1
|
Permpikul C, Tanksinmankhong J, Tongyoo S, Naorungroj T, Viarasilpa T, Karaketklang K. Optimal hemoglobin threshold for blood transfusions in sepsis and septic shock: a retrospective analysis. Intern Emerg Med 2025:10.1007/s11739-025-03889-4. [PMID: 39979754 DOI: 10.1007/s11739-025-03889-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/03/2025] [Indexed: 02/22/2025]
Abstract
Transfusions of red blood cells (RBCs) are crucial for improving tissue oxygenation in anemic patients with sepsis. Nevertheless, the debate continues over the ideal hemoglobin level for transfusions. This study aimed to assess the impact of different hemoglobin levels on the outcomes of patients with sepsis who received transfusions. This retrospective analysis included adult patients with sepsis treated in the general medical ward and intensive care unit at a University affiliate hospital. Patients needing RBC transfusions were included. The primary outcome was the 28-day mortality rate. From March 2018 to January 2022, 806 patients were studied. Of these, 480 (59.6%) were transfused at hemoglobin levels of 7-9 g/dL ("liberal group"), while 326 (40.4%) received RBC transfusions when their hemoglobin was < 7 g/dL ("restrictive group"). Mean hemoglobin levels at transfusion were 8.1 ± 0.8 g/dL and 6.3 ± 0.8 g/dL for each group, respectively(P < 0.001). On day 28, the liberal group had a mortality rate of 51.2% (246 patients), compared to 59.2% (193 patients) in the restrictive group (Odds ratio [OR] 0.88, 95% confidence interval [CI] 0.79-0.98, P = 0.031). Adjusted comparisons showed 46.8% mortality in the liberal group (141/301patients) versus 59.3% in the restrictive group (178/300patients) at 28 days (OR 0.78, 95% CI 0.66-0.92, P = 0.002). Multivariate analysis revealed transfusion at hemoglobin 7-9 g/dL as an independent variable linked to lower 28-day mortality (OR 0.70, 95% CI 0.49-0.99, P = 0.042). Other factors correlated with 28-day mortality were platelet counts ≤ 150 × 103/µL, albumin ≤ 2.5 g/dL, shock, mechanical ventilation, and renal replacement therapy. This retrospective study suggests that RBC transfusion at hemoglobin levels of 7-9 g/dL associates with lower 28-day mortality in sepsis patients compared to transfusion at hemoglobin levels below 7 g/dL.Clinical trial registrationThe study was registered with the Thai Clinical Trials Registry (identification number TCTR20231003003). ( https://www.thaiclinicaltrials.org/show/TCTR20231003003 ).
Collapse
Affiliation(s)
- Chairat Permpikul
- Division of Critical Care, Department of Internal Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Jakpanee Tanksinmankhong
- Department of Internal Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Surat Tongyoo
- Division of Critical Care, Department of Internal Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkok Noi, Bangkok, 10700, Thailand.
| | - Thummaporn Naorungroj
- Division of Critical Care, Department of Internal Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Tanuwong Viarasilpa
- Division of Critical Care, Department of Internal Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Khemajira Karaketklang
- Department of Internal Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Damiani E, Carsetti A, Casarotta E, Domizi R, Scorcella C, Donati A, Adrario E. Microcirculation-guided resuscitation in sepsis: the next frontier? Front Med (Lausanne) 2023; 10:1212321. [PMID: 37476612 PMCID: PMC10354242 DOI: 10.3389/fmed.2023.1212321] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Microcirculatory dysfunction plays a key role in the pathogenesis of tissue dysoxia and organ failure in sepsis. Sublingual videomicroscopy techniques enable the real-time non-invasive assessment of microvascular blood flow. Alterations in sublingual microvascular perfusion were detected during sepsis and are associated with poor outcome. More importantly, sublingual videomicroscopy allowed to explore the effects of commonly applied resuscitative treatments in septic shock, such as fluids, vasopressors and inotropes, and showed that the optimization of macro-hemodynamic parameters may not be accompanied by an improvement in microvascular perfusion. This loss of "hemodynamic coherence," i.e., the concordance between the response of the macrocirculation and the microcirculation, advocates for the integration of microvascular monitoring in the management of septic patients. Nonetheless, important barriers remain for a widespread use of sublingual videomicroscopy in the clinical practice. In this review, we discuss the actual limitations of this technique and future developments that may allow an easier and faster evaluation of the microcirculation at the bedside, and propose a role for sublingual microvascular monitoring in guiding and titrating resuscitative therapies in sepsis.
