1
|
Memi E, Pavli P, Papagianni M, Vrachnis N, Mastorakos G. Diagnostic and therapeutic use of oral micronized progesterone in endocrinology. Rev Endocr Metab Disord 2024; 25:751-772. [PMID: 38652231 PMCID: PMC11294403 DOI: 10.1007/s11154-024-09882-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
Progesterone is a natural steroid hormone, while progestins are synthetic molecules. In the female reproductive system, progesterone contributes to the control of luteinizing hormone and follicle-stimulating hormone secretion and their pulsatility, via its receptors on the kisspeptin, neurokinin B, and dynorphin neurons in the hypothalamus. Progesterone together with estradiol controls the cyclic changes of proliferation and decidualization of the endometrium; exerts anti-mitogenic actions on endometrial epithelial cells; regulates normal menstrual bleeding; contributes to fertilization and pregnancy maintenance; participates in the onset of labor. In addition, it exerts numerous effects on other endocrine systems. Micronized progesterone (MP) is natural progesterone with increased bioavailability, due to its pharmacotechnical micronized structure, which makes it an attractive diagnostic and therapeutic tool. This critical literature review aims to summarize and put forward the potential diagnostic and therapeutic uses of MP in the field of endocrinology. During reproductive life, MP is used for diagnostic purposes in the evaluation of primary or secondary amenorrhea as a challenge test. Moreover, it can be prescribed to women presenting with amenorrhea or oligomenorrhea for induction of withdrawal bleeding, in order to time blood-sampling for diagnostic purposes in early follicular phase. Therapeutically, MP, alone or combined with estrogens, is a useful tool in various endocrine disorders including primary amenorrhea, abnormal uterine bleeding due to disordered ovulation, luteal phase deficiency, premenstrual syndrome, polycystic ovary syndrome, secondary amenorrhea [functional hypothalamic amenorrhea, premature ovarian insufficiency], perimenopause and menopause. When administrated per os, acting as a neurosteroid directly or through its metabolites, it exerts beneficial effects on brain function such as alleviation of symptoms of anxiety and depression, asw well as of sleep problems, while it improves working memory in peri- and menopausal women. Micronized progesterone preserves full potential of progesterone activity, without presenting many of the side-effects of progestins. Although it has been associated with more frequent drowsiness and dizziness, it can be well tolerated with nocturnal administration. Because of its better safety profile, especially with regard to metabolic ailments, breast cancer risk and veno-thromboembolism risk, MP is the preferred option for individuals with an increased risk of cardiovascular and metabolic diseases and of all-cause mortality.
Collapse
Affiliation(s)
- Eleni Memi
- Unit of Endocrinology, Diabetes mellitus, and Metabolism, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, Vas. Sophias Av. 76, 11528, Athens, Greece
| | - Polina Pavli
- Unit of Endocrinology, Diabetes mellitus, and Metabolism, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, Vas. Sophias Av. 76, 11528, Athens, Greece
| | - Maria Papagianni
- Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, 42100, Trikala, Greece
- Endocrine Unit, 3rd Department of Pediatrics, Hippokration Hospital of Thessaloniki, Aristotle University of Thessaloniki, 54642, Thessaloniki, Greece
| | - Nikolaos Vrachnis
- Third Department of Obstetrics and Gynecology, Attikon General Hospital, School of Medicine, National and Kapodistrian University of Athens, Rimini Str. 1, 12462, Chaidari, Athens, Greece
- St George's NHS Foundation Trust Teaching Hospitals, St George's University of London, London, UK
| | - George Mastorakos
- Unit of Endocrinology, Diabetes mellitus, and Metabolism, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, Vas. Sophias Av. 76, 11528, Athens, Greece.
| |
Collapse
|
2
|
Hurtado MD, Tama E, D'Andre S, Shufelt CL. The relation between excess adiposity and breast cancer in women: Clinical implications and management. Crit Rev Oncol Hematol 2024; 193:104213. [PMID: 38008197 PMCID: PMC10843740 DOI: 10.1016/j.critrevonc.2023.104213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common cancer in women. While the combination of improved screening, earlier detection, and advances in therapeutics has resulted in lower BC mortality, BC survivors are now increasingly dying of cardiovascular disease. Cardiovascular disease in the leading cause of non-cancer related mortality among BC survivors. This situation underscores the critical need to research the role of modifiable cardiometabolic risk factors, such as excess adiposity, that will affect BC remission, long-term survivorship, and overall health and quality of life. PURPOSE First, this review summarizes the evidence on the connection between adipose tissue and BC. Then we review the data on weight trends after BC diagnosis with a focus on the effect of weight gain on BC recurrence and BC- and non-BC-related death. Finally, we provide a guide for weight management in BC survivors, considering the available data on the effect of weight loss interventions on BC.
Collapse
Affiliation(s)
- Maria D Hurtado
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Jacksonville, FL, USA; Precision Medicine for Obesity Program, Mayo Clinic, Rochester, MN, USA.
| | - Elif Tama
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Jacksonville, FL, USA; Precision Medicine for Obesity Program, Mayo Clinic, Rochester, MN, USA
| | - Stacey D'Andre
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Chrisandra L Shufelt
- Center for Women's Health, Division of General Internal Medicine, Jacksonville, FL, USA
| |
Collapse
|
3
|
Cereser B, Yiu A, Tabassum N, Del Bel Belluz L, Zagorac S, Ancheta KRZ, Zhong R, Miere C, Jeffries-Jones AR, Moderau N, Werner B, Stebbing J. The mutational landscape of the adult healthy parous and nulliparous human breast. Nat Commun 2023; 14:5136. [PMID: 37673861 PMCID: PMC10482899 DOI: 10.1038/s41467-023-40608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/03/2023] [Indexed: 09/08/2023] Open
Abstract
The accumulation of somatic mutations in healthy human tissues has been extensively characterized, but the mutational landscape of the healthy breast is still poorly understood. Our analysis of whole-genome sequencing shows that in line with other healthy organs, the healthy breast during the reproduction years accumulates mutations with age, with the rate of accumulation in the epithelium of 15.24 ± 5 mutations/year. Both epithelial and stromal compartments contain mutations in breast-specific driver genes, indicative of subsequent positive selection. Parity- and age-associated differences are evident in the mammary epithelium, partly explaining the observed difference in breast cancer risk amongst women of different childbearing age. Parity is associated with an age-dependent increase in the clone size of mutated epithelial cells, suggesting that older first-time mothers have a higher probability of accumulating oncogenic events in the epithelium compared to younger mothers or nulliparous women. In conclusion, we describe the reference genome of the healthy female human breast during reproductive years and provide evidence of how parity affects the genomic landscape of the mammary gland.
Collapse
Grants
- British Heart Foundation
- British Heart Foundation (BHF)
- The work is funded by Action Against Cancer (grants P62625, BC; P66683, NT; P66814, LDDB; P63015, SZ; P71728, NM), UKRI-IBIN (grant P82771, NM), UKRI-OOACTN (grant P91025, NM), British Heart Foundation (grant F36083, AY), Barts Charity Lectureship (grant MGU045, BW).
Collapse
Affiliation(s)
- Biancastella Cereser
- Cancer Genetics Group, Department of Surgery and Cancer, Imperial College London, London, UK.
| | - Angela Yiu
- Cancer Genetics Group, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Neha Tabassum
- Cancer Genetics Group, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Lisa Del Bel Belluz
- Cancer Genetics Group, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Sladjana Zagorac
- Cancer Genetics Group, Department of Surgery and Cancer, Imperial College London, London, UK
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Kenneth Russell Zapanta Ancheta
- Cancer Genetics Group, Department of Surgery and Cancer, Imperial College London, London, UK
- Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, UK
| | - Rongrong Zhong
- Cancer Genetics Group, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Cristian Miere
- Cancer Genetics Group, Department of Surgery and Cancer, Imperial College London, London, UK
| | | | - Nina Moderau
- Cancer Genetics Group, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Benjamin Werner
- Evolutionary Dynamics Group, Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Justin Stebbing
- Cancer Genetics Group, Department of Surgery and Cancer, Imperial College London, London, UK.
- Department of Life Sciences, Anglia Ruskin University (ARU), Cambridge, UK.
| |
Collapse
|
4
|
Nishimura T, Kakiuchi N, Yoshida K, Sakurai T, Kataoka TR, Kondoh E, Chigusa Y, Kawai M, Sawada M, Inoue T, Takeuchi Y, Maeda H, Baba S, Shiozawa Y, Saiki R, Nakagawa MM, Nannya Y, Ochi Y, Hirano T, Nakagawa T, Inagaki-Kawata Y, Aoki K, Hirata M, Nanki K, Matano M, Saito M, Suzuki E, Takada M, Kawashima M, Kawaguchi K, Chiba K, Shiraishi Y, Takita J, Miyano S, Mandai M, Sato T, Takeuchi K, Haga H, Toi M, Ogawa S. Evolutionary histories of breast cancer and related clones. Nature 2023; 620:607-614. [PMID: 37495687 PMCID: PMC10432280 DOI: 10.1038/s41586-023-06333-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 06/15/2023] [Indexed: 07/28/2023]
Abstract
Recent studies have documented frequent evolution of clones carrying common cancer mutations in apparently normal tissues, which are implicated in cancer development1-3. However, our knowledge is still missing with regard to what additional driver events take place in what order, before one or more of these clones in normal tissues ultimately evolve to cancer. Here, using phylogenetic analyses of multiple microdissected samples from both cancer and non-cancer lesions, we show unique evolutionary histories of breast cancers harbouring der(1;16), a common driver alteration found in roughly 20% of breast cancers. The approximate timing of early evolutionary events was estimated from the mutation rate measured in normal epithelial cells. In der(1;16)(+) cancers, the derivative chromosome was acquired from early puberty to late adolescence, followed by the emergence of a common ancestor by the patient's early 30s, from which both cancer and non-cancer clones evolved. Replacing the pre-existing mammary epithelium in the following years, these clones occupied a large area within the premenopausal breast tissues by the time of cancer diagnosis. Evolution of multiple independent cancer founders from the non-cancer ancestors was common, contributing to intratumour heterogeneity. The number of driver events did not correlate with histology, suggesting the role of local microenvironments and/or epigenetic driver events. A similar evolutionary pattern was also observed in another case evolving from an AKT1-mutated founder. Taken together, our findings provide new insight into how breast cancer evolves.
Collapse
Affiliation(s)
- Tomomi Nishimura
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Next-generation Clinical Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Cancer Evolution, National Cancer Center Research Institute, Tokyo, Japan
| | - Takaki Sakurai
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
- Department of Diagnostic Pathology, Osaka Red Cross Hospital, Osaka, Japan
| | - Tatsuki R Kataoka
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
- Department of Pathology, Iwate Medical University, Iwate, Japan
| | - Eiji Kondoh
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Obstetrics and Gynecology Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshitsugu Chigusa
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiko Kawai
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | - Yasuhide Takeuchi
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Hirona Maeda
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Satoko Baba
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yusuke Shiozawa
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryunosuke Saiki
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro M Nakagawa
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Next-generation Clinical Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yotaro Ochi
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomonori Hirano
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Tomoe Nakagawa
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Yukiko Inagaki-Kawata
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kosuke Aoki
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Hirata
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Kosaku Nanki
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Mami Matano
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Megumu Saito
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Company, Limited, Osaka, Japan
| | - Eiji Suzuki
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Breast Surgery Department, Kobe City Medical Center General Hospital, Hyogo, Japan
| | - Masahiro Takada
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Kawashima
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kosuke Kawaguchi
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenichi Chiba
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoru Miyano
- Department of Integrated Analytics, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Kengo Takeuchi
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.
