1
|
Ma M, Zhu Y, Xiao C, Li R, Cao X, Kang R, Wang X, Li E. Novel insights into RB1 in prostate cancer lineage plasticity and drug resistance. TUMORI JOURNAL 2024; 110:252-263. [PMID: 38316605 DOI: 10.1177/03008916231225576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Prostate cancer is the second most common malignancy among men in the world, posing a serious threat to men's health and lives. RB1 is the first human tumor suppressor gene to be described, and it is closely associated with the development, progression, and suppression of a variety of tumors. It was found that the loss of RB1 is an early event in prostate cancer development and is closely related to prostate cancer development, progression and treatment resistance. This paper reviews the current status of research on the relationship between RB1 and prostate cancer from three aspects: RB1 and prostate cell lineage plasticity; biological behavior; and therapeutic resistance. Providing a novel perspective for developing new therapeutic strategies for RB1-loss prostate cancer.
Collapse
Affiliation(s)
- Min Ma
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yazhi Zhu
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Changkai Xiao
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruidong Li
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xingyu Cao
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ran Kang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaolan Wang
- Department of Reproductive Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ermao Li
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
2
|
Gong L, Voon DC, Nakayama J, Takahashi C, Kohno S. RB1 loss induces quiescent state through downregulation of RAS signaling in mammary epithelial cells. Cancer Sci 2024; 115:1576-1586. [PMID: 38468443 PMCID: PMC11093197 DOI: 10.1111/cas.16122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/24/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
While loss of function (LOF) of retinoblastoma 1 (RB1) tumor suppressor is known to drive initiation of small-cell lung cancer and retinoblastoma, RB1 mutation is rarely observed in breast cancers at their initiation. In this study, we investigated the impact on untransformed mammary epithelial cells given by RB1 LOF. Depletion of RB1 in anon-tumorigenic MCF10A cells induced reversible growth arrest (quiescence) featured by downregulation of multiple cyclins and MYC, upregulation of p27KIP1, and lack of expression of markers which indicate cellular senescence or epithelial-mesenchymal transition (EMT). We observed a similar phenomenon in human mammary epithelial cells (HMEC) as well. Additionally, we found that RB1 depletion attenuated the activity of RAS and the downstream MAPK pathway in an RBL2/p130-dependent manner. The expression of farnesyltransferase β, which is essential for RAS maturation, was found to be downregulated following RB1 depletion also in an RBL2/p130-dependent manner. These findings unveiled an unexpected mechanism whereby normal mammary epithelial cells resist to tumor initiation upon RB1 LOF.
Collapse
Affiliation(s)
- Linxiang Gong
- Division of Oncology and Molecular BiologyCancer Research Institute, Kanazawa UniversityKanazawaIshikawaJapan
| | | | - Joji Nakayama
- Division of Oncology and Molecular BiologyCancer Research Institute, Kanazawa UniversityKanazawaIshikawaJapan
| | - Chiaki Takahashi
- Division of Oncology and Molecular BiologyCancer Research Institute, Kanazawa UniversityKanazawaIshikawaJapan
| | - Susumu Kohno
- Division of Oncology and Molecular BiologyCancer Research Institute, Kanazawa UniversityKanazawaIshikawaJapan
| |
Collapse
|
3
|
Nurlaila I, Pambudi S. The evolvement of breast cancer therapies: What we have done and where all these head off. Saudi Med J 2024; 45:331-340. [PMID: 38657992 PMCID: PMC11147575 DOI: 10.15537/smj.2024.45.4.20230492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Although, from a therapeutic standpoint, breast cancer (BC) is considerably well-characterized, it still leaves puzzling spots. The Her-2+/PR+/ER+ BC can benefit from the mainstays of anticancer therapy and immunotherapy and overall have a better prognosis. Triple-negative BC, due to the concomitant absence of Her-2/PR/ER receptors, is more challenging and necessitates different strategies. It has been learned that the mainstay anti-BC therapies were initially designed to demolish as many cancer cells as they possibly could. However, the number of reports on the adverse effects of these mainstay therapies has recently been increasing. It underpins efforts to reshape such therapies into much better and safer forms over time. Moreover, some current findings on the molecular markers, which are target-potential, have also shifted the paradigm from radical-to-local-yet-precise-approach to meet the need for a therapy platform that is less cytotoxic to normal cells yet efficiently kills cancer cells.
Collapse
Affiliation(s)
- Ika Nurlaila
- From the Department of Vaccine and Drugs, The National Research and Innovation Agency (BRIN), Banten, Indonesia.
| | - Sabar Pambudi
- From the Department of Vaccine and Drugs, The National Research and Innovation Agency (BRIN), Banten, Indonesia.
| |
Collapse
|
4
|
Rojhannezhad M, Soltani BM, Vasei M, Ghorbanmehr N, Mowla SJ. Functional analysis of a putative HER2-associated expressed enhancer, Her2-Enhancer1, in breast cancer cells. Sci Rep 2023; 13:19516. [PMID: 37945744 PMCID: PMC10636096 DOI: 10.1038/s41598-023-46460-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
HER-2/neu (HER2) is a member of the epidermal growth factor receptors family, encoding a protein with tyrosine kinase activity. Following the gene amplification or increased HER2 transcription, carcinogenesis has been observed in some cancers. Genetic and epigenetic changes occurring in enhancer sequences can deeply affect the expression and transcriptional regulation of downstream genes, which can cause some physiological and pathological changes, including tumor progression. A therapeutic approach that directly targets the genomic sequence alterations is of high importance, with low side effects on healthy cells. Here, we employed the CRISPR/Cas9 method to genetically knockout an expressed putative enhancer (GH17J039694; we coined it as Her2-Enhancer1) located within the HER2 gene, 17q12: 39,694,339-39,697,219 (UCSC-hg38). We then investigated the potential regulatory effect of Her2-Enhancer1 on HER2 and HER2-interacting genes. To evaluate the cis and trans effects of Her2-Enhancer1, genetic manipulation of this region was performed in HER2-positive and -negative breast cancer cells. Our bioinformatics and real-time PCR data revealed that this putative enhancer region is indeed expressed, and acts as an expressed enhancer. Further functional analysis on edited and unedited cells revealed a significant alteration in the expression of HER2 variants, as well as some other target genes of HER2. Moreover, the apoptosis rate was considerably elevated within the edited cells. As we expected, Western blot analysis confirmed a reduction in protein levels of HER2, GRB7, the gene interacting with HER2, and P-AKT in the PI3K/AKT pathway. Altogether, our findings revealed an enhancer regulatory role for Her2-Enhancer1 on HER2 and HER2-interacting genes; and that this region has a potential for targeted therapy of HER2-positive cancers.
Collapse
Affiliation(s)
- Mahdieh Rojhannezhad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram M Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Vasei
- Cell-Based Therapies Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nassim Ghorbanmehr
- Biotechnology Department, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Avcı O, İriağaç Y, Çavdar E, Karaboyun K, Araz M, Şakalar T, Değerli E, Özdemir Ö, İnal A, Ocak B, Ürün M, Sakin A, Yıldız Tacar S, Koçak MZ, Demir H, Özer Ö, Tanrıkulu Şimşek E, Ersoy M, Karakaş Y, Arıkan R, Eşbah O, Ön S, Şenocak Taşçı E, Molinas Mandel N, Türker S, Kaçan T, Yıldırım HÇ, Alan Ö, Akbaş S, İpek Deniz G, Aydın İsak Ö, Taşkaynatan H, Şeber ES. PROPSEA, safety evaluation of palbociclib and ribociclib in older patients with breast cancer: A prospective real-world TOG study. J Geriatr Oncol 2023; 14:101604. [PMID: 37683369 DOI: 10.1016/j.jgo.2023.101604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/21/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023]
Abstract
INTRODUCTION In this study, the toxicities and management of palbociclib and ribociclib in older patients (≥65 years) with metastatic breast cancer patients were investigated. MATERIALS AND METHODS Among older patients receiving palbociclib and ribociclib, Geriatric 8 (G8) and Groningen Frailty Index were used to evaluate frailty status. Dose modifications, drug withdrawal and other serious adverse events (SAEs) were recorded and analyzed according to baseline patient characteristics. RESULTS A total of 160 patients from 28 centers in Turkey were included (palbociclib = 76, ribociclib = 84). Forty-three patients were ≥ 75 years of age. The most common cause of first dose modification was neutropenia for both drugs (97% palbociclib, 69% ribociclib). Liver function tests elevation (10%) and renal function impairment (6%) were also causes for ribociclib dose modification. Drug withdrawal rate was 3.9% for palbociclib and 6% for ribociclib. SAEs were seen in 11.8% of those taking palbociclib and 15.5% of those on riboclib. An ECOG performance status of ≥2 and being older than 75 years were associated with dose reductions. Severe neutropenia was more common in patients with non-bone-only metastatic disease, those receiving treatment third-line therapy or higher, coexistance of non-neutropenic hematological side effects (for ribociclib). Neutropenia was less common among patients with obesity. DISCUSSION Our results show that it can be reasonable to start palbociclib and ribociclib at reduced dose in patients aged ≥75 years and/or with an ECOG performance status ≥2.
Collapse
Affiliation(s)
- Okan Avcı
- Tekirdağ Namık Kemal University, Faculty of Medicine, Department of Medical Oncology, Tekirdağ, Türkiye.
| | - Yakup İriağaç
- Tekirdağ Namık Kemal University, Faculty of Medicine, Department of Medical Oncology, Tekirdağ, Türkiye
| | - Eyyüp Çavdar
- Tekirdağ Namık Kemal University, Faculty of Medicine, Department of Medical Oncology, Tekirdağ, Türkiye
| | - Kubilay Karaboyun
- Tekirdağ Namık Kemal University, Faculty of Medicine, Department of Medical Oncology, Tekirdağ, Türkiye
| | - Murat Araz
- Necmettin Erbakan University, Faculty of Medicine, Department of Medical Oncology, Konya, Turkiye
| | - Teoman Şakalar
- Kahramanmaraş Necip Fazıl City Hospital, Kahramanmaraş, Türkiye
| | - Ezgi Değerli
- İstanbul University, Cerrahpaşa Faculty of Medicine, Department of Medical Oncology, İstanbul, Türkiye
| | - Özlem Özdemir
- İzmir Bozyaka Training and Research Hospital, Department of Medical Oncology, İzmir, Türkiye
| | - Ali İnal
- Mersin City Hospital, Mersin, Türkiye
| | - Birol Ocak
- Bursa Uludağ University, Faculty of Medicine, Department of Medical Oncology, Bursa, Türkiye
| | - Müslih Ürün
- Eskişehir City Hospital, Department of Medical Oncology, Eskişehir, Türkiye
| | - Abdullah Sakin
- Van Yüzüncü Yıl University, Faculty of Medicine, Deparment of Medical Oncology, Van, Türkiye
| | - Seher Yıldız Tacar
- Dr. Sadi Konuk Training and Research Hospital, Department of Medical Oncology, İstanbul, Türkiye
| | - Mehmet Zahid Koçak
- Necmettin Erbakan University, Faculty of Medicine, Department of Medical Oncology, Konya, Turkiye
| | - Hacer Demir
- Afyon Health Sciences University, Department of Medical Oncology, Afyon, Türkiye
| | - Özden Özer
- Dokuz Eylül University, Faculty of Medicine, Department of Medical Oncology, İzmir, Türkiye
| | - Eda Tanrıkulu Şimşek
- Haydarpaşa Numune Training and Research Hospital, Department of Medical Oncology, İstanbul, Türkiye
| | - Mustafa Ersoy
- Eskişehir Osmangazi University, Faculty of Medicine, Department of Medical Oncology, Eskişehir, Türkiye
| | - Yusuf Karakaş
- Mehmet Ali Aydınlar Acıbadem University, Bodrum Hospital, Department of Medical Oncology, Muğla, Türkiye
| | - Rukiye Arıkan
- Marmara University, Faculty of Medicine, Department of Medical Oncology, İstanbul, Türkiye
| | - Onur Eşbah
- Düzce University, Faculty of Medicine, Department of Medical Oncology, Düzce, Türkiye
| | - Sercan Ön
- Ege University, Faculty of Medicine, Department of Medical Oncology, İzmir, Türkiye
| | - Elif Şenocak Taşçı
- Mehmet Ali Aydınlar Acıbadem University, Faculty of Medicine, Department of Medical Oncology, İstanbul, Türkiye
| | - Nil Molinas Mandel
- Koç University, American Hospital, Department of Medical Oncology, İstanbul, Türkiye
| | - Sema Türker
- Zonguldak Atatürk State Hospital, Department of Medical Oncology, Zonguldak, Türkiye
| | - Turgut Kaçan
- Bursa Yüksek İhtisas Training and Research Hospital, Department of Medical Oncology, Bursa, Türkiye
| | - Hasan Çağrı Yıldırım
- Hacettepe University, Faculty of Medicine, Department of Medical Oncology, Ankara, Türkiye
| | - Özkan Alan
- Tekirdağ Dr. Fehmi Cumalıoğlu City Hospital, Department of Medical Oncology, Tekirdağ, Türkiye
| | - Sinem Akbaş
- Koç University, Faculty of Medicine, Department of Medical Oncology, İstanbul, Türkiye
| | - Gülhan İpek Deniz
- Private Tansan Outpatient Clinic, Department of Medical Oncology, İstanbul, Türkiye
| | - Özlem Aydın İsak
- Dışkapı Yıldırım Beyazıd Training and Research Hospital, Department of Medical Oncology, Ankara, Türkiye
| | - Halil Taşkaynatan
- İzmir Private Ege City Hospital, Department of Medical Oncology, İzmir, Türkiye
| | - Erdoğan Selçuk Şeber
- Tekirdağ Namık Kemal University, Faculty of Medicine, Department of Medical Oncology, Tekirdağ, Türkiye
| |
Collapse
|
6
|
Le MT, Nguyen HT, Nguyen XH, Do XH, Mai BT, Ngoc Nguyen HT, Trang Than UT, Nguyen TH. Regulation and therapeutic potentials of microRNAs to non-small cell lung cancer. Heliyon 2023; 9:e22080. [PMID: 38058618 PMCID: PMC10696070 DOI: 10.1016/j.heliyon.2023.e22080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, accounting for 80%-85% of total cases and leading to millions of deaths worldwide. Drug resistance is the primary cause of treatment failure in NSCLC, which urges scientists to develop advanced approaches for NSCLC treatment. Among novel approaches, the miRNA-based method has emerged as a potential approach as it allows researchers to modulate target gene expression. Subsequently, cell behaviors are altered, which leads to the death and the depletion of cancer cells. It has been reported that miRNAs possess the capacity to regulate multiple genes that are involved in various signaling pathways, including the phosphoinositide 3-kinase, receptor tyrosine kinase/rat sarcoma virus/mitogen-activated protein kinase, wingless/integrated, retinoblastoma, p53, transforming growth factor β, and nuclear factor-kappa B pathways. Dysregulation of these signaling pathways in NSCLC results in abnormal cell proliferation, tissue invasion, and drug resistance while inhibiting apoptosis. Thus, understanding the roles of miRNAs in regulating these signaling pathways may enable the development of novel NSCLC treatment therapies. However, a comprehensive review of potential miRNAs in NSCLC treatment has been lacking. Therefore, this review aims to fill the gap by summarizing the up-to-date information on miRNAs regarding their targets, impact on cancer-associated pathways, and prospective outcomes in treating NSCLC. We also discuss current technologies for delivering miRNAs to the target cells, including virus-based, non-viral, and emerging extracellular vesicle-based delivery systems. This knowledge will support future studies to develop an innovative miRNA-based therapy and select a suitable carrier to treat NSCLC effectively.
Collapse
Affiliation(s)
- Mai Thi Le
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, 100000, Viet Nam
| | - Huyen-Thu Nguyen
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
| | - Xuan-Hung Nguyen
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
- College of Health Sciences, Vin University, Hanoi, 100000, Viet Nam
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
| | - Xuan-Hai Do
- Department of Gastroenterology, 108 Military Central Hospital, Hanoi, Viet Nam
| | - Binh Thanh Mai
- Department of Practical and Experimental Surgery, Vietnam Military Medical University, 160 Phung Hung Street, Phuc La, Ha Dong, Hanoi, Viet Nam
| | - Ha Thi Ngoc Nguyen
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
| | - Uyen Thi Trang Than
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
| | - Thanh-Hong Nguyen
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
| |
Collapse
|
7
|
Kuo SH, Tseng LM, Chen ST, Sagara Y, Chang YC, Yeh HT, Kuo YL, Hung CC, Lu TP, Lee YH, Toi M, Huang CS. Radiotherapy versus low-dose tamoxifen following breast-conserving surgery for low-risk and estrogen receptor-positive breast ductal carcinoma in situ: an international open-label randomized non-inferiority trial (TBCC-ARO DCIS Trial). BMC Cancer 2023; 23:865. [PMID: 37710198 PMCID: PMC10500726 DOI: 10.1186/s12885-023-11291-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Radiotherapy (RT) following breast-conserving surgery (BCS) is mainly used to decrease the rate of ipsilateral breast tumor recurrence (IBTR) in women with breast ductal carcinoma in situ (DCIS). Recent studies have demonstrated that low-dose tamoxifen significantly reduces IBTR in breast DCIS. Here, we aim to determine whether the administration of low-dose tamoxifen is non-inferior to RT in preventing IBTR in patients with low-risk characteristics of breast DCIS. METHODS/DESIGN This is a prospective, international, open-label, randomized, non-inferiority trial. Patients with low-risk clinicopathologic features (> 40 years old, low risk of breast cancer susceptibility gene (BRCA) 1 and BRCA2 mutations, mammographically detected unicentric and non-mass lesions, low- or intermediate-grade without comedo or necrosis, measuring < 2.5 cm with margins ≥ 3 mm, and estrogen receptor-positive status) of DCIS who underwent BCS will be randomized at a 1:1 ratio to either receive tamoxifen (5 mg/day) for 5 years or undergo RT with conventional fractions (50 Gy in 25 fractions) or hypofractionations (40.05 Gy in 15 fractions). Randomization will be stratified by the Taiwan Breast Cancer Consortium. As approximately 5% of patients cannot tolerate the side effects of low-dose tamoxifen and will receive RT, we estimate that 405 patients will be randomized to a low-dose tamoxifen arm and 405 patients to the RT arm, according to a non-inferiority margin within 5% of IBTR difference and 90% β-power noticing non-inferiority. The primary endpoints are breast tumor recurrence, including ipsilateral, regional, contralateral, and distant recurrence of breast DCIS or invasive cancer. The secondary endpoints are overall survival and adverse effects of RT and tamoxifen. Translational studies will also be conducted for this trial. DISCUSSION This is the first non-inferiority trial on breast DCIS. This study will provide an important recommendation for clinical physicians on whether to use low-dose adjuvant tamoxifen for patients with low-risk breast DCIS who do not want to receive adjuvant RT. TRIAL REGISTRATION ClinicalTrials.gov, ID: NCT04046159, Registered on April 30, 2019.
Collapse
Affiliation(s)
- Sung-Hsin Kuo
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Radiation Oncology, National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei, Taiwan
- Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ling-Ming Tseng
- Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shou-Tung Chen
- Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Yasuaki Sagara
- Department of Breast Surgical Oncology, Hakuaikai Social Cooperation, Sagara Hospital, Kagoshima, Japan
| | | | - Hsien-Tang Yeh
- Department of Surgery, Lotung Poh-Ai Hospital, Yilan, Taiwan
| | - Yao-Lung Kuo
- Division of Breast Surgery, Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Chih-Chiang Hung
- Department of Surgery, Division of Breast Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Tzu-Pin Lu
- Department of Public Health, National, Institute of Epidemiology and Preventive Medicine, Taiwan University, Taipei, Taiwan
| | - Yi-Hsuan Lee
- Department of Pathology, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Masakazu Toi
- Tokyo Metropolitan Cancer and Infectious Disease Centre, Komagome Hospital, Tokyo, Japan
| | - Chiun-Sheng Huang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan South Rd, Taipei, Taiwan.
| |
Collapse
|
8
|
Li J, Goh ELK, He J, Li Y, Fan Z, Yu Z, Yuan P, Liu DX. Emerging Intrinsic Therapeutic Targets for Metastatic Breast Cancer. BIOLOGY 2023; 12:697. [PMID: 37237509 PMCID: PMC10215321 DOI: 10.3390/biology12050697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Breast cancer is now the most common cancer worldwide, and it is also the main cause of cancer-related death in women. Survival rates for female breast cancer have significantly improved due to early diagnosis and better treatment. Nevertheless, for patients with advanced or metastatic breast cancer, the survival rate is still low, reflecting a need for the development of new therapies. Mechanistic insights into metastatic breast cancer have provided excellent opportunities for developing novel therapeutic strategies. Although high-throughput approaches have identified several therapeutic targets in metastatic disease, some subtypes such as triple-negative breast cancer do not yet have an apparent tumor-specific receptor or pathway to target. Therefore, exploring new druggable targets in metastatic disease is a high clinical priority. In this review, we summarize the emerging intrinsic therapeutic targets for metastatic breast cancer, including cyclin D-dependent kinases CDK4 and CDK6, the PI3K/AKT/mTOR pathway, the insulin/IGF1R pathway, the EGFR/HER family, the JAK/STAT pathway, poly(ADP-ribose) polymerases (PARP), TROP-2, Src kinases, histone modification enzymes, activated growth factor receptors, androgen receptors, breast cancer stem cells, matrix metalloproteinases, and immune checkpoint proteins. We also review the latest development in breast cancer immunotherapy. Drugs that target these molecules/pathways are either already FDA-approved or currently being tested in clinical trials.
Collapse
Affiliation(s)
- Jiawei Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| | - Eyleen L. K. Goh
- Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Ji He
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| | - Yan Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| | - Zhimin Fan
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Zhigang Yu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan 250033, China;
| | - Peng Yuan
- Department of VIP Medical Services, National Cancer Centre/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dong-Xu Liu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| |
Collapse
|
9
|
Zhang H, Yan S, Zhan Y, Ma S, Bian Y, Li S, Tian J, Li G, Zhong D, Diao X, Miao L. A mass balance study of [14C]SHR6390 (dalpiciclib), a selective and potent CDK4/6 inhibitor in humans. Front Pharmacol 2023; 14:1116073. [PMID: 37063263 PMCID: PMC10102643 DOI: 10.3389/fphar.2023.1116073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
SHR6390 (dalpiciclib) is a selective and effective cyclin-dependent kinase (CDK) 4/6 inhibitor and an effective cancer therapeutic agent. On 31 December 2021, the new drug application was approved by National Medical Product Administration (NMPA). The metabolism, mass balance, and pharmacokinetics of SHR6390 in 6 healthy Chinese male subjects after a single oral dose of 150 mg [14C]SHR6390 (150 µCi) in this research. The Tmax of SHR6390 was 3.00 h. In plasma, the t1/2 of SHR6390 and its relative components was approximately 17.50 h. The radioactivity B/P (blood-to-plasma) AUC0-t ratio was 1.81, indicating the preferential distribution of drug-related substances in blood cells. At 312 h after administration, the average cumulative excretion of radioactivity was 94.63% of the dose, including 22.69% in urine and 71.93% in stool. Thirteen metabolites were identified. In plasma, because of the low level of radioactivity, only SHR6390 was detected in pooled AUC0-24 h plasma. Stool SHR6390 was the main component in urine and stool. Five metabolites were identified in urine, and 12 metabolites were identified in stool. Overall, faecal clearance is the main method of excretion.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China
| | - Shu Yan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Sheng Ma
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China
| | - Yicong Bian
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China
| | - Shaorong Li
- Jiangsu Hengrui Medicine Co., Ltd., Lianyungang, Jiangsu, China
| | - Junjun Tian
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Guangze Li
- Jiangsu Hengrui Medicine Co., Ltd., Lianyungang, Jiangsu, China
| | - Dafang Zhong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Dafang Zhong, ; Xingxing Diao, ; Liyan Miao,
| | - Xingxing Diao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Dafang Zhong, ; Xingxing Diao, ; Liyan Miao,
| | - Liyan Miao
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China
- *Correspondence: Dafang Zhong, ; Xingxing Diao, ; Liyan Miao,
| |
Collapse
|
10
|
Kinnel B, Singh SK, Oprea-Ilies G, Singh R. Targeted Therapy and Mechanisms of Drug Resistance in Breast Cancer. Cancers (Basel) 2023; 15:1320. [PMID: 36831661 PMCID: PMC9954028 DOI: 10.3390/cancers15041320] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Breast cancer is the most common cause of cancer-related death in women worldwide. Multidrug resistance (MDR) has been a large hurdle in reducing BC death rates. The drug resistance mechanisms include increased drug efflux, enhanced DNA repair, senescence escape, epigenetic alterations, tumor heterogeneity, tumor microenvironment (TME), and the epithelial-to-mesenchymal transition (EMT), which make it challenging to overcome. This review aims to explain the mechanisms of resistance in BC further, identify viable drug targets, and elucidate how those targets relate to the progression of BC and drug resistance.
Collapse
Affiliation(s)
- Briana Kinnel
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Santosh Kumar Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Gabriela Oprea-Ilies
- Department of Pathology & Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
11
|
Finnegan RM, Elshazly AM, Patel NH, Tyutyunyk-Massey L, Tran TH, Kumarasamy V, Knudsen ES, Gewirtz DA. The BET inhibitor/degrader ARV-825 prolongs the growth arrest response to Fulvestrant + Palbociclib and suppresses proliferative recovery in ER-positive breast cancer. Front Oncol 2023; 12:966441. [PMID: 36741704 PMCID: PMC9890056 DOI: 10.3389/fonc.2022.966441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023] Open
Abstract
Anti-estrogens or aromatase inhibitors in combination with cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors are the current standard of care for estrogen receptor-positive (ER+) Her-2 negative metastatic breast cancer. Although these combination therapies prolong progression-free survival compared to endocrine therapy alone, the growth-arrested state of residual tumor cells is clearly transient. Tumor cells that escape what might be considered a dormant or quiescent state and regain proliferative capacity often acquire resistance to further therapies. Our studies are based upon the observation that breast tumor cells arrested by Fulvestrant + Palbociclib enter into states of both autophagy and senescence from which a subpopulation ultimately escapes, potentially contributing to recurrent disease. Autophagy inhibition utilizing pharmacologic or genetic approaches only moderately enhanced the response to Fulvestrant + Palbociclib in ER+ MCF-7 breast tumor cells, slightly delaying proliferative recovery. In contrast, the BET inhibitor/degrader, ARV-825, prolonged the growth arrested state in both p53 wild type MCF-7 cells and p53 mutant T-47D cells and significantly delayed proliferative recovery. In addition, ARV-825 added after the Fulvestrant + Palbociclib combination promoted apoptosis and demonstrated efficacy in resistant RB deficient cell lines. These studies indicate that administration of BET inhibitors/degraders, which are currently being investigated in multiple clinical trials, may potentially improve standard of care therapy in metastatic ER+ breast cancer patients and may further prolong progression-free survival.
Collapse
Affiliation(s)
- Ryan M. Finnegan
- Departments of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, United States,Departments of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Ahmed M. Elshazly
- Departments of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Nipa H. Patel
- Departments of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Liliya Tyutyunyk-Massey
- Departments of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Tammy H. Tran
- Departments of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Vishnu Kumarasamy
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Erik S. Knudsen
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - David A. Gewirtz
- Departments of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States,*Correspondence: David A. Gewirtz,
| |
Collapse
|
12
|
Rugo HS, Kabos P, Beck JT, Jerusalem G, Wildiers H, Sevillano E, Paz-Ares L, Chisamore MJ, Chapman SC, Hossain AM, Chen Y, Tolaney SM. Abemaciclib in combination with pembrolizumab for HR+, HER2- metastatic breast cancer: Phase 1b study. NPJ Breast Cancer 2022; 8:118. [PMID: 36335120 PMCID: PMC9637121 DOI: 10.1038/s41523-022-00482-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
This nonrandomized, open-label, multi-cohort Phase 1b study (NCT02779751) investigated the safety and efficacy of abemaciclib plus pembrolizumab with/without anastrozole in patients with hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2-) metastatic breast cancer (MBC) without prior CDK4 and 6 inhibitor exposure. Patients were divided into two cohorts: treatment naïve (cohort 1) and pretreated (cohort 2). Patients received abemaciclib plus pembrolizumab with (cohort 1) or without (cohort 2) anastrozole over 21-day cycles. The primary objective was safety, and secondary objectives included efficacy and pharmacokinetics (PK). Cohort 1/2 enrolled 26/28 patients, respectively. Neutropenia (30.8/28.6%), AST increase (34.6/17.9%), ALT increase (42.3/10.7%), and diarrhea (3.8/10.7%) were the most frequent grade ≥3 adverse events in cohort 1/2, respectively. A total of two deaths occurred, which investigators attributed to treatment-related adverse events (AEs), both in cohort 1. Higher rates of all grade and grade ≥3 interstitial lung disease (ILD)/pneumonitis were observed compared to previously reported with abemaciclib and pembrolizumab monotherapy. The PK profiles were consistent between cohorts and with previous monotherapy studies. In cohorts 1/2, the overall response rate and disease control rate were 23.1/28.6% and 84.6/82.1%, respectively. Median progression-free survival and overall survivals were 8.9 (95% CI: 3.9-11.1) and 26.3 months (95% CI: 20.0-31.0) for cohort 2; cohort 1 data are immature. Abemaciclib plus pembrolizumab demonstrated antitumor activity, but high rates of ILD/pneumonitis and severe transaminase elevations occurred with/without anastrozole compared to the previous reporting. Benefit/risk analysis does not support further evaluation of this combination in the treatment of HR+, HER2- MBC.
Collapse
Affiliation(s)
- Hope S Rugo
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA.
| | - Peter Kabos
- Divisions of Medical Oncology, Department of Medicine, University of Colorado, Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO, 80045, USA
| | - J Thad Beck
- Highlands Oncology Group, Fayetteville, AR, USA
| | - Guy Jerusalem
- Laboratory of Medical Oncology, University of Liège, Liège, Belgium
- Department of Medical Oncology, CHU Sart-Tilman Liège, Liège, Belgium
| | - Hans Wildiers
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Elena Sevillano
- Department of Medical Oncology, Centro Integral Oncologico Clara Campal, Madrid, Spain
| | - Luis Paz-Ares
- Hospital Universitario 12 de Octubre, CNIO-H120 Lung Cancer Unit, Universidad Complutense and Ciberonc, Madrid, Spain
| | | | | | | | - Yanyun Chen
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Sara M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
13
|
Kostecka A, Nowikiewicz T, Olszewski P, Koczkowska M, Horbacz M, Heinzl M, Andreou M, Salazar R, Mair T, Madanecki P, Gucwa M, Davies H, Skokowski J, Buckley PG, Pęksa R, Śrutek E, Szylberg Ł, Hartman J, Jankowski M, Zegarski W, Tiemann-Boege I, Dumanski JP, Piotrowski A. High prevalence of somatic PIK3CA and TP53 pathogenic variants in the normal mammary gland tissue of sporadic breast cancer patients revealed by duplex sequencing. NPJ Breast Cancer 2022; 8:76. [PMID: 35768433 PMCID: PMC9243094 DOI: 10.1038/s41523-022-00443-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 06/10/2022] [Indexed: 11/08/2022] Open
Abstract
The mammary gland undergoes hormonally stimulated cycles of proliferation, lactation, and involution. We hypothesized that these factors increase the mutational burden in glandular tissue and may explain high cancer incidence rate in the general population, and recurrent disease. Hence, we investigated the DNA sequence variants in the normal mammary gland, tumor, and peripheral blood from 52 reportedly sporadic breast cancer patients. Targeted resequencing of 542 cancer-associated genes revealed subclonal somatic pathogenic variants of: PIK3CA, TP53, AKT1, MAP3K1, CDH1, RB1, NCOR1, MED12, CBFB, TBX3, and TSHR in the normal mammary gland at considerable allelic frequencies (9 × 10-2- 5.2 × 10-1), indicating clonal expansion. Further evaluation of the frequently damaged PIK3CA and TP53 genes by ultra-sensitive duplex sequencing demonstrated a diversified picture of multiple low-level subclonal (in 10-2-10-4 alleles) hotspot pathogenic variants. Our results raise a question about the oncogenic potential in non-tumorous mammary gland tissue of breast-conserving surgery patients.
Collapse
Affiliation(s)
- Anna Kostecka
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland.
- 3P Medicine Lab, Medical University of Gdansk, Gdansk, Poland.
| | - Tomasz Nowikiewicz
- Department of Surgical Oncology, Ludwik Rydygier's Collegium Medicum UMK, Bydgoszcz, Poland.
- Department of Breast Cancer and Reconstructive Surgery, Prof. F. Lukaszczyk Oncology Center, Bydgoszcz, Poland.
| | - Paweł Olszewski
- 3P Medicine Lab, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Koczkowska
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
- 3P Medicine Lab, Medical University of Gdansk, Gdansk, Poland
| | - Monika Horbacz
- 3P Medicine Lab, Medical University of Gdansk, Gdansk, Poland
| | - Monika Heinzl
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Maria Andreou
- 3P Medicine Lab, Medical University of Gdansk, Gdansk, Poland
| | - Renato Salazar
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Theresa Mair
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Piotr Madanecki
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Gucwa
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Hanna Davies
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jarosław Skokowski
- Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | | | - Rafał Pęksa
- Department of Patomorphology, Medical University of Gdansk, Gdansk, Poland
| | - Ewa Śrutek
- Department of Surgical Oncology, Ludwik Rydygier's Collegium Medicum UMK, Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Tumor Pathology, Prof. F. Lukaszczyk Oncology Center, Bydgoszcz, Poland
- Department of Perinatology, Gynaecology and Gynaecologic, Oncology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Johan Hartman
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology, Karolinska University Hospital, Stockholm, Sweden
- MedTech Labs, Bioclinicum, Karolinska University Hospital, Stockholm, Sweden
| | - Michał Jankowski
- Department of Surgical Oncology, Ludwik Rydygier's Collegium Medicum UMK, Bydgoszcz, Poland
| | - Wojciech Zegarski
- Department of Surgical Oncology, Ludwik Rydygier's Collegium Medicum UMK, Bydgoszcz, Poland
| | | | - Jan P Dumanski
- 3P Medicine Lab, Medical University of Gdansk, Gdansk, Poland
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Arkadiusz Piotrowski
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland.
- 3P Medicine Lab, Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
14
|
Nath A, Cohen AL, Bild AH. ENDORSE: a prognostic model for endocrine therapy in estrogen-receptor-positive breast cancers. Mol Syst Biol 2022; 18:e10558. [PMID: 35671075 PMCID: PMC9172932 DOI: 10.15252/msb.202110558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
Advanced and metastatic estrogen receptor-positive (ER+ ) breast cancers are often endocrine resistant. However, endocrine therapy remains the primary treatment for all advanced ER+ breast cancers. Treatment options that may benefit resistant cancers, such as add-on drugs that target resistance pathways or switching to chemotherapy, are only available after progression on endocrine therapy. Here we developed an endocrine therapy prognostic model for early and advanced ER+ breast cancers. The endocrine resistance (ENDORSE) model is composed of two components, each based on the empirical cumulative distribution function of ranked expression of gene signatures. These signatures include a feature set associated with long-term survival outcomes on endocrine therapy selected using lasso-regularized Cox regression and a pathway-based curated set of genes expressed in response to estrogen. We extensively validated ENDORSE in multiple ER+ clinical trial datasets and demonstrated superior and consistent performance of the model over clinical covariates, proliferation markers, and multiple published signatures. Finally, genomic and pathway analyses in patient data revealed possible mechanisms that may help develop rational stratification strategies for endocrine-resistant ER+ breast cancer patients.
Collapse
Affiliation(s)
- Aritro Nath
- Department of Medical Oncology and TherapeuticsCity of Hope Comprehensive Cancer CenterMonroviaCAUSA
| | - Adam L Cohen
- Neuro Oncology ProgramInova Schar Cancer InstituteFairfaxVAUSA
| | - Andrea H Bild
- Department of Medical Oncology and TherapeuticsCity of Hope Comprehensive Cancer CenterMonroviaCAUSA
| |
Collapse
|
15
|
Bergamino MA, Morani G, Parker J, Schuster EF, Leal MF, López-Knowles E, Tovey H, Bliss JM, Robertson JF, Smith IE, Dowsett M, Cheang MC. Impact of Duration of Neoadjuvant Aromatase Inhibitors on Molecular Expression Profiles in Estrogen Receptor-positive Breast Cancers. Clin Cancer Res 2022; 28:1217-1228. [PMID: 34965950 PMCID: PMC7612503 DOI: 10.1158/1078-0432.ccr-21-2718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/18/2021] [Accepted: 12/16/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Aromatase inhibitor (AI) treatment is the standard of care for postmenopausal women with primary estrogen receptor-positive breast cancer. The impact of duration of neoadjuvant endocrine therapy (NET) on molecular characteristics is still unknown. We evaluated and compared changes of gene expression profiles under short-term (2-week) versus longer-term neoadjuvant AIs. EXPERIMENTAL DESIGN Global gene expression profiles from the PeriOperative Endocrine Therapy for Individualised Care (POETIC) trial (137 received 2 weeks of AIs and 47 received no treatment) and targeted gene expression from 80 patients with breast cancer treated with NET for more than 1 month (NeoAI) were assessed. Intrinsic subtyping, module scores covering different cancer pathways and immune-related genes were calculated for pretreated and posttreated tumors. RESULTS The differences in intrinsic subtypes after NET were comparable between the two cohorts, with most Luminal B (90.0% in the POETIC trial and 76.3% in NeoAI) and 50.0% of HER2 enriched at baseline reclassified as Luminal A or normal-like after NET. Downregulation of proliferative-related pathways was observed after 2 weeks of AIs. However, more changes in genes from cancer-signaling pathways such as MAPK and PI3K/AKT/mTOR and immune response/immune-checkpoint components that were associated with AI-resistant tumors and differential outcome were observed in the NeoAI study. CONCLUSIONS Tumor transcriptional profiles undergo bigger changes in response to longer NET. Changes in HER2-enriched and Luminal B subtypes are similar between the two cohorts, thus AI-sensitive intrinsic subtype tumors associated with good survival might be identified after 2 weeks of AI. The changes of immune-checkpoint component expression in early AI resistance and its impact on survival outcome warrants careful investigation in clinical trials.
Collapse
Affiliation(s)
- Milana A. Bergamino
- Clinical Trials and Statistics Unit (ICR-CTSU)- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Gabriele Morani
- Clinical Trials and Statistics Unit (ICR-CTSU)- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Joel Parker
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | - Holly Tovey
- Clinical Trials and Statistics Unit (ICR-CTSU)- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Judith M. Bliss
- Clinical Trials and Statistics Unit (ICR-CTSU)- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - John F.R. Robertson
- Faculty of Medicine & Health Sciences, Queen's Medical Centre, Nottingham, United Kingdom
| | | | - Mitch Dowsett
- Royal Marsden Hospital, London, United Kingdom.,Breast Cancer Now Research Centre, The Institute of Cancer Research, Sutton, London, United Kingdom
| | - Maggie C.U. Cheang
- Clinical Trials and Statistics Unit (ICR-CTSU)- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom.,Corresponding Author: Maggie C.U. Cheang, Clinical Trials and Statistics Unit (ICR-CTSU), The Institute of Cancer Research, 15 Cotswold Rd, Sutton SM2 5NG, United Kingdom. Phone: 4420-8722-4552; E-mail:
| |
Collapse
|
16
|
Biological Effects of Cyclin-Dependent Kinase Inhibitors Ribociclib, Palbociclib and Abemaciclib on Breast Cancer Bone Microenvironment. Int J Mol Sci 2022; 23:ijms23052477. [PMID: 35269621 PMCID: PMC8910497 DOI: 10.3390/ijms23052477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 12/18/2022] Open
Abstract
The CDK4/6 inhibitors (CDKi) palbociclib, ribociclib, and abemaciclib are currently approved in combination with anti-estrogen therapy for the treatment of advanced and/or metastatic hormone receptor-positive/HER2-neu-negative breast cancer patients. Given the high incidence of bone metastases in this population, we investigated and compared the potential effects of palbociclib, ribociclib, and abemaciclib on the breast cancer bone microenvironment. Primary osteoclasts (OCs) and osteoblasts (OBs) were obtained from human monocyte and mesenchymal stem cells, respectively. OC function was evaluated by tartrate-resistant acid phosphatase assay and real-time PCR; OB activity was assessed by an alizarin red assay. OB/breast cancer co-culture models were generated via the seeding of MCF-7 cells on a layer of OBs, and tumor cell proliferation was analyzed using flow cytometry. Here, we showed that ribociclib, palbociclib, and abemaciclib exerted similar inhibitory effects on the OC differentiation and expression of bone resorption markers without affecting OC viability. On the other hand, the three CDKi did not affect the ability of OB to produce bone matrix, even if the higher doses of palbociclib and abemaciclib reduced the OB viability. In OB/MCF-7 co-culture models, palbociclib demonstrated a lower anti-tumor effect than ribociclib and abemaciclib. Overall, our results revealed the direct effects of CDKi on the tumor bone microenvironment, highlighting differences potentially relevant for clinical practice.
Collapse
|
17
|
Ettl T, Schulz D, Bauer RJ. The Renaissance of Cyclin Dependent Kinase Inhibitors. Cancers (Basel) 2022; 14:293. [PMID: 35053461 PMCID: PMC8773807 DOI: 10.3390/cancers14020293] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
Cyclin-dependent kinases (CDK) regulate cell cycle progression. During tumor development, altered expression and availability of CDKs strongly contribute to impaired cell proliferation, a hallmark of cancer. In recent years, targeted inhibition of CDKs has shown considerable therapeutic benefit in a variety of tumor entities. Their success is reflected in clinical approvals of specific CDK4/6 inhibitors for breast cancer. This review provides a detailed insight into the molecular mechanisms of CDKs as well as a general overview of CDK inhibition. It also summarizes the latest research approaches and current advances in the treatment of head and neck cancer with CDK inhibitors. Instead of monotherapies, combination therapies with CDK inhibitors may especially provide promising results in tumor therapy. Indeed, recent studies have shown a synergistic effect of CDK inhibition together with chemo- and radio- and immunotherapy in cancer treatment to overcome tumor evasion, which may lead to a renaissance of CDK inhibitors.
Collapse
Affiliation(s)
- Tobias Ettl
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Daniela Schulz
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
- Center for Medical Biotechnology, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Richard Josef Bauer
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
- Center for Medical Biotechnology, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
18
|
Garufi G, Carbognin L, Orlandi A, Palazzo A, Tortora G, Bria E. The Therapeutic Challenge of Disseminated Bone Marrow Metastasis From HR-Positive HER2-Negative Breast Cancer: Case Report and Review of the Literature. Front Oncol 2021; 11:651723. [PMID: 34692469 PMCID: PMC8529000 DOI: 10.3389/fonc.2021.651723] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/10/2021] [Indexed: 01/15/2023] Open
Abstract
The efficacy and safety of the combination of endocrine therapy (ET) and CDK4/6 inhibitors for patients with hormone receptor (HR)-positive HER2-negative metastatic breast cancer (BC) presenting with visceral crisis or life-threatening conditions represent a challenge for daily clinical practice. Indeed, the peculiarity of this clinical presentation (signs and symptoms of rapidly progressive disease) does not allow to include such patients in a trial aiming for drug approval. On the basis of the scientific evidence available so far, chemotherapy represents the standard of care according to guidelines, on the basis of the more rapid activity in comparison with ET alone. Besides, the combination of ET and CDK4/6 inhibitors have demonstrated in clinical trials to have clinically impactful activity in a short time, thus suggesting a potential role in advanced tumors that require rapid response. Herein, we report the clinical history of a young woman with HR-positive HER2-negative metastatic BC and a pancytopenia due to carcinomatosis of the bone marrow receiving letrozole and leuprorelin plus the CDK4/6 inhibitor palbociclib, who significantly derived clinical benefit from treatment. Considering that these peculiar cases are excluded from clinical trials, the estimation of the magnitude of the benefit of the newer ET combination may potentially represent a practical question for large case series and real-world studies.
Collapse
Affiliation(s)
- Giovanna Garufi
- Oncologia Medica, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy.,Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Luisa Carbognin
- Division of Gynecologic Oncology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Armando Orlandi
- Oncologia Medica, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Antonella Palazzo
- Oncologia Medica, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Giampaolo Tortora
- Oncologia Medica, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy.,Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Emilio Bria
- Oncologia Medica, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy.,Università Cattolica Del Sacro Cuore, Roma, Italy
| |
Collapse
|
19
|
Su K, Yu Q, Shen R, Sun SY, Moreno CS, Li X, Qin ZS. Pan-cancer analysis of pathway-based gene expression pattern at the individual level reveals biomarkers of clinical prognosis. CELL REPORTS METHODS 2021; 1:100050. [PMID: 34671755 PMCID: PMC8525796 DOI: 10.1016/j.crmeth.2021.100050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/07/2021] [Accepted: 06/16/2021] [Indexed: 02/08/2023]
Abstract
Identifying biomarkers to predict the clinical outcomes of individual patients is a fundamental problem in clinical oncology. Multiple single-gene biomarkers have already been identified and used in clinics. However, multiple oncogenes or tumor-suppressor genes are involved during the process of tumorigenesis. Additionally, the efficacy of single-gene biomarkers is limited by the extensively variable expression levels measured by high-throughput assays. In this study, we hypothesize that in individual tumor samples, the disruption of transcription homeostasis in key pathways or gene sets plays an important role in tumorigenesis and has profound implications for the patient's clinical outcome. We devised a computational method named iPath to identify, at the individual-sample level, which pathways or gene sets significantly deviate from their norms. We conducted a pan-cancer analysis and demonstrated that iPath is capable of identifying highly predictive biomarkers for clinical outcomes, including overall survival, tumor subtypes, and tumor-stage classifications.
Collapse
Affiliation(s)
- Kenong Su
- Department of Computer Science, Emory University, Atlanta, GA 30322, USA
| | - Qi Yu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| | - Ronglai Shen
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10017, USA
| | - Shi-Yong Sun
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Carlos S. Moreno
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiaoxian Li
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhaohui S. Qin
- Department of Computer Science, Emory University, Atlanta, GA 30322, USA
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
20
|
Coussy F, El-Botty R, Château-Joubert S, Dahmani A, Montaudon E, Leboucher S, Morisset L, Painsec P, Sourd L, Huguet L, Nemati F, Servely JL, Larcher T, Vacher S, Briaux A, Reyes C, La Rosa P, Lucotte G, Popova T, Foidart P, Sounni NE, Noel A, Decaudin D, Fuhrmann L, Salomon A, Reyal F, Mueller C, Ter Brugge P, Jonkers J, Poupon MF, Stern MH, Bièche I, Pommier Y, Marangoni E. BRCAness, SLFN11, and RB1 loss predict response to topoisomerase I inhibitors in triple-negative breast cancers. Sci Transl Med 2021; 12:12/531/eaax2625. [PMID: 32075943 DOI: 10.1126/scitranslmed.aax2625] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 10/17/2019] [Accepted: 01/16/2020] [Indexed: 12/16/2022]
Abstract
Topoisomerase I (TOP1) inhibitors trap TOP1 cleavage complexes resulting in DNA double-strand breaks (DSBs) during replication, which are repaired by homologous recombination (HR). Triple-negative breast cancer (TNBC) could be eligible for TOP1 inhibitors given the considerable proportion of tumors with a defect in HR-mediated repair (BRCAness). The TOP1 inhibitor irinotecan was tested in 40 patient-derived xenografts (PDXs) of TNBC. BRCAness was determined with a single-nucleotide polymorphism (SNP) assay, and expression of Schlafen family member 11 (SLFN11) and retinoblastoma transcriptional corepressor 1 (RB1) was evaluated by real-time polymerase chain reaction (RT-PCR) and immunohistochemistry analyses. In addition, the combination of irinotecan and the ataxia telangiectasia and Rad3-related protein (ATR) inhibitor VE-822 was tested in SLFN11-negative PDXs, and two clinical non-camptothecin TOP1 inhibitors (LMP400 and LMP776) were tested. Thirty-eight percent of the TNBC models responded to irinotecan. BRCAness combined with high SLFN11 expression and RB1 loss identified highly sensitive tumors, consistent with the notion that deficiencies in cell cycle checkpoints and DNA repair result in high sensitivity to TOP1 inhibitors. Treatment by the ATR inhibitor VE-822 increased sensitivity to irinotecan in SLFN11-negative PDXs and abolished irinotecan-induced phosphorylation of checkpoint kinase 1 (CHK1). LMP400 (indotecan) and LMP776 (indimitecan) showed high antitumor activity in BRCA1-mutated or BRCAness-positive PDXs. Last, low SLFN11 expression was associated with poor survival in 250 patients with TNBC treated with anthracycline-based chemotherapy. In conclusion, a substantial proportion of TNBC respond to irinotecan. BRCAness, high SLFN11 expression, and RB1 loss are highly predictive of response to irinotecan and the clinical indenoisoquinoline TOP1 inhibitors.
Collapse
Affiliation(s)
- Florence Coussy
- Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France.,Medical Oncology Department, Institut Curie, PSL Research University, 75005 Paris, France.,Genetics Department, Institut Curie, PSL Research University, 75005 Paris, France
| | - Rania El-Botty
- Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France
| | | | - Ahmed Dahmani
- Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France
| | - Elodie Montaudon
- Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France
| | - Sophie Leboucher
- Institut Curie, PSL Research University, UMR3306, 91405 Orsay, France
| | - Ludivine Morisset
- Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France
| | - Pierre Painsec
- Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France
| | - Laura Sourd
- Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France
| | - Léa Huguet
- Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France
| | - Fariba Nemati
- Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France
| | - Jean-Luc Servely
- BioPôle Alfort, Ecole Nationale Vétérinaire d'Alfort, 94704 Maisons Alfort, France.,INRA, PHASE Department, 37380 Nouzilly, France
| | | | - Sophie Vacher
- Genetics Department, Institut Curie, PSL Research University, 75005 Paris, France
| | - Adrien Briaux
- Genetics Department, Institut Curie, PSL Research University, 75005 Paris, France
| | - Cécile Reyes
- Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France
| | - Philippe La Rosa
- INSERM, U900, 75005 Paris, France.,Institut Curie, PSL Research University, 75005 Paris, France
| | - Georges Lucotte
- INSERM, U900, 75005 Paris, France.,Institut Curie, PSL Research University, 75005 Paris, France
| | - Tatiana Popova
- Institut Curie, PSL Research University, 75005 Paris, France.,INSERM U830, 75005 Paris, France
| | - Pierre Foidart
- Laboratory of Tumor and Developmental Biology, Groupe Interdisciplinaire de Génoprotéomique Appliqué-Cancer (GIGA-Cancer), University of Liège, Liège 4000, Belgium
| | - Nor Eddine Sounni
- Laboratory of Tumor and Developmental Biology, Groupe Interdisciplinaire de Génoprotéomique Appliqué-Cancer (GIGA-Cancer), University of Liège, Liège 4000, Belgium
| | - Agnès Noel
- Laboratory of Tumor and Developmental Biology, Groupe Interdisciplinaire de Génoprotéomique Appliqué-Cancer (GIGA-Cancer), University of Liège, Liège 4000, Belgium
| | - Didier Decaudin
- Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France.,Medical Oncology Department, Institut Curie, PSL Research University, 75005 Paris, France
| | - Laetitia Fuhrmann
- Department of Pathology, Institut Curie, PSL Research University, 75005 Paris, France
| | - Anne Salomon
- Department of Pathology, Institut Curie, PSL Research University, 75005 Paris, France
| | - Fabien Reyal
- Surgery Department, Institut Curie, PSL Research University, 75005 Paris, France.,U932, Immunity and Cancer, INSERM, Institut Curie, 75005 Paris, France
| | - Christopher Mueller
- Queen's Cancer Research Institute, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Petra Ter Brugge
- Division of Molecular Pathology and Cancer Genomics Centre Netherlands, Netherlands Cancer Institute, Amsterdam, 1066 CX, Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology and Cancer Genomics Centre Netherlands, Netherlands Cancer Institute, Amsterdam, 1066 CX, Netherlands
| | - Marie-France Poupon
- Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France
| | - Marc-Henri Stern
- Institut Curie, PSL Research University, 75005 Paris, France.,INSERM U830, 75005 Paris, France
| | - Ivan Bièche
- Genetics Department, Institut Curie, PSL Research University, 75005 Paris, France
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Elisabetta Marangoni
- Translational Research Department, Institut Curie, PSL Research University, 75005 Paris, France.
| |
Collapse
|
21
|
Regua AT, Arrigo A, Doheny D, Wong GL, Lo HW. Transgenic mouse models of breast cancer. Cancer Lett 2021; 516:73-83. [PMID: 34090924 DOI: 10.1016/j.canlet.2021.05.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/26/2022]
Abstract
Transgenic breast cancer mouse models are critical tools for preclinical studies of human breast cancer. Genetic editing of the murine mammary gland allows for modeling of abnormal genetic events frequently found in human breast cancers. Genetically engineered mouse models (GEMMs) of breast cancer employ tissue-specific genetic manipulation for tumorigenic induction within the mammary tissue. Under the transcriptional control of mammary-specific promoters, transgenic mouse models can simulate spontaneous mammary tumorigenesis by expressing one or more putative oncogenes, such as MYC, HRAS, and PIK3CA. Alternatively, the Cre-Lox system allows for tissue-specific deletion of tumor suppressors, such as p53, Rb1, and Brca1, or specific knock-in of putative oncogenes. Thus, GEMMs can be designed to implement one or more genetic events to induce mammary tumorigenesis. Features of GEMMs, such as age of transgene expression, breeding quality, tumor latency, histopathological characteristics, and propensity for local and distant metastasis, are variable and strain-dependent. This review aims to summarize currently available transgenic breast cancer mouse models that undergo spontaneous mammary tumorigenesis upon genetic manipulation, their varying characteristics, and their individual genetic manipulations that model aberrant signaling events observed in human breast cancers.
Collapse
Affiliation(s)
- Angelina T Regua
- Department of Cancer Biology, Wake Forest University School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, USA.
| | - Austin Arrigo
- Department of Cancer Biology, Wake Forest University School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, USA.
| | - Daniel Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, USA.
| | - Grace L Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, USA.
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, USA; Breast Cancer Center of Excellence, Wake Forest University School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, USA; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, USA.
| |
Collapse
|
22
|
Ma G, Liu C, Lian W, Zhang Y, Yuan H, Zhang Y, Song S, Yang Z. 18F-FLT PET/CT imaging for early monitoring response to CDK4/6 inhibitor therapy in triple negative breast cancer. Ann Nucl Med 2021; 35:600-607. [PMID: 33689138 DOI: 10.1007/s12149-021-01603-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Our study was to investigate 18F-FLT PET/CT imaging monitor the early response of CDK4/6 inhibitor therapy in triple negative breast cancer (TNBC). METHODS MDA-MB-231 and MDA-MB-468 cell lines and corresponding subcutaneous tumor models in CB17-SCID mice were used. Cell viability assay, cell-cycle analysis, and western blotting were performed in vitro experiments. 18F-FLT PET/CT imaging was performed and the value of tumor/muscle (T/M) of mice was measured before and 1-3 days after treatment in vivo experiments. Then, the tumor volume was recorded every day for 15 days. RESULTS In the presence of Palbociclib (CDK4/6 inhibitor), the results of in vitro experiments showed that protein pRB and E2F levels were significantly down-regulated in MDA-MB-231 cells leading to G0/G1 arrest with consumption in S phase compared with MDA-MB-468 cells. In PET/CT imaging, the 18F-FLT T/M ratio of treatment group was a significant and sustained reduction from 1 to 3 days (all p < 0.05) compared with control group in MDA-MB-231 section. However, there was no significant difference between treatment and control groups in MDA-MB-468 section. Compared with the control group, the tumor volume of the treatment group was significantly reduced from the 11th day in MDA-MB-231 section, but not in MDA-MB-468 section until 15 days. CONCLUSION 18F-FLT PET/CT imaging can immediately and effectively monitor the early treatment response of CDK4/6 inhibitors in TNBC.
Collapse
Affiliation(s)
- Guang Ma
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Cheng Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Weiling Lian
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Yongping Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Huiyu Yuan
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Yingjian Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China.
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China.
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China.
| | - Zhongyi Yang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China.
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China.
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China.
| |
Collapse
|
23
|
Saha S, Dey S, Nath S. Steroid Hormone Receptors: Links With Cell Cycle Machinery and Breast Cancer Progression. Front Oncol 2021; 11:620214. [PMID: 33777765 PMCID: PMC7994514 DOI: 10.3389/fonc.2021.620214] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Progression of cells through cell cycle consists of a series of events orchestrated in a regulated fashion. Such processes are influenced by cell cycle regulated expression of various proteins where multiple families of transcription factors take integral parts. Among these, the steroid hormone receptors (SHRs) represent a connection between the external hormone milieu and genes that control cellular proliferation. Therefore, understanding the molecular connection between the transcriptional role of steroid hormone receptors and cell cycle deserves importance in dissecting cellular proliferation in normal as well as malignant conditions. Deregulation of cell cycle promotes malignancies of various origins, including breast cancer. Indeed, SHR members play crucial role in breast cancer progression as well as management. This review focuses on SHR-driven cell cycle regulation and moving forward, attempts to discuss the role of SHR-driven crosstalk between cell cycle anomalies and breast cancer.
Collapse
Affiliation(s)
- Suryendu Saha
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Samya Dey
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Somsubhra Nath
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| |
Collapse
|
24
|
Kumarasamy V, Vail P, Nambiar R, Witkiewicz AK, Knudsen ES. Functional Determinants of Cell Cycle Plasticity and Sensitivity to CDK4/6 Inhibition. Cancer Res 2021; 81:1347-1360. [PMID: 33323381 PMCID: PMC8026500 DOI: 10.1158/0008-5472.can-20-2275] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/06/2020] [Accepted: 12/10/2020] [Indexed: 11/16/2022]
Abstract
Intrinsic or acquired resistance to clinically approved CDK4/6 inhibitors has emerged as a major obstacle that hinders their utility beyond ER+ breast cancer. In this study, CDK4/6-dependent and -resistant models were employed to identify functional determinants of response to pharmacologic CDK4/6 inhibitors. In all models tested, the activation of RB and inhibition of CDK2 activity emerged as determinants of sensitivity. While depleting CDK4 and 6 was sufficient to limit proliferation in specific resistance settings, RB loss rendered cells completely independent of these kinases. The main downstream target in this context was the activation status of CDK2, which was suppressed with CDK4/6 inhibition in an RB-dependent fashion. Protein levels of p27 were associated with plasticity/rigidity of the cell cycle and correlated with sensitivity to CDK4/6 inhibition. Exogenous overexpression and pharmacologic induction of p27 via inhibition of SKP2 and targeting the MEK/ERK pathway enhanced the cytostatic effect of CDK4/6 inhibitors. Mice bearing ER+ xenografts displayed a durable antitumor response to palbociclib; however, over the course of treatment, few cells retained RB phosphorylation, which was associated with limited p27 protein levels as determined by multispectral imaging. Similarly, combination treatment of palbociclib with a MEK inhibitor in pancreatic cancer PDX models upregulated p27 and further enhanced the in vivo tumor response to palbociclib. Collectively, these results suggest that the cell cycle plasticity, which enables tumor models to evade palbociclib-mediated activation of RB, could be targeted using a clinically applicable CDK2 inhibitor. SIGNIFICANCE: This work provides a mechanistic insight toward understanding the functional roles of multiple cell cycle regulators that drive plasticity and sensitivity to CDK4/6 inhibition.
Collapse
Affiliation(s)
- Vishnu Kumarasamy
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, New York
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York
| | - Paris Vail
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, New York
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York
| | - Ram Nambiar
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, New York
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York
| | - Agnieszka K Witkiewicz
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, New York.
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York
| | - Erik S Knudsen
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, New York.
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
25
|
Wright MD, Abraham MJ. Preclinical discovery and development of abemaciclib used to treat breast cancer. Expert Opin Drug Discov 2021; 16:485-496. [PMID: 33280445 DOI: 10.1080/17460441.2021.1853097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Cyclin-dependent kinase (CDK) 4/6 inhibitors have altered the standard-of-care treatment for patients with ER-positive, HER2-negative metastatic breast cancer. One such inhibitor, abemaciclib, a reversible ATP-competitive CDK4/6 inhibitor developed by Eli Lilly and Company, was approved by the FDA for ER-positive, HER2-negative metastatic breast cancer.Areas covered: Preclinical studies revealed abemaciclib's distinct structure, efficacy as monotherapy, and ability to penetrate the Central Nervous System. In this review, the authors have examined the literature regarding the development of CDK 4/6 inhibitors before providing a focused review on the preclinical discovery and development of abemaciclib. The authors then conclude their manuscript by providing their expert opinion and future perspectives.Expert opinion: Understanding the genesis and evolution from concept to approval and beyond will allow one to analyze the impact of abemaciclib. With its unique characteristics, abemaciclib has provided a meaningful addition to the therapeutic arsenal for metastatic breast cancer. There is, however, a need for predictive biomarkers to identify patients who may not benefit from or may develop resistance to CDK4/6 inhibition.
Collapse
Affiliation(s)
- Matthew D Wright
- Department of Hematology Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Md Jame Abraham
- Department of Hematology Oncology, Taussig Cancer Institute; Lerner College of Medicine, Cleveland Clinic, Cleveland
| |
Collapse
|
26
|
Gomatou G, Trontzas I, Ioannou S, Drizou M, Syrigos N, Kotteas E. Mechanisms of resistance to cyclin-dependent kinase 4/6 inhibitors. Mol Biol Rep 2021; 48:915-925. [PMID: 33409716 DOI: 10.1007/s11033-020-06100-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022]
Abstract
Cyclin-dependent kinase (CDK) 4/6 inhibitors have emerged in the treatment of metastatic hormone receptor (HR)-positive and human epidermal growth factor receptor 2 (HER2)-negative breast cancer. However, most patients will eventually present disease progression, highlighting the inevitable resistance of cancer cells to CDK4/6 inhibition. Several studies have suggested that resistance mechanisms involve aberrations of the molecules that regulate the cell cycle, and the re-wiring of the cell to escape CDK4/6 dependence and turn to alternative pathways. Loss of retinoblastoma function, overexpression of CDK 6, upregulation of cyclin E, overexpression of CDK 7, and dysregulation of several signaling pathways, notably the PI3/AKT/mTOR pathway, have been implicated in the development of resistance to CDK4/6 inhibitors. Overlap with endocrine resistance mechanisms might be possible. Combinational therapeutic strategies should be explored in order to prevent resistance and optimize the management of patients after progression under CDK 4/6 inhibition.
Collapse
Affiliation(s)
- Georgia Gomatou
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| | - Ioannis Trontzas
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stephanie Ioannou
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Drizou
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Syrigos
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elias Kotteas
- Oncology Unit, 3rd Department of Medicine, 'Sotiria' General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
27
|
Fang J, Pian C, Xu M, Kong L, Li Z, Ji J, Zhang L, Chen Y. Revealing Prognosis-Related Pathways at the Individual Level by a Comprehensive Analysis of Different Cancer Transcription Data. Genes (Basel) 2020; 11:genes11111281. [PMID: 33138076 PMCID: PMC7692404 DOI: 10.3390/genes11111281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Identifying perturbed pathways at an individual level is important to discover the causes of cancer and develop individualized custom therapeutic strategies. Though prognostic gene lists have had success in prognosis prediction, using single genes that are related to the relevant system or specific network cannot fully reveal the process of tumorigenesis. We hypothesize that in individual samples, the disruption of transcription homeostasis can influence the occurrence, development, and metastasis of tumors and has implications for patient survival outcomes. Here, we introduced the individual-level pathway score, which can measure the correlation perturbation of the pathways in a single sample well. We applied this method to the expression data of 16 different cancer types from The Cancer Genome Atlas (TCGA) database. Our results indicate that different cancer types as well as their tumor-adjacent tissues can be clearly distinguished by the individual-level pathway score. Additionally, we found that there was strong heterogeneity among different cancer types and the percentage of perturbed pathways as well as the perturbation proportions of tumor samples in each pathway were significantly different. Finally, the prognosis-related pathways of different cancer types were obtained by survival analysis. We demonstrated that the individual-level pathway score (iPS) is capable of classifying cancer types and identifying some key prognosis-related pathways.
Collapse
Affiliation(s)
- Jingya Fang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (J.F.); (M.X.); (L.K.); (Z.L.); (J.J.)
| | - Cong Pian
- Department of Mathematics, College of Science, Nanjing Agricultural University, Nanjing 210095, China;
| | - Mingmin Xu
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (J.F.); (M.X.); (L.K.); (Z.L.); (J.J.)
| | - Lingpeng Kong
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (J.F.); (M.X.); (L.K.); (Z.L.); (J.J.)
| | - Zutan Li
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (J.F.); (M.X.); (L.K.); (Z.L.); (J.J.)
| | - Jinwen Ji
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (J.F.); (M.X.); (L.K.); (Z.L.); (J.J.)
| | - Liangyun Zhang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (J.F.); (M.X.); (L.K.); (Z.L.); (J.J.)
- Correspondence: (L.Z.); (Y.C.)
| | - Yuanyuan Chen
- Department of Mathematics, College of Science, Nanjing Agricultural University, Nanjing 210095, China;
- Correspondence: (L.Z.); (Y.C.)
| |
Collapse
|
28
|
Chen Y, Sadasivan SM, She R, Datta I, Taneja K, Chitale D, Gupta N, Davis MB, Newman LA, Rogers CG, Paris PL, Li J, Rybicki BA, Levin AM. Breast and prostate cancers harbor common somatic copy number alterations that consistently differ by race and are associated with survival. BMC Med Genomics 2020; 13:116. [PMID: 32819446 PMCID: PMC7441621 DOI: 10.1186/s12920-020-00765-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 08/10/2020] [Indexed: 11/26/2022] Open
Abstract
Background Pan-cancer studies of somatic copy number alterations (SCNAs) have demonstrated common SCNA patterns across cancer types, but despite demonstrable differences in aggressiveness of some cancers by race, pan-cancer SCNA variation by race has not been explored. This study investigated a) racial differences in SCNAs in both breast and prostate cancer, b) the degree to which they are shared across cancers, and c) the impact of these shared, race-differentiated SCNAs on cancer survival. Methods Utilizing data from The Cancer Genome Atlas (TCGA), SCNAs were identified using GISTIC 2.0, and in each tumor type, differences in SCNA magnitude between African Americans (AA) and European Americans (EA) were tested using linear regression. Unsupervised hierarchical clustering of the copy number of genes residing in race-differentiated SCNAs shared between tumor types was used to identify SCNA-defined patient groups, and Cox proportional hazards regression was used to test for association between those groups and overall/progression-free survival (PFS). Results We identified SCNAs that differed by race in breast (n = 58 SCNAs; permutation p < 10− 4) and prostate tumors (n = 78 SCNAs; permutation p = 0.006). Six race-differentiated SCNAs common to breast and prostate found at chromosomes 5q11.2-q14.1, 5q15-q21.1, 8q21.11-q21.13, 8q21.3-q24.3, 11q22.3, and 13q12.3-q21.3 had consistent differences by race across both tumor types, and all six were of higher magnitude in AAs, with the chromosome 8q regions being the only amplifications. Higher magnitude copy number differences in AAs were also identified at two of these race-differentiated SCNAs in two additional hormonally-driven tumor types: endometrial (8q21.3-q24.3 and 13q12.3-q21.3) and ovarian (13q12.3-q21.3) cancers. Race differentiated SCNA-defined patient groups were significantly associated with survival differences in both cancer types, and these groups also differentiated within triple negative breast cancers based on PFS. While the frequency of the SCNA-defined patient groups differed by race, their effects on survival did not. Conclusions This study identified race-differentiated SCNAs shared by two related cancers. The association of SCNA-defined patient groups with survival demonstrates the clinical significance of combinations of these race-differentiated genomic aberrations, and the higher frequency of these alterations in AA relative to EA patients may explain racial disparities in risk of aggressive breast and prostate cancer.
Collapse
Affiliation(s)
- Yalei Chen
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA.,Center for Bioinformatics, Henry Ford Health System, Detroit, MI, USA
| | - Sudha M Sadasivan
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | - Ruicong She
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA.,Center for Bioinformatics, Henry Ford Health System, Detroit, MI, USA
| | - Indrani Datta
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA.,Center for Bioinformatics, Henry Ford Health System, Detroit, MI, USA
| | - Kanika Taneja
- Department of Pathology, Henry Ford Health System, Detroit, MI, USA
| | - Dhananjay Chitale
- Department of Pathology, Henry Ford Health System, Detroit, MI, USA.,Center for the Study of Breast Cancer Subtypes, Breast Oncology Program, Department of Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Nilesh Gupta
- Department of Pathology, Henry Ford Health System, Detroit, MI, USA
| | - Melissa B Davis
- Center for the Study of Breast Cancer Subtypes, Breast Oncology Program, Department of Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Lisa A Newman
- Center for the Study of Breast Cancer Subtypes, Breast Oncology Program, Department of Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Craig G Rogers
- Vattikuti Urologic Institute, Henry Ford Health System, Detroit, MI, USA
| | - Pamela L Paris
- Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Jia Li
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA.,Center for Bioinformatics, Henry Ford Health System, Detroit, MI, USA
| | - Benjamin A Rybicki
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | - Albert M Levin
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA. .,Center for Bioinformatics, Henry Ford Health System, Detroit, MI, USA.
| |
Collapse
|
29
|
Roberts PJ, Kumarasamy V, Witkiewicz AK, Knudsen ES. Chemotherapy and CDK4/6 Inhibitors: Unexpected Bedfellows. Mol Cancer Ther 2020; 19:1575-1588. [PMID: 32546660 PMCID: PMC7473501 DOI: 10.1158/1535-7163.mct-18-1161] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/17/2020] [Accepted: 06/10/2020] [Indexed: 12/31/2022]
Abstract
Cyclin-dependent kinases 4 and 6 (CDK4/6) have emerged as important therapeutic targets. Pharmacologic inhibitors of these kinases function to inhibit cell-cycle progression and exert other important effects on the tumor and host environment. Because of their impact on the cell cycle, CDK4/6 inhibitors (CDK4/6i) have been hypothesized to antagonize the antitumor effects of cytotoxic chemotherapy in tumors that are CDK4/6 dependent. However, there are multiple preclinical studies that illustrate potent cooperation between CDK4/6i and chemotherapy. Furthermore, the combination of CDK4/6i and chemotherapy is being tested in clinical trials to both enhance antitumor efficacy and limit toxicity. Exploitation of the noncanonical effects of CDK4/6i could also provide an impetus for future studies in combination with chemotherapy. Thus, while seemingly mutually exclusive mechanisms are at play, the combination of CDK4/6 inhibition and chemotherapy could exemplify rational medicine.
Collapse
Affiliation(s)
| | - Vishnu Kumarasamy
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, New York
| | - Agnieszka K Witkiewicz
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, New York
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York
| | - Erik S Knudsen
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, New York.
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
30
|
Takeshima K, Hayashida T, Maeda H, Nakashoji A, Yokoe T, Seki T, Takahashi M, Kitagawa Y. Increased frequency of ESR1 mutation in metastatic breast cancer by dosing selective estrogen receptor modulator followed by aromatase inhibitor. Oncol Lett 2020; 20:1231-1238. [PMID: 32724363 PMCID: PMC7377057 DOI: 10.3892/ol.2020.11669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/30/2020] [Indexed: 12/30/2022] Open
Abstract
In several recent studies on metastatic breast cancer (MBC), ligand binding domain mutations of the estrogen receptor, which is coded by the ESR1 gene, were induced by long-term endocrine therapy and resulted in acquired endocrine therapy resistance and poor outcomes. Knowledge of the association between the development of ESR1 mutation and the clinicopathologic features may guide the decision-making process of metastatic breast cancer treatment, including endocrine therapy. The aim of the present study was to evaluate the association between the development of ESR1 mutation and the clinicopathologic characteristics of patients with MBC. To evaluate the association between the development of ESR1 mutation and clinicopathologic features, a cohort of 22 patients with MBC were retrospectively analyzed using next generation sequencing. In 14 of 22 patients, four mutations were detected on the metastatic site, including Tyr537Ser, Glu542Asp, Leu536Arg and Arg548Cys. Univariate analysis demonstrated that the duration of aromatase inhibitor and selective estrogen receptor modulator treatment, as well as the age of treatment initiation for early-stage breast cancer, were significantly associated with the development of ESR1 mutation. ESR1 mutation was identified in all five patients who received selective estrogen receptor modulators in the adjuvant setting followed by aromatase inhibitors in the metastatic setting, as well as in two of the three patients who received no selective estrogen receptor modulators in adjuvant setting followed by aromatase inhibitors in the metastatic setting. In conclusion, the results of the present study suggested that administrating adjuvant selective estrogen receptor modulator followed by aromatase inhibitor for metastasis may increase the frequency of ESR1 mutation.
Collapse
Affiliation(s)
- Kaoru Takeshima
- Department of Surgery, Saitama City Hospital, Saitama 336-0911, Japan
| | - Tetsu Hayashida
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hinako Maeda
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ayako Nakashoji
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takamichi Yokoe
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tomoko Seki
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Maiko Takahashi
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
31
|
Complement component C5a induces aberrant epigenetic modifications in renal tubular epithelial cells accelerating senescence by Wnt4/βcatenin signaling after ischemia/reperfusion injury. Aging (Albany NY) 2020; 11:4382-4406. [PMID: 31284268 PMCID: PMC6660044 DOI: 10.18632/aging.102059] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/24/2019] [Indexed: 12/30/2022]
Abstract
Epigenetic mechanisms, such as DNA methylation, affect tubular maladaptive response after Acute Kidney Injury (AKI) and accelerate renal aging. Upon ischemia/reperfusion (I/R) injury, Complement activation leads to C5a release that mediates damage; however, little is known about the effect of C5a-C5a Receptor (C5aR) interaction in Renal Tubular Epithelial Cells (RTEC). Through a whole-genome DNA methylation analysis in cultured RTEC, we found that C5a induced aberrant methylation, particularly in regions involved in cell cycle control, DNA damage and Wnt signaling. The most represented genes were BCL9, CYP1B1 and CDK6. C5a stimulation of RTEC led to up-regulation of SA-β Gal and cell cycle arrest markers such as p53 and p21. C5a increased also IL-6, MCP-1 and CTGF gene expression, consistent with SASP development. In accordance, in a swine model of renal I/R injury, we found the increased expression of Wnt4 and βcatenin correlating with SA-β Gal, p21, p16 and IL-6 positivity. Administration of Complement Inhibitor (C1-Inh), antagonized SASP by reducing SA-β Gal, p21, p16, IL-6 and abrogating Wnt4/βcatenin activation. Thus, C5a affects the DNA methylation of genes involved in tubular senescence. Targeting epigenetic programs and Complement may offer novels strategies to protect tubular cells from accelerated aging and to counteract progression to Chronic Kidney Disease
Collapse
|
32
|
Cao M, Wang S, Zou J, Wang W. Bioinformatics analyses of retinoblastoma reveal the retinoblastoma progression subtypes. PeerJ 2020; 8:e8873. [PMID: 32509443 PMCID: PMC7246025 DOI: 10.7717/peerj.8873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 03/09/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction Retinoblastoma (RB) is one common pediatric malignant tumor with dismal outcomes. Heterogeneity of RB and subtypes of RB were identified but the association between the subtypes of RB and RB progression have not been fully investigated. Methods Four public datasets were downloaded from Gene expression omnibus and normalization was performed to remove batch effect. Two public datasets were explored to obtain the RB progression gene signatures by differentially expression analysis while another two datasets were iterated for RB subtypes identification using consensus clustering. After the RB progressive subtype gene signatures were identified, we tested the diagnostic capacity of these gene signatures by receiver operation curve. Results Three hundreds and forty six genes that were enriched in cell cycle were identified as the progression signature in RB from two independent datasets. Four subtypes of RB were stratified by consensus clustering. A total of 21 genes from RB progression signature were differentially expressed between RB subtypes. One subtype with low expression cell division genes have less progression of all four subtypes. A panel of five RB subtype genes (CLUL1, CNGB1, ROM1, LRRC39 and RDH12) predict progression of RB. Conclusion Retinoblastoma is a highly heterogeneous tumor and the level of cell cycle related gene expression is associated with RB progression. A subpopulation of RB with high expression of visual perception has less progressive features. LRRC39 is potentially the RB progression subtype biomarker.
Collapse
Affiliation(s)
- Manjing Cao
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Sha Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Jing Zou
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Wanpeng Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| |
Collapse
|
33
|
Chen F, Zhang Z, Yu Y, Liu Q, Pu F. HSulf‑1 and palbociclib exert synergistic antitumor effects on RB‑positive triple‑negative breast cancer. Int J Oncol 2020; 57:223-236. [PMID: 32377705 PMCID: PMC7252455 DOI: 10.3892/ijo.2020.5057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Human sulfatase-1 (HSulf-1) is emerging as a novel prognostic biomarker in breast cancer. Previous studies demonstrated HSulf-1 to function as a negative regulator of cyclin D1 in breast cancer. Accumulating preclinical evidence is supporting the efficacy of cyclin-dependent kinase (CDK) 4/6 inhibitors against the luminal androgen receptor sub-type of triple-negative breast cancer (TNBC). It was therefore hypothesized that HSulf-1 may cooperate with CDK4/6 inhibitors to control cell cycle progression in breast cancer cells. HSulf-1 expression was found to be downregulated in TNBC tissues and cell lines compared with that in healthy tissues and non-breast cancer cell lines, respectively. High levels of HSulf-1 expression was also found to be associated with increased progression-free survival and overall survival in patients with TNBC. Functionally, it was demonstrated that HSulf-1 served as tumor suppressor in TNBC by inducing cell cycle arrest and apoptosis whilst inhibiting proliferation, epithelial-mesenchymal transition, migration and invasion. Subsequent overexpression of HSulf-1 coupled with treatment with the CDK4/6 inhibitor palbociclib exhibited a synergistic antitumor effect on retinoblastoma (RB)-positive TNBC. Further studies revealed the mechanism underlying this cooperative antiproliferative effect involved to be due to the prohibitive effects of HSulf-1 on the palbociclib-induced accumulation of cyclin D1 through AKT/STAT3 and ERK1/2/STAT3 signaling. Taken together, findings from the present study not only suggest that HSulf-1 may be a potential therapeutic target for TNBC, but also indicate that combinatorial treatment could be an alternative therapeutic option for RB-positive TNBC, which may open novel perspectives.
Collapse
Affiliation(s)
- Fengxia Chen
- Department of Medical Oncology, General Hospital of The Yangtze River Shipping, Wuhan Polytechnic University, Wuhan, Hubei 430010, P.R. China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yihan Yu
- Department of Pediatrics, The Third Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Qiuyu Liu
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Feifei Pu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
34
|
Iida M, Toyosawa D, Nakamura M, Tsuboi K, Tokuda E, Niwa T, Ishida T, Hayashi SI. Decreased ER dependency after acquired resistance to CDK4/6 inhibitors. Breast Cancer 2020; 27:963-972. [PMID: 32297248 DOI: 10.1007/s12282-020-01090-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/08/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cyclin-dependent kinase (CDK) 4/6 inhibitors represent a significant advancement in the treatment of estrogen receptor (ER)-positive human epidermal growth factor receptor 2-negative advanced breast cancer. However, mechanisms of alterations after acquired resistance to CDK4/6 inhibitors and the optimal treatment options are still not established. METHODS Abemaciclib-resistant cell lines were established from the models of estrogen deprivation-resistant cell lines which retained ER expression and activated ER function derived from MCF-7 breast cancer cell lines. Ribocilib-resistant cell lines were established in the same method as previously reported. RESULTS Both abemaciclib- and ribociclib-resistant cell lines showed decreased ER expression. ER transcriptional activity was maintained in these cell lines; however, the sensitivity to 4-hydroxytamoxifen and fulvestrant was almost completely lost. These cell lines did not exhibit any ERα gene mutation. Abemaciclib-resistant cell lines demonstrated low sensitivity to other CDK4/6 inhibitors; sensitivities to PI3K inhibitor, mTOR inhibitor, and chemotherapeutic drugs were maintained. CONCLUSIONS Dependence on ER signaling appears to decrease after the development of acquired resistance to CDK4/6 inhibitors. Further, CDK4/6 inhibitor-resistant cells acquired cross-resistance to other CDK4/6 inhibitors, PI3K/Akt/mTOR inhibitor therapy and chemotherapeutic drugs might serve as optimal treatment options for such breast cancers.
Collapse
Affiliation(s)
- Masafumi Iida
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, 2-1, Seiryoumachi, Aoba-ku, Sendai, 980-8575, Japan.
- Department of Breast and Endocrine Surgical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Japan.
| | - Daichi Toyosawa
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, 2-1, Seiryoumachi, Aoba-ku, Sendai, 980-8575, Japan
| | - Misato Nakamura
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, 2-1, Seiryoumachi, Aoba-ku, Sendai, 980-8575, Japan
| | - Kouki Tsuboi
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, 2-1, Seiryoumachi, Aoba-ku, Sendai, 980-8575, Japan
| | - Emi Tokuda
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, 2-1, Seiryoumachi, Aoba-ku, Sendai, 980-8575, Japan
| | - Toshifumi Niwa
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, 2-1, Seiryoumachi, Aoba-ku, Sendai, 980-8575, Japan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Shin-Ichi Hayashi
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, 2-1, Seiryoumachi, Aoba-ku, Sendai, 980-8575, Japan
| |
Collapse
|
35
|
Knudsen ES, Nambiar R, Rosario SR, Smiraglia DJ, Goodrich DW, Witkiewicz AK. Pan-cancer molecular analysis of the RB tumor suppressor pathway. Commun Biol 2020; 3:158. [PMID: 32242058 PMCID: PMC7118159 DOI: 10.1038/s42003-020-0873-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/26/2020] [Indexed: 12/21/2022] Open
Abstract
The retinoblastoma tumor suppressor gene (RB1) plays a critical role in coordinating multiple pathways that impact cancer initiation, disease progression, and therapeutic responses. Here we probed molecular features associated with the RB-pathway across 31 tumor-types. While the RB-pathway has been purported to exhibit multiple mutually exclusive genetic events, only RB1 alteration is mutually exclusive with deregulation of CDK4/6 activity. An ER+ breast cancer model with targeted RB1 deletion was used to identify signatures of CDK4/6 activity and RB-dependency (CDK4/6-RB integrated signature). This signature was prognostic in tumor-types with gene expression features indicative of slower growth. Single copy loss on chromosome 13q encompassing the RB1 locus is prevalent in many cancers, yielding reduced expression of multiple genes in cis, and is inversely related to the CDK4/6-RB integrated signature supporting a cause-effect relationship. Genes that are positively and inversely correlated with the CDK4/6-RB integrated signature define new tumor-specific pathways associated with RB-pathway activity.
Collapse
Affiliation(s)
- Erik S Knudsen
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA. .,Department of Molecular and Cellular Biology, Buffalo, USA. .,Center for Personalized Medicine, Buffalo, USA.
| | - Ram Nambiar
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA.,Department of Molecular and Cellular Biology, Buffalo, USA
| | - Spencer R Rosario
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA.,Department of Genetics and Genomics, Buffalo, USA
| | - Dominic J Smiraglia
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA.,Department of Genetics and Genomics, Buffalo, USA
| | - David W Goodrich
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA.,Department of Pharmacology and Therapeutics, Buffalo, USA
| | - Agnieszka K Witkiewicz
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA. .,Center for Personalized Medicine, Buffalo, USA. .,Department of Pathology, Buffalo, USA.
| |
Collapse
|
36
|
LncRNA RP11-19E11 is an E2F1 target required for proliferation and survival of basal breast cancer. NPJ Breast Cancer 2020; 6:1. [PMID: 31934613 PMCID: PMC6944689 DOI: 10.1038/s41523-019-0144-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/20/2019] [Indexed: 12/31/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play key roles in the regulation of breast cancer initiation and progression. LncRNAs are differentially expressed in breast cancer subtypes. Basal-like breast cancers are generally poorly differentiated tumors, are enriched in embryonic stem cell signatures, lack expression of estrogen receptor, progesterone receptor, and HER2 (triple-negative breast cancer), and show activation of proliferation-associated factors. We hypothesized that lncRNAs are key regulators of basal breast cancers. Using The Cancer Genome Atlas, we identified lncRNAs that are overexpressed in basal tumors compared to other breast cancer subtypes and expressed in at least 10% of patients. Remarkably, we identified lncRNAs whose expression correlated with patient prognosis. We then evaluated the function of a subset of lncRNA candidates in the oncogenic process in vitro. Here, we report the identification and characterization of the chromatin-associated lncRNA, RP11-19E11.1, which is upregulated in 40% of basal primary breast cancers. Gene set enrichment analysis in primary tumors and in cell lines uncovered a correlation between RP11-19E11.1 expression level and the E2F oncogenic pathway. We show that this lncRNA is chromatin-associated and an E2F1 target, and its expression is necessary for cancer cell proliferation and survival. Finally, we used lncRNA expression levels as a tool for drug discovery in vitro, identifying protein kinase C (PKC) as a potential therapeutic target for a subset of basal-like breast cancers. Our findings suggest that lncRNA overexpression is clinically relevant. Understanding deregulated lncRNA expression in basal-like breast cancer may lead to potential prognostic and therapeutic applications.
Collapse
|
37
|
Schoninger SF, Blain SW. The Ongoing Search for Biomarkers of CDK4/6 Inhibitor Responsiveness in Breast Cancer. Mol Cancer Ther 2020; 19:3-12. [PMID: 31909732 PMCID: PMC6951437 DOI: 10.1158/1535-7163.mct-19-0253] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/02/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022]
Abstract
CDK4 inhibitors (CDK4/6i), such as palbociclib, ribociclib, and abemaciclib, are approved in combination with hormonal therapy as a front-line treatment for metastatic HR+, HER2- breast cancer. Their targets, CDK4 and CDK6, are cell-cycle regulatory proteins governing the G1-S phase transition across many tissue types. A key challenge remains to uncover biomarkers to identify those patients that may benefit from this class of drugs. Although CDK4/6i addition to estrogen modulation therapy essentially doubles the median progression-free survival, overall survival is not significantly increased. However, in reality only a subset of treated patients respond. Many patients exhibit primary resistance to CDK4/6 inhibition and do not derive any benefit from these agents, often switching to chemotherapy within 6 months. Some patients initially benefit from treatment, but later develop secondary resistance. This highlights the need for complementary or companion diagnostics to pinpoint patients who would respond. In addition, because CDK4 is a bona fide target in other tumor types where CDK4/6i therapy is currently in clinical trials, the lack of target identification may obscure benefit to a subset of patients there as well. This review summarizes the current status of CDK4/6i biomarker test development, both in clinical trials and at the bench, with particular attention paid to those which have a strong biological basis as well as supportive clinical data.
Collapse
Affiliation(s)
| | - Stacy W Blain
- Departments of Pediatrics and Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York.
| |
Collapse
|
38
|
Identifying Mutually Exclusive Gene Sets with Prognostic Value and Novel Potential Driver Genes in Patients with Glioblastoma. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4860367. [PMID: 31815141 PMCID: PMC6878817 DOI: 10.1155/2019/4860367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/15/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022]
Abstract
The pathogenesis and prognosis of glioblastoma (GBM) remain poorly understood. Mutual exclusivity analysis can distinguish driver genes and pathways from passenger ones. The purpose of this study was to identify mutually exclusive gene sets (MEGSs) that have prognostic value and to detect novel driver genes in GBM. The genomic alteration profile and clinical information were derived from The Cancer Genome Atlas, and the MEGSA method was used to identify the MEGS. Next, we performed survival analysis and constructed a risk prediction model for prognostic stratification. Leave-one-out cross-validation and permutation test were used to evaluate its performance. Finally, we identified 21 statistically significant MEGSs. We found that the MEGS in the RB pathway was significantly associated with poor prognosis, after adjusting for age and gender (HR = 1.837, 95% CI: 1.192-2.831). Based on the risk prediction model, 208 (80.9%) and 49 (19.1%) patients were assigned to high- and low-risk groups, respectively (log-rank: p < 0.001, adjusted p=0.001). Additionally, we found that SPTA1, a novel gene involved in the MEGS, was mutually exclusive with members of cell cycle, P53, and RB pathways. In conclusion, the MEGS in the RB pathway had considerable clinical value for GBM prognostic stratification. Mutated SPTA1 may be involved in GBM development.
Collapse
|
39
|
Choi C, Park S, Cho WK, Choi DH. Cyclin D1 is Associated with Radiosensitivity of Triple-Negative Breast Cancer Cells to Proton Beam Irradiation. Int J Mol Sci 2019; 20:ijms20194943. [PMID: 31591311 PMCID: PMC6801441 DOI: 10.3390/ijms20194943] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 01/21/2023] Open
Abstract
Proton therapy offers a distinct physical advantage over conventional X-ray therapy, but its biological advantages remain understudied. In this study, we aimed to identify genetic factors that contribute to proton sensitivity in breast cancer (BC). Therefore, we screened relative biological effectiveness (RBE) of 230 MeV protons, compared to 6 MV X-rays, in ten human BC cell lines, including five triple-negative breast cancer (TNBC) cell lines. Clonogenic survival assays revealed a wide range of proton RBE across the BC cell lines, with one out of ten BC cell lines having an RBE significantly different from the traditional generic RBE of 1.1. An abundance of cyclin D1 was associated with proton RBE. Downregulation of RB1 by siRNA or a CDK4/6 inhibitor increased proton sensitivity but not proton RBE. Instead, the depletion of cyclin D1 increased proton RBE in two TNBC cell lines, including MDA-MB-231 and Hs578T cells. Conversely, overexpression of cyclin D1 decreased the proton RBE in cyclin D1-deficient BT-549 cells. The depletion of cyclin D1 impaired proton-induced RAD51 foci formation in MDA-MB-231 cells. Taken together, this study provides important clues about the cyclin D1-CDK4-RB1 pathway as a potential target for proton beam therapy in TNBC.
Collapse
Affiliation(s)
- Changhoon Choi
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea.
| | - Sohee Park
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea.
| | - Won Kyung Cho
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea.
| | - Doo Ho Choi
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea.
- Department of Radiation Oncology, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.
| |
Collapse
|
40
|
Niu Y, Xu J, Sun T. Cyclin-Dependent Kinases 4/6 Inhibitors in Breast Cancer: Current Status, Resistance, and Combination Strategies. J Cancer 2019; 10:5504-5517. [PMID: 31632494 PMCID: PMC6775706 DOI: 10.7150/jca.32628] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 08/06/2019] [Indexed: 12/26/2022] Open
Abstract
Dysregulated activation of the cyclin-dependent kinases (CDKs) 4/6, leading to uncontrolled cell division, is hallmark of cancers. Further study of the cell cycle will advance the cancer treatment. As powerful and effective drugs, inhibitors of CDK 4/6 have been widely used in clinical practice for several malignancies, particularly against breast cancers driven by the estrogen receptor (ER). Three CDK4/6 inhibitors, including palbociclib (PD0332991), ribociclib (LEE011) and abemaciclib (LY2835219), have been approved by the US Food and Drug Administration (FDA) for the treatment of hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced or metastatic breast cancer. However, CDK4/6 inhibitors act downstream of many mitogenic signaling pathways, and this has implications for resistance. It is worth to note that the mechanisms of resistance are not very clear. Up to now, a small number of preclinical and clinical studies have explored potential mechanisms of CDK4/6 inhibitors resistance in breast cancer. On this basis, rational and effective combination therapy is under development. Here we review the current knowledge about the mechanisms and efficacy of CDK4/6 inhibitors, and summarize data on resistance mechanisms to make future combination therapies more accurate and reasonable.
Collapse
Affiliation(s)
- Ying Niu
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, No. 44 Xiaoheyan Road, Dadong, Shenyang, Liaoning 110042, P.R. China
| | - Junnan Xu
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, No. 44 Xiaoheyan Road, Dadong, Shenyang, Liaoning 110042, P.R. China.,Key Laboratory of Liaoning Breast Cancer Research, Shenyang, Liaoning 110042, P.R. China
| | - Tao Sun
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, No. 44 Xiaoheyan Road, Dadong, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
41
|
Presti D, Quaquarini E. The PI3K/AKT/mTOR and CDK4/6 Pathways in Endocrine Resistant HR+/HER2- Metastatic Breast Cancer: Biological Mechanisms and New Treatments. Cancers (Basel) 2019; 11:E1242. [PMID: 31450618 PMCID: PMC6770492 DOI: 10.3390/cancers11091242] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 12/30/2022] Open
Abstract
Endocrine-based treatments are the normal standard-of-care in women with hormone receptor-positive/Human Epidermal growth factor Receptor 2-negative metastatic breast cancer. Despite the well-known efficacy of these drugs as first-line therapies, about 50% of women develop endocrine resistance and disease progression. The treatment of these patients has represented one of the most important research fields in the last few years, with several multicenter phase II/III trials published or still ongoing. Novel therapies, such as cyclin-dependent kinase (CDK)4/6 and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) inhibitors, have significantly changed the prognosis of patients progressing to a previous endocrine treatment, allowing a great benefit in terms of progression-free survival and, in some cases, of overall survival. However, identifying response predictors is essential for the rational use of these drugs to avoid unnecessary toxicity and costs, and to ensure the optimal therapeutic sequence is used. In this review, we analyze the PI3K/AKT/mTOR and CDK4/6 pathways and their roles in endocrine resistant metastatic breast cancer. We then focus on the new treatments developed and the roles of these drugs in overcoming endocrine resistance, describing the latest clinical trials that led to the approval of the drugs in clinical practice.
Collapse
Affiliation(s)
- Daniele Presti
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
- Medical Oncology Unit, IRCCS ICS Maugeri SpA SB, 27100 Pavia, Italy
| | - Erica Quaquarini
- Medical Oncology Unit, IRCCS ICS Maugeri SpA SB, 27100 Pavia, Italy.
- Experimental Medicine, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
42
|
Iida M, Nakamura M, Tokuda E, Toyosawa D, Niwa T, Ohuchi N, Ishida T, Hayashi SI. The p21 levels have the potential to be a monitoring marker for ribociclib in breast cancer. Oncotarget 2019; 10:4907-4918. [PMID: 31448056 PMCID: PMC6690670 DOI: 10.18632/oncotarget.27127] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/21/2019] [Indexed: 11/25/2022] Open
Abstract
Although cyclin-dependent kinase (CDK) 4/6 inhibitors have exhibited remarkable results for patients with estrogen receptor (ER)–positive breast cancer in clinical trials, the mechanism of CDK4/6 inhibitor resistance remains unclear. Thus, this study aimed to investigate the mechanism of CDK4/6 inhibitor resistance using two CDK4/6 inhibitor resistant breast cancer cell lines. We established CDK6 overexpressed cell lines (MCF7-C6) from MCF-7 cells using the stably transfected CDK6 expression vector. Additionally, acquired ribociclib-resistant (RIBR) cell lines were created using ER-positive hormone-resistant cell lines by long-term exposure to ribociclib. CDK6 overexpression and the knockdown of CDK4 experiments highlight the significance of high levels of CDK4 and low levels of CDK6 in CDK4/6 inhibitor sensitivity. Moreover, RIBR cell lines did not exhibit incremental CDK6 compared with ER-positive hormone-resistant cell lines. In MCF7-C6 and RIBR cell lines, p21 levels decreased, and p21 levels were proportional to CDK4/6 inhibitor sensitivity. This study suggests that overexpression of CDK6 is one of the many possible mechanisms of resistance to CDK4/6 inhibitors. Furthermore, p21 levels have the potential to serve as a marker for CDK4/6 inhibitors independent of the resistance mechanism.
Collapse
Affiliation(s)
- Masafumi Iida
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Department of Breast and Endocrine Surgical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Misato Nakamura
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Emi Tokuda
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Daichi Toyosawa
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Toshifumi Niwa
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Noriaki Ohuchi
- Department of Breast and Endocrine Surgical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Shin-Ichi Hayashi
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
43
|
McCartney A, Migliaccio I, Bonechi M, Biagioni C, Romagnoli D, De Luca F, Galardi F, Risi E, De Santo I, Benelli M, Malorni L, Di Leo A. Mechanisms of Resistance to CDK4/6 Inhibitors: Potential Implications and Biomarkers for Clinical Practice. Front Oncol 2019; 9:666. [PMID: 31396487 PMCID: PMC6664013 DOI: 10.3389/fonc.2019.00666] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
The recent arrival of CDK4/6 inhibitor agents, with an approximate doubling of progression-free survival (PFS) associated with their use in hormone receptor-positive, HER2-negative advanced breast cancer (BC), has radically changed the approach to managing this disease. However, resistance to CDK4/6 inhibitors is considered a near-inevitability in most patients. Mechanisms of resistance to these agents are multifactorial, and research in this field is still evolving. Biomarkers with the ability to identify early resistance, or to predict the likelihood of successful treatment using CDK4/6 inhibitors are yet to be identified, and represent an area of unmet clinical need. Here we present selected mechanisms of resistance to CDK4/6 inhibitors, largely focussing on roles of Rb, cyclin E1, and the PIK3CA pathway, with discussion of associated biomarkers which have been investigated and applied in recent pre-clinical and clinical studies. These biological drivers may furthermore influence clinical treatment strategies adopted beyond CDK4/6 resistance.
Collapse
Affiliation(s)
- Amelia McCartney
- “Sandro Pitigliani” Department of Medical Oncology, Hospital of Prato, Prato, Italy
| | - Ilenia Migliaccio
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Prato, Italy
| | - Martina Bonechi
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Prato, Italy
| | | | | | - Francesca De Luca
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Prato, Italy
| | - Francesca Galardi
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Prato, Italy
| | - Emanuela Risi
- “Sandro Pitigliani” Department of Medical Oncology, Hospital of Prato, Prato, Italy
| | - Irene De Santo
- “Sandro Pitigliani” Department of Medical Oncology, Hospital of Prato, Prato, Italy
| | | | - Luca Malorni
- “Sandro Pitigliani” Department of Medical Oncology, Hospital of Prato, Prato, Italy
- “Sandro Pitigliani” Translational Research Unit, Hospital of Prato, Prato, Italy
| | - Angelo Di Leo
- “Sandro Pitigliani” Department of Medical Oncology, Hospital of Prato, Prato, Italy
| |
Collapse
|
44
|
Death effector domain-containing protein induces vulnerability to cell cycle inhibition in triple-negative breast cancer. Nat Commun 2019; 10:2860. [PMID: 31253784 PMCID: PMC6599020 DOI: 10.1038/s41467-019-10743-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 05/30/2019] [Indexed: 02/07/2023] Open
Abstract
Lacking targetable molecular drivers, triple-negative breast cancer (TNBC) is the most clinically challenging subtype of breast cancer. In this study, we reveal that Death Effector Domain-containing DNA-binding protein (DEDD), which is overexpressed in > 60% of TNBCs, drives a mitogen-independent G1/S cell cycle transition through cytoplasm localization. The gain of cytosolic DEDD enhances cyclin D1 expression by interacting with heat shock 71 kDa protein 8 (HSC70). Concurrently, DEDD interacts with Rb family proteins and promotes their proteasome-mediated degradation. DEDD overexpression renders TNBCs vulnerable to cell cycle inhibition. Patients with TNBC have been excluded from CDK 4/6 inhibitor clinical trials due to the perceived high frequency of Rb-loss in TNBCs. Interestingly, our study demonstrated that, irrespective of Rb status, TNBCs with DEDD overexpression exhibit a DEDD-dependent vulnerability to combinatorial treatment with CDK4/6 inhibitor and EGFR inhibitor in vitro and in vivo. Thus, our study provided a rationale for the clinical application of CDK4/6 inhibitor combinatorial regimens for patients with TNBC.
Collapse
|
45
|
Yuan Y, Wen W, Yost SE, Xing Q, Yan J, Han ES, Mortimer J, Yim JH. Combination therapy with BYL719 and LEE011 is synergistic and causes a greater suppression of p-S6 in triple negative breast cancer. Sci Rep 2019; 9:7509. [PMID: 31101835 PMCID: PMC6525251 DOI: 10.1038/s41598-019-43429-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 04/15/2019] [Indexed: 02/07/2023] Open
Abstract
A third of patients with triple negative breast cancer (TNBC) have relapsed disease within 2-5 years from initial diagnosis, leaving an unmet need for therapeutic targets. TNBC frequently harbors alterations of the PI3K/AKT/mTOR pathway, but single agent PI3K/AKT/mTOR inhibitors have not shown marked efficacy. In this study, we investigated a strategy to improve efficacy of PI3K-α inhibitor BYL719 (alpelisib) in TNBC. While BYL719 is effective at inhibiting cell proliferation in T47D, a triple positive cell line, it had limited activity in TNBC. This may be partially due to persistent phosphorylation of RB, and incomplete inhibition of p-S6 in TNBC, since the inhibitory effect of BYL719 on p-RB and p-S6 was significantly reduced in TNBC compared to T47D cells. Addition of the CDK4/6 inhibitor LEE011 to BYL719 caused a simultaneous reduction of p-RB and p-S6, and a more complete inhibition of p-S6, leading to decreased expression of the pro-survival protein MCL-1, an induction of apoptosis, and an enhanced reduction of tumor growth in a PDX model of TNBC. These findings suggest that inhibition of p-RB and p-S6 is important for an effective response to the treatment of TNBC, and provides a strong rationale for clinical development of combination therapy with BYL719 and LEE011 for treatment of metastatic TNBC with intact RB.Presentation: This study was presented in part as an abstract at the 2016 San Antonio Breast Cancer Symposium (P3-03-15) and the 2018 Cancer Research and Targeted Therapy in London.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Medical Oncology & Molecular Therapeutics, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA.
| | - Wei Wen
- Division of Surgical Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - Susan E Yost
- Department of Medical Oncology & Molecular Therapeutics, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - Quanhua Xing
- Division of Surgical Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - Jin Yan
- Division of Surgical Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - Ernest S Han
- Division of Gynecologic Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - Joanne Mortimer
- Department of Medical Oncology & Molecular Therapeutics, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - John H Yim
- Division of Surgical Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA.
| |
Collapse
|
46
|
Chen WS, Alshalalfa M, Zhao SG, Liu Y, Mahal BA, Quigley DA, Wei T, Davicioni E, Rebbeck TR, Kantoff PW, Maher CA, Knudsen KE, Small EJ, Nguyen PL, Feng FY. Novel RB1-Loss Transcriptomic Signature Is Associated with Poor Clinical Outcomes across Cancer Types. Clin Cancer Res 2019; 25:4290-4299. [PMID: 31010837 DOI: 10.1158/1078-0432.ccr-19-0404] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/27/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE Rb-pathway disruption is of great clinical interest, as it has been shown to predict outcomes in multiple cancers. We sought to develop a transcriptomic signature for detecting biallelic RB1 loss (RBS) that could be used to assess the clinical implications of RB1 loss on a pan-cancer scale. EXPERIMENTAL DESIGN We utilized data from the Cancer Cell Line Encyclopedia (N = 995) to develop the first pan-cancer transcriptomic signature for predicting biallelic RB1 loss (RBS). Model accuracy was validated using The Cancer Genome Atlas (TCGA) Pan-Cancer dataset (N = 11,007). RBS was then used to assess the clinical relevance of biallelic RB1 loss in TCGA Pan-Cancer and in an additional metastatic castration-resistant prostate cancer (mCRPC) cohort. RESULTS RBS outperformed the leading existing signature for detecting RB1 biallelic loss across all cancer types in TCGA Pan-Cancer (AUC, 0.89 vs. 0.66). High RBS (RB1 biallelic loss) was associated with promoter hypermethylation (P = 0.008) and gene body hypomethylation (P = 0.002), suggesting RBS could detect epigenetic gene silencing. TCGA Pan-Cancer clinical analyses revealed that high RBS was associated with short progression-free (P < 0.00001), overall (P = 0.0004), and disease-specific (P < 0.00001) survival. On multivariable analyses, high RBS was predictive of shorter progression-free survival in TCGA Pan-Cancer (P = 0.03) and of shorter overall survival in mCRPC (P = 0.004) independently of the number of DNA alterations in RB1. CONCLUSIONS Our study provides the first validated tool to assess RB1 biallelic loss across cancer types based on gene expression. RBS can be useful for analyzing datasets with or without DNA-sequencing results to investigate the emerging prognostic and treatment implications of Rb-pathway disruption.See related commentary by Choudhury and Beltran, p. 4199.
Collapse
Affiliation(s)
- William S Chen
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.,Yale School of Medicine, New Haven, Connecticut
| | - Mohammed Alshalalfa
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.,Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts
| | - Shuang G Zhao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Yang Liu
- GenomeDx Biosciences, Vancouver, British Columbia, Canada
| | - Brandon A Mahal
- Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Ting Wei
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Elai Davicioni
- GenomeDx Biosciences, Vancouver, British Columbia, Canada
| | - Timothy R Rebbeck
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christopher A Maher
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri.,Department of Internal Medicine, Washington University in St. Louis, St. Louis, Missouri.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Karen E Knudsen
- Departments of Cancer Biology and Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Eric J Small
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.,Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Paul L Nguyen
- Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts
| | - Felix Y Feng
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California. .,Departments of Radiation Oncology and Urology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
47
|
Foidart P, Yip C, Radermacher J, Blacher S, Lienard M, Montero-Ruiz L, Maquoi E, Montaudon E, Château-Joubert S, Collignon J, Coibion M, Jossa V, Marangoni E, Noël A, Sounni NE, Jerusalem G. Expression of MT4-MMP, EGFR, and RB in Triple-Negative Breast Cancer Strongly Sensitizes Tumors to Erlotinib and Palbociclib Combination Therapy. Clin Cancer Res 2018; 25:1838-1850. [DOI: 10.1158/1078-0432.ccr-18-1880] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/15/2018] [Accepted: 11/27/2018] [Indexed: 11/16/2022]
|
48
|
Sabit H, Abdel-Ghany SE, M Said OA, Mostafa MA, El-Zawahry M. Metformin Reshapes the Methylation Profile in Breast and Colorectal Cancer Cells. Asian Pac J Cancer Prev 2018; 19:2991-2999. [PMID: 30371994 PMCID: PMC6291041 DOI: 10.22034/apjcp.2018.19.10.2991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
With no sharp cure, breast cancer still be the major and the most serious life-threatening disease worldwide. Colorectal is the third most commonly occurring cancer in men and the second most commonly occurring cancer in women. In the present investigation, colon cancer cells (CaCo-2) and breast cancer cells (MCF-7) were treated with elevated doses of metformin (MET) for 48h. Cell count was assessed using trypan blue test, and the cytotoxicity was evaluated using MTT assay. Methylation-specific PCR was performed on the bisulfite-treated DNA against two tumor suppressor genes; RASSF1A and RB. Results indicated that: in breast cancer, the cell count was decreased significantly (P>0.005) after being treated with 5, 10, 20, 50, and 100 mM of MET. The elevated concentration had increased reduction percentages on the MCF-7 cells, as 5 mM and 100 mM have yielded 35% and 93.3% reduction in cell viability, respectively. Colon cancer cells have responded to the doses of MET differently, as for the 5 mM and the 100 mM, it gave 88% and 60% reduction in cells viability, respectively. Cytotoxicity assay revealed that 5 mM and 100 mM of MET caused breast cancer cells to loss 61.53% and 85.16% of its viability, respectively, whereas colon cancer cells have responded to the 5 mM and 100 mM of MET by reducing the cells viability with 96.91% and 96.24%, respectively. No RB promoter methylation was detected in colon cells, while RASSF1A was partially methylated. In the MCF-7 breast cancer cells, both RASSF1A and RB were partially methylated.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Genetics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441 Saudi Arabia.
| | | | | | | | | |
Collapse
|
49
|
Tecalco-Cruz AC, Ramírez-Jarquín JO. Polyubiquitination inhibition of estrogen receptor alpha and its implications in breast cancer. World J Clin Oncol 2018; 9:60-70. [PMID: 30148069 PMCID: PMC6107474 DOI: 10.5306/wjco.v9.i4.60] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/22/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
Estrogen receptor alpha (ERα) is detected in more than 70% of the cases of breast cancer. Nuclear activity of ERα, a transcriptional regulator, is linked to the development of mammary tumors, whereas the extranuclear activity of ERα is related to endocrine therapy resistance. ERα polyubiquitination is induced by the estradiol hormone, and also by selective estrogen receptor degraders, resulting in ERα degradation via the ubiquitin proteasome system. Moreover, polyubiquitination is related to the ERα transcription cycle, and some E3-ubiquitin ligases also function as coactivators for ERα. Several studies have demonstrated that ERα polyubiquitination is inhibited by multiple mechanisms that include posttranslational modifications, interactions with coregulators, and formation of specific protein complexes with ERα. These events are responsible for an increase in ERα protein levels and deregulation of its signaling in breast cancers. Thus, ERα polyubiquitination inhibition may be a key factor in the progression of breast cancer and resistance to endocrine therapy.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Programa de Investigación de Cáncer de Mama (PICM), Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México 04510, México
| | - Josué O Ramírez-Jarquín
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México 04510, México
| |
Collapse
|
50
|
The vulnerability of RB loss in breast cancer: Targeting a void in cell cycle control. Oncotarget 2018; 9:30940-30941. [PMID: 30123416 PMCID: PMC6089558 DOI: 10.18632/oncotarget.25797] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/13/2018] [Indexed: 11/25/2022] Open
|