mouse BM cells under conditions leading to M-LECP differentiation, namely, CSF-1 treatment followed by activation of TLR4. We found that under these conditions, all three Th2 receptors were strongly upregulated in >95% of the cells that also secrete endogenous IL-10 but not IL-4 or IL-13 ligands. However, addition of any of the Th2 factors to CSF-1 primed cells significantly increased generation of myeloid-lymphatic progenitors as indicated by co-induction of lymphatic-specific (e.g., Lyve-1, integrin-a9, collectin-12, and stabilin-1) and M2-type markers (e.g., CD163, CD204, CD206, and PD-L1). Antibody-mediated blockade of either IL-10 receptor (IL-10R) or IL-10 ligand significantly reduced both immunosuppressive and lymphatic phenotypes. Moreover, tumor-recruited Lyve-1+ lymphatic progenitors in vivo expressed all Th2 receptors as well as corresponding ligands including IL-4 and IL-13 that were absent in BM cells. This study presents original evidence for the significant role of Th2 cytokines in co-development of immunosuppressive and lymphatic phenotypes in tumor-recruited M2-type myeloid cells. Progenitor-mediated increase in lymphatic vessels can enhance immunosuppression by physical removal of stimulatory immune cells. Thus, targeting Th2 pathways might simultaneously relieve immunosuppression and inhibit differentiation of pro-lymphatic progenitors that ultimately promote tumor spread.
Collapse
Affiliation(s)
- Maria Espinosa Gonzalez
- Southern Illinois University School of Medicine, 12249, Medical Microbiology, Immunology and Cell Biology, Springfield, Illinois, United States;
| | - Lisa Volk-Draper
- Southern Illinois University School of Medicine, 12249, Medical Microbiology, Immunology and Cell Biology, Springfield, Illinois, United States;
| | - Nihit Bhattarai
- Southern Illinois University School of Medicine, 12249, Medical Microbiology, Immunology and Cell Biology, Springfield, Illinois, United States;
| | - Andrew Wilber
- Southern Illinois University School of Medicine, Medical Microbiology, Immunology and Cell Biology, Springfield, Illinois, United States;
| | - Sophia Ran
- Southern Illinois University School of Medicine, 12249, Medical Microbiology, Immunology and Cell Biology, 801 N. Rutledge, P.O. Box 19626, Springfield, Illinois, United States, 62794;
| |
Collapse
|
17
|
Li CY, Brown S, Mehrara BJ, Kataru RP. Lymphatics in Tumor Progression and Immunomodulation. Int J Mol Sci 2022; 23:2127. [PMID: 35216243 PMCID: PMC8875298 DOI: 10.3390/ijms23042127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/18/2022] Open
Abstract
The lymphatic system consists of a unidirectional hierarchy of vessels responsible for fluid homeostasis, lipid absorption, and the transport of immune cells and antigens to secondary lymphoid organs. In cancer, lymphatics play complex and heterogenous roles that can promote or inhibit tumor growth. While lymphatic proliferation and remodeling promote tumor dissemination, functional lymphatics are necessary for generating an effective immune response. Recent reports have noted lymphatic-dependent effects on the efficacy of immunotherapy. These findings suggest that the impact of lymphatic vessels on tumor progression is organ- and context-specific and that a greater understanding of the interaction of tumor cells, lymphatics, and the tumor microenvironment can unveil novel therapies.
Collapse
Affiliation(s)
| | | | | | - Raghu P. Kataru
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (C.Y.L.); (S.B.); (B.J.M.)
| |
Collapse
|
18
|
Yang J, Chheda C, Lim A, Hauptschein D, Zayou L, Tang J, Pandol SJ, Edderkaoui M. HDAC4 Mediates Smoking-Induced Pancreatic Cancer Metastasis. Pancreas 2022; 51:190-195. [PMID: 35404896 PMCID: PMC9004243 DOI: 10.1097/mpa.0000000000001998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Cigarette smoking is an established risk factor for pancreatic ductal adenocarcinoma (PDAC). In this project, we investigated the effect of smoking and the role of histone deacetylase 4 (HDAC4) in PDAC invasion and metastasis. METHODS Cells were treated with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and cigarette smoke extract and the mRNA levels of HDACs were measured by real-time polymerase chain reaction. Invasion was measured using the Matrigel Invasion Assay. Syngeneic PDAC mice were treated with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and metastasis measured. Human PDAC primary and metastatic tissues were analyzed by immunohistochemistry. RESULTS Levels of HDAC4 mRNA were increased by smoking. Smoking compounds significantly promoted invasion of cancer cells and promoted metastasis of PDAC cells to different organs, including the liver and the lung, whereas inhibition of HDAC4 prevented this effect. The effect of HDAC4 inhibition on preventing smoking-induced metastasis was greater in the liver compared with the lung. We found that HDAC4 is highly expressed in primary and metastatic PDAC tumors. CONCLUSIONS We found that HDAC4 is the only HDAC induced by smoking among all HDACs analyzed. We found that smoking promotes invasion and metastasis of PDAC cells through a mechanism that involves HDAC4 and that HDAC4 is a promising target for preventing PDAC metastasis.
Collapse
Affiliation(s)
- Jiyong Yang
- Department of General Surgery Longhua Hospital, Shanghai University of TCM, Shanghai, China
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Chintan Chheda
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Adrian Lim
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Dina Hauptschein
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Latifa Zayou
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Josiah Tang
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Stephen J. Pandol
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Mouad Edderkaoui
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
19
|
Batoon L, McCauley LK. Cross Talk Between Macrophages and Cancer Cells in the Bone Metastatic Environment. Front Endocrinol (Lausanne) 2021; 12:763846. [PMID: 34803925 PMCID: PMC8597897 DOI: 10.3389/fendo.2021.763846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
The skeleton is a common site for cancer metastases with the bone microenvironment providing the appropriate conditions for cancer cell colonization. Once in bone, cancer cells effectively manipulate their microenvironment to support their growth and survival. Despite previous efforts to improve treatment modalities, skeletal metastases remain with poor prognoses. This warrants an improved understanding of the mechanisms leading to bone metastasis that will aid development of effective treatments. Macrophages in the tumor microenvironment are termed tumor associated macrophages (TAMs) and their crosstalk with cancer cells is critical in regulating tumorigenicity in multiple cancers. In bone metastases, this crosstalk is also being increasingly implicated but the specific signaling pathways remain incompletely understood. Here, we summarize the reported functions, interactions, and signaling of macrophages with cancer cells during the metastatic cascade to bone. Specifically, we review and discuss how these specific interactions impact macrophages and their profiles to promote tumor development. We also discuss the potential of targeting this crosstalk to inhibit disease progression. Finally, we identify the remaining knowledge gaps that will need to be addressed in order to fully consider therapeutic targeting to improve clinical outcomes in cancer patients.
Collapse
Affiliation(s)
- Lena Batoon
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States
- Bones and Immunology Group, Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Laurie K. McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| |
Collapse
|
20
|
Alphavirus-Driven Interferon Gamma (IFNg) Expression Inhibits Tumor Growth in Orthotopic 4T1 Breast Cancer Model. Vaccines (Basel) 2021; 9:vaccines9111247. [PMID: 34835178 PMCID: PMC8620866 DOI: 10.3390/vaccines9111247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/10/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Interferon gamma (IFNg) is a pleiotropic cytokine that can potentially reprogram the tumor microenvironment; however, the antitumor immunomodulatory properties of IFNg still need to be validated due to variable therapeutic outcomes in preclinical and clinical studies. We developed a replication-deficient Semliki Forest virus vector expressing IFNg (SFV/IFNg) and evaluated its immunomodulatory antitumor potential in vitro in a model of 3D spheroids and in vivo in an immunocompetent 4T1 mouse breast cancer model. We demonstrated that SFV-derived, IFN-g-stimulated bone marrow macrophages can be used to acquire the tumoricidal M1 phenotype in 3D nonattached conditions. Coculturing SFV/IFNg-infected 4T1 spheroids with BMDMs inhibited spheroid growth. In the orthotopic 4T1 mouse model, intratumoral administration of SFV/IFNg virus particles alone or in combination with the Pam3CSK4 TLR2/1 ligand led to significant inhibition of tumor growth compared to the administration of the control SFV/Luc virus particles. Analysis of the composition of intratumoral lymphoid cells isolated from tumors after SFV/IFNg treatment revealed increased CD4+ and CD8+ and decreased T-reg (CD4+/CD25+/FoxP3+) cell populations. Furthermore, a significant decrease in the populations of cells bearing myeloid cell markers CD11b, CD38, and CD206 was observed. In conclusion, the SFV/IFNg vector induces a therapeutic antitumor T-cell response and inhibits myeloid cell infiltration in treated tumors.