- Department of Medicine, Centre for Haematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
5
|
Koch MK, Ravichandran A, Murekatete B, Clegg J, Joseph MT, Hampson M, Jenkinson M, Bauer HS, Snell C, Liu C, Gough M, Thompson EW, Werner C, Hutmacher DW, Haupt LM, Bray LJ. Exploring the Potential of PEG-Heparin Hydrogels to Support Long-Term Ex Vivo Culture of Patient-Derived Breast Explant Tissues. Adv Healthc Mater 2023; 12:e2202202. [PMID: 36527735 PMCID: PMC11469079 DOI: 10.1002/adhm.202202202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Breast cancer is a complex, highly heterogenous, and dynamic disease and the leading cause of cancer-related death in women worldwide. Evaluation of the heterogeneity of breast cancer and its various subtypes is crucial to identify novel treatment strategies that can overcome the limitations of currently available options. Explant cultures of human mammary tissue have been known to provide important insights for the study of breast cancer structure and phenotype as they include the context of the surrounding microenvironment, allowing for the comprehensive exploration of patient heterogeneity. However, the major limitation of currently available techniques remains the short-term viability of the tissue owing to loss of structural integrity. Here, an ex vivo culture model using star-shaped poly(ethylene glycol) and maleimide-functionalized heparin (PEG-HM) hydrogels to provide structural support to the explant cultures is presented. The mechanical support allows the culture of the human mammary tissue for up to 3 weeks and prevent disintegration of the cellular structures including the epithelium and surrounding stromal tissue. Further, maintenance of epithelial phenotype and hormonal receptors is observed for up to 2 weeks of culture which makes them relevant for testing therapeutic interventions. Through this study, the importance of donor-to-donor variability and intra-patient tissue heterogeneity is reiterated.
Collapse
Affiliation(s)
- Maria K. Koch
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)Kelvin GroveQLD4059Australia
| | - Akhilandeshwari Ravichandran
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)Kelvin GroveQLD4059Australia
- Centre for Biomedical TechnologiesQueensland University of Technology (QUT)BrisbaneQLD4059Australia
| | - Berline Murekatete
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)Kelvin GroveQLD4059Australia
| | - Julien Clegg
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)Kelvin GroveQLD4059Australia
- Centre for the Personalised Analysis of CancersQueensland University of Technology (QUT)Translational Research InstituteBrisbaneQLD4102Australia
| | - Mary Teresa Joseph
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)Kelvin GroveQLD4059Australia
| | - Madison Hampson
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)Kelvin GroveQLD4059Australia
| | - Mitchell Jenkinson
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)Kelvin GroveQLD4059Australia
| | - Hannah S. Bauer
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)Kelvin GroveQLD4059Australia
| | - Cameron Snell
- Peter MacCallum Cancer CentreMelbourneVIC3000Australia
- Mater PathologyMater Hospital BrisbaneMater Health ServicesBrisbaneQLD4101Australia
| | - Cheng Liu
- Mater PathologyMater Hospital BrisbaneMater Health ServicesBrisbaneQLD4101Australia
- Faculty of MedicineThe University of QueenslandHerstonQLD4006Australia
| | - Madeline Gough
- Mater PathologyMater Hospital BrisbaneMater Health ServicesBrisbaneQLD4101Australia
- Cancer Pathology Research GroupMater Research Institute – The University of QueenslandTranslational Research InstituteBrisbaneQLD4102Australia
| | - Erik W. Thompson
- Centre for the Personalised Analysis of CancersQueensland University of Technology (QUT)Translational Research InstituteBrisbaneQLD4102Australia
- School of Biomedical SciencesQueensland University of Technology (QUT)Translational Research InstituteBrisbaneQLD4102Australia
| | - Carsten Werner
- Leibniz Institute of Polymer Research01069DresdenGermany
| | - Dietmar W. Hutmacher
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)Kelvin GroveQLD4059Australia
- Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering TechnologiesQueensland University of Technology (QUT)BrisbaneQLD4000Australia
- Australian Research Council (ARC) Training Centre for Multiscale 3D ImagingModellingand Manufacturing (M3D Innovation)Queensland University of Technology (QUT)BrisbaneQLD4000Australia
- Max Planck Queensland Center for the Materials Science of Extracellular MatricesQueensland University of Technology (QUT)BrisbaneQLD4000Australia
| | - Larisa M. Haupt
- School of Biomedical SciencesQueensland University of Technology (QUT)Translational Research InstituteBrisbaneQLD4102Australia
- Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering TechnologiesQueensland University of Technology (QUT)BrisbaneQLD4000Australia
- Max Planck Queensland Center for the Materials Science of Extracellular MatricesQueensland University of Technology (QUT)BrisbaneQLD4000Australia
- Centre for Genomics and Personalised HealthGenomics Research CentreSchool of Biomedical SciencesQueensland University of Technology (QUT)Kelvin GroveQLD4059Australia
| | - Laura J. Bray
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)Kelvin GroveQLD4059Australia
- Centre for Biomedical TechnologiesQueensland University of Technology (QUT)BrisbaneQLD4059Australia
- Centre for the Personalised Analysis of CancersQueensland University of Technology (QUT)Translational Research InstituteBrisbaneQLD4102Australia
- Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering TechnologiesQueensland University of Technology (QUT)BrisbaneQLD4000Australia
- Max Planck Queensland Center for the Materials Science of Extracellular MatricesQueensland University of Technology (QUT)BrisbaneQLD4000Australia
| |
Collapse
|
6
|
Suzuki K, Imaoka T, Tomita M, Sasatani M, Doi K, Tanaka S, Kai M, Yamada Y, Kakinuma S. Molecular and cellular basis of the dose-rate-dependent adverse effects of radiation exposure in animal models. Part I: Mammary gland and digestive tract. JOURNAL OF RADIATION RESEARCH 2023; 64:210-227. [PMID: 36773323 PMCID: PMC10036108 DOI: 10.1093/jrr/rrad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/04/2022] [Indexed: 06/18/2023]
Abstract
While epidemiological data are available for the dose and dose-rate effectiveness factor (DDREF) for human populations, animal models have contributed significantly to providing quantitative data with mechanistic insights. The aim of the current review is to compile both the in vitro experiments with reference to the dose-rate effects of DNA damage and repair, and the animal studies, specific to rodents, with reference to the dose-rate effects of cancer development. In particular, the review focuses especially on the results pertaining to underlying biological mechanisms and discusses their possible involvement in the process of radiation-induced carcinogenesis. Because the concept of adverse outcome pathway (AOP) together with the key events has been considered as a clue to estimate radiation risks at low doses and low dose-rates, the review scrutinized the dose-rate dependency of the key events related to carcinogenesis, which enables us to unify the underlying critical mechanisms to establish a connection between animal experimental studies with human epidemiological studies.
Collapse
Affiliation(s)
- Keiji Suzuki
- Corresponding author. Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan. Tel: +81-95-819-7116; Fax: +81-95-819-7117;
| | | | | | | | - Kazutaka Doi
- Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Michiaki Kai
- Nippon Bunri University, 1727-162 Ichiki, Oita, Oita 870-0397, Japan
| | - Yutaka Yamada
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
7
|
Delineation of Pathogenomic Insights of Breast Cancer in Young Women. Cells 2022; 11:cells11121927. [PMID: 35741056 PMCID: PMC9221490 DOI: 10.3390/cells11121927] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
The prognosis of breast cancer (BC) in young women (BCYW) aged ≤40 years tends to be poorer than that in older patients due to aggressive phenotypes, late diagnosis, distinct biologic, and poorly understood genomic features of BCYW. Considering the estimated predisposition of only approximately 15% of the BC population to BC-promoting genes, the underlying reasons for an increased occurrence of BCYW, at large, cannot be completely explained based on general risk factors for BC. This underscores the need for the development of next-generation of tissue- and body fluid-based prognostic and predictive biomarkers for BCYW. Here, we identified the genes associated with BCYW with a particular focus on the age, intrinsic BC subtypes, matched normal or normal breast tissues, and BC laterality. In young women with BC, we observed dysregulation of age-associated cancer-relevant gene sets in both cancer and normal breast tissues, sub-sets of which substantially affected the overall survival (OS) or relapse-free survival (RFS) of patients with BC and exhibited statically significant correlations with several gene modules associated with cellular processes such as the stroma, immune responses, mitotic progression, early response, and steroid responses. For example, high expression of COL1A2, COL5A2, COL5A1, NPY1R, and KIAA1644 mRNAs in the BC and normal breast tissues from young women correlated with a substantial reduction in the OS and RFS of BC patients with increased levels of these exemplified genes. Many of the genes upregulated in BCYW were overexpressed or underexpressed in normal breast tissues, which might provide clues regarding the potential involvement of such genes in the development of BC later in life. Many of BCYW-associated gene products were also found in the extracellular microvesicles/exosomes secreted from breast and other cancer cell-types as well as in body fluids such as urine, saliva, breast milk, and plasma, raising the possibility of using such approaches in the development of non-invasive, predictive and prognostic biomarkers. In conclusion, the findings of this study delineated the pathogenomics of BCYW, providing clues for future exploration of the potential predictive and prognostic importance of candidate BCYW molecules and research strategies as well as a rationale to undertake a prospective clinical study to examine some of testable hypotheses presented here. In addition, the results presented here provide a framework to bring out the importance of geographical disparities, to overcome the current bottlenecks in BCYW, and to make the next quantum leap for sporadic BCYW research and treatment.
Collapse
|
8
|
Physiological background parenchymal uptake of 18F-FDG in normal breast tissues using dedicated breast PET: correlation with mammographic breast composition, menopausal status, and menstrual cycle. Ann Nucl Med 2022; 36:728-735. [PMID: 35610443 DOI: 10.1007/s12149-022-01754-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/08/2022] [Indexed: 11/01/2022]
Abstract
OBJECTIVE This study aimed to quantitatively evaluate the effects of age, mammographic density, menopausal status, and menstrual cycle on background parenchymal uptake (BPU) using ring-shaped dedicated breast positron emission tomography (dbPET). METHODS This study included 186 adult women who underwent mammography and dbPET on the same day and had no abnormalities classified as Breast Imaging Reporting and Data System (BI-RADS) category 1 on both examinations. The volume of interest (VOI) was placed in the glandular tissue of both breasts, and the maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), and metabolic breast volume (MBV) were measured as indicators of BPU. We analyzed the correlation between BPU and age, mammographic density, menopausal status, and menstrual cycle. RESULTS The SUVmax and SUVmean for normal breast tissue were inversely correlated with age (both p < 0.001). The SUVmax, SUVmean, and MBV of mammographically dense breast tissues were significantly higher than those of non-dense breast tissues (all p < 0.001). The SUVmax, SUVmean, and MBV of normal breast tissue in premenopausal women were significantly higher than those in postmenopausal women (p < 0.001, p < 0.001, p = 0.002, respectively). In the study, 59 premenopausal women, the SUVmax of normal breast tissue in the menstrual-follicular phase was significantly lower than that in the periovulatory-luteal phase (p = 0.02). When we sorted the premenopausal women by mammographic breast composition, the SUVmax and SUVmean of normal breast tissues in the menstrual-follicular phase were significantly lower than those in the periovulatory-luteal phase in the 44 premenopausal women with dense breasts (p = 0.007, and p = 0.038, respectively), whereas no statistically significant difference was found between the menstrual-follicular phase and the periovulatory-luteal phase in the 15 premenopausal women with non-dense breasts. CONCLUSIONS BPU in normal breast tissues assessed using ring-shaped dbPET was associated with mammographic density, menopausal status, and women's menstrual cycle. The menstrual cycle was significantly associated with BPU in premenopausal women with dense breasts but not in women with non-dense breasts.