Collapse
Affiliation(s)
- Elisa Damiani
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Carsetti
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Erika Casarotta
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Roberta Domizi
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Claudia Scorcella
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Abele Donati
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Erica Adrario
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
3
|
De Backer D. Novelties in the evaluation of microcirculation in septic shock. JOURNAL OF INTENSIVE MEDICINE 2023; 3:124-130. [PMID: 37188120 PMCID: PMC10175708 DOI: 10.1016/j.jointm.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 05/17/2023]
Abstract
Microvascular alterations were first described in critically ill patients about 20 years ago. These alterations are characterized by a decrease in vascular density and presence of non-perfused capillaries close to well-perfused vessels. In addition, heterogeneity in microvascular perfusion is a key finding in sepsis. In this narrative review, we report our actual understanding of microvascular alterations, their role in the development of organ dysfunction, and the implications for outcome. Herein, we discuss the state of the potential therapeutic interventions and the potential impact of novel therapies. We also discuss how recent technologic development may affect the evaluation of microvascular perfusion.
Collapse
|
4
|
Uz Z, Dilken O, Milstein DMJ, Hilty MP, de Haan D, Ince Y, Shen L, Houtzager J, Franken LC, van Gulik TM, Ince C. Identifying a sublingual triangle as the ideal site for assessment of sublingual microcirculation. J Clin Monit Comput 2023; 37:639-649. [PMID: 36355276 PMCID: PMC10068634 DOI: 10.1007/s10877-022-00936-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 10/15/2022] [Indexed: 11/11/2022]
Abstract
The sublingual mucosa is a commonly used intraoral location for identifying microcirculatory alterations using handheld vital microscopes (HVMs). The anatomic description of the sublingual cave and its related training have not been adequately introduced. The aim of this study was to introduce anatomy guided sublingual microcirculatory assessment. Measurements were acquired from the floor of the mouth using incident dark-field (IDF) imaging before (T0) and after (T1) sublingual cave anatomy instructed training. Instructions consists of examining a specific region of interested identified through observable anatomical structures adjacent and bilaterally to the lingual frenulum which is next to the sublingual papilla. The anatomical location called the sublingual triangle, was identified as stationed between the lingual frenulum, the sublingual fold and ventrally to the tongue. Small, large, and total vessel density datasets (SVD, LVD and TVD respectively) obtained by non-instructed and instructed measurements (NIN (T0) and IM (T1) respectively) were compared. Microvascular structures were analyzed, and the presence of salivary duct-related microcirculation was identified. A total of 72 video clips were used for analysis in which TVD, but not LVD and SVD, was higher in IM compared to NIM (NIM vs. IM, 25 ± 2 vs. 27 ± 3 mm/mm2 (p = 0.044), LVD NIM vs. IM: 7 ± 1 vs. 8 ± 1mm/mm2 (p = 0.092), SVD NIM vs. IM: 18 ± 2 vs. 20 ± 3 mm/mm2 (p = 0.103)). IM resulted in microcirculatory assessments which included morphological properties such as capillaries, venules and arterioles, without salivary duct-associated microcirculation. The sublingual triangle identified in this study showed consistent network-based microcirculation, without interference from microcirculation associated with specialized anatomic structures. These findings suggest that the sublingual triangle, an anatomy guided location, yielded sublingual based measurements that conforms with international guidelines. IM showed higher TVD values, and future studies are needed with larger sample sizes to prove differences in microcirculatory parameters.
Collapse
Affiliation(s)
- Zühre Uz
- Department of Translational Physiology, Location: AMC, Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, The Netherlands.
- Department of Surgery, Location: AMC, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Intensive Care, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands.
| | - Olcay Dilken
- Department of Translational Physiology, Location: AMC, Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Dan M J Milstein
- Department of Oral & Maxillofacial Surgery, Location: AMC, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Oral Medicine, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Matthias Peter Hilty
- Department of Translational Physiology, Location: AMC, Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, The Netherlands
| | - David de Haan
- Department of Translational Physiology, Location: AMC, Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Yasin Ince
- Department of Translational Physiology, Location: AMC, Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Lucinda Shen
- Department of Translational Physiology, Location: AMC, Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Julia Houtzager
- Department of Surgery, Location: AMC, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lotte C Franken
- Department of Surgery, Location: AMC, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomas M van Gulik
- Department of Surgery, Location: AMC, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Can Ince
- Department of Translational Physiology, Location: AMC, Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Effects of Fluids on the Sublingual Microcirculation in Sepsis. J Clin Med 2022; 11:jcm11247277. [PMID: 36555895 PMCID: PMC9786137 DOI: 10.3390/jcm11247277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Sepsis is one of the most common and deadly syndromes faced in Intensive Care settings globally. Recent advances in bedside imaging have defined the changes in the microcirculation in sepsis. One of the most advocated interventions for sepsis is fluid therapy. Whether or not fluid bolus affects the microcirculation in sepsis has not been fully addressed in the literature. This systematic review of the evidence aims to collate studies examining the microcirculatory outcomes after a fluid bolus in patients with sepsis. We will assimilate the evidence for using handheld intra vital microscopes to guide fluid resuscitation and the effect of fluid bolus on the sublingual microcirculation in patients with sepsis and septic shock. We conducted a systematic search of Embase, CENTRAL and Medline (PubMed) using combinations of the terms "microcirculation" AND "fluid" OR "fluid resuscitation" OR "fluid bolus" AND "sepsis" OR "septic shock". We found 3376 potentially relevant studies. Fifteen studies published between 2007 and 2021 fulfilled eligibility criteria to be included in analysis. The total number of participants was 813; we included six randomized controlled trials and nine non-randomized, prospective observational studies. Ninety percent used Sidestream Dark Field microscopy to examine the microcirculation and 50% used Hydroxyethyl Starch as their resuscitation fluid. There were no clear effects of fluid on the microcirculation parameters. There was too much heterogeneity between studies and methodology to perform meta-analysis. Studies identified heterogeneity of affect in the sepsis population, which could mean that current clinical classifications were not able to identify different microcirculation characteristics. Use of microcirculation as a clinical endpoint in sepsis could help to define sepsis phenotypes. More research into the effects of different resuscitation fluids on the microcirculation is needed.