Collapse
|
21
|
Cao Y, Li P, Wang H, Li L, Li Q. SIRT3 promotion reduces resistance to cisplatin in lung cancer by modulating the FOXO3/CDT1 axis. Cancer Med 2021; 10:1394-1404. [PMID: 33655712 PMCID: PMC7926010 DOI: 10.1002/cam4.3728] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/18/2020] [Accepted: 11/30/2020] [Indexed: 01/02/2023] Open
Abstract
Background Cisplatin is an extensively used chemotherapy agent for lung cancer, but its drug resistance serves as a huge obstacle for chemotherapy failure of lung cancer patients. Hence, researchers aimed to determine role of sirtuin 3 (SIRT3) considering its action in cisplatin resistance of lung cancer. Methods The expression patterns of SIRT3, FOXO3, and CDT1 were determined using RT‐qPCR and Immunoblotting in lung cancer. Immunofluorescence and Co‐IP were adopted to detect co‐localization and interaction of FOXO3 and CDT1. Loss‐ and gain‐function assays were conducted to determine roles of SIRT3, FOXO3, and CDT1 in resulting pathological changes, while biological behavior of cells was determined using a combination of CCK‐8, flow cytometry, colony formation, and Transwell assays. The effects of SIRT3 and CDT1 were determined in the nude mice xenografted with the tumor. The proliferation‐, angiogenesis‐, and apoptosis‐associated factors levels were determined using Immunoblotting. Results SIRT3, FOXO3, and CDT1 expression was suppressed in the lung cancer tissues and cells. FOXO3 positively regulates the CDT1 expression pattern and SIRT3 elevation inhibits FOXO3 at the acetylated level, thus, elevating FOXO3 expression. The elevation of SIRT3, FOXO3, or CDT1 inhibited cell cisplatin resistance of lung cancer cells as well as inhibited viability, proliferation, and invasion in vitro. In vivo experiments, SIRT3 depletion elevated Ki‐67 and VEGFA levels, but downregulated cleaved caspase 3 level. Conclusion Collectively, overexpressed SIRT3 elevates expression of FOXO3a/CDT1 axis, thus, contributing to enhanced sensitivity of lung cancer cells.
Collapse
Affiliation(s)
- Yang Cao
- The Third Department of Medical Oncology, the Third People's Hospital of Zhengzhou, Zhengzhou, P. R. China
| | - Ping Li
- Medical Department, Women & Infants Hospital of Zhengzhou, Zhengzhou, P. R. China
| | - Haicun Wang
- The Third Department of Medical Oncology, the Third People's Hospital of Zhengzhou, Zhengzhou, P. R. China
| | - Lei Li
- The Third Department of Medical Oncology, the Third People's Hospital of Zhengzhou, Zhengzhou, P. R. China
| | - Quanwang Li
- Department of Oncology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, P. R. China
| |
Collapse
|
22
|
Sun W, Li S, Tang G, Sun S, Luo Y, Bai R, Han L, Jiang X, Gao Y, Huang Z, Zhang J, Gong Y, Xie C. HHLA2 deficiency inhibits non-small cell lung cancer progression and THP-1 macrophage M2 polarization. Cancer Med 2021; 10:5256-5269. [PMID: 34152094 PMCID: PMC8335813 DOI: 10.1002/cam4.4081] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/21/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Human endogenous retrovirus-H long terminal repeat-associating protein 2 (HHLA2) is a member of B7 family, which is upregulated in multiple tumors. However, its exact functions in non-small cell lung cancer (NSCLC) have not been fully understood. This study aimed to investigate the biological roles of HHLA2 in human NSCLC and the relevant mechanisms. In addition, the effects of tumor cell-derived HHLA2 on tumor-associated macrophage (TAM) polarization were explored. METHODS NSCLC cell growth, migration, and invasion were assessed by colony formation and modified Boyden chamber assays. Cell cycle and the CD163+ TAMs were examined by flow cytometry. A co-culture model of THP-1 macrophages and NSCLC cells was conducted to investigate the impacts of tumor cell-derived HHLA2 on THP-1 macrophage polarization. Moreover, a xenograft nude mouse model was established to explore the effects of HHLA2 on tumorigenesis in vivo. RESULTS HHLA2 was upregulated in A549 and H1299 cells compared with the normal lung epithelial BEAS-2B cells. HHLA2 deficiency inhibited NSCLC cell proliferation, migration, invasion, and induced G0/G1 phase arrest partially via inhibiting EGFR/MAPK/ERK signaling pathway. Furthermore, HHLA2 knockdown inhibited M2 polarization of TAMs via downregulating IL-10. In addition, knockdown of HHLA2 inhibited tumor growth in vivo. CONCLUSION HHLA2 downregulation inhibited NSCLC growth and TAM M2 polarization. HHLA2 may serve as a therapeutic target and promising prognostic biomarker in NSCLC.
Collapse
Affiliation(s)
- Wenjie Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuying Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guiliang Tang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shaoxing Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Rui Bai
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linzhi Han
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xueping Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanping Gao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhengrong Huang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junhong Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
23
|
Androgens enhance the ability of intratumoral macrophages to promote breast cancer progression. Oncol Rep 2021; 46:188. [PMID: 34278480 DOI: 10.3892/or.2021.8139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/28/2021] [Indexed: 11/05/2022] Open
Abstract
Androgens are produced locally in breast carcinoma tissues by androgen‑producing enzymes such as 5α‑reductase type 1 (5αRed1) and affect not only breast cancer cells but the tumor microenvironment as well. Tumor‑associated macrophages (TAMs) are primary components of the tumor microenvironment and contribute to tumor progression. Although previous studies suggest that androgen/androgen receptor (AR) signaling in macrophages has important roles in human diseases, androgen action on TAMs has remained largely unknown. We immunolocalized macrophage marker CD163 as well as AR and 5αRed1 in 116 breast carcinomas and correlated them with clinicopathological parameters and clinical outcomes. Moreover, we examined the roles of androgens on macrophages in breast cancer progression using cell lines 4T1 (mouse breast cancer) and RAW264.7 (macrophage) in a tumor‑bearing female BALB/c mouse model. Double immunohistochemistry revealed that AR was sporadically expressed in the macrophages in breast carcinoma tissues. Macrophage infiltration was significantly correlated with an aggressive phenotype of breast carcinomas and worse prognosis, especially in the 5αRed1‑positive group. In a sphere‑forming assay using 4T1 and RAW‑AR cells, which stably express AR, the sphere size was significantly increased due to androgens when 4T1 cells were cocultured with RAW‑AR cells. Furthermore, in vivo experiments revealed that tumor growth and Ki67, a cell proliferation marker, were increased when androgens were stably produced in breast cancer cells and AR was expressed in macrophages. In conclusion, AR is expressed in intratumoral macrophages and is associated with an aggressive phenotype of breast carcinomas, especially when breast cancer cells actively produce androgens. Thus, androgens may enhance the ability of macrophages to promote breast cancer progression.
Collapse
|
24
|
Cui X, Qin T, Zhao Z, Yang G, Sanches JGP, Zhang Q, Fan S, Cao L, Hu X. Pentraxin-3 inhibits milky spots metastasis of gastric cancer by inhibiting M2 macrophage polarization. J Cancer 2021; 12:4686-4697. [PMID: 34149932 PMCID: PMC8210545 DOI: 10.7150/jca.58698] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/24/2021] [Indexed: 01/06/2023] Open
Abstract
Purpose: Recent studies have indicated that Pentraxin-3 (PTX3) is related to invasion, migration and metastasis of gastric cancer cells (GCCs). However, the function of PTX3 in stemness and tumor-associated macrophages (TAMs) polarization in GC has not yet been revealed. Here, we investigated the role of PTX3 in TAMs polarization and stemness in gastric cancer (GC), and further explored the effect of PTX3 on milky spot metastasis of gastric cancer. Methods: PTX3 expression in human gastric cancer tissues was examined with immunohistochemistry (IHC). The influence on stemness of gastric cancer cells was examined by sphere formation assay and western blot. qRT-PCR, IHC and flow cytometry were used to evaluate M1/M2 macrophage signatures. The effects of PTX3 on TAM polarization and milky spots were investigated in vitro and in vivo. The possible mechanism of PTX3 on targeted cytokines and pathway were analyzed by qRT-PCR and western blot. Results: We found that PTX3 was low expressed in gastric carcinoma tissues and associated with stemness and polarization of macrophages. The upregulation of PTX3 inhibited the stemness of GCCs. Furthermore, PTX3 suppressed the polarization of M2 macrophages in the milky spots in vivo and in vitro and inhibited the metastasis of GC into milky spots. PTX3 restrained the expression of interleukin-4 (IL-4) and IL-10 via the inhibition of phosphorylation of the c-Jun N-terminal protein kinase 1/2 (JNK1/2) in GCCs. Conclusion: These results revealed a novel mechanism of PTX3 in GC, which may participate in the development and metastasis of GC by affecting stemness and macrophage polarization. PTX3 should be considered as a crucial biomarker and may be potentially used in targeted therapy in GC progression.