Collapse
|
9
|
Torres SMPS, Nader HB, Simões RS, Baracat EC, Soares-Jr JM, Simões MDJ, C T Gomes R. Hyaluronic acid and proliferation/cellular death amount in the female rats mammary gland after estroprogestative therapy. Gynecol Endocrinol 2022; 38:181-185. [PMID: 34463181 DOI: 10.1080/09513590.2021.1970739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
AIMS To evaluate the concentration of hyaluronan acid and proliferation/cellular death in mammary gland of ovariectomized female rat after estroprogestative therapy. MATERIALS AND METHODS Forty ovariectomized female rats were divided into four groups with 10 animals/each: OG (vehicle); EG: (Estradiol, 7 days of treatment), PG (Progesterone acetate, 23 days of treatment), and EPG: (Estradiol, 7 days of treatment, and next Progesterone acetate, 23 days of treatment). Twenty-four hours after the last treatment, all animals were euthanized, the mammary gland removed, then, a fragment was immersed in acetone to quantifying of the hyaluronan acid biochemical method (ELISA-Like fluorometric assay), and a fragment fixed for 24 h in 10% formaldehyde in phosphate-buffered saline (PBS) processed for immunohistochemistry method for detection of the cell marker proliferation (Ki67) and cellular marker death by DNA fragmentation the TUNEL method. RESULTS The estradiol-treatment alone (EG) or associated with progesterone (EPG) affected the concentration of hyaluronan acid, increased cell proliferation, and decreased cell death compared to OG and PG (p < .05) in the mammary tissue. CONCLUSIONS Our results suggest that the excessive reduction of HA in mammary tissue, as occurred with progesterone treatment, can lead to a breakdown of the extracellular matrix. These changes may be indicative of mammary pathology such as the development of tumor.
Collapse
Affiliation(s)
- Sueli M P S Torres
- Histology and Structural Biology Division of the Department of Morphology and Genetics, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Helena B Nader
- Molecular Biology Division of the Department of Biochemistry, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Ricardo S Simões
- Gynecology Division of the Department of Obstetrics and Gynecology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brazil
| | - Edmund C Baracat
- Gynecology Division of the Department of Obstetrics and Gynecology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brazil
| | - José M Soares-Jr
- Gynecology Division of the Department of Obstetrics and Gynecology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brazil
| | - Manuel de J Simões
- Histology and Structural Biology Division of the Department of Morphology and Genetics, Universidade Federal de São Paulo, Sao Paulo, Brazil
- Department of Gynecology, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Regina C T Gomes
- Histology and Structural Biology Division of the Department of Morphology and Genetics, Universidade Federal de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
10
|
Bertolo PHL, Moutinho da Conceição MEBA, Emboaba da Costa RRM, Jacintho APP, Cipriano RS, Moreira PRR, Ferreira MA, Machado GF, de Oliveira Vasconcelos R. Influence of serum progesterone levels on the inflammatory response of female dogs with visceral leishmaniosis. Vet Parasitol 2022; 302:109658. [PMID: 35042095 DOI: 10.1016/j.vetpar.2022.109658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/26/2021] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
Abstract
The aim of this study was to evaluate the histopathological changes to the mammary gland that occur in female dogs with visceral leishmaniosis and to correlate the findings with the parasite load, inflammatory cell profile in mammary tissue and serum progesterone levels. For this, 20 adult female dogs that were naturally infected with Leishmania infantum, not spayed, not pregnant and free from mammary tumors were used. They were divided into two groups: G1 (n = 9) with high serum progesterone levels and G2 (n = 11) with low serum progesterone levels. The parasite load and the immunophenotype of leukocytes infiltrated into the mammary tissue (CD3, CD4, CD8 and MCA874) were evaluated using the immunohistochemical technique. In the mammary gland, chronic inflammatory infiltrate was mainly found in G1, sometimes associated with granulomatous inflammation, higher parasite load and higher density of cells immunolabeled for CD3, CD4, CD8 and MCA874. A significant positive correlation (p < 0.05) was observed between the parasite load and the immunolabeled leukocytes. The influence of the serum progesterone level in the mammary gland of infected female dogs can contribute to the maintenance of an immunosuppressive cell profile and favor the persistence of the parasite in this site.
Collapse
Affiliation(s)
- Paulo Henrique Leal Bertolo
- School of Agrarian and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | | | | | - Ana Paula Prudente Jacintho
- School of Agrarian and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | | | | | - Maricy Apparício Ferreira
- School of Agrarian and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Gisele Fabrino Machado
- School of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | | |
Collapse
|
11
|
Abstract
Progestogens are steroid compounds that have the ability to induce secretory transformation in the endometrium and are utilized in menopausal hormone therapy to prevent endometrial hyperplasia and endometrial cancer. Progestogens can be derived from 21-carbon or 19-carbon steroid cytoskeletons and thus have different properties and metabolic effects beyond the progestational effects on the endometrium. This limited review will focus on the available progestogens utilized in combination hormone therapy including progesterone, medroxyprogesterone acetate, norethindrone, norethindrone acetate, levonorgestrel, and drospirenone. The impact of progestogens on a variety of target tissues including the endometrium, breast, cardiovascular system, brain, and bone, will be reviewed. Last, the current clinical regimens that can be utilized by clinicians will be discussed.
Collapse
Affiliation(s)
- James H Liu
- Departments of Obstetrics and Gynecology
- Reproductive Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
12
|
Rauner G, Kuperwasser C. Microenvironmental control of cell fate decisions in mammary gland development and cancer. Dev Cell 2021; 56:1875-1883. [PMID: 34256927 DOI: 10.1016/j.devcel.2021.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/28/2022]
Abstract
Cell fate decisions are critical for adequate tissue development, maintenance and regeneration. In the mammary gland, epithelial cell fates are tightly controlled by the microenvironment. Here, we review how cell fate decisions are regulated by components of the microenvironment during mammary gland development and how pathological changes in the microenvironment can alter cell fates, leading to malignancy. Specifically, we describe the current understanding of how mammary cell fate is controlled and directed by three elements: the extracellular matrix, the immune microenvironment, and hormones-and how these elements can converge to create microenvironments that promote a fourth element: DNA damage.
Collapse
Affiliation(s)
- Gat Rauner
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Charlotte Kuperwasser
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Laboratory for the Convergence of Biomedical, Physical, and Engineering Sciences, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
13
|
Discordance in 21-gene recurrence scores between paired breast cancer samples is inversely associated with patient age. Breast Cancer Res 2020; 22:90. [PMID: 32811558 PMCID: PMC7437067 DOI: 10.1186/s13058-020-01327-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022] Open
Abstract
Background The Oncotype DX 21-gene Recurrence Score is a genomic-based algorithm that guides adjuvant chemotherapy treatment decisions for women with early-stage, oestrogen receptor (ER)-positive breast cancer. However, there are age-related differences in chemotherapy benefit for women with intermediate Oncotype DX Recurrence Scores that are not well understood. Menstrual cycling in younger women is associated with hormonal fluctuations that might affect the expression of genomic predictive biomarkers and alter Recurrence Scores. Here, we use paired human breast cancer samples to demonstrate that the clinically employed Oncotype DX algorithm is critically affected by patient age. Methods RNA was extracted from 25 pairs of formalin-fixed paraffin-embedded, invasive ER-positive breast cancer samples that had been collected approximately 2 weeks apart. A 21-gene signature analogous to the Oncotype DX platform was assessed through quantitative real-time PCR, and experimental recurrence scores were calculated using the Oncotype DX algorithm. Results There was a significant inverse association between patient age and discordance in the recurrence score. For every 1-year decrease in age, discordance in recurrence scores between paired samples increased by 0.08 units (95% CI − 0.14, − 0.01; p = 0.017). Discordance in recurrence scores for women under the age of 50 was driven primarily by proliferation- and HER2-associated genes. Conclusion The Oncotype DX 21-gene Recurrence Score algorithm is critically affected by patient age. These findings emphasise the need for the consideration of patient age, particularly for women younger than 50, in the development and application of genomic-based algorithms for breast cancer care.
Collapse
|
14
|
Fabian CJ, Khan SA, Garber JE, Dooley WC, Yee LD, Klemp JR, Nydegger JL, Powers KR, Kreutzjans AL, Zalles CM, Metheny T, Phillips TA, Hu J, Koestler DC, Chalise P, Yellapu NK, Jernigan C, Petroff BK, Hursting SD, Kimler BF. Randomized Phase IIB Trial of the Lignan Secoisolariciresinol Diglucoside in Premenopausal Women at Increased Risk for Development of Breast Cancer. Cancer Prev Res (Phila) 2020; 13:623-634. [PMID: 32312713 PMCID: PMC7335358 DOI: 10.1158/1940-6207.capr-20-0050] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/11/2020] [Accepted: 04/15/2020] [Indexed: 02/05/2023]
Abstract
We conducted a multiinstitutional, placebo-controlled phase IIB trial of the lignan secoisolariciresinol diglucoside (SDG) found in flaxseed. Benign breast tissue was acquired by random periareolar fine needle aspiration (RPFNA) from premenopausal women at increased risk for breast cancer. Those with hyperplasia and ≥2% Ki-67 positive cells were eligible for randomization 2:1 to 50 mg SDG/day (Brevail) versus placebo for 12 months with repeat bio-specimen acquisition. The primary endpoint was difference in change in Ki-67 between randomization groups. A total of 180 women were randomized, with 152 ultimately evaluable for the primary endpoint. Median baseline Ki-67 was 4.1% with no difference between arms. Median Ki-67 change was -1.8% in the SDG arm (P = 0.001) and -1.2% for placebo (P = 0.034); with no significant difference between arms. As menstrual cycle phase affects proliferation, secondary analysis was performed for 117 women who by progesterone levels were in the same phase of the menstrual cycle at baseline and off-study tissue sampling. The significant Ki-67 decrease persisted for SDG (median = -2.2%; P = 0.002) but not placebo (median = -1.0%). qRT-PCR was performed on 77 pairs of tissue specimens. Twenty-two had significant ERα gene expression changes (<0.5 or >2.0) with 7 of 10 increases in placebo and 10 of 12 decreases for SDG (P = 0.028), and a difference between arms (P = 0.017). Adverse event incidence was similar in both groups, with no evidence that 50 mg/day SDG is harmful. Although the proliferation biomarker analysis showed no difference between the treatment group and the placebo, the trial demonstrated use of SDG is tolerable and safe.
Collapse
Affiliation(s)
- Carol J Fabian
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | | | | | - William C Dooley
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | - Jennifer R Klemp
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Jennifer L Nydegger
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Kandy R Powers
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Amy L Kreutzjans
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Carola M Zalles
- Department of Pathology, Boca Raton Hospital, Boca Raton, Florida
| | - Trina Metheny
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Teresa A Phillips
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Jinxiang Hu
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Devin C Koestler
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Prabhakar Chalise
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Nanda Kumar Yellapu
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Cheryl Jernigan
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas
| | - Brian K Petroff
- Veterinary Diagnostic Laboratory, Michigan State University, Lansing, Michigan
| | - Stephen D Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Bruce F Kimler
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
15
|
Dunphy KA, Black AL, Roberts AL, Sharma A, Li Z, Suresh S, Browne EP, Arcaro KF, Ser-Dolansky J, Bigelow C, Troester MA, Schneider SS, Makari-Judson G, Crisi GM, Jerry DJ. Inter-Individual Variation in Response to Estrogen in Human Breast Explants. J Mammary Gland Biol Neoplasia 2020; 25:51-68. [PMID: 32152951 PMCID: PMC7147970 DOI: 10.1007/s10911-020-09446-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
Exposure to estrogen is strongly associated with increased breast cancer risk. While all women are exposed to estrogen, only 12% are expected to develop breast cancer during their lifetime. These women may be more sensitive to estrogen, as rodent models have demonstrated variability in estrogen sensitivity. Our objective was to determine individual variation in expression of estrogen receptor (ER) and estrogen-induced responses in the normal human breast. Human breast tissue from female donors undergoing reduction mammoplasty surgery were collected for microarray analysis of ER expression. To examine estrogen-induced responses, breast tissue from 23 female donors were cultured ex- vivo in basal or 10 nM 17β-estradiol (E2) media for 4 days. Expression of ER genes (ESR1 and ESR2) increased significantly with age. E2 induced consistent increases in global gene transcription, but expression of target genes AREG, PGR, and TGFβ2 increased significantly only in explants from nulliparous women. E2-treatment did not induce consistent changes in proliferation or radiation induced apoptosis. Responses to estrogen are highly variable among women and not associated with levels of ER expression, suggesting differences in intracellular signaling among individuals. The differences in sensitivity to E2-stimulated responses may contribute to variation in risk of breast cancer.