Collapse
|
6
|
Gao W, Fang F, Xia TJ, Zhang Y, Sun J, Wu Q, Wang W. Doxycycline can reduce glycocalyx shedding by inhibiting matrix metalloproteinases in patients undergoing cardiopulmonary bypass: A randomized controlled trial. Microvasc Res 2022; 142:104381. [PMID: 35588887 DOI: 10.1016/j.mvr.2022.104381] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cardiopulmonary bypass (CPB) leads to shedding of the glycocalyx of endothelial cells, resulting in a series of complications such as tissue edema and coagulatory and microcirculatory dysfunctions. Matrix metalloproteinases (MMPs) can cause glycocalyx shedding in a variety of pathological processes, but their role in the process of CPB is still unclear. We hypothesized that the MMPs inhibitor doxycycline would reduce glycocalyx shedding by inhibiting MMPs during CPB. METHODS Thirty-six patients were randomized to receive either 100 mg oral doxycycline (an MMPs inhibitor) or a matching placebo pill twice a day for three days before CPB. The primary outcome was the concentration of plasma syndecan-1. Secondary outcomes included heparan sulphate, MMP-2, MMP-9, ratio of urinary albumin to creatinine, and short-term clinical outcomes. In order to further prove that MMPs in plasma caused the glycocalyx shedding, human umbilical vein endothelial cells were cultured with plasma obtained from cardiac surgery patients before or after CPB (with or without MMPs inhibitor GM6001). The change in glycocalyx content was detected by immunofluorescence. RESULTS CPB resulted in an increase of MMPs and shedding of the glycocalyx. Plasma syndecan-1 was higher in the control group than in the doxycycline group (median difference:15.04 μg/L; 95% CI: 9.14-20.94 μg/L; P < 0.001). Similar to syndecan-1, plasma heparan sulphate, MMP-2, and MMP-9 concentrations in the doxycycline group were significantly lower than those in the control group during CPB. Doxycycline was also correlated with a reduction in the ratio of urinary albumin to creatinine and improved the short-term clinical outcomes of patients. Endothelial cells cultured with plasma from patients after CPB showed significant shedding of syndecan-1 and heparan sulphate (post-CPB group vs pre-CPB group, P < 0.001). GM6001 was shown to reduce shedding of syndecan-1 and heparan sulphate by inhibiting MMPs (post-CPB + GM6001 group vs post-CPB group, P < 0.001). CONCLUSION Doxycycline can reduce glycocalyx shedding by inhibiting MMPs during CPB.
Collapse
Affiliation(s)
- Wei Gao
- Department of Anaesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Fuquan Fang
- Department of Anaesthesiology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang Province, China
| | - Tianna J Xia
- Department of Anaesthesiology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Yan Zhang
- Department of the Operating Room, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiehao Sun
- Department of Anaesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qiaolin Wu
- Department of Anaesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Weijian Wang
- Department of Anaesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
7
|
Bulle EB, Klanderman RB, Pendergrast J, Cserti-Gazdewich C, Callum J, Vlaar APJ. The recipe for TACO: A narrative review on the pathophysiology and potential mitigation strategies of transfusion-associated circulatory overload. Blood Rev 2021; 52:100891. [PMID: 34627651 DOI: 10.1016/j.blre.2021.100891] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/31/2022]
Abstract
Transfusion associated circulatory overload (TACO) is one of the leading causes of transfusion related morbidity and mortality. TACO is the result of hydrostatic pulmonary edema following transfusion. However, up to 50% of all TACO cases appear after transfusion of a single unit, suggesting other factors, aside from volume, play a role in its pathophysiology. TACO follows a two-hit model, in which the first hit is an existing disease or comorbidity that renders patients volume incompliant, and the second hit is the transfusion. First hit factors include, amongst others, cardiac and renal failure. Blood product factors, setting TACO apart from crystalloid overload, include colloid osmotic pressure effects, viscosity, pro-inflammatory mediators and storage lesion byproducts. Differing hemodynamic changes, glycocalyx injury, endothelial damage and inflammatory reactions can all contribute to developing TACO. This narrative review explores pathophysiological mechanisms for TACO, discusses related therapeutic and preventative measures, and identifies areas of interest for future research.