Collapse
Affiliation(s)
- Xinye Cui
- Department of General Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, P.R. China
| | - Tao Qin
- Department of Oncology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Zhengdong Zhao
- Department of General Surgery, The Second Affiliated Hospital, Dalian Medical University, Dalian 116027, P.R. China
| | - Guang Yang
- Department of General Surgery, The Second Affiliated Hospital, Dalian Medical University, Dalian 116027, P.R. China
| | | | - Qingqing Zhang
- Department of Pathology, Dalian Medical University, Dalian 116044, P. R. China
| | - Shujun Fan
- Department of Pathology, Dalian Medical University, Dalian 116044, P. R. China
| | - Liang Cao
- Department of General Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, P.R. China
| | - Xiang Hu
- Department of General Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, P.R. China
| |
Collapse
|
25
|
Boucher A, Klopfenstein N, Hallas WM, Skibbe J, Appert A, Jang SH, Pulakanti K, Rao S, Cowden Dahl KD, Dahl R. The miR-23a∼27a∼24-2 microRNA Cluster Promotes Inflammatory Polarization of Macrophages. THE JOURNAL OF IMMUNOLOGY 2020; 206:540-553. [PMID: 33328213 DOI: 10.4049/jimmunol.1901277] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
Macrophages are critical for regulating inflammatory responses. Environmental signals polarize macrophages to either a proinflammatory (M1) state or an anti-inflammatory (M2) state. We observed that the microRNA (miRNA) cluster mirn23a, coding for miRs-23a, -27a, and -24-2, regulates mouse macrophage polarization. Gene expression analysis of mirn23a-deficient myeloid progenitors revealed a decrease in TLR and IFN signaling. Mirn23a -/- bone marrow-derived macrophages (BMDMs) have an attenuated response to LPS, demonstrating an anti-inflammatory phenotype in mature cells. In vitro, mirn23a-/- BMDMs have decreased M1 responses and an enhanced M2 responses. Overexpression of mirn23a has the opposite effect, enhancing M1 and inhibiting M2 gene expression. Interestingly, expression of mirn23a miRNAs goes down with inflammatory stimulation and up with anti-inflammatory stimulation, suggesting that its regulation prevents locking macrophages into polarized states. M2 polarization of tumor-associated macrophages (TAMs) correlates with poor outcome for many tumors, so to determine if there was a functional consequence of mirn23a loss modulating immune cell polarization, we assayed syngeneic tumor growth in wild-type and mirn23a -/- mice. Consistent with the increased anti-inflammatory/immunosuppressive phenotype in vitro, mirn23a -/- mice inoculated with syngeneic tumor cells had worse outcomes compared with wild-type mice. Coinjecting tumor cells with mirn23a -/- BMDMs into wild-type mice phenocopied tumor growth in mirn23a -/- mice, supporting a critical role for mirn23a miRNAs in macrophage-mediated tumor immunity. Our data demonstrate that mirn23a regulates M1/M2 polarization and suggests that manipulation of mirn23a miRNA can be used to direct macrophage polarization to drive a desired immune response.
Collapse
Affiliation(s)
- Austin Boucher
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556.,Harper Cancer Research Institute, South Bend, IN 46617
| | - Nathan Klopfenstein
- Harper Cancer Research Institute, South Bend, IN 46617.,Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, IN 46617
| | - William Morgan Hallas
- Harper Cancer Research Institute, South Bend, IN 46617.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Jennifer Skibbe
- Harper Cancer Research Institute, South Bend, IN 46617.,Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, IN 46617
| | - Andrew Appert
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556.,Harper Cancer Research Institute, South Bend, IN 46617
| | - Seok Hee Jang
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556.,Harper Cancer Research Institute, South Bend, IN 46617
| | | | - Sridhar Rao
- Blood Research Institute, Versiti, Milwaukee, WI 53226.,Department of Cell Biology, Medical College of Wisconsin, Milwaukee, WI 53226.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226; and
| | - Karen D Cowden Dahl
- Harper Cancer Research Institute, South Bend, IN 46617.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617
| | - Richard Dahl
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556; .,Harper Cancer Research Institute, South Bend, IN 46617.,Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, IN 46617
| |
Collapse
|
26
|
Martini V, D'Avanzo F, Maggiora PM, Varughese FM, Sica A, Gennari A. Oncolytic virotherapy: new weapon for breast cancer treatment. Ecancermedicalscience 2020; 14:1149. [PMID: 33574894 PMCID: PMC7864690 DOI: 10.3332/ecancer.2020.1149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
The recent introduction of viruses as a weapon against cancer can be regarded as one of the most intriguing approaches in the context of precision medicine. The role of immune checkpoint inhibitors has been extensively studied in early and advanced cancer stages, with extraordinary results. Although there is a good tolerability profile, especially when compared with conventional chemotherapy, severe immune-related adverse events have emerged as a potential limitation. Moreover, there are still treatment-resistant cases and thus further treatment options need to be implemented. Several in vitro and in vivo studies have been conducted and are ongoing to develop oncolytic viruses (OVs) as a tool to modulate the immune system response. OVs are attenuated viruses that can kill cancer cells after having infected them, producing microenvironment remodelling and antitumour immune response. The potential of oncolytic virotherapy is to contrast the absence of T cell infiltrates, converting ‘cold’ tumours into ‘hot’ ones, thus improving the performance of the immune system. Breast cancer, the second most common cause of cancer-related deaths among women, is considered a ‘cold’ tumour. In this context, oncolytic virotherapy might well be considered as a promising strategy. This review summarises the current status, clinical applications and future development of OVs, focusing on breast cancer treatment.
Collapse
Affiliation(s)
- Veronica Martini
- Division of Oncology, Department of Translational Medicine, University of Eastern Piedmont, Novara 13100, Italy.,Center for Translational Research on Autoimmune & Allergic Diseases - CAAD, Novara 28100, Italy.,https://orcid.org/0000-0002-0887-4082
| | - Francesca D'Avanzo
- Division of Oncology, Department of Translational Medicine, University of Eastern Piedmont, Novara 13100, Italy
| | - Paola Maria Maggiora
- Division of Oncology, Department of Translational Medicine, University of Eastern Piedmont, Novara 13100, Italy
| | - Feba Maria Varughese
- Division of Oncology, Department of Translational Medicine, University of Eastern Piedmont, Novara 13100, Italy.,Center for Translational Research on Autoimmune & Allergic Diseases - CAAD, Novara 28100, Italy
| | - Antonio Sica
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, A Avogadro 28100, Italy.,Department of Inflammation and Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano (MI) 20089, Italy.,https://orcid.org/0000-0002-8342-7442
| | - Alessandra Gennari
- Division of Oncology, Department of Translational Medicine, University of Eastern Piedmont, Novara 13100, Italy.,Center for Translational Research on Autoimmune & Allergic Diseases - CAAD, Novara 28100, Italy.,https://orcid.org/0000-0002-0928-2281
| |
Collapse
|
27
|
Yu Y, Luo Y, Fang Z, Teng W, Yu Y, Tian J, Guo P, Xu R, Wu J, Li Y. Mechanism of Sanguinarine in Inhibiting Macrophages to Promote Metastasis and Proliferation of Lung Cancer via Modulating the Exosomes in A549 Cells. Onco Targets Ther 2020; 13:8989-9003. [PMID: 32982290 PMCID: PMC7490052 DOI: 10.2147/ott.s261054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/16/2020] [Indexed: 12/12/2022] Open
Abstract
Objective Sanguinarine (SNG) is a benzophenanthridine alkaloid obtained from the roots of Sanguinaria canadensis and has an anticancer effect. The aim of this study was to explore the mechanism of SNG in inhibiting macrophages via regulating the exosomes derived from lung carcinoma cells to reduce metastasis and proliferation of lung carcinoma. Methods Human lung cancer cells (A549 cells) were treated with 4μM of SNG. Exosomes of A549 cells were extracted from A549 cells supernatant, and THP-1 cells were cultured with exosomes. Then, the supernatant of THP-1 cells was collected and cultured with A549 cells. Cell proliferation was measured via plate clone formation and CCK-8 assays. Migration was assessed by using Transwell assay and scratch test. Cellular invasion was detected by Transwell assay. Apoptosis was determined using flow cytometry. Moreover, the protein expressions of GAPDH, P65 and P-P65 in THP-1 cells were measured by Western blot. Levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and chemotactic cytokines ligand 2 (CCL-2) extracted from THP-1 cells were determined by reverse transcription-polymerase chain reaction (RT-PCR). Results Compared to the control group, exosomes could activate THP-1 cells, and the invasion, migration, and proliferation of A549 cells were consequently enhanced. Exosomes could increase the protein expression of p-p65 and the RNA expression levels of TNF-α, IL-6, and CCL-2 in THP-1 cells. Compared with the exosome group, SNG-treated exosomes inhibited THP-1 cells so that the invasion, proliferation, and migration of A549 cells were attenuated and apoptosis was promoted. In THP-1 cells, SNG-treated exosomes inhibited P-P65 expression and the RNA expression levels of TNF-α, IL-6, and CCL-2. Conclusion Exosomes treated by SNG inhibited THP-1 cells so that the invasion, proliferation, and migration of A549 cells were inhibited, and the apoptosis was promoted. The mechanism is possibly associated with the inhibition of NF-κB pathway in THP-1 cells.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Yingbin Luo
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Zhihong Fang
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Wenjing Teng
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Yongchun Yu
- Institute for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Jianhui Tian
- Institute of Traditional Chinese Medicine in Oncology, Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, People's Republic of China
| | - Peng Guo
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Rongzhong Xu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Jianchun Wu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Yan Li
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| |
Collapse
|
28
|
Schrörs B, Boegel S, Albrecht C, Bukur T, Bukur V, Holtsträter C, Ritzel C, Manninen K, Tadmor AD, Vormehr M, Sahin U, Löwer M. Multi-Omics Characterization of the 4T1 Murine Mammary Gland Tumor Model. Front Oncol 2020; 10:1195. [PMID: 32793490 PMCID: PMC7390911 DOI: 10.3389/fonc.2020.01195] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/12/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Tumor models are critical for our understanding of cancer and the development of cancer therapeutics. The 4T1 murine mammary cancer cell line is one of the most widely used breast cancer models. Here, we present an integrated map of the genome, transcriptome, and immunome of 4T1. Results: We found Trp53 (Tp53) and Pik3g to be mutated. Other frequently mutated genes in breast cancer, including Brca1 and Brca2, are not mutated. For cancer related genes, Nav3, Cenpf, Muc5Ac, Mpp7, Gas1, MageD2, Dusp1, Ros, Polr2a, Rragd, Ros1, and Hoxa9 are mutated. Markers for cell proliferation like Top2a, Birc5, and Mki67 are highly expressed, so are markers for metastasis like Msln, Ect2, and Plk1, which are known to be overexpressed in triple-negative breast cancer (TNBC). TNBC markers are, compared to a mammary gland control sample, lower (Esr1), comparably low (Erbb2), or not expressed at all (Pgr). We also found testis cancer antigen Pbk as well as colon/gastrointestinal cancer antigens Gpa33 and Epcam to be highly expressed. Major histocompatibility complex (MHC) class I is expressed, while MHC class II is not. We identified 505 single nucleotide variations (SNVs) and 20 insertions and deletions (indels). Neoantigens derived from 22 SNVs and one deletion elicited CD8+ or CD4+ T cell responses in IFNγ-ELISpot assays. Twelve high-confidence fusion genes were observed. We did not observe significant downregulation of mismatch repair (MMR) genes or SNVs/indels impairing their function, providing evidence for 6-thioguanine resistance. Effects of the integration of the murine mammary tumor virus were observed at the genome and transcriptome level. Conclusions: 4T1 cells share substantial molecular features with human TNBC. As 4T1 is a common model for metastatic tumors, our data supports the rational design of mode-of-action studies for pre-clinical evaluation of targeted immunotherapies.