Collapse
Affiliation(s)
- Karen A Dunphy
- The Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA.
| | - Amye L Black
- The Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Amy L Roberts
- The Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Aman Sharma
- The Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Zida Li
- The Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Sneha Suresh
- The Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Eva P Browne
- The Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Kathleen F Arcaro
- The Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | | | - Carol Bigelow
- Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, MA, USA
| | - Melissa A Troester
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sallie S Schneider
- The Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
- Pioneer Valley Life Sciences, Springfield, MA, USA
| | - Grace Makari-Judson
- Division of Hematology-Oncology, University of Massachusetts Medical School/Baystate, Springfield, MA, USA
| | - Giovanna M Crisi
- Department of Pathology, University of Massachusetts Medical School/Baystate, Springfield, MA, USA
| | - D Joseph Jerry
- The Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
- Pioneer Valley Life Sciences, Springfield, MA, USA
| |
Collapse
|
16
|
Shehata M, Waterhouse PD, Casey AE, Fang H, Hazelwood L, Khokha R. Proliferative heterogeneity of murine epithelial cells in the adult mammary gland. Commun Biol 2018; 1:111. [PMID: 30271991 PMCID: PMC6123670 DOI: 10.1038/s42003-018-0114-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/28/2018] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common cancer in females. The number of years menstruating and length of an individual menstrual cycle have been implicated in increased breast cancer risk. At present, the proliferative changes within an individual reproductive cycle or variations in the estrous cycle in the normal mammary gland are poorly understood. Here we use Fucci2 reporter mice to demonstrate actively proliferating mammary epithelial cells have shorter G1 lengths, whereas more differentiated/non-proliferating cells have extended G1 lengths. We find that cells enter into the cell cycle mainly during diestrus, yet the expansion is erratic and does not take place every reproductive cycle. Single cell expression analyses feature expected proliferation markers (Birc5, Top2a), while HR+ luminal cells exhibit fluctuations of key differentiation genes (ER, Gata3) during the cell cycle. We highlight the proliferative heterogeneity occurring within the normal mammary gland during a single-estrous cycle, indicating that the mammary gland undergoes continual dynamic proliferative changes.
Collapse
Affiliation(s)
- Mona Shehata
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada, M5G 1L7.
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, UK.
| | - Paul D Waterhouse
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada, M5G 1L7
| | - Alison E Casey
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada, M5G 1L7
| | - Hui Fang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada, M5G 1L7
| | - Lee Hazelwood
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| | - Rama Khokha
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada, M5G 1L7.
| |
Collapse
|
17
|
Alferez DG, Simões BM, Howell SJ, Clarke RB. The Role of Steroid Hormones in Breast and Effects on Cancer Stem Cells. CURRENT STEM CELL REPORTS 2018; 4:81-94. [PMID: 29600163 PMCID: PMC5866269 DOI: 10.1007/s40778-018-0114-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purpose of Review This review will discuss how the steroid hormones, estrogen and progesterone, as well as treatments that target steroid receptors, can regulate cancer stem cell (CSC) activity. The CSC theory proposes a hierarchical organization in tumors where at its apex lies a subpopulation of cancer cells endowed with self-renewal and differentiation capacity. Recent Findings In breast cancer (BC), CSCs have been suggested to play a key role in tumor maintenance, disease progression, and the formation of metastases. In preclinical models of BC, only a few CSCs are required sustain tumor re-growth, especially after conventional anti-endocrine treatments. CSCs include therapy-resistant clones that survive standard of care treatments like chemotherapy, irradiation, and hormonal therapy. Summary The relevance of hormones for both normal mammary gland and BC development is well described, but it was only recently that the activities of hormones on CSCs have been investigated, opening new directions for future BC treatments and CSCs.
Collapse
Affiliation(s)
- Denis G. Alferez
- Breast Biology Group, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4GJ UK
| | - Bruno M. Simões
- Breast Biology Group, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4GJ UK
| | - Sacha J. Howell
- Breast Biology Group, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4GJ UK
- Department of Medical Oncology, The University of Manchester, The Christie NHS Foundation Trust, Manchester, M20 4BX UK
| | - Robert B. Clarke
- Breast Biology Group, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4GJ UK
| |
Collapse
|
18
|
Torres SMPS, Nader HB, Simões RS, Baracat EC, Simões MDJ, Fuchs LFP, Soares JM, Gomes RCT. Concentration of sulfated glycosaminoglycans in the mammary tissue of female rats with the aging and about hormonal influence. Gynecol Endocrinol 2018; 34:64-68. [PMID: 28762851 DOI: 10.1080/09513590.2017.1336218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
It was to evaluate the concentration of sulfate glycosaminoglycans (GAG) in mammary tissue of the young and adult female rats and ovariectomized females rats after hormonal stimulation. For this purpose, 60 female rats were divided into six groups with 10 animals/each: nonovariectomized groups: G1 (5 months), and G2 (15 months) and ovariectomized groups: OG (vehicle); EG: (estradiol, 7 days of treatment), PG (progesterone acetate, 23 days of treatment) and EPG: (estradiol (7 days of treatment) and next progesterone acetate (23 days of treatment). Twenty-four hours after the last treatment, all animals were euthanized, the mammary tissue removed, processed for biochemical evaluation and quantification of the GAG. The comparison between groups showed that the concentration dermatan sulfate (DS) G1 was lower compared to G2, OG, EG (p < .05) and G2 was lower compared to OG (p < .05), and OG was higher compared to EG, GP, EPG (p < .05); and heparan sulfate (HS) G1 was higher compared to G2 (p < .05), and G2 was higher compared to OG, EP, PG and EPG (p < .05). These changes in the extracellular matrix might explain, at least in part, hormonal influence about sulfated glycosaminoglycans in response to physiological state/age, and in response to hormonal treatment in the mammary tissues.
Collapse
Affiliation(s)
- Sueli M P S Torres
- a Histology and Structural Biology Division of the Department of Morphology and Genetics , Universidade Federal de São Paulo , São Paulo , Brazil
| | - Helena B Nader
- b Molecular Biology Division of the Department of Biochemistry , Universidade Federal de São Paulo , São Paulo , Brazil
| | - Ricardo S Simões
- c Gynecology Division of the Department of Obstetrics and Gynecology , Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo , São Paulo , Brazil
| | - Edmund C Baracat
- c Gynecology Division of the Department of Obstetrics and Gynecology , Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo , São Paulo , Brazil
| | - Manuel de J Simões
- a Histology and Structural Biology Division of the Department of Morphology and Genetics , Universidade Federal de São Paulo , São Paulo , Brazil
- d Department of Gynecology , Universidade Federal de São Paulo , São Paulo , Brazil
| | - Luiz F P Fuchs
- a Histology and Structural Biology Division of the Department of Morphology and Genetics , Universidade Federal de São Paulo , São Paulo , Brazil
| | - José Maria Soares
- c Gynecology Division of the Department of Obstetrics and Gynecology , Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo , São Paulo , Brazil
| | - Regina Célia T Gomes
- a Histology and Structural Biology Division of the Department of Morphology and Genetics , Universidade Federal de São Paulo , São Paulo , Brazil
- c Gynecology Division of the Department of Obstetrics and Gynecology , Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo , São Paulo , Brazil
| |
Collapse
|
19
|
Schaadt NS, Alfonso JCL, Schönmeyer R, Grote A, Forestier G, Wemmert C, Krönke N, Stoeckelhuber M, Kreipe HH, Hatzikirou H, Feuerhake F. Image analysis of immune cell patterns in the human mammary gland during the menstrual cycle refines lymphocytic lobulitis. Breast Cancer Res Treat 2017; 164:305-315. [PMID: 28444535 DOI: 10.1007/s10549-017-4239-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/07/2017] [Indexed: 12/01/2022]
Abstract
PURPOSE To improve microscopic evaluation of immune cells relevant in breast cancer oncoimmunology, we aim at distinguishing normal infiltration patterns from lymphocytic lobulitis by advanced image analysis. We consider potential immune cell variations due to the menstrual cycle and oral contraceptives in non-neoplastic mammary gland tissue. METHODS Lymphocyte and macrophage distributions were analyzed in the anatomical context of the resting mammary gland in immunohistochemically stained digital whole slide images obtained from 53 reduction mammoplasty specimens. Our image analysis workflow included automated regions of interest detection, immune cell recognition, and co-registration of regions of interest. RESULTS In normal lobular epithelium, seven CD8[Formula: see text] lymphocytes per 100 epithelial cells were present on average and about 70% of this T-lymphocyte population was lined up along the basal cell layer in close proximity to the epithelium. The density of CD8[Formula: see text] T-cell was 1.6 fold higher in the luteal than in the follicular phase in spontaneous menstrual cycles and 1.4 fold increased under the influence of oral contraceptives, and not co-localized with epithelial proliferation. CD4[Formula: see text] T-cells were infrequent. Abundant CD163[Formula: see text] macrophages were widely spread, including the interstitial compartment, with minor variation during the menstrual cycle. CONCLUSIONS Spatial patterns of different immune cell subtypes determine the range of normal, as opposed to inflammatory conditions of the breast tissue microenvironment. Advanced image analysis enables quantification of hormonal effects, refines lymphocytic lobulitis, and shows potential for comprehensive biopsy evaluation in oncoimmunology.
Collapse
Affiliation(s)
- Nadine S Schaadt
- Institute of Pathology, Neuropathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Juan Carlos López Alfonso
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Ralf Schönmeyer
- Definiens AG, Bernhard-Wicki-Straße 5, 80636, Munich, Germany
| | - Anne Grote
- Institute of Pathology, Neuropathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Germain Forestier
- MIPS, University of Haute Alsace, 12 rue des Freres Lumiere, 68093, Mulhouse, France
| | - Cédric Wemmert
- ICube, University of Strasbourg, 300 bvd Sebastien Brant, 67412, Illkirch, France
| | - Nicole Krönke
- Institute of Pathology, Neuropathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Mechthild Stoeckelhuber
- Department of Oral and Maxillofacial Surgery, Technische Universität München, Ismaningerstraße 22, 81675, Munich, Germany
| | - Hans H Kreipe
- Institute of Pathology, Neuropathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Haralampos Hatzikirou
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Friedrich Feuerhake
- Institute of Pathology, Neuropathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
- University Clinic of Freiburg, Institute for Neuropathology, Breisacher Str. 64, 76106, Freiburg, Germany.
| |
Collapse
|
20
|
Bernhardt SM, Dasari P, Walsh D, Townsend AR, Price TJ, Ingman WV. Hormonal Modulation of Breast Cancer Gene Expression: Implications for Intrinsic Subtyping in Premenopausal Women. Front Oncol 2016; 6:241. [PMID: 27896218 PMCID: PMC5107819 DOI: 10.3389/fonc.2016.00241] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/27/2016] [Indexed: 12/12/2022] Open
Abstract
Clinics are increasingly adopting gene-expression profiling to diagnose breast cancer subtype, providing an intrinsic, molecular portrait of the tumor. For example, the PAM50-based Prosigna test quantifies expression of 50 key genes to classify breast cancer subtype, and this method of classification has been demonstrated to be superior over traditional immunohistochemical methods that detect proteins, to predict risk of disease recurrence. However, these tests were largely developed and validated using breast cancer samples from postmenopausal women. Thus, the accuracy of such tests has not been explored in the context of the hormonal fluctuations in estrogen and progesterone that occur during the menstrual cycle in premenopausal women. Concordance between traditional methods of subtyping and the new tests in premenopausal women is likely to depend on the stage of the menstrual cycle at which the tissue sample is taken and the relative effect of hormones on expression of genes versus proteins. The lack of knowledge around the effect of fluctuating estrogen and progesterone on gene expression in breast cancer patients raises serious concerns for intrinsic subtyping in premenopausal women, which comprise about 25% of breast cancer diagnoses. Further research on the impact of the menstrual cycle on intrinsic breast cancer profiling is required if premenopausal women are to benefit from the new technology of intrinsic subtyping.