Collapse
Affiliation(s)
- Esther B Bulle
- Department of Intensive Care, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; Laboratory for Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), University of Amsterdam, Amsterdam UMC, the Netherlands.
| | - Robert B Klanderman
- Department of Intensive Care, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; Laboratory for Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), University of Amsterdam, Amsterdam UMC, the Netherlands.
| | - Jacob Pendergrast
- Laboratory Medicine Program, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| | - Christine Cserti-Gazdewich
- Laboratory Medicine Program, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| | - Jeannie Callum
- Department of Pathology and Molecular Medicine, Queen's University and Kingston Health Sciences Centre, Canada.
| | - Alexander P J Vlaar
- Department of Intensive Care, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; Laboratory for Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), University of Amsterdam, Amsterdam UMC, the Netherlands.
| |
Collapse
|
8
|
Links between Endothelial Glycocalyx Changes and Microcirculatory Parameters in Septic Patients. Life (Basel) 2021; 11:life11080790. [PMID: 34440534 PMCID: PMC8398731 DOI: 10.3390/life11080790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
The glycocalyx is an endothelial surface layer that is essential for maintaining microvascular homeostasis. Impaired integrity of the endothelial glycocalyx may be directly related to the development of microvascular dysfunction. To explore this hypothesis, we conducted a prospective observational study on adult patients diagnosed with sepsis. The study aimed to evaluate the degree of damage to the glycocalyx and to identify correlations between microcirculatory parameters and glycocalyx thickness based on capillary diameter. Sublingual microcirculation was examined using a handheld Cytocam-incident dark field video microscope. A sidestream dark field video microscope attached to a GlycoCheck monitor was used to determine the perfused boundary regions (PBRs) of sublingual blood vessels grouped by diameter (5-9 μm, 10-19 μm, and 20-25 μm). We identified significant damage to the glycocalyx in sublingual blood vessels of all the aforementioned diameters in septic patients compared to healthy age-matched controls. Furthermore, we found that the PBRs of the smallest capillaries (diameter class 5-9µm) correlated moderately and inversely with both total and perfused blood vessel densities. Collectively, our data suggest that there may be a functional relationship between damage to the endothelial glycocalyx of the smallest capillaries and alterations in the microcirculation observed in response to sepsis.
Collapse
|
9
|
Turgeman A, McRae HL, Cahill C, Blumberg N, Refaai MA. Impact of RBC Transfusion on Peripheral Capillary Oxygen Saturation and Partial Pressure of Arterial Oxygen. Am J Clin Pathol 2021; 156:149-154. [PMID: 33347534 DOI: 10.1093/ajcp/aqaa219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES RBCs are known to undergo deleterious changes during storage, known as storage lesions, which have been shown to result in decreased oxygen-carrying capacity. However, there is inadequate literature describing the effects of stored RBC allogeneic transfusion on oxygen parameters in vivo. The oxygen standard parameters were retrospectively assessed before and after RBC transfusion. METHODS Patients who received 1 RBC transfusion were assessed for hemoglobin (Hb) levels, peripheral capillary oxygen saturation (Spo2), and partial pressure of arterial oxygen (Pao2) from 12 hours before and 24 hours after transfusion. RESULTS In total, 78 patients who were monitored by Spo2 and 28 patients monitored by Pao2 were included in this analysis. Following RBC transfusion, Hb levels increased significantly (P < .001); however, there was a significant decrease in both Spo2 and Pao2 within 24 hours after transfusion (P = .04 and P = .003, respectively), indicating lower tissue oxygenation and lower soluble oxygen level. CONCLUSIONS This single-center, retrospective study revealed evidence of significantly decreased oxygenation and tissue perfusion after single-unit RBC transfusion, despite corrected Hb levels.
Collapse
Affiliation(s)
- Alexa Turgeman
- Department of Pathology and Laboratory Medicine, Transfusion Medicine Division, University of Rochester Medical Center, Rochester, NY
| | - Hannah L McRae
- Department of Pathology and Laboratory Medicine, Transfusion Medicine Division, University of Rochester Medical Center, Rochester, NY
| | - Christine Cahill
- Department of Pathology and Laboratory Medicine, Transfusion Medicine Division, University of Rochester Medical Center, Rochester, NY
| | - Neil Blumberg
- Department of Pathology and Laboratory Medicine, Transfusion Medicine Division, University of Rochester Medical Center, Rochester, NY
| | - Majed A Refaai
- Department of Pathology and Laboratory Medicine, Transfusion Medicine Division, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
10
|
Abstract
INTRODUCTION Monitoring the microcirculation may be helpful in guiding resuscitation in patients with circulatory shock. Sublingual side-stream dark field imaging cameras allow for noninvasive, bedside evaluation of the microcirculation, although their use in clinical practice has not yet been validated. The GlycoCheck system automatically analyzes images to determine glycocalyx thickness, red blood cell filling percentage, and vessel density. Although GlycoCheck has been used to study microcirculation in critically ill patients, little is known about the reproducibility of measurements in this population. MATERIALS AND METHODS A total of 60 critically ill patients were studied. Three consecutive microcirculation measurements were performed with the GlycoCheck system in 40 of these patients by one of two experienced observers. Twenty patients were assessed by both observers. Intra- and interobserver variability were assessed using intraclass correlation coefficients (ICCs). RESULTS ICCs of single measurements were poor for glycocalyx thickness and good for filling percentage and vessel density. Reproducibility could be substantially increased for all parameters when three consecutive measurements were performed and averaged. DISCUSSION GlycoCheck can be used to study microcirculation. However, to obtain reliable results three consecutive measurements should be performed and averaged. The variation of the measurements currently hampers the clinical application in individual patients.
Collapse
|
11
|
Theodorakopoulou MP, Bakaloudi DR, Dipla K, Zafeiridis A, Boutou AK. Vascular endothelial damage in COPD: current functional assessment methods and future perspectives. Expert Rev Respir Med 2021; 15:1121-1133. [PMID: 33874819 DOI: 10.1080/17476348.2021.1919089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Cardiovascular disease is a major cause of death in chronic obstructive pulmonary disease (COPD), but the relationship between these two entities is not fully understood; smoking, inflammation, arterial stiffness and endothelial dysfunction are significant determinants. Endothelial dysfunction is not only associated with cardiovascular disease, but also with COPD severity.Areas covered: Several functional methods have been developed to evaluate endothelial function in healthy and diseased individuals; from the invasive angiography of epicardial coronary arteries and Venous-Occlusion-Plethysmography, to more modern, noninvasive approaches such as Flow-Mediated-Dilatation, Peripheral-Arterial-Tonometry and Near-Infrared-Spectroscopy, all these methods have boosted clinical research in this field. In this context, this narrative review, which included articles published in PubMed and Scopus up to 25-November-2020, summarizes available functional methods for endothelial damage assessment in COPD and discusses existing evidence on their associations with comorbidities and outcomes in this population.Expert opinion: Accumulated evidence suggests that endothelial dysfunction occurs in early stages of CΟPD and worsens with pulmonary obstruction severity and during acute exacerbations. Novel methods evaluating endothelial function offer a detailed, real-time assessment of different parameters related to vascular function and should be increasingly used to shed more light on the role of endothelial damage on cardiovascular and COPD progression.
Collapse
Affiliation(s)
- Marieta P Theodorakopoulou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Rafailia Bakaloudi
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantina Dipla
- Exercise Physiology & Biochemistry Laboratory, Department of Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Zafeiridis
- Exercise Physiology & Biochemistry Laboratory, Department of Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Afroditi K Boutou
- Department of Respiratory Medicine, G. Papanikolaou Hospital, Thessaloniki, Greece
| |
Collapse
|
12
|
Hahn RG, Patel V, Dull RO. Human glycocalyx shedding: Systematic review and critical appraisal. Acta Anaesthesiol Scand 2021; 65:590-606. [PMID: 33595101 DOI: 10.1111/aas.13797] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND The number of studies measuring breakdown products of the glycocalyx in plasma has increased rapidly during the past decade. The purpose of the present systematic review was to assess the current knowledge concerning the association between plasma concentrations of glycocalyx components and structural assessment of the endothelium. METHODS We performed a literature review of Pubmed to determine which glycocalyx components change in a wide variety of human diseases and conditions. We also searched for evidence of a relationship between plasma concentrations and the thickness of the endothelial glycocalyx layer as obtained by imaging methods. RESULTS Out of 3,454 publications, we identified 228 that met our inclusion criteria. The vast majority demonstrate an increase in plasma glycocalyx products. Sepsis and trauma are most frequently studied, and comprise approximately 40 publications. They usually report 3-4-foldt increased levels of glycocalyx degradation products, most commonly of syndecan-1. Surgery shows a variable picture. Cardiac surgery and transplantations are most likely to involve elevations of glycocalyx degradation products. Structural assessment using imaging methods show thinning of the endothelial glycocalyx layer in cardiovascular conditions and during major surgery, but thinning does not always correlate with the plasma concentrations of glycocalyx products. The few structural assessments performed do not currently support that capillary permeability is increased when the plasma levels of glycocalyx fragments in plasma are increased. CONCLUSIONS Shedding of glycocalyx components is a ubiquitous process that occurs during both acute and chronic inflammation with no sensitivity or specificity for a specific disease or condition.
Collapse
Affiliation(s)
- Robert G. Hahn
- Research UnitSödertälje Hospital Södertälje Sweden
- Karolinska Institute at Danderyds Hospital (KIDS) Stockholm Sweden
| | - Vasu Patel
- Department of Internal Medicine Northwestern Medicine McHenry Hospital McHenry IL USA
| | - Randal O. Dull
- Department of Anesthesiology, Pathology, Physiology, Surgery University of ArizonaCollege of Medicine Tucson AZ USA
| |
Collapse
|
13
|
Liu W, He H, Ince C, Long Y. The effect of blood transfusion on sublingual microcirculation in critically ill patients: A scoping review. Microcirculation 2021; 28:e12666. [PMID: 33091957 DOI: 10.1111/micc.12666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE To investigate the effects of red blood cell (RBC) transfusion on sublingual microcirculation in critically ill patients. METHODS Systematic strategy was conducted to search studies that measured sublingual microcirculation before and after transfusion in critically ill patients. This review was reported according to the Preferred Reporting Items for Systematic Review and Meta-Analyses Scoping Review Extension. RESULTS The literature search yielded 114 articles. A total of 11 studies met the inclusion criteria. Observational evidence showed diffusive capacity of the microcirculation significantly improved in intraoperative and anemic hematologic patients after transfusion, while the convective parameters significantly improved in traumatic patients. RBC transfusion improved both diffusive and convective microcirculatory parameters in hypovolemic hemorrhagic shock patients. Most of the studies enrolled septic patients showed no microcirculatory improvements after transfusion. The positive effects of the leukoreduction were insufficiently supported. The effects of the storage time of the RBCs were not conclusive. The majority of the evidence supported a negative correlation between baseline proportion of perfused vessels (PPV) and changes in PPV. CONCLUSIONS This scoping review has catalogued evidence that RBC transfusion differently improves sublingual microcirculation in different populations. The existing evidence is not sufficient to conclude the effects of the leukoreduction and storage time of RBCs.
Collapse
Affiliation(s)
- Wanglin Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Huaiwu He
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Can Ince
- Department of Intensive Care, Laboratory of Translational Intensive Care, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Yun Long
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
14
|
Arango-Granados MC, Umaña M, Sánchez ÁI, García AF, Granados M, Ospina-Tascón GA. Impact of red blood cell transfusion on oxygen transport and metabolism in patients with sepsis and septic shock: a systematic review and meta-analysis. Rev Bras Ter Intensiva 2021; 33:154-166. [PMID: 33886865 PMCID: PMC8075342 DOI: 10.5935/0103-507x.20210017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/05/2020] [Indexed: 12/23/2022] Open
Abstract
Red blood cell transfusion is thought to improve cell respiration during septic shock. Nevertheless, its acute impact on oxygen transport and metabolism in this condition remains highly debatable. The objective of this study was to evaluate the impact of red blood cell transfusion on microcirculation and oxygen metabolism in patients with sepsis and septic shock. We conducted a search in the MEDLINE®, Elsevier and Scopus databases. We included studies conducted in adult humans with sepsis and septic shock. A systematic review and meta-analysis were performed using the DerSimonian and Laird random-effects model. A p value < 0.05 was considered significant. Nineteen manuscripts with 428 patients were included in the analysis. Red blood cell transfusions were associated with an increase in the pooled mean venous oxygen saturation of 3.7% (p < 0.001), a decrease in oxygen extraction ratio of -6.98 (p < 0.001) and had no significant effect on the cardiac index (0.02L/minute; p = 0,96). Similar results were obtained in studies including simultaneous measurements of venous oxygen saturation, oxygen extraction ratio, and cardiac index. Red blood cell transfusions led to a significant increase in the proportion of perfused small vessels (2.85%; p = 0.553), while tissue oxygenation parameters revealed a significant increase in the tissue hemoglobin index (1.66; p = 0.018). Individual studies reported significant improvements in tissue oxygenation and sublingual microcirculatory parameters in patients with deranged microcirculation at baseline. Red blood cell transfusions seemed to improve systemic oxygen metabolism with apparent independence from cardiac index variations. Some beneficial effects have been observed for tissue oxygenation and microcirculation parameters, particularly in patients with more severe alterations at baseline. More studies are necessary to evaluate their clinical impact and to individualize transfusion decisions.
Collapse
Affiliation(s)
| | - Mauricio Umaña
- Fundación Valle del Lili - Cali, Valle del Cauca, Colombia
- Universidad ICESI - Cali, Valle del Cauca, Colombia
| | - Álvaro Ignacio Sánchez
- Fundación Valle del Lili - Cali, Valle del Cauca, Colombia
- Universidad ICESI - Cali, Valle del Cauca, Colombia
| | - Alberto Federico García
- Fundación Valle del Lili - Cali, Valle del Cauca, Colombia
- Universidad ICESI - Cali, Valle del Cauca, Colombia
| | - Marcela Granados
- Fundación Valle del Lili - Cali, Valle del Cauca, Colombia
- Universidad ICESI - Cali, Valle del Cauca, Colombia
| | | |
Collapse
|
15
|
Yanase F, Naorungroj T, Bellomo R. Glycocalyx damage biomarkers in healthy controls, abdominal surgery, and sepsis: a scoping review. Biomarkers 2020; 25:425-435. [PMID: 32597227 DOI: 10.1080/1354750x.2020.1787518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/17/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Despite wide interest in glycocalyx biomarkers, their values in healthy individuals, patients after abdominal surgery, and septic patients have been poorly understood. METHODS We searched MEDLINE, CENTRAL and EMBASE for papers measured glycocalyx biomarkers in healthy individuals, patients after abdominal surgery and septic patients. RESULTS We extracted 3948 titles and identified 58 eligible papers. Syndecan 1 was the most frequently measured biomarker (48 studies). Its mean or median value in healthy individuals varied to a biologically implausible degree, from 0.3 to 58.5 ng/ml, according to assay manufacturer. In post-operative patients, syndecan 1 levels increased after pancreatic surgery or liver surgery, however, they showed minor changes after hysterectomy or laparoscopic surgery. In septic patients, biomarker levels were higher than in healthy volunteers when using the same assay. However, six healthy volunteer studies reported higher syndecan 1 values than after pancreatic surgery and 24 healthy volunteer studies reported higher syndecan 1 values than the lowest syndecan 1 value in sepsis. Similar findings applied to other glycocalyx biomarkers. CONCLUSION Glycocalyx damage biomarkers values are essentially defined by syndecan 1. Syndecan 1 levels, however, are markedly affected by assay type and show biologically implausible values in normal, post-operative, or septic subjects.
Collapse
Affiliation(s)
- Fumitaka Yanase
- Department of Intensive Care, Austin Hospital, Melbourne, Australia
- Australian and New Zealand Intensive Care Research Centre, Monash University School of Public Health and Preventive Medicine, Melbourne, Australia
| | - Thummaporn Naorungroj
- Department of Intensive Care, Austin Hospital, Melbourne, Australia
- Department of Intensive Care, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rinaldo Bellomo
- Department of Intensive Care, Austin Hospital, Melbourne, Australia
- Australian and New Zealand Intensive Care Research Centre, Monash University School of Public Health and Preventive Medicine, Melbourne, Australia
- Centre for Integrated Critical Care, Department of Medicine and Radiology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
16
|
Near Infrared Spectroscopy in Anemia Detection and Management: A Systematic Review. Transfus Med Rev 2020; 35:22-28. [PMID: 32907764 DOI: 10.1016/j.tmrv.2020.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/19/2020] [Accepted: 07/26/2020] [Indexed: 01/28/2023]
Abstract
Red cell transfusions are intended to improve oxygen delivery to tissues. Although studies comparing hemoglobin concentration triggers for transfusion have been done, the hemoglobin threshold for clinical benefit remains uncertain. Direct measurement of tissue oxygenation with non-invasive near infrared spectroscopy has been proposed as a more physiological transfusion trigger, but its clinical role remains unclear. This systematic review examined the role of near infrared spectroscopy for detection of anemia and guiding transfusion decisions. Abstracts were identified up until May 2019 through searches of PubMed, EMBASE and The Web of Science. There were 69 studies meeting the inclusion criteria, most (n = 65) of which were observational studies. Tissue oxygen saturation had been measured in a wide range of clinical settings, with neonatal intensive care (n = 26) and trauma (n = 7) being most common. Correlations with hemoglobin concentration and tissue oxygenation were noted and there were correlations between changes in red cell mass and changes in tissue oxygenation through blood loss or transfusion. The value of tissue oxygenation for predicting transfusion was determined in only four studies, all using muscle oxygen saturation in the adult trauma setting. The overall sensitivity was low at 34% (27%-42%) and while it had better specificity at 78% (74%-82%), differing and retrospective approaches create a high level of uncertainty with respect to these conclusions. There were four prospective randomized studies involving 540 patients, in cardiac and neurological surgery and in neonates that compared near infrared spectroscopy to guide transfusion decisions with standard practice. These showed a reduction in the number of red cells transfused per patient (OR: 0.44 [0.09-0.79]), but not the number of patients who received transfusion (OR: 0.71 [0.46-1.10]), and no change in clinical outcomes. Measuring tissue oxygen saturation has potential to help guide transfusion; however, there is a lack of data upon which to recommend widespread implementation into clinical practice. Standardization of measurements is required and greater research into levels at which tissue oxygenation may lead to adverse clinical outcomes would help in the design of future clinical trials.
Collapse
|
17
|
Beurskens DMH, Bol ME, Delhaas T, van de Poll MCG, Reutelingsperger CPM, Nicolaes GAF, Sels JWEM. Decreased endothelial glycocalyx thickness is an early predictor of mortality in sepsis. Anaesth Intensive Care 2020; 48:221-228. [PMID: 32486831 PMCID: PMC7328096 DOI: 10.1177/0310057x20916471] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Microcirculatory alterations play an important role in the early phase of sepsis. Shedding of the endothelial glycocalyx is regarded as a central pathophysiological mechanism causing microvascular dysfunction, contributing to multiple organ failure and death in sepsis. The objective of this study was to investigate whether endothelial glycocalyx thickness at an early stage in septic patients relates to clinical outcome. We measured the perfused boundary region (PBR), which is inversely proportional to glycocalyx thickness, of sublingual microvessels (5-25 µm) using sidestream dark field imaging. The PBR in 21 patients with sepsis was measured within 24 h of admission to the intensive care unit (ICU). In addition, we determined plasma markers of microcirculatory dysfunction and studied their correlation with PBR and mortality. Endothelial glycocalyx thickness in sepsis was significantly lower for non-survivors as compared with survivors, indicated by a higher PBR of 1.97 [1.85, 2.19]µm compared with 1.76 [1.59, 1.97] µm, P=0.03. Admission PBR was associated with hospital mortality with an area under the curve of 0.778 based on the receiver operating characteristic curve. Furthermore, PBR correlated positively with angiopoietin-2 (rho=0.532, P=0.03), indicative of impaired barrier function. PBR did not correlate with Acute Physiology and Chronic Health Evaluation IV (APACHE IV), Sequential Organ Failure Assessment score (SOFA score), lactate, syndecan-1, angiopoietin-1 or heparin-binding protein. An increased PBR within the first 24 h after ICU admission is associated with mortality in sepsis. Further research should be aimed at the pathophysiological importance of glycocalyx shedding in the development of multi-organ failure and at therapies attempting to preserve glycocalyx integrity.
Collapse
Affiliation(s)
- Daniëlle MH Beurskens
- Department of Biochemistry, Maastricht University, the
Netherlands
- Cardiovascular Research Institute Maastricht, Maastricht
University, the Netherlands
| | - Martine E Bol
- Department of Intensive Care Medicine, Maastricht University
Medical Center, the Netherlands
- School of Nutrition and Translational Research in Metabolism,
Maastricht University, the Netherlands
| | - Tammo Delhaas
- Cardiovascular Research Institute Maastricht, Maastricht
University, the Netherlands
- Department of Biomedical Engineering, Maastricht University, the
Netherlands
| | - Marcel CG van de Poll
- Department of Intensive Care Medicine, Maastricht University
Medical Center, the Netherlands
- School of Nutrition and Translational Research in Metabolism,
Maastricht University, the Netherlands
- Department of Surgery, Maastricht University Medical Center, the
Netherlands
| | - Chris PM Reutelingsperger
- Department of Biochemistry, Maastricht University, the
Netherlands
- Cardiovascular Research Institute Maastricht, Maastricht
University, the Netherlands
| | - Gerry AF Nicolaes
- Department of Biochemistry, Maastricht University, the
Netherlands
- Cardiovascular Research Institute Maastricht, Maastricht
University, the Netherlands
| | - Jan-Willem EM Sels
- Department of Intensive Care Medicine, Maastricht University
Medical Center, the Netherlands
- Department of Cardiology, Maastricht University Medical Center,
the Netherlands
| |
Collapse
|
18
|
Sublingual microcirculation does not reflect red blood cell transfusion thresholds in the intensive care unit-a prospective observational study in the intensive care unit. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:18. [PMID: 31952555 PMCID: PMC6969438 DOI: 10.1186/s13054-020-2728-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/01/2020] [Indexed: 01/28/2023]
Abstract
Purpose Hemoglobin (Hb) transfusion thresholds are established in intensive care units. A restrictive transfusion threshold (Hb 70–75 g/l) is recommended in septic patients, and a liberal transfusion threshold (Hb 90 g/l) for cardiogenic shock. It is unclear whether these historically adopted transfusion thresholds meet the challenges of individual patients. Methods We evaluated microvascular flow index (MFI) and proportion of perfused vessels (PPV) in the sublingual microcirculation with CytoCam-IDF microscopy and near-infrared spectroscopy (NIRS). A study team-independent, treating intensivist assigned a total of 64 patients to 1 of 2 two transfusion thresholds, 43 patients to the Hb 75 g/l threshold and 21 patients to the Hb 90 g/l threshold, at a surgical intensive care unit. We performed microcirculatory measurements 1 h before and 1 h after transfusion of 1 unit of red blood cells. Results Microcirculatory flow variables correlated negatively with pre-transfusion flow variables (ΔMFI: ρ = − 0.821, p < 0.001; ΔPPV: ρ = − 0.778, p < 0.001). Patients with good initial microcirculation (cutoffs: MFI > 2.84, PPV > 88%) showed a deteriorated microcirculation after red blood cell transfusion. An impaired microcirculation improved after transfusion. At both transfusion thresholds, approximately one third of the patients showed an initially impaired microcirculation. In contrast, one third in every group had good microcirculation above the cutoff variables and did not profit from the transfusion. Conclusion The data suggest that the established transfusion