Collapse
Affiliation(s)
- Barbara Schrörs
- TRON gGmbH - Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Germany
| | - Sebastian Boegel
- University Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany
| | - Christian Albrecht
- TRON gGmbH - Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Germany
| | - Thomas Bukur
- TRON gGmbH - Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Germany
| | - Valesca Bukur
- TRON gGmbH - Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Germany
| | - Christoph Holtsträter
- TRON gGmbH - Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Germany
| | - Christoph Ritzel
- University Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany
| | - Katja Manninen
- TRON gGmbH - Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Germany
| | - Arbel D Tadmor
- TRON gGmbH - Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Germany
| | - Mathias Vormehr
- University Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany.,BioNTech SE, Mainz, Germany
| | - Ugur Sahin
- TRON gGmbH - Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Germany.,HI-TRON - Helmholtz-Institut für Translationale Onkologie Mainz, Mainz, Germany
| | - Martin Löwer
- TRON gGmbH - Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Germany
| |
Collapse
|
29
|
Design principles of drug combinations for chemotherapy. J Control Release 2020; 323:36-46. [DOI: 10.1016/j.jconrel.2020.04.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022]
|
30
|
Cathepsin L secretion by host and neoplastic cells potentiates invasion. Oncotarget 2019; 10:5560-5568. [PMID: 31565189 PMCID: PMC6756864 DOI: 10.18632/oncotarget.27182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/21/2019] [Indexed: 12/25/2022] Open
Abstract
The presence of macrophages within breast tumors correlates with metastatic potential. These tumor-associated macrophages often take on a pro-tumorigenic (M2-like) phenotype resulting in the secretion of growth factors and proteases, including the lysosomal protease cathepsin L. Since cathepsin L also is frequently secreted by breast cancer cells and contributes to tumor invasion, metastasis, and angiogenesis, we hypothesized that secretion of cathepsin L by both tumor-associated macrophages and neoplastic cells would facilitate the metastatic phenotype. Our results showed that the novel cathepsin L/K inhibitors KGP94 and KGP207 could inhibit in vitro M2 macrophage invasion and reduce the macrophage-stimulated invasion of 4T1 murine breast cancer cells. KGP94 and KGP207 treatment also reduced the expression of several M2-associated markers, suggesting that cathepsin L activity may be important for IL-4-driven M0 to M2 differentiation. In addition, cathepsin L shRNA knockdown studies revealed that cathepsin L from both the tumor cell and the macrophage population is important for tumor cell invasion. Thus our data suggest that tumor cells and macrophages may both contribute to the cathepsin L-driven metastatic phenotype of breast cancer. Taken together, these studies highlight the importance of cathepsin L in macrophage functions and suggest that cathepsin inhibition strategies may be therapeutically beneficial by impairing the progression of tumors with high infiltration of M2 macrophages.
Collapse
|
31
|
Zhang Q, Le K, Xu M, Zhou J, Xiao Y, Yang W, Jiang Y, Xi Z, Huang T. Combined MEK inhibition and tumor-associated macrophages depletion suppresses tumor growth in a triple-negative breast cancer mouse model. Int Immunopharmacol 2019; 76:105864. [PMID: 31480004 DOI: 10.1016/j.intimp.2019.105864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 01/05/2023]
Abstract
Tumor-associated macrophages (TAMs) are closely related to poor prognosis in triple-negative breast cancer (TNBC). Thus, gaining insight into how TAMs support cancer progression could contribute to effective therapies. We utilized the 4 T1 murine TNBC cell line and murine bone marrow-derived macrophages to assess TAM-mediated pro-proliferative effects in vivo and in vitro. Further, Transcriptional analysis was performed to identify pathways activated in TAM-stimulated 4 T1 cells. We also explored the therapeutic efficacy of combining a mitogen-activated protein kinase kinase (MEK) inhibitor with TAM-targeted therapy using a TNBC mouse model. We found that the presence of TAMs was significantly associated with proliferating cancer cells in a TNBC mouse model. Moreover, RNA sequencing analysis showed that TAMs could enhance mitogen-activated protein kinase (MAPK) pathway activation in 4 T1 cells compared to that in control cells. Further, the depletion of TAMs by clodronate liposomes significantly reduced MAPK pathway activation in vivo. In addition, the blockade of MAPK signaling by a MEK inhibitor repressed TAM-mediated cancer cell proliferation. Most importantly, MEK inhibition combined with macrophage depletion significantly suppressed tumor growth and increased T lymphocyte infiltration in a TNBC model. Our study suggests the possibility that TAM-induced MAPK pathway activation promotes cancer cell proliferation. Thus, MEK inhibition combined with macrophage depletion might represent an effective treatment for TNBC.
Collapse
Affiliation(s)
- Qiulei Zhang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Kehao Le
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Ming Xu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Jun Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Yunxiao Xiao
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Wen Yang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Yujia Jiang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Zihan Xi
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China.
| |
Collapse
|
32
|
Azevedo PO, Paiva AE, Santos GSP, Lousado L, Andreotti JP, Sena IFG, Tagliati CA, Mintz A, Birbrair A. Cross-talk between lung cancer and bones results in neutrophils that promote tumor progression. Cancer Metastasis Rev 2019; 37:779-790. [PMID: 30203108 DOI: 10.1007/s10555-018-9759-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lung cancer is the leading cause of cancer mortality around the world. The lack of detailed understanding of the cellular and molecular mechanisms participating in the lung tumor progression restrains the development of efficient treatments. Recently, by using state-of-the-art technologies, including in vivo sophisticated Cre/loxP technologies in combination with lung tumor models, it was revealed that osteoblasts activate neutrophils that promote tumor growth in the lung. Strikingly, genetic ablation of osteoblasts abolished lung tumor progression via interruption of SiglecFhigh-expressing neutrophils supply to the tumor microenvironment. Interestingly, SiglecFhigh neutrophil signature was associated with worse lung adenocarcinoma patients outcome. This study identifies novel cellular targets for lung cancer treatment. Here, we summarize and evaluate recent advances in our understanding of lung tumor microenvironment.
Collapse
Affiliation(s)
- Patrick O Azevedo
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana E Paiva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiza Lousado
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Julia P Andreotti
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Isadora F G Sena
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carlos A Tagliati
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil. .,Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
33
|
Crotoxin promotes macrophage reprogramming towards an antiangiogenic phenotype. Sci Rep 2019; 9:4281. [PMID: 30862840 PMCID: PMC6414609 DOI: 10.1038/s41598-019-40903-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 02/26/2019] [Indexed: 12/20/2022] Open
Abstract
Crotoxin (CTX) is the primary toxin of South American rattlesnake Crotalus durissus terrificus venom. CTX reduces tumour mass, and tumour cell proliferation and these effects seem to involve the formation of new vessels. Angiogenesis has a key role in tumour growth and progression and is regulated by macrophage secretory activity. Herein, the effect of CTX on macrophage secretory activity associated with angiogenesis was investigated in vitro. Thymic endothelial cells (EC) were incubated in the presence of macrophages treated with CTX (12.5 nM) or supernatants of CTX-treated macrophages and endothelial cell proliferation, migration and adhesion activities, and the capillary-like tube formation in the matrigel-3D matrix was measured. Angiogenic mediators (MMP-2, VEGF and TNF-α) were measured in the cell culture medium. Macrophages pre-treated with CTX and supernatant of CTX-treated macrophages inhibited EC proliferation, adhesion to its natural ligands, and migration (as evaluated in a wound-healing model and Time Lapse assay) activities. Decreased capillary-like tube formation and MMP-2, VEGF and TNF-α levels in the supernatant of macrophages treated with CTX was also described. CTX promotes macrophage reprogramming towards an antiangiogenic phenotype.
Collapse
|
34
|
Preclinical evaluation of an innovative anti-TAM approach based on zoledronate-loaded erythrocytes. Drug Deliv Transl Res 2018; 8:1355-1364. [PMID: 30014237 DOI: 10.1007/s13346-018-0560-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In tumor microenvironment, tumor-associated macrophages (TAMs) are implicated in cancer sustainment, metastasis, and drug resistance, raising a growing interest as targets in cancer therapy. Since the bisphosphonate zoledronate has proven to affect TAMs' functions, the anti-tumor effect of single or repeated administrations of red blood cells (RBCs) encapsulating zoledronate was evaluated in a mouse model of mammary carcinoma. The obtained results showed that loaded RBCs, but not free zoledronate, caused a significant (p < 0.01) and time-lasting reduction of TAMs' extent in tumor mass of Balb/C mice inoculated with murine mammary carcinoma T41 cells; in addition, a significant reduction (p < 0.05) of tumor growth rate has been obtained only following repeated administrations of zoledronate-loaded RBCs. The anti-tumor effect was secondary to the early depletion of spleen macrophages. Moreover, by assessing the IgG2a/IgG1 ratio, a prevalence of Th1 cytotoxic response in tumor-bearing mice receiving zoledronate by means of RBCs has been observed. These encouraging findings provide further evidence for the central role played by macrophages in tumor setting and highlight the suitability of zoledronate-loaded RBCs as pharmacological agents in depleting, even if indirectly, TAMs and, thus, their eligibility as part of a therapeutic strategy in cancer treatment.
Collapse
|
35
|
Friedrich J, Heim L, Trufa DI, Sirbu H, Rieker RJ, Chiriac MT, Finotto S. STAT1 deficiency supports PD-1/PD-L1 signaling resulting in dysfunctional TNFα mediated immune responses in a model of NSCLC. Oncotarget 2018; 9:37157-37172. [PMID: 30647851 PMCID: PMC6324686 DOI: 10.18632/oncotarget.26441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/26/2018] [Indexed: 12/27/2022] Open
Abstract
In this study we described that Signal Transducer and Activator of Transcription 1 (STAT1) is a key point regulator of PD-1 in tumour infiltrating lymphocytes and PD-L1 in Tumour associated macrophages (TAM) in NSCLC. In our murine model of adenocarcinoma targeted deletion of Stat1 was found associated with enhanced tumour growth, impaired differentiation into M1-like macrophages from the bone marrow, the accumulation of tumor associated macrophages overexpressing PD-L1 and impaired T cell responses in the tumor microenvironment by affecting TNFα responses. In our human NSCLC patient cohort we found that loss of isoforms STAT1 α and STAT1β mRNA in the tumoural region of the lung correlates with increased tumor size in NSCLC patients. Therefore, STAT1 isoform regulation could be considered for future therapeutical strategies associated to current immune-checkpoint blockade therapy in NSCLC.
Collapse
Affiliation(s)
- Juliane Friedrich
- Department of Molecular Pneumology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Lisanne Heim
- Department of Molecular Pneumology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Denis I Trufa
- Department of Thoracic Surgery, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Horia Sirbu
- Department of Thoracic Surgery, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Ralf J Rieker
- Institute of Pathology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Mircea T Chiriac
- Department of Medicine 1-Gastroenterology, Pneumology and Endocrinology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
36
|
Tian Y, Matsui S, Touma M, Wu Q, Sugimoto K. MicroRNA-342 inhibits tumor growth via targeting chemokine CXCL12 involved in macrophages recruitment/activation. Genes Cells 2018; 23:1009-1022. [PMID: 30347114 DOI: 10.1111/gtc.12650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/19/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) play important roles in initiation, development, progression and metastasis of tumors. MiR-342 has been reported as a tumor suppressor or an onco-miRNA based on functions or expression changes in various types of cancers. However, the biological roles and underlying molecular mechanisms of miR-342 in tumorigenesis remain largely unknown. Here, we found that miR-342 was expressed significantly less in a murine MS-K tumor cell line that showed riched blood vessels. Over-expression of miR-342 in MS-K cells inhibited cell proliferation, colony formation, reduced frequency of S phase population in vitro and suppressed tumor growth in vivo. Moreover, increasing miR-342 impeded blood vessels formation and accumulation of macrophages (CD11b+ ) in tumors. By bioinformatic analysis and dual-luciferase reporter assays, chemokine CXCL12 was identified as a direct target of miR-342. Restored Cxcl12 expression in MS-K-miR-342 cells could rescue cell proliferation in vitro. In MS-K-miR-342 tumor-infiltrated macrophages, expression of proangiogenic genes (Vegf-A and Thbs1) and M2-subtype macrophage markers (Cd163, Dectin1 and Ym1) was significantly down-regulated compared with controls. Moreover, lower level of Cxcl12 and its receptor Cxcr4 was observed in the macrophages of MS-K-miR-342 tumors, and MS-K-miR-342 derived miR-342, but not endogenous miR-342, might contribute to Cxcl12 suppression in TAM. These results suggest that miR-342 is involved in MS-K tumor growth as a tumor suppressor by targeting chemokine CXCL12.
Collapse
Affiliation(s)
- Yijun Tian
- Department of Cell Science, Faculty of Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata, Japan
| | - Sayaka Matsui
- Department of Cell Science, Faculty of Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata, Japan
| | - Maki Touma
- Department of Cell Science, Faculty of Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata, Japan
| | - Qiong Wu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Kenkichi Sugimoto
- Department of Cell Science, Faculty of Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata, Japan
| |
Collapse
|
37
|
Steenbrugge J, Breyne K, Demeyere K, De Wever O, Sanders NN, Van Den Broeck W, Colpaert C, Vermeulen P, Van Laere S, Meyer E. Anti-inflammatory signaling by mammary tumor cells mediates prometastatic macrophage polarization in an innovative intraductal mouse model for triple-negative breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:191. [PMID: 30111338 PMCID: PMC6094904 DOI: 10.1186/s13046-018-0860-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/31/2018] [Indexed: 12/11/2022]
Abstract
Background Murine breast cancer models relying on intraductal tumor cell inoculations are attractive because they allow the study of breast cancer from early ductal carcinoma in situ to metastasis. Using a fully immunocompetent 4T1-based intraductal model for triple-negative breast cancer (TNBC) we aimed to investigate the immunological responses that guide such intraductal tumor progression, focusing on the prominent role of macrophages. Methods Intraductal inoculations were performed in lactating female mice with luciferase-expressing 4T1 mammary tumor cells either with or without additional RAW264.7 macrophages, mimicking basal versus increased macrophage-tumor cell interactions in the ductal environment. Imaging of 4T1-derived luminescence was used to monitor primary tumor growth and metastases. Tumor proliferation, hypoxia, disruption of the ductal architecture and tumor immune populations were determined immunohistochemically. M1- (pro-inflammatory) and M2-related (anti-inflammatory) cytokine levels were determined by Luminex assays and ELISA to investigate the activation state of the macrophage inoculum. Levels of the metastatic proteins matrix metalloproteinase 9 (MMP-9) and vascular endothelial growth factor (VEGF) as well as of the immune-related disease biomarkers chitinase 3-like 1 (CHI3L1) and lipocalin 2 (LCN2) were measured by ELISA to evaluate disease progression at the protein level. Results Mice intraductally co-injected with macrophages showed severe splenomegaly with faster ductal breakthrough of tumor cells and increased metastases in axillary lymph nodes and lungs. These mice showed higher M1-related cytokines in the early disease stages (at 1 to 3 weeks post-inoculation) due to the pro-inflammatory nature of RAW264.7 macrophages with increased Ly6G-positive neutrophils and decreased anti-inflammatory macrophages in the tumor microenvironment. However, upon metastasis (at 5 weeks post-inoculation), a prominent increase in M2-related cytokine levels was detected and established a tumor microenvironment with similar immune populations and cytokine responses as in mice which received only 4T1 tumor cells. The observed tumor-associated immune responses and the increased metastasis were associated with significantly induced local and systemic levels of MMP-9, VEGF, CHI3L1 and LCN2. Conclusions The current experimental study with an innovative immunocompetent intraductal model for TNBC pinpoints towards a metastasis-supporting M1 to M2 macrophage polarization in the mammary ducts mediated by 4T1-derived signaling. We propose to explore this process as immunotherapeutic target. Electronic supplementary material The online version of this article (10.1186/s13046-018-0860-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonas Steenbrugge
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium. .,Translational Cancer Research Unit Antwerp, Center for Oncological Research, General Hospital Sint-Augustinus, Wilrijk, Belgium. .,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Koen Breyne
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Present address: Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, IL, USA
| | - Kristel Demeyere
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Olivier De Wever
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
| | - Niek N Sanders
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Wim Van Den Broeck
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Cecile Colpaert
- Department of Pathology, General Hospital Sint-Augustinus, Wilrijk, Belgium
| | - Peter Vermeulen
- Translational Cancer Research Unit Antwerp, Center for Oncological Research, General Hospital Sint-Augustinus, Wilrijk, Belgium
| | - Steven Van Laere
- Translational Cancer Research Unit Antwerp, Center for Oncological Research, General Hospital Sint-Augustinus, Wilrijk, Belgium
| | - Evelyne Meyer
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
38
|
Stromal cells in breast cancer as a potential therapeutic target. Oncotarget 2018; 9:23761-23779. [PMID: 29805773 PMCID: PMC5955086 DOI: 10.18632/oncotarget.25245] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
Breast cancer in the United States is the second most commonly diagnosed cancer in women. About 1 in 8 women will develop invasive breast cancer over the course of her lifetime and breast cancer remains the second leading cause of cancer-related death. In pursuit of novel therapeutic strategies, researchers have examined the tumor microenvironment as a potential anti-cancer target. In addition to neoplastic cells, the tumor microenvironment is composed of several critical normal cell types, including fibroblasts, vascular and lymph endothelial cells, osteoclasts, adipocytes, and immune cells. These cells have important roles in healthy tissue stasis, which frequently are altered in tumors. Indeed, tumor-associated stromal cells often contribute to tumorigenesis, tumor progression, and metastasis. Consequently, these host cells may serve as a possible target in anti-tumor and anti-metastatic therapeutic strategies. Targeting the tumor associated host cells offers the benefit that such cells do not mutate and develop resistance in response to treatment, a major cause of failure in cancer therapeutics targeting neoplastic cells. This review discusses the role of host cells in the tumor microenvironment during tumorigenesis, progression, and metastasis, and provides an overview of recent developments in targeting these cell populations to enhance cancer therapy efficacy.
Collapse
|
39
|
Li X, Singh K, Luo Z, Mejia-Cordova M, Jamalpour M, Lindahl B, Zhang G, Sandler S, Welsh M. Pro-tumoral immune cell alterations in wild type and Shb-deficient mice in response to 4T1 breast carcinomas. Oncotarget 2018; 9:18720-18733. [PMID: 29721156 PMCID: PMC5922350 DOI: 10.18632/oncotarget.24643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/21/2018] [Indexed: 01/21/2023] Open
Abstract
To assess mechanisms responsible for breast carcinoma metastasis, 4T1 breast carcinomas were grown orthotopically in wild type or Shb knockout mice. Tumor growth, metastasis, vascular characteristics and immune cell properties were analyzed. Absence of Shb did not affect tumor growth although it increased lung metastasis. Shb knockout mouse tumors showed decreased redness and less developed vascular plexa located at the periphery of the tumors. No difference in overall tumor vascular density, leakage or pericyte coverage was noted between the genotypes although the average vessel size was smaller in the knockout. Tumors induced an increase of CD11b+ cells in spleen, lymph node, thymus, bone marrow and blood. Numbers of Shb knockout CD11b/CD8+ cells were decreased in lymph nodes and bone marrow of tumor bearing mice. Mice with tumors had reduced numbers of CD4+ lymphocytes in blood/lymphoid organs, whereas in most of these locations the proportion of CD4+ cells co-expressing FoxP3 was increased, suggesting a relative increase in Treg cells. This finding was reinforced by increased blood interleukin-35 (IL-35) in wild type tumor bearing mice. Shb knockout blood showed in addition an increased proportion of IL-35 expressing Treg cells, supporting the notion that absence of Shb further promotes tumor evasion from immune cell recognition. This could explain the increased number of lung metastases observed under these conditions. In conclusion, 4T1 tumors alter immune cell responses that promote tumor expansion, metastasis and escape from T cell recognition in an Shb dependent manner.
Collapse
Affiliation(s)
- Xiujuan Li
- Department of Medical Cell Biology, Uppsala University, Uppsala 75123, Sweden.,Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Kailash Singh
- Department of Medical Cell Biology, Uppsala University, Uppsala 75123, Sweden
| | - Zhengkang Luo
- Department of Medical Cell Biology, Uppsala University, Uppsala 75123, Sweden
| | | | - Maria Jamalpour
- Department of Medical Cell Biology, Uppsala University, Uppsala 75123, Sweden
| | - Björn Lindahl
- Department of Medical Cell Biology, Uppsala University, Uppsala 75123, Sweden
| | - Ganlin Zhang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 75123, Sweden
| | - Stellan Sandler
- Department of Medical Cell Biology, Uppsala University, Uppsala 75123, Sweden
| | - Michael Welsh
- Department of Medical Cell Biology, Uppsala University, Uppsala 75123, Sweden
| |
Collapse
|
40
|
Song H, Lim DY, Jung JI, Cho HJ, Park SY, Kwon GT, Kang YH, Lee KW, Choi MS, Park JHY. Dietary oleuropein inhibits tumor angiogenesis and lymphangiogenesis in the B16F10 melanoma allograft model: a mechanism for the suppression of high-fat diet-induced solid tumor growth and lymph node metastasis. Oncotarget 2018; 8:32027-32042. [PMID: 28410190 PMCID: PMC5458266 DOI: 10.18632/oncotarget.16757] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/20/2017] [Indexed: 12/20/2022] Open
Abstract
Previously, we reported that high-fat-diet (HFD)-induced obesity stimulates melanoma progression in the B16F10 allograft model. In this study, we examined whether oleuropein (OL), the most abundant phenolic compound in olives, inhibits HFD-induced melanoma progression. Four-week-old male C57BL/6N mice were fed a HFD-diet with or without OL. After 16 weeks of feeding, B16F10-luc cells were subcutaneously injected and the primary tumor was resected 3 weeks later. OL suppressed HFD-induced solid tumor growth. In the tumor tissues, OL reduced HFD-induced expression of angiogenesis (CD31, VE-cadherin, VEGF-A, and VEGFR2), lymphangiogenesis (LYVE-1, VEGF-C, VEGF-D, and VEGFR3), and hypoxia (HIF-1α and GLUT-1) markers as well as HFD-induced increases in lipid vacuoles and M2 macrophages (MΦs). All animals were euthanized 2.5 weeks after tumor resection. OL suppressed HFD-induced increases in lymph node (LN) metastasis; expression of VEGF-A, VEGF-C, and VEGF-D in the LN; and M2-MΦs and the size of adipocytes in adipose tissues surrounding LNs. Co-culture results revealed that the crosstalk between B16F10s, M2-MΦs, and differentiated 3T3-L1 cells under hypoxic conditions increased the secretion of VEGF-A and -D, which stimulated tube formation and migration of endothelial cells (HUVECs) and lymphatic endothelial cells (LEC), respectively. Additionally, OL directly inhibited the differentiation of 3T3-L1 preadipocytes and tube formation by HUVECs and LECs. The overall results indicated that dietary OL inhibits lipid and M2-MΦ accumulation in HFD-fed mice, which contributes to decreases in VEGF secretion, thereby leading to inhibition of angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Hyerim Song
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - Do Young Lim
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Jae In Jung
- Division of Bio-Imaging, Chuncheon Center, Korea Basic Science Institute, Chuncheon 24341, Republic of Korea
| | - Han Jin Cho
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea.,WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - So Young Park
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea.,Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea
| | - Gyoo Taik Kwon
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea.,Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea.,Berry and Biofood Research Institute, Jeonbuk 56417, Republic of Korea
| | - Young-Hee Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - Ki Won Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea.,Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea.,Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Myung-Sook Choi
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jung Han Yoon Park
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea.,Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea.,Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
41
|
Salem M, Tremblay A, Pelletier J, Robaye B, Sévigny J. P2Y 6 Receptors Regulate CXCL10 Expression and Secretion in Mouse Intestinal Epithelial Cells. Front Pharmacol 2018. [PMID: 29541027 PMCID: PMC5835513 DOI: 10.3389/fphar.2018.00149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this study, we investigated the role of extracellular nucleotides in chemokine (KC, MIP-2, MCP-1, and CXCL10) expression and secretion by murine primary intestinal epithelial cells (IECs) with a focus on P2Y6 receptors. qRT-PCR experiments showed that P2Y6 was the dominant nucleotide receptor expressed in mouse IEC. In addition, the P2Y6 ligand UDP induced expression and secretion of CXCL10. For the other studies, we took advantage of mice deficient in P2Y6 (P2ry6-/-). Similar expression levels of P2Y1, P2Y2, P2X2, P2X4, and A2A were detected in P2ry6-/- and WT IEC. Agonists of TLR3 (poly(I:C)), TLR4 (LPS), P2Y1, and P2Y2 increased the expression and secretion of CXCL10 more prominently in P2ry6-/- IEC than in WT IEC. CXCL10 expression and secretion induced by poly(I:C) in both P2ry6-/- and WT IEC were inhibited by general P2 antagonists (suramin and Reactive-Blue-2), by apyrase, and by specific antagonists of P2Y1, P2Y2, P2Y6 (only in WT), and P2X4. Neither adenosine nor an A2A antagonist had an effect on CXCL10 expression and secretion. Macrophage chemotaxis was induced by the supernatant of poly(I:C)-treated IEC which was consistent with the level of CXCL10 secreted. Finally, the non-nucleotide agonist FGF2 induced MMP9 mRNA expression also at a higher level in P2ry6-/- IEC than in WT IEC. In conclusion, extracellular nucleotides regulate CXCL10 expression and secretion by IEC. In the absence of P2Y6, these effects are modulated by other P2 receptors also present on IEC. These data suggest that the presence of P2Y6 regulates chemokine secretion and may also regulate IEC homeostasis.
Collapse
Affiliation(s)
- Mabrouka Salem
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada.,Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC, Canada
| | - Alain Tremblay
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC, Canada
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC, Canada
| | - Bernard Robaye
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Gosselies, Belgium
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada.,Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC, Canada
| |
Collapse
|
42
|
Anisiewicz A, Pawlik A, Filip-Psurska B, Turlej E, Dzimira S, Milczarek M, Gdesz K, Papiernik D, Jarosz J, Kłopotowska D, Kutner A, Mazur A, Wietrzyk J. Unfavorable effect of calcitriol and its low-calcemic analogs on metastasis of 4T1 mouse mammary gland cancer. Int J Oncol 2017; 52:103-126. [PMID: 29115583 PMCID: PMC5743363 DOI: 10.3892/ijo.2017.4185] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/12/2017] [Indexed: 12/17/2022] Open
Abstract
Low vitamin D status is considered as a risk factor for breast cancer and has prognostic significance. Furthermore, vitamin D deficiency increases after adjuvant cancer therapy, which alters bone metabolism increasing the risk of osteoporosis. It is now postulated that vitamin D supplementation in breast cancer treatment delays the recurrence of cancer thereby extending survival. We evaluated the impact of calcitriol and its low-calcemic analogs, PRI-2191 and PRI-2205, on the tumor growth, angiogenesis, and metastasis of 4T1 mouse mammary gland cancer. Gene expression analysis related to cancer invasion/metastasis, real-time PCR, ELISA, western blotting, and histochemical studies were performed. In vitro studies were conducted to compare the effects of calcitriol and its analogs on 4T1 and 67NR cell proliferation and expression of selected proteins. Calcitriol and its analogs increased lung metastasis without influencing the growth of primary tumor. The levels of plasma 17β-estradiol and transforming growth factor β (TGFβ) were found to be elevated after treatment. Moreover, the results showed that tumor blood perfusion improved and osteopontin (OPN) levels increased, whereas vascular endothelial growth factor (VEGF) and TGFβ levels decreased in tumors from treated mice. All the studied treatments resulted in increased collagen content in the tumor tissue in the early step of tumor progression, and calcitriol caused an increase in collagen content in lung tissue. In addition, in vitro proliferation of 4T1 tumor cells was not found to be affected by calcitriol or its analogs in contrast to non-metastatic 67NR cells. Calcitriol and its analogs enhanced the metastatic potential of 4T1 mouse mammary gland cancer by inducing the secretion of OPN probably via host cells. In addition, OPN tumor overexpression prevailed over the decreasing tumor TGFβ level and blood vessel normalization via tumor VEGF deprivation induced by calcitriol and its analogs. Moreover, the increased plasma TGFβ and 17β-estradiol levels contributed to the facilitation of metastatic process.
Collapse
Affiliation(s)
- Artur Anisiewicz
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| | - Agata Pawlik
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| | - Beata Filip-Psurska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| | - Eliza Turlej
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| | - Stanisław Dzimira
- Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Magdalena Milczarek
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| | - Katarzyna Gdesz
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| | - Diana Papiernik
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| | - Joanna Jarosz
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| | - Dagmara Kłopotowska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| | - Andrzej Kutner
- Department of Pharmacology, Pharmaceutical Research Institute, 01-793 Warsaw, Poland
| | - Andrzej Mazur
- Université Clermont Auvergne, INRA, UNH, F-63000 Clermont-Ferrand, France
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53‑114 Wroclaw, Poland
| |
Collapse
|
43
|
Zhang B, Cao M, He Y, Liu Y, Zhang G, Yang C, Du Y, Xu J, Hu J, Gao F. Combination of plasma HA and circulating M2-like monocytes may serve as a diagnostic marker for breast cancer. J Cancer 2017; 8:3522-3530. [PMID: 29151937 PMCID: PMC5687167 DOI: 10.7150/jca.20227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/28/2017] [Indexed: 12/23/2022] Open
Abstract
Background: Breast cancer (BC)-derived hyaluronan (HA) can induce the formation of M2-like tumor-associated macrophages (TAMs) in tumor context. However, little is known about the correlation between circulating M2-like monocytes and plasma HA in BC patients. This study focused on evaluating the relationship between circulating M2-like monocytes and plasma HA, and further appraised the diagnostic value of them in BC. Methods: The expression of M2-like TAMs and HA was determined in pathological tissues by immunohistochemistry. Flow cytometry was used to detect the levels of circulating CD14+CD204+ M2-like monocytes in 81 BC patients, 45 patients with breast benign diseases, and 46 healthy subjects. The levels of HA, CEA, and CA15-3 were measured in plasma samples using chemiluminescence method. Results: M2-like TAMs and HA expressions were elevated in BC tissues compared with benign tissues. In correspondence, the frequency of circulating CD14+CD204+ M2-like monocytes and the plasma HA levels were significantly higher in patients with BC than those in control groups. Importantly, there was a positive correlation between circulating M2-like monocytes and the plasma HA (Spearman r = 0.404, p < 0.001). Area under receiver operating characteristic curve (ROC) for the combination of circulating M2-like monocytes and HA was 0.899 (95% CI: 0.853-0.946), which was higher than the panel of CEA and CA15-3. Conclusions: The frequency of circulating CD14+CD204+ M2-like monocytes was positively correlated to plasma HA levels. The combination of circulating CD14+CD204+ M2-like monocytes and plasma HA could provide considerable diagnostic value in BC.
Collapse
Affiliation(s)
- Boke Zhang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, PR China
| | - Manlin Cao
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, PR China
| | - Yiqing He
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, PR China
| | - Yiwen Liu
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, PR China
| | - Guoliang Zhang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, PR China
| | - Cuixia Yang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, PR China
| | - Yan Du
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, PR China
| | - Jing Xu
- Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, PR China
| | - Jiajie Hu
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, PR China
| | - Feng Gao
- Department of Molecular Biology and Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, PR China
| |
Collapse
|
44
|
Khialeeva E, Chou JW, Allen DE, Chiu AM, Bensinger SJ, Carpenter EM. Reelin Deficiency Delays Mammary Tumor Growth and Metastatic Progression. J Mammary Gland Biol Neoplasia 2017; 22:59-69. [PMID: 28124184 PMCID: PMC5319436 DOI: 10.1007/s10911-017-9373-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/17/2017] [Indexed: 12/13/2022] Open
Abstract
Reelin is a regulator of cell migration in the nervous system, and has other functions in the development of a number of non-neuronal tissues. In addition, alterations in reelin expression levels have been reported in breast, pancreatic, liver, gastric, and other cancers. Reelin is normally expressed in mammary gland stromal cells, but whether stromal reelin contributes to breast cancer progression is unknown. Herein, we used a syngeneic mouse mammary tumor transplantation model to examine the impact of host-derived reelin on breast cancer progression. We found that transplanted syngeneic tumors grew more slowly in reelin-deficient (rl Orl -/- ) mice and had delayed metastatic colonization of the lungs. Immunohistochemistry of primary tumors revealed that tumors grown in rl Orl -/- animals had fewer blood vessels and increased macrophage infiltration. Gene expression studies from tumor tissues indicate that loss of host-derived reelin alters the balance of M1- and M2-associated macrophage markers, suggesting that reelin may influence the polarization of these cells. Consistent with this, rl Orl -/- M1-polarized bone marrow-derived macrophages have heightened levels of the M1-associated cytokines iNOS and IL-6. Based on these observations, we propose a novel function for the reelin protein in breast cancer progression.
Collapse
Affiliation(s)
- Elvira Khialeeva
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, United States of America.
| | - Joan W. Chou
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States of America.
| | - Denise E. Allen
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, United States of America.
| | - Alec M. Chiu
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, United States of America.
| | - Steven J. Bensinger
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, United States of America.
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, United States of America
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, United States of America
| | - Ellen M. Carpenter
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, United States of America.
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, United States of America.
| |
Collapse
|
45
|
Zhu D, Yang N, Liu YY, Zheng J, Ji C, Zuo PP. M2 Macrophage Transplantation Ameliorates Cognitive Dysfunction in Amyloid-β-Treated Rats Through Regulation of Microglial Polarization. J Alzheimers Dis 2017; 52:483-95. [PMID: 27003214 DOI: 10.3233/jad-151090] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder in the elderly population. Neuroinflammation induced by amyloid-β (Aβ) aggregation is considered to be the critical factor underlying AD pathological mechanisms. Alternatively activated (M2) macrophages/microglia have been reported to have neuroprotective effects in neurodegenerative disease. In this study, we characterized the neuroprotective effects of M2 macrophage transplantation in AD model rats and investigated the underlying mechanisms. Intracerebroventricular injection of Aβ1 - 42 to rats was used to model AD and resulted in cognitive impairment, neuronal damage, and inflammatory changes in the brain microenvironment. We observed an increased interferon regulatory factor (IRF) 5/IRF4 ratio, resulting in greater production of classically activated (M1) versus M2 microglia. M2 macrophage transplantation attenuated inflammation in the brain, reversed Aβ1 - 42-induced changes in the IRF4-IRF5 ratio, drove endogenous microglial polarization toward the M2 phenotype, and ameliorated cognitive impairment. Nerve growth factor (NGF) treatment reduced the IRF5/IRF4 ratio and induced primary microglial polarization to the M2 phenotype in vitro; these effects were prevented by tyrosine Kinase Receptor A (TrkA) inhibition. M2 macrophage transplantation restored the balance of IRF4-IRF5 by affecting the expression of NGF and inflammatory cytokines in the brains of AD model rats. This drove microglial polarization to the M2 phenotype, promoted termination of neuroinflammation, and resulted in improved cognitive abilities.
Collapse
|
46
|
Chen Y, Zhang S, Wang Q, Zhang X. Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1 protein. J Hematol Oncol 2017; 10:36. [PMID: 28143526 PMCID: PMC5286803 DOI: 10.1186/s13045-017-0408-0] [Citation(s) in RCA: 303] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/25/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The macrophage, one of the several key immune cell types, is believed to be involved in tumorigenesis. However, the mechanism of macrophages promoting tumor progression is largely unknown. METHODS The differentially secreted proteins of M1 and M2 macrophages were analyzed by mass spectrometry. We performed GST pull-down assay for the identification of cell-membrane receptors that interact with chitinase 3-like protein 1 (CHI3L1) protein. The mouse model was used to validate the function of CHI3L1 in cancer metastasis in vivo. Protein phosphorylation and gene expression were performed to study the signaling pathway activation of cancer cells after CHI3L1 treatment. RESULTS M2 macrophage-secreted CHI3L1 promoted the metastasis of gastric and breast cancer cells in vitro and in vivo. The CHI3L1 protein functioned by interacting with interleukin-13 receptor α2 chain (IL-13Rα2) molecules on the plasma membranes of cancer cells. Activation of IL-13Rα2 by CHI3L1 triggered the activation of the mitogen-activated protein kinase signaling pathway, leading to the upregulated expression of matrix metalloproteinase genes, which promoted tumor metastasis. The results of this study indicated that the level of CHI3L1 protein in the sera of patients with gastric or breast cancer was significantly elevated compared with those of healthy donors. CONCLUSIONS Our study revealed a novel aspect of macrophages with respect to cancer metastasis and showed that CHI3L1 could be a marker of metastatic gastric and breast cancer in patients.
Collapse
Affiliation(s)
- Yulei Chen
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Siyuan Zhang
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Qizhi Wang
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233030, People's Republic of China
| | - Xiaobo Zhang
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
47
|
HDAC3 mediates smoking-induced pancreatic cancer. Oncotarget 2016; 7:7747-60. [PMID: 26745602 PMCID: PMC4884951 DOI: 10.18632/oncotarget.6820] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/22/2015] [Indexed: 12/21/2022] Open
Abstract
Smoking is a major risk factor for developing pancreatic adenocarcinoma (PDAC); however, little is known about the mechanisms involved. Here we employed a genetic animal model of early stages of PDAC that overexpresses oncogenic Kras in the pancreas to investigate the mechanisms of smoking-induced promotion of the disease in vivo. We confirmed the regulation of the interactions between the tumor microenvironment cells using in vitro cellular systems. Aerial exposure to cigarette smoke stimulated development of pancreatic intraepithelial neaoplasia (PanIN) lesions associated with a tumor microenvironment-containing features of human PDAC including fibrosis, activated stellate cells, M2-macrophages and markers of epithelial-mesenchymal transition (EMT). The pro-cancer effects of smoking were prevented by Histone Deacetylase HDAC I/II inhibitor Saha. Smoking decreased histone acetylation associated with recruitment of and phenotypic changes in macrophages; which in turn, stimulated survival and induction of EMT of the pre-cancer and cancer cells. The interaction between the cancer cells and macrophages is mediated by IL-6 produced under the regulation of HDAC3 translocation to the nucleus in the cancer cells. Pharmacological and molecular inhibitions of HDAC3 decreased IL-6 levels in cancer cells. IL-6 stimulated the macrophage phenotype change through regulation of the IL-4 receptor level of the macrophage. This study demonstrates a novel pathway of interaction between cancer cells and tumor promoting macrophages involving HDAC3 and IL-6. It further demonstrates that targeting HDAC3 prevents progression of the disease and could provide a strategy for treating the disease considering that the HDAC inhibitor we used is FDA approved for a different disease.
Collapse
|
48
|
Bai J, Adriani G, Dang TM, Tu TY, Penny HXL, Wong SC, Kamm RD, Thiery JP. Contact-dependent carcinoma aggregate dispersion by M2a macrophages via ICAM-1 and β2 integrin interactions. Oncotarget 2016; 6:25295-307. [PMID: 26231039 PMCID: PMC4694832 DOI: 10.18632/oncotarget.4716] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/17/2015] [Indexed: 12/20/2022] Open
Abstract
Tumor-associated macrophages (TAMs) can constitute up to 50% of the tumor mass and have strong implications in tumor progression and metastasis. Macrophages are plastic and can polarize to various subtypes that differ in terms of surface receptor expression as well as cytokine and chemokine production and effector function. Conventionally, macrophages are grouped into two major subtypes: the classically activated M1 macrophages and the alternatively activated M2 macrophages. M1 macrophages are pro-inflammatory, promote T helper (Th) 1 responses, and show tumoricidal activity, whereas M2 macrophages contribute to tissue repair and promote Th2 responses. Herein, we present a microfluidic system integrating tumor cell aggregates and subtypes of human monocyte-derived macrophages in a three-dimensional hydrogel scaffold, in close co-culture with an endothelial monolayer to create an in vitro tumor microenvironment. This platform was utilized to study the role of individual subtypes of macrophages (M0, M1, M2a, M2b and M2c) in human lung adenocarcinoma (A549) aggregate dispersion, as a representation of epithelial-mesenchymal transition (EMT). A significant difference was observed when M2a macrophages were in direct contact with or separated from A549 aggregates, suggesting a possible mechanism for proximity-induced, contact-dependent dissemination via ICAM-1 and integrin β2 interactions. Indeed, M2a macrophages tended to infiltrate and release cells from carcinoma cell aggregates. These findings may help in the development of immunotherapies based on enhancing the tumor-suppressive properties of TAMs.
Collapse
Affiliation(s)
- Jing Bai
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 138602, Singapore.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Giulia Adriani
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 138602, Singapore
| | - Truong-Minh Dang
- SIgN (Singapore Immunology Network), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648, Singapore
| | - Ting-Yuan Tu
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 138602, Singapore
| | - Hwei-Xian Leong Penny
- SIgN (Singapore Immunology Network), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648, Singapore
| | - Siew-Cheng Wong
- SIgN (Singapore Immunology Network), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648, Singapore
| | - Roger D Kamm
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 138602, Singapore.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jean-Paul Thiery
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 138602, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.,Institute of Molecular and Cell Biology, Proteos, 138673, Singapore
| |
Collapse
|
49
|
Park SY, Kwon SJ, Lim SS, Kim JK, Lee KW, Park JHY. Licoricidin, an Active Compound in the Hexane/Ethanol Extract of Glycyrrhiza uralensis, Inhibits Lung Metastasis of 4T1 Murine Mammary Carcinoma Cells. Int J Mol Sci 2016; 17:E934. [PMID: 27314329 PMCID: PMC4926467 DOI: 10.3390/ijms17060934] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 12/27/2022] Open
Abstract
Licorice extracts containing glycyrrhizin exhibit anti-carcinogenic properties. Because glycyrrhizin induces severe hypokalemia and hypertension, we prepared a hexane/ethanol extract of Glycyrrhiza uralensis (HEGU) that lacks glycyrrhizin, and showed that HEGU induces apoptosis and G1 cell cycle arrest and inhibits migration of DU145 human prostate cancer cells. Our previous in vitro studies identified two active components in HEGU: isoangustone A, which induces apoptosis and G1 cycle arrest, and licoricidin, which inhibits metastasis. This study examined whether HEGU and licoricidin inhibit metastasis using the 4T1 mammary cancer model. Both HEGU and licoricidin treatment reduced pulmonary metastasis and the expression of CD45, CD31, HIF-1α, iNOS, COX-2, and VEGF-A in tumor tissues. Additionally, a decrease in protein expression of VEGF-R2, VEGF-C, VEGF-R3, and LYVE-1 was noted in tumor tissues of licoricidin-treated mice. Furthermore, the blood concentrations of MMP-9, ICAM-1, VCAM-1, and VEGF-A were decreased in HEGU-treated mice. In vitro 4T1 cell culture results showed that both HEGU and licoricidin inhibited cell migration, MMP-9 secretion, and VCAM expression. The present study demonstrates that the licoricidin in HEGU inhibits lung metastasis of 4T1 mammary carcinoma cells, which may be mediated via inhibition of cancer cell migration, tumor angiogenesis, and lymphangiogenesis.
Collapse
Affiliation(s)
- So Young Park
- Department of Food Science and Nutrition, Hallym University, Chuncheon 200-702, Korea.
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Gyonggi-do 443-270, Korea.
| | - Soo Jin Kwon
- Department of Food Science and Nutrition, Hallym University, Chuncheon 200-702, Korea.
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, Chuncheon 200-702, Korea.
| | - Jin-Kyu Kim
- Biocenter, Gyeonggi Institute of Science & Technology Promotion, Suwon, Gyonggi-do 443-270, Korea.
| | - Ki Won Lee
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Gyonggi-do 443-270, Korea.
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Korea.
| | - Jung Han Yoon Park
- Department of Food Science and Nutrition, Hallym University, Chuncheon 200-702, Korea.
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Gyonggi-do 443-270, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Korea.
| |
Collapse
|
50
|
Okubo M, Kioi M, Nakashima H, Sugiura K, Mitsudo K, Aoki I, Taniguchi H, Tohnai I. M2-polarized macrophages contribute to neovasculogenesis, leading to relapse of oral cancer following radiation. Sci Rep 2016; 6:27548. [PMID: 27271009 PMCID: PMC4897643 DOI: 10.1038/srep27548] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/20/2016] [Indexed: 12/24/2022] Open
Abstract
Despite the fact that radiation is one of the standard therapies in the treatment of patients with oral cancer, tumours can recur even in the early stages of the disease, negatively impacting prognosis and quality of life. We previously found that CD11b+ bone marrow-derived cells (BMDCs) were recruited into human glioblastoma multiforme (GBM), leading to re-organization of the vasculature and tumour regrowth. However, it is not yet known how these cells contribute to tumour vascularization. In the present study, we investigated the role of infiltrating CD11b+ myeloid cells in the vascularization and recurrence of oral squamous cell carcinoma (OSCC). In a xenograft mouse model, local irradiation caused vascular damage and hypoxia in the tumour and increased infiltration of CD11b+ myeloid cells. These infiltrating cells showed characteristics of M2 macrophages (M2Mφs) and are associated with the promotion of vascularization. M2Mφs promoted tumour progression in recurrence after irradiation compared to non-irradiated tumours. In addition, we found that CD11b+ myeloid cells, as well as CD206+ M2Mφs, are increased during recurrence after radiotherapy in human OSCC specimens. Our findings may lead to the development of potential clinical biomarkers or treatment targets in irradiated OSCC patients.
Collapse
Affiliation(s)
- Makiko Okubo
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Mitomu Kioi
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Hideyuki Nakashima
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Kei Sugiura
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Kenji Mitsudo
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Ichiro Aoki
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Iwai Tohnai
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| |
Collapse
|