Collapse
Affiliation(s)
- Sarah M Bernhardt
- Discipline of Surgery, School of Medicine, The Queen Elizabeth Hospital, University of Adelaide, Woodville, SA, Australia; The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Pallave Dasari
- Discipline of Surgery, School of Medicine, The Queen Elizabeth Hospital, University of Adelaide, Woodville, SA, Australia; The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - David Walsh
- Discipline of Surgery, School of Medicine, The Queen Elizabeth Hospital, University of Adelaide , Woodville, SA , Australia
| | - Amanda R Townsend
- Discipline of Surgery, School of Medicine, The Queen Elizabeth Hospital, University of Adelaide, Woodville, SA, Australia; Department of Medical Oncology, The Queen Elizabeth Hospital, Woodville, SA, Australia
| | - Timothy J Price
- Discipline of Surgery, School of Medicine, The Queen Elizabeth Hospital, University of Adelaide, Woodville, SA, Australia; Department of Medical Oncology, The Queen Elizabeth Hospital, Woodville, SA, Australia
| | - Wendy V Ingman
- Discipline of Surgery, School of Medicine, The Queen Elizabeth Hospital, University of Adelaide, Woodville, SA, Australia; The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
21
|
In-silico insights on the prognostic potential of immune cell infiltration patterns in the breast lobular epithelium. Sci Rep 2016; 6:33322. [PMID: 27659691 PMCID: PMC5034260 DOI: 10.1038/srep33322] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/23/2016] [Indexed: 12/17/2022] Open
Abstract
Scattered inflammatory cells are commonly observed in mammary gland tissue, most likely in response to normal cell turnover by proliferation and apoptosis, or as part of immunosurveillance. In contrast, lymphocytic lobulitis (LLO) is a recurrent inflammation pattern, characterized by lymphoid cells infiltrating lobular structures, that has been associated with increased familial breast cancer risk and immune responses to clinically manifest cancer. The mechanisms and pathogenic implications related to the inflammatory microenvironment in breast tissue are still poorly understood. Currently, the definition of inflammation is mainly descriptive, not allowing a clear distinction of LLO from physiological immunological responses and its role in oncogenesis remains unclear. To gain insights into the prognostic potential of inflammation, we developed an agent-based model of immune and epithelial cell interactions in breast lobular epithelium. Physiological parameters were calibrated from breast tissue samples of women who underwent reduction mammoplasty due to orthopedic or cosmetic reasons. The model allowed to investigate the impact of menstrual cycle length and hormone status on inflammatory responses to cell turnover in the breast tissue. Our findings suggested that the immunological context, defined by the immune cell density, functional orientation and spatial distribution, contains prognostic information previously not captured by conventional diagnostic approaches.
Collapse
|
22
|
Heuskin AC, Osseiran AI, Tang J, Costes SV. Simulating Space Radiation-Induced Breast Tumor Incidence Using Automata. Radiat Res 2016; 186:27-38. [PMID: 27333083 DOI: 10.1667/rr14338.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
UNLABELLED Estimating cancer risk from space radiation has been an ongoing challenge for decades primarily because most of the reported epidemiological data on radiation-induced risks are derived from studies of atomic bomb survivors who were exposed to an acute dose of gamma rays instead of chronic high-LET cosmic radiation. In this study, we introduce a formalism using cellular automata to model the long-term effects of ionizing radiation in human breast for different radiation qualities. We first validated and tuned parameters for an automata-based two-stage clonal expansion model simulating the age dependence of spontaneous breast cancer incidence in an unexposed U.S. POPULATION We then tested the impact of radiation perturbation in the model by modifying parameters to reflect both targeted and nontargeted radiation effects. Targeted effects (TE) reflect the immediate impact of radiation on a cell's DNA with classic end points being gene mutations and cell death. They are well known and are directly derived from experimental data. In contrast, nontargeted effects (NTE) are persistent and affect both damaged and undamaged cells, are nonlinear with dose and are not well characterized in the literature. In this study, we introduced TE in our model and compared predictions against epidemiologic data of the atomic bomb survivor cohort. TE alone are not sufficient for inducing enough cancer. NTE independent of dose and lasting ∼100 days postirradiation need to be added to accurately predict dose dependence of breast cancer induced by gamma rays. Finally, by integrating experimental relative biological effectiveness (RBE) for TE and keeping NTE (i.e., radiation-induced genomic instability) constant with dose and LET, the model predicts that RBE for breast cancer induced by cosmic radiation would be maximum at 220 keV/μm. This approach lays the groundwork for further investigation into the impact of chronic low-dose exposure, inter-individual variation and more complex space radiation scenarios.
Collapse
Affiliation(s)
- A C Heuskin
- a Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California.,c NAmur Research Institute for Life Sciences (NARILIS), Research Center for the Physics of Matter and Radiation (PMR), University of Namur, Namur, Belgium
| | - A I Osseiran
- a Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - J Tang
- b Exogen Biotechnology Inc., Berkeley, California
| | - S V Costes
- a Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
| |
Collapse
|
23
|
Klonoff-Cohen H, An R, Fries T, Le J, Matt GE. Timing of breast cancer surgery, menstrual phase, and prognosis: Systematic review and meta-analysis. Crit Rev Oncol Hematol 2016; 102:1-14. [PMID: 27066938 DOI: 10.1016/j.critrevonc.2016.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 01/05/2016] [Accepted: 02/10/2016] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND For over 25 years, there has been a debate revolving around the timing of breast cancer surgery, menstrual cycle, and prognosis. METHODS This systematic review synthesizes and evaluates the body of evidence in an effort to inform evidence-based practice. A keyword and reference search was performed in PubMed and Web of Science to identify human studies that met the inclusion criteria. A total of 58 studies (48 international and 10 U.S.-based) were identified. We provided a narrative summary on study findings and conducted a meta-analysis on a subset of studies where quantitative information was available. RESULTS Findings from both qualitative and quantitative analyses were inconclusive regarding performing breast cancer surgery around a specific phase of the menstrual cycle. CONCLUSION Based on the Institute of Medicine criteria, evidence is insufficient to recommend a change in current primary breast cancer surgery practice based on menstrual phase.
Collapse
Affiliation(s)
- Hillary Klonoff-Cohen
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, United States.
| | - Ruopeng An
- Department of Kinesiology and Community Health, College of Applied Health Sciences, University of Illinois at Urbana-Champaign, United States
| | | | - Jennifer Le
- Department of Kinesiology and Community Health University of Illinois at Urbana-Champaign, United States
| | - Georg E Matt
- Department of Psychology, San Diego State University, United States
| |
Collapse
|
24
|
Simões BM, Alferez DG, Howell SJ, Clarke RB. The role of steroid hormones in breast cancer stem cells. Endocr Relat Cancer 2015; 22:T177-86. [PMID: 26381288 DOI: 10.1530/erc-15-0350] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2015] [Indexed: 12/22/2022]
Abstract
Breast cancer stem cells (BCSCs) are potent tumor-initiating cells in breast cancer, the most common cancer among women. BCSCs have been suggested to play a key role in tumor initiation which can lead to disease progression and formation of metastases. Moreover, BCSCs are thought to be the unit of selection for therapy-resistant clones since they survive conventional treatments, such as chemotherapy, irradiation, and hormonal therapy. The importance of the role of hormones for both normal mammary gland and breast cancer development is well established, but it was not until recently that the effects of hormones on BCSCs have been investigated. This review will discuss recent studies highlighting how ovarian steroid hormones estrogen and progesterone, as well as therapies against them, can regulate BCSC activity.
Collapse
Affiliation(s)
- Bruno M Simões
- Breast Biology GroupBreast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, Wilmslow Road, Manchester M20 4BX, UKDepartment of Medical OncologyThe Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - Denis G Alferez
- Breast Biology GroupBreast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, Wilmslow Road, Manchester M20 4BX, UKDepartment of Medical OncologyThe Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - Sacha J Howell
- Breast Biology GroupBreast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, Wilmslow Road, Manchester M20 4BX, UKDepartment of Medical OncologyThe Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK Breast Biology GroupBreast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, Wilmslow Road, Manchester M20 4BX, UKDepartment of Medical OncologyThe Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - Robert B Clarke
- Breast Biology GroupBreast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, Wilmslow Road, Manchester M20 4BX, UKDepartment of Medical OncologyThe Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|
25
|
Arendt LM, Kuperwasser C. Form and function: how estrogen and progesterone regulate the mammary epithelial hierarchy. J Mammary Gland Biol Neoplasia 2015; 20:9-25. [PMID: 26188694 PMCID: PMC4596764 DOI: 10.1007/s10911-015-9337-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/08/2015] [Indexed: 12/30/2022] Open
Abstract
The mammary gland undergoes dramatic post-natal growth beginning at puberty, followed by full development occurring during pregnancy and lactation. Following lactation, the alveoli undergo apoptosis, and the mammary gland reverses back to resemble the nonparous gland. This process of growth and regression occurs for multiple pregnancies, suggesting the presence of a hierarchy of stem and progenitor cells that are able to regenerate specialized populations of mammary epithelial cells. Expansion of epithelial cell populations in the mammary gland is regulated by ovarian steroids, in particular estrogen acting through its receptor estrogen receptor alpha (ERα) and progesterone signaling through progesterone receptor (PR). A diverse number of stem and progenitor cells have been identified based on expression of cell surface markers and functional assays. Here we review the current understanding of how estrogen and progesterone act together and separately to regulate stem and progenitor cells within the human and mouse mammary tissues. Better understanding of the hierarchal organization of epithelial cell populations in the mammary gland and how the hormonal milieu affects its regulation may provide important insights into the origins of different subtypes of breast cancer.
Collapse
Affiliation(s)
- Lisa M Arendt
- Developmental, Molecular, and Chemical Biology Department, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, 02111, USA
- Molecular Oncology Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA
- Raymond and Beverly Sackler Laboratory for the Convergence of Biomedical, Physical and Engineering Sciences, Boston, MA, 02111, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Dr, Madison, WI, 53706, USA
| | - Charlotte Kuperwasser
- Developmental, Molecular, and Chemical Biology Department, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, 02111, USA.
- Molecular Oncology Research Institute, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA.
- Raymond and Beverly Sackler Laboratory for the Convergence of Biomedical, Physical and Engineering Sciences, Boston, MA, 02111, USA.
- Developmental, Molecular, and Chemical Biology Department, Tufts University School of Medicine, 800 Washington St, Box 5609, Boston, MA, 02111, USA.
| |
Collapse
|
26
|
Need EF, Atashgaran V, Ingman WV, Dasari P. Hormonal regulation of the immune microenvironment in the mammary gland. J Mammary Gland Biol Neoplasia 2014; 19:229-39. [PMID: 24993978 DOI: 10.1007/s10911-014-9324-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/16/2014] [Indexed: 12/29/2022] Open
Abstract
It is well established that the development and homeostasis of the mammary gland are highly dependent upon the actions of ovarian hormones progesterone and estrogen, as well as the availability of prolactin for the pregnant and lactating gland. More recently it has become apparent that immune system cells and cytokines play essential roles in both mammary gland development as well as breast cancer. Here, we review hormonal effects on mammary gland biology during puberty, menstrual cycling, pregnancy, lactation and involution, and dissect how hormonal control of the immune system may contribute to mammary development at each stage via cytokine secretion and recruitment of macrophages, eosinophils, mast cells and lymphocytes. Collectively, these alterations may create an immunotolerant or inflammatory immune environment at specific developmental stages or phases of the menstrual cycle. Of particular interest for further research is investigation of the combinatorial actions of progesterone and estrogen during the luteal phase of the menstrual cycle and key developmental points where the immune system may play an active role both in mammary development as well as in the creation of an immunotolerant environment, thereby affecting breast cancer risk.
Collapse
Affiliation(s)
- Eleanor F Need
- Discipline of Surgery, School of Medicine, The Queen Elizabeth Hospital, University of Adelaide, DX465702, 28 Woodville Road, Woodville, SA, 5011, Australia
| | | | | | | |
Collapse
|
27
|
Pardo I, Lillemoe HA, Blosser RJ, Choi M, Sauder CAM, Doxey DK, Mathieson T, Hancock BA, Baptiste D, Atale R, Hickenbotham M, Zhu J, Glasscock J, Storniolo AMV, Zheng F, Doerge RW, Liu Y, Badve S, Radovich M, Clare SE. Next-generation transcriptome sequencing of the premenopausal breast epithelium using specimens from a normal human breast tissue bank. Breast Cancer Res 2014; 16:R26. [PMID: 24636070 PMCID: PMC4053088 DOI: 10.1186/bcr3627] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 03/10/2014] [Indexed: 12/12/2022] Open
Abstract
Introduction Our efforts to prevent and treat breast cancer are significantly impeded by a lack of knowledge of the biology and developmental genetics of the normal mammary gland. In order to provide the specimens that will facilitate such an understanding, The Susan G. Komen for the Cure Tissue Bank at the IU Simon Cancer Center (KTB) was established. The KTB is, to our knowledge, the only biorepository in the world prospectively established to collect normal, healthy breast tissue from volunteer donors. As a first initiative toward a molecular understanding of the biology and developmental genetics of the normal mammary gland, the effect of the menstrual cycle and hormonal contraceptives on DNA expression in the normal breast epithelium was examined. Methods Using normal breast tissue from 20 premenopausal donors to KTB, the changes in the mRNA of the normal breast epithelium as a function of phase of the menstrual cycle and hormonal contraception were assayed using next-generation whole transcriptome sequencing (RNA-Seq). Results In total, 255 genes representing 1.4% of all genes were deemed to have statistically significant differential expression between the two phases of the menstrual cycle. The overwhelming majority (221; 87%) of the genes have higher expression during the luteal phase. These data provide important insights into the processes occurring during each phase of the menstrual cycle. There was only a single gene significantly differentially expressed when comparing the epithelium of women using hormonal contraception to those in the luteal phase. Conclusions We have taken advantage of a unique research resource, the KTB, to complete the first-ever next-generation transcriptome sequencing of the epithelial compartment of 20 normal human breast specimens. This work has produced a comprehensive catalog of the differences in the expression of protein-coding genes as a function of the phase of the menstrual cycle. These data constitute the beginning of a reference data set of the normal mammary gland, which can be consulted for comparison with data developed from malignant specimens, or to mine the effects of the hormonal flux that occurs during the menstrual cycle.
Collapse
|
28
|
Welling TH, Feng M, Wan S, Hwang SY, Volk ML, Lawrence TS, Zalupski MM, Sonnenday CJ. Neoadjuvant stereotactic body radiation therapy, capecitabine, and liver transplantation for unresectable hilar cholangiocarcinoma. Liver Transpl 2014; 20:81-8. [PMID: 24115315 PMCID: PMC4185427 DOI: 10.1002/lt.23757] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/13/2013] [Indexed: 12/17/2022]
Abstract
Hilar cholangiocarcinoma (CCA) is a difficult malignancy to treat surgically because of its anatomical location and its frequent association with primary sclerosing cholangitis. Neoadjuvant chemoradiotherapy followed by liver transplantation in lymph node-negative patients has been advanced by select liver transplant centers for the treatment of patients with unresectable disease. This approach has most commonly used external-beam radiotherapy in combination with biliary brachytherapy and 5-fluorouracil-based chemotherapy. Our center recently embarked on a protocol using stereotactic body radiation therapy (SBRT) followed by capecitabine in lymph node-negative patients until liver transplantation. We, therefore, retrospectively determined the tolerability and pathological response in this pilot study. During a 3-year period, 17 patients with unresectable hilar CCA were evaluated for treatment under this protocol. In all, 12 patients qualified for neoadjuvant therapy and were treated with SBRT (50-60 Gy in 3-5 fractions over the course of 2 weeks). After 1 week of rest, capecitabine was initiated at 1330 mg/m(2) /day, and it was continued until liver transplantation. During neoadjuvant therapy, there were 35 adverse events in all, with cholangitis and palmar-plantar erythrodysesthesia being the most common. Capecitabine dose reductions were required on 5 occasions. Ultimately, 9 patients were listed for transplantation, and 6 patients received a liver transplant. The explant pathology of hilar tumors showed at least a partial treatment response in 5 patients, with extensive tumor necrosis and fibrosis noted. Additionally, high apoptotic indices and low proliferative indices were measured during histological examinations. Eleven transplant-related complications occurred, and the 1-year survival rate after transplantation was 83%. In this pilot study, neoadjuvant therapy with SBRT, capecitabine, and liver transplantation for unresectable CCA demonstrated acceptable tolerability. Further studies will determine the overall future efficacy of this therapy.
Collapse
Affiliation(s)
- Theodore H Welling
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Hodson LJ, Chua AC, Evdokiou A, Robertson SA, Ingman WV. Macrophage Phenotype in the Mammary Gland Fluctuates over the Course of the Estrous Cycle and Is Regulated by Ovarian Steroid Hormones1. Biol Reprod 2013; 89:65. [DOI: 10.1095/biolreprod.113.109561] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
30
|
Plasma enterolactone and breast cancer risk in the Nurses' Health Study II. Breast Cancer Res Treat 2013; 139:801-9. [PMID: 23760859 DOI: 10.1007/s10549-013-2586-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
Abstract
Lignans are plant-based phytoestrogens with both estrogenic and anti-estrogenic properties that may be important for breast carcinogenesis. Retrospective studies have observed decreased breast cancer risk associated with high circulating enterolactone concentrations, a biomarker of lignan intake, but results from prospective studies are conflicting. To prospectively examine this association, we measured plasma enterolactone levels in 802 breast cancer cases and 802 matched controls nested among predominantly premenopausal women in the Nurses' Health Study II cohort. We used conditional logistic regression and polytomous logistic regression models, adjusting for known breast cancer risk factors, to calculate relative risks (RR) and 95 % confidence intervals (CI). Compared to women with enterolactone concentrations ≤4 nmol/L, the multivariate-adjusted RRs for breast cancer were 1.18 (95 % CI 0.86-1.62), 0.91 (95 % CI 0.66-1.25), and 0.96 (95 % CI 0.70-1.33) for women with enterolactone levels in the second to the fourth quartiles, respectively; P trend = 0.60. Results were similar across tumors defined by estrogen and progesterone receptor status. Among premenopausal women with follicular estradiol levels below the median (<47 pg/mL), women in the highest category of enterolactone levels had a 51 % lower breast cancer risk compared to those in the lowest category (95 % CI 0.27-0.91); P trend = 0.02. No association was observed among women with high-follicular estradiol levels (≥47 pg/mL), (comparable RR = 1.39, 95 % CI 0.73-2.65; P interaction = 0.02). We did not observe an overall association between plasma enterolactone and breast cancer risk in a large nested case-control study of US women. However, a significant inverse association was observed among premenopausal women with low-follicular estradiol levels, suggesting that enterolactone may be important in a low-estrogen environment. This should be confirmed in future studies.
Collapse
|
31
|
Chapa J, Bourgo RJ, Greene GL, Kulkarni S, An G. Examining the pathogenesis of breast cancer using a novel agent-based model of mammary ductal epithelium dynamics. PLoS One 2013; 8:e64091. [PMID: 23704974 PMCID: PMC3660364 DOI: 10.1371/journal.pone.0064091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/08/2013] [Indexed: 02/06/2023] Open
Abstract
The study of the pathogenesis of breast cancer is challenged by the long time-course of the disease process and the multi-factorial nature of generating oncogenic insults. The characterization of the longitudinal pathogenesis of malignant transformation from baseline normal breast duct epithelial dynamics may provide vital insight into the cascading systems failure that leads to breast cancer. To this end, extensive information on the baseline behavior of normal mammary epithelium and breast cancer oncogenesis was integrated into a computational model termed the Ductal Epithelium Agent-Based Model (DEABM). The DEABM is composed of computational agents that behave according to rules established from published cellular and molecular mechanisms concerning breast duct epithelial dynamics and oncogenesis. The DEABM implements DNA damage and repair, cell division, genetic inheritance and simulates the local tissue environment with hormone excretion and receptor signaling. Unrepaired DNA damage impacts the integrity of the genome within individual cells, including a set of eight representative oncogenes and tumor suppressors previously implicated in breast cancer, with subsequent consequences on successive generations of cells. The DEABM reproduced cellular population dynamics seen during the menstrual cycle and pregnancy, and demonstrated the oncogenic effect of known genetic factors associated with breast cancer, namely TP53 and Myc, in simulations spanning ∼40 years of simulated time. Simulations comparing normal to BRCA1-mutant breast tissue demonstrated rates of invasive cancer development similar to published epidemiologic data with respect to both cumulative incidence over time and estrogen-receptor status. Investigation of the modeling of ERα-positive (ER+) tumorigenesis led to a novel hypothesis implicating the transcription factor and tumor suppressor RUNX3. These data suggest that the DEABM can serve as a potentially valuable framework to augment the traditional investigatory workflow for future hypothesis generation and testing of the mechanisms of breast cancer oncogenesis.
Collapse
Affiliation(s)
- Joaquin Chapa
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Ryan J. Bourgo
- Ben May Department of Cancer Research, University of Chicago, Chicago, Illinois, United States of America
| | - Geoffrey L. Greene
- Ben May Department of Cancer Research, University of Chicago, Chicago, Illinois, United States of America
| | - Swati Kulkarni
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Gary An
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
32
|
Amarosa AR, McKellop J, Klautau Leite AP, Moccaldi M, Clendenen TV, Babb JS, Zeleniuch-Jacquotte A, Moy L, Kim S. Evaluation of the kinetic properties of background parenchymal enhancement throughout the phases of the menstrual cycle. Radiology 2013; 268:356-65. [PMID: 23657893 DOI: 10.1148/radiol.13121101] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE To develop and apply a semiautomatic method of segmenting fibroglandular tissue to quantify magnetic resonance (MR) imaging contrast material-enhancement kinetics of breast background parenchyma (BP) and lesions throughout the phases of the menstrual cycle in women with benign and malignant lesions. MATERIALS AND METHODS The institutional review board approved this retrospective HIPAA-compliant study, and informed consent was waived. From December 2008 to August 2011, 58 premenopausal women who had undergone contrast material-enhanced MR imaging and MR imaging-guided biopsy were identified. The longest time from the start of the last known period was 34 days. One lesion per patient (37 benign and 21 malignant) was analyzed. The patient groups were stratified according to the week of the menstrual cycle when MR imaging was performed. A method based on principal component analysis (PCA) was applied for quantitative analysis of signal enhancement in the BP and lesions by using the percentage of slope and percentage of enhancement. Linear regression and the Mann-Whitney U test were used to assess the association between the kinetic parameters and the week of the menstrual cycle. RESULTS In the women with benign lesions, percentages of slope and enhancement for both BP and lesions during week 2 were significantly (P < .05) lower than those in week 4. Percentage of enhancement in the lesion in week 2 was lower than that in week 3 (P < .05). The MR images of women with malignant lesions showed no significant difference between the weeks for any of the parameters. There was a strong positive correlation between lesion and BP percentage of slope (r = 0.72) and between lesion and BP percentage of enhancement (r = 0.67) in the benign group. There was also a significant (P = .03) difference in lesion percentage of slope between the benign and malignant groups at week 2. CONCLUSION The PCA-based method can quantify contrast enhancement kinetics of BP semiautomatically, and kinetics of BP and lesions vary according to the week of the menstrual cycle in benign but not in malignant lesions.
Collapse
Affiliation(s)
- Alana R Amarosa
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, 660 First Ave, 4th Floor, New York, NY 10016, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Treatment Response to Preoperative Anthracycline-Based Chemotherapy in Locally Advanced Breast Cancer: The Relevance of Proliferation and Apoptosis Rates. Pathol Oncol Res 2013; 19:577-88. [DOI: 10.1007/s12253-013-9621-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 02/28/2013] [Indexed: 12/11/2022]
|
35
|
Abstract
Based on the results of a French cohort of postmenopausal women, it has been claimed that micronized progesterone does not enhance breast cancer risk. The impact of reproductive factors on breast cancer risk and a high prevalence of occult breast carcinomas at the time of menopause suggest an involvement of endogenous progesterone in the development of breast cancer. High mammographic density in the luteal phase and during treatment with estrogen/progestogen combinations reflect a change in the composition of mammary stroma and an increased water accumulation in the extracellular matrix which is caused by hygroscopic hyaluronan-proteoglycan aggregates. Proteoglycans are also involved in the regulation of proliferation, migration, and differentiation of epithelial cells and angiogenesis, and may influence malignant transformation of breast cells and progression of tumors. Reports on a lack of effect of estrogen/progesterone therapy on breast cancer risk may be rooted in a selective prescription to overweight women and/or to the very low progesterone serum levels after oral administration owing to a strong inactivation rate. The contradictory results concerning the proliferative effect of progesterone may be associated with a different local metabolism in normal compared to malignant breast tissue. Similar to other progestogens, hormone replacement therapy with progesterone seems to promote the development of breast cancer, provided that the progesterone serum levels have reached the threshold for endometrial protection.
Collapse
Affiliation(s)
- H Kuhl
- Department of Obstetrics and Gynecology, J. W. Goethe University of Frankfurt, Germany
| | | |
Collapse
|
36
|
Betterman KL, Paquet-Fifield S, Asselin-Labat ML, Visvader JE, Butler LM, Stacker SA, Achen MG, Harvey NL. Remodeling of the lymphatic vasculature during mouse mammary gland morphogenesis is mediated via epithelial-derived lymphangiogenic stimuli. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:2225-38. [PMID: 23063660 DOI: 10.1016/j.ajpath.2012.08.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/01/2012] [Accepted: 08/30/2012] [Indexed: 10/27/2022]
Abstract
Despite the key roles of lymphatic vessels in homeostasis and disease, the cellular sources of signals that direct lymphatic vascular growth and patterning remain unknown. Using high-resolution imaging in two and three dimensions, we demonstrated that postnatal mouse mammary gland lymphatic vessels share an intimate spatial association with epithelial ducts and large blood vessels. We further demonstrated that the lymphatic vasculature is remodeled together with the mammary epithelial tree and blood vasculature during postnatal mouse mammary gland morphogenesis. Neither estrogen receptor α nor progesterone receptor were detected in lymphatic endothelial cells in the mouse mammary gland, suggesting that mammary gland lymphangiogenesis is not likely regulated directly by these steroid hormones. Epithelial cells, especially myoepithelial cells, were determined to be a rich source of prolymphangiogenic stimuli including VEGF-C and VEGF-D with temporally regulated expression levels during mammary gland morphogenesis. Blockade of VEGFR-3 signaling using a small-molecule inhibitor inhibited the proliferation of primary lymphatic endothelial cells promoted by mammary gland conditioned medium, suggesting that lymphangiogenesis in the mammary gland is likely driven by myoepithelial-derived VEGF-C and/or VEGF-D. These findings provide new insight into the architecture of the lymphatic vasculature in the mouse mammary gland and, by uncovering the proximity of lymphatic vessels to the epithelial tree, suggest a potential mechanism by which metastatic tumor cells access the lymphatic vasculature.
Collapse
Affiliation(s)
- Kelly L Betterman
- Division of Haematology, Centre for Cancer Biology, SA Pathology, Adelaide, Australia
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hovanessian-Larsen L, Taylor D, Hawes D, Spicer DV, Press MF, Wu AH, Pike MC, Pearce CL. Lowering oral contraceptive norethindrone dose increases estrogen and progesterone receptor levels with no reduction in proliferation of breast epithelium: a randomized trial. Contraception 2012; 86:238-43. [PMID: 22325110 DOI: 10.1016/j.contraception.2011.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 12/22/2011] [Accepted: 12/27/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND This study was conducted to compare breast epithelial-cell proliferation and estrogen and progesterone receptor levels in women taking one of two oral contraceptives (OCs) containing the same dose of estrogen but different doses of the progestin norethindrone (NET). STUDY DESIGN Thirty-three women were randomly assigned 1:1 to one of two OCs with 35-mcg ethinylestradiol (EE2) but different doses of NET - 1 or 0.4 mg. At the end of the active pill phase of the third OC cycle, a breast biopsy was performed and the percentages of epithelial cells of the terminal duct lobular units were measured for Ki67 (MIB1), progesterone receptors A and B (PRA and PRB, respectively), and estrogen receptor α (ERα). RESULTS The biopsies from 27 women had sufficient epithelium for analysis. The percentages of cells positive for PRA, PRB and ERα were approximately double with the lower progestin dose (PRA: p=.041; PRB: p=.030; ERα: p=.056). The Ki67 percentage was not reduced with the lower progestin dose (12.5% for 0.4-mg NET vs. 7.8% for 1.0-mg NET). CONCLUSIONS The increase in PRA-, PRB- and ERα-positive cells with the 60% lower progestin dose OC appears likely to account for its failure to decrease breast-cell proliferation. This breast-cell proliferation result is contrary to that predicted from the results of lowering the medroxyprogesterone acetate dose in menopausal hormone therapy.
Collapse
Affiliation(s)
- Linda Hovanessian-Larsen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Euhus D, Bu D, Xie XJ, Sarode V, Ashfaq R, Hunt K, Xia W, O'Shaughnessy J, Grant M, Arun B, Dooley W, Miller A, Flockhart D, Lewis C. Tamoxifen downregulates ets oncogene family members ETV4 and ETV5 in benign breast tissue: implications for durable risk reduction. Cancer Prev Res (Phila) 2011; 4:1852-62. [PMID: 21778330 PMCID: PMC3208724 DOI: 10.1158/1940-6207.capr-11-0186] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Five years of tamoxifen reduces breast cancer risk by nearly 50% but is associated with significant side effects and toxicities. A better understanding of the direct and indirect effects of tamoxifen in benign breast tissue could elucidate new mechanisms of breast carcinogenesis, suggest novel chemoprevention targets, and provide relevant early response biomarkers for phase II prevention trials. Seventy-three women at increased risk for breast cancer were randomized to tamoxifen (20 mg daily) or placebo for 3 months. Blood and breast tissue samples were collected at baseline and posttreatment. Sixty-nine women completed all study activities (37 tamoxifen and 32 placebo). The selected biomarkers focused on estradiol and IGFs in the blood; DNA methylation and cytology in random periareolar fine-needle aspirates; and tissue morphometry, proliferation, apoptosis, and gene expression (microarray and reverse transcriptase PCR) in the tissue core samples. Tamoxifen downregulated Ets oncogene transcription factor family members ETV4 and ETV5 and reduced breast epithelial cell proliferation independent of CYP2D6 genotypes or effects on estradiol, ESR1, or IGFs. Reduction in proliferation was correlated with downregulation of ETV4 and DNAJC12. Tamoxifen reduced the expression of ETV4- and ETV5-regulated genes implicated in epithelial-stromal interaction and tissue remodeling. Three months of tamoxifen did not affect breast tissue composition, cytologic atypia, preneoplasia, or apoptosis. A plausible mechanism for the chemopreventive effects of tamoxifen is restriction of lobular expansion into stroma through downregulation of ETV4 and ETV5. The human equivalent of murine multipotential progenitor cap cells of terminal end buds may be the primary target.
Collapse
Affiliation(s)
- David Euhus
- Department of Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Asselin-Labat ML, Lindeman GJ, Visvader JE. Mammary stem cells and their regulation by steroid hormones. Expert Rev Endocrinol Metab 2011; 6:371-381. [PMID: 30754117 DOI: 10.1586/eem.11.22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sustained exposure to estrogen and progesterone is a well-established risk factor for breast cancer. These hormones play a central role in the female reproductive cycle, in which they control morphogenesis of the mammary gland during puberty, ovulatory cycles and pregnancy. Mouse mammary stem cells (MaSCs) have recently been discovered to be highly responsive to female hormones, despite lacking expression of the estrogen and progesterone receptors. The inhibition of MaSCs by hormone receptor antagonists further suggests that these cells contribute to oncogenesis. Identification of paracrine mediators of hormone signaling to MaSCs may lead to the development of novel inhibitors that drive MaSCs into a more quiescent state. In this context, inhibition of the receptor activator of NF-κB/receptor activator of NF-κB ligand signaling pathway has profound implications for the prevention of breast cancer.
Collapse
Affiliation(s)
- Marie-Liesse Asselin-Labat
- a Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia
- b Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Geoffrey J Lindeman
- a Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia
- c Department of Medical Oncology, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
- d Department of Medicine, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jane E Visvader
- a Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia
- b Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
- e
| |
Collapse
|
40
|
Costa G, Kaviski R, Souza L, Urban C, Lima R, Cavalli I, Ribeiro E. Proteomic analysis of non-tumoral breast tissue. GENETICS AND MOLECULAR RESEARCH 2011; 10:2430-42. [DOI: 10.4238/2011.october.3.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
41
|
Kyurkchiev DS, Ivanova-Todorova E, Kyurkchiev SD. Effect of Progesterone on Human Mesenchymal Stem Cells. STEM CELL REGULATORS 2011; 87:217-37. [DOI: 10.1016/b978-0-12-386015-6.00040-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
42
|
Chua ACL, Hodson LJ, Moldenhauer LM, Robertson SA, Ingman WV. Dual roles for macrophages in ovarian cycle-associated development and remodelling of the mammary gland epithelium. Development 2010; 137:4229-38. [PMID: 21068060 DOI: 10.1242/dev.059261] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Each ovarian cycle, the mammary gland epithelium rotates through a sequence of hormonally regulated cell proliferation, differentiation and apoptosis. These studies investigate the role of macrophages in this cellular turnover. Macrophage populations and their spatial distribution were found to fluctuate across the cycle. The number of macrophages was highest at diestrus, and the greatest number of macrophages in direct contact with epithelial cells occurred at proestrus. The physiological necessity of macrophages in mammary gland morphogenesis during the estrous cycle was demonstrated in Cd11b-Dtr transgenic mice. Ovariectomised mice were treated with estradiol and progesterone to stimulate alveolar development, and with the progesterone receptor antagonist mifepristone to induce regression of the newly formed alveolar buds. Macrophage depletion during alveolar development resulted in a reduction in both ductal epithelial cell proliferation and the number of alveolar buds. Macrophage depletion during alveolar regression resulted in an increased number of branch points and an accumulation of TUNEL-positive cells. These studies show that macrophages have two roles in the cellular turnover of epithelial cells in the cycling mammary gland; following ovulation, they promote the development of alveolar buds in preparation for possible pregnancy, and they remodel the tissue back to its basic architecture in preparation for a new estrous cycle.
Collapse
Affiliation(s)
- Angela C L Chua
- The Robinson Institute, Research Centre for Reproductive Health, and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide 5005, Australia
| | | | | | | | | |
Collapse
|
43
|
Chandra SA, Mark Cline J, Adler RR. Cyclic Morphological Changes in the Beagle Mammary Gland. Toxicol Pathol 2010; 38:969-83. [DOI: 10.1177/0192623310374327] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Interpretation of chemical-induced effects on the female beagle mammary gland can be difficult owing to the wide variation of normal glandular morphology. In this retrospective study, morphological features of the gland in four (proestrus, estrus, diestrus, and anestrus) phases of the cycle are described. The gland was quiescent (inactive) in proestrus and estrus. In diestrus, with the rise of progesterone, four (I–IV) distinct morphological changes were evident. In phase I, there was exuberant stromal and ductal proliferation. In phase II, there was early lobular development with branching ducts and alveolar proliferation. In phase III, there was an abundance of glandular tissue with large lobules containing secretory material, whereas phase IV had features of early regression, increased interlobular connective tissue, and eosinophilic secretions in distended ducts and acini. In early anestrus, ducts were distended, with eosinophilic secretions with alveolar regression, whereas regression was complete in late anestrus. Glandular morphology was slightly variable in the mammary chain within the same dog. Progesterone receptor expression was prominent in estrus and early diestrus, and peak estrogen receptor expression was noted in diestrus II. Expression of proliferation marker ki-67 was highest in diestrus I, followed by diestrus II. There was excellent concordance between the estrous stage and the glandular morphology.
Collapse
Affiliation(s)
- Sundeep A. Chandra
- Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - J. Mark Cline
- Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Rick R. Adler
- Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| |
Collapse
|
44
|
Maruta S, Miyata Y, Sagara Y, Kanda S, Iwata T, Watanabe SI, Sakai H, Hayashi T, Kanetake H. Expression of matrix metalloproteinase-10 in non-metastatic prostate cancer: Correlation with an imbalance in cell proliferation and apoptosis. Oncol Lett 2010; 1:417-421. [PMID: 22966318 DOI: 10.3892/ol_00000073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 01/19/2010] [Indexed: 11/06/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are associated with cell invasion under various physiological and pathological conditions. Among MMPs, MMP-10 is reported to correlate with a high pT stage and progression in a variety of cancer types. However, the clinical and pathological significance of MMP-10 in human prostate cancer tissues remains unclear. This study aimed to clarify the role of MMP-10 in non-metastatic prostate cancer. Sixty-three specimens were obtained by radical prostatectomy. MMP-10 expression, Ki-67, CD34 and apoptotic cells were examined using an immunohistochemical technique and the terminal deoxynucleotidyl transferase-mediated nick end-labeling method. The proliferation index (PI), apoptotic index (AI), microvessel density (MVD) and cell renewal index (CRI=PI/AI) were calculated. The relationship between MMP-10 expression and clinicopathological features, as well as PI, AI, MVD and CRI were investigated. MMP-10 was mainly detected in cancer cell cytoplasm, and the proportion of MMP-10-expressing cancer cells (median 13.8%) was significantly higher (P<0.001) than non-tumoral gland cells (2.4%). Similarly, the proportion of MMP-10-expressing cancer cells was significantly higher (P=0.007) in stage pT3 (median 22.3%) than in pT2 (11.3%) tumors and was correlated with blood vessel invasion (P=0.025). In addition, its expression level correlated significantly with CRI (r=0.34, P=0.001), but not with PI, AI or MVD. Multivariate analysis identified MMP-10 expression to be closely associated with pT stage (OR 3.76, 95% CI 1.14-12.34, P=0.029). Our results suggest that the overexpression of MMP-10 produces an imbalance in cancer cell proliferation and apoptosis, thereby contributing to cancer cell progression of non-metastatic prostate cancer.
Collapse
Affiliation(s)
- Sugure Maruta
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Oksa S, Luukkaala T, Mäenpää JU. Toremifene use does not alter serum inhibin A and B levels during mid-luteal phase in women with premenstrual mastalgia. Gynecol Endocrinol 2010; 26:114-7. [PMID: 20074020 DOI: 10.3109/09513590903215441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS To find out if there is any link between the therapeutic effect of toremifene on premenstrual mastalgia and luteal phase serum inhibin A and/or B levels. METHODS Forty-eight patients participating in a randomized cross-over trial on toremifene vs. placebo for premenstrual mastalgia gave three blood samples during the luteal phase of the menstrual cycle: the first at baseline, the second during the third toremifene/placebo cycle, and the third during the third placebo/toremifene cycle, respectively. The blood samples were analyzed for inhibin A and B with respective specific two-site enzyme-linked immunosorbent assays. Toremifene (20 mg/d) and placebo were administered during the luteal phase only. RESULTS When all the toremifene-treated cycles were compared with all the placebo cycles and with the baseline, the median inhibin A levels were 42, 38, and 40 pg/ml, respectively (baseline versus toremifene, p = 0.638; baseline versus placebo, p = 0.468; and toremifene versus placebo, p = 0.365). The median inhibin B levels were at baseline 19 ng/l, during placebo 20 ng/l, and during toremifene 17 ng/l (baseline versus toremifene, p = 0.983; baseline versus placebo, p = 0.519; and toremifene versus placebo, p = 0.880). CONCLUSION A luteal administration of toremifene does not seem to result in any changes in mid-luteal concentrations of inhibin A or B in serum.
Collapse
Affiliation(s)
- Sinikka Oksa
- Department of Obstetrics and Gynecology, Satakunta Central Hospital, Pori, Finland
| | | | | |
Collapse
|
46
|
Armaiz-Pena GN, Mangala LS, Spannuth WA, Lin YG, Jennings NB, Nick AM, Langley RR, Schmandt R, Lutgendorf SK, Cole SW, Sood AK. Estrous cycle modulates ovarian carcinoma growth. Clin Cancer Res 2009; 15:2971-8. [PMID: 19383821 DOI: 10.1158/1078-0432.ccr-08-2525] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The effects of reproductive hormones on ovarian cancer growth are not well understood. Here, we examined the effects of estrous cycle variation and specific reproductive hormones on ovarian cancer growth. EXPERIMENTAL DESIGN We investigated the role of reproductive hormones in ovarian cancer growth using both in vivo and in vitro models of tumor growth. RESULTS In vivo experiments using the HeyA8 and SKOV3ip1 ovarian cancer models showed that tumor cell inoculation during proestrus significantly increased tumor burden (251-273%) compared with injection during the estrus phase. Treatment of ovariectomized mice with 17beta-estradiol resulted in a 404% to 483% increase in tumor growth compared with controls. Progestins had no significant effect, but did block estrogen-stimulated tumor growth. Tumors collected from mice sacrificed during proestrus showed increased levels of vascular endothelial growth factor (VEGF) and microvessel density compared with mice injected during estrus. HeyA8, SKOV3ip1, and mouse endothelial (MOEC) cells expressed estrogen receptor alpha and beta and progesterone receptor at the protein and mRNA levels, whereas 2774 ovarian cancer cells were estrogen receptor-negative. In vitro assays showed that 17beta-estradiol significantly increased ovarian cancer cell adhesion to collagen in estrogen receptor-positive, but not in estrogen receptor-negative cells. Additionally, 17beta-estradiol increased the migratory potential of MOEC cells, which was abrogated by the mitogen-activated protein kinase (MAPK) inhibitor, PD 09859. Treatment with 17beta-estradiol activated MAPK in MOEC cells, but not in HeyA8 or SKOV3ip1 cells. CONCLUSION Our data suggest that estrogen may promote in vivo ovarian cancer growth, both directly and indirectly, by making the tumor microenvironment more conducive for cancer growth.
Collapse
Affiliation(s)
- Guillermo N Armaiz-Pena
- Department of Gynecologic Oncology and Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Progesterone is an ovarian steroid hormone that is essential for normal breast development during puberty and in preparation for lactation and breastfeeding. The actions of progesterone are primarily mediated by its high-affinity receptors, which include the classical progesterone receptor (PR)-A and -B isoforms, located in diverse tissues, including the brain, where progesterone controls reproductive behavior, and the breast and reproductive organs. Progestins are frequently prescribed for contraception or during postmenopausal hormone replacement therapy, in which progestins are combined with estrogen as a means to block estrogen-induced endometrial growth. The role of estrogen as a potent breast mitogen is undisputed, and inhibitors of the estrogen receptor and estrogen-producing enzymes (aromatases) are effective first-line cancer therapies. However, PR action in breast cancer is grossly understudied and remains controversial. Herein, we review existing evidence and discuss the challenges to defining a role for progesterone in breast cancer.
Collapse
Affiliation(s)
- Carol A Lange
- University of Minnesota, Cancer Center, Department of Medicine (Hematology, Oncology & Transplantation), 420 Delaware Street SE, MMC 806, MN 55455, USA.
| | | |
Collapse
|
48
|
Rego MF, Navarrete MALH, Facina G, Falzoni R, Silva R, Baracat EC, Nazario ACP. Analysis of human mammary fibroadenoma by Ki-67 index in the follicular and luteal phases of menstrual cycle. Cell Prolif 2009; 42:241-7. [PMID: 19317807 PMCID: PMC6496862 DOI: 10.1111/j.1365-2184.2009.00590.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 05/26/2008] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Fibroadenoma is the most common benign mammary condition among women aged 35 or younger. Expression of Ki-67 antigen has been used to compare proliferative activity of mammary fibroadenoma epithelium in the follicular and luteal phases of the menstrual cycle. MATERIALS AND METHODS Ninety eumenorrheic women were selected for tumour excision; they were assigned to either of the two groups, according to their phase of menstrual cycle. At the end of the study, 75 patients with 87 masses were evaluated by epithelial cell Ki-67 expression, blind (no information given concerning group to which any lesion belonged). RESULTS Both groups were found to be homogeneous relative to age, menarche, body mass index, previous gestation, parity, breastfeeding, number of fibroadenomas, family history of breast cancer and tabagism. Median tumour size was 2.0 cm and no relationship between proliferative activity and nodule diameter was observed. No typical pattern was observed in the expression of Ki-67 in distinct nodules of the same patient. Average values for expression of Ki-67 (per 1000 epithelial cells) in follicular and luteal phases were 27.88 and 37.88, respectively (P = 0.116). CONCLUSION Our findings revealed that proliferative activities in the mammary fibroadenoma epithelium did not present a statistically significant difference in the follicular and luteal phases. The present study contributes to clarifying that fibroadenoma is a neoplasm and does not undergo any change in the proliferative activity during the menstrual cycle.
Collapse
Affiliation(s)
- M F Rego
- Department of Gynecology, Federal University of São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
49
|
Gellersen B, Fernandes MS, Brosens JJ. Non-genomic progesterone actions in female reproduction. Hum Reprod Update 2008; 15:119-38. [PMID: 18936037 DOI: 10.1093/humupd/dmn044] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The steroid hormone progesterone is indispensable for mammalian procreation by controlling key female reproductive events that range from ovulation to implantation, maintenance of pregnancy and breast development. In addition to activating the progesterone receptors (PRs)-B and -A, members of the superfamily of ligand-dependent transcription factors, progesterone also elicits a variety of rapid signalling events independently of transcriptional or genomic regulation. This review covers our current knowledge on the mechanisms and relevance of non-genomic progesterone signalling in female reproduction. METHODS PubMed was searched up to August 2008 for papers on progesterone actions in ovary/breast/endometrium/myometrium/brain, focusing primarily on non-genomic signalling mechanisms. RESULTS Convergence and intertwining of rapid non-genomic events and the slower transcriptional actions critically determine the functional response to progesterone in the female reproductive system in a cell-type- and environment-specific manner. Several putative progesterone-binding moieties have been implicated in rapid signalling events, including the 'classical' PR and its variants, progesterone receptor membrane component 1, and the novel family of membrane progestin receptors. Progesterone and its metabolites have also been implicated in the allosteric regulation of several unrelated receptors, such as gamma-aminobutyric acid type A, oxytocin and sigma(1) receptors. CONCLUSIONS Identification of the mechanisms and receptors that relay rapid progesterone signalling is an area of research fraught with difficulties and controversy. More in-depth characterization of the putative receptors is required before the non-genomic progesterone pathway in normal and pathological reproductive function can be targeted for pharmacological intervention.
Collapse
|
50
|
Abstract
Progesterone is an ovarian steroid hormone that is essential for normal breast development during puberty and in preparation for lactation. The actions of progesterone are primarily mediated by its high affinity receptors, including the classical progesterone receptor (PR) -A and -B isoforms, located in diverse tissues such as the brain where progesterone controls reproductive behavior, and the breast and reproductive organs. Progestins are frequently prescribed as contraceptives or to alleviate menopausal symptoms, wherein progestin is combined with estrogen as a means to block estrogen-induced endometrial growth. Estrogen is undisputed as a potent breast mitogen, and inhibitors of the estrogen receptor (ER) and estrogen producing enzymes (aromatases) are effective first-line cancer therapies. However, PR action in breast cancer remains controversial. Herein, we review existing evidence from in vitro and in vivo models, and discuss the challenges to defining a role for progesterone in breast cancer.
Collapse
Affiliation(s)
- Carol A Lange
- University of Minnesota Cancer Center, Department of Medicine, 420 Delaware Street SE, MMC 806, Minneapolis, MN 55455, United States.
| |
Collapse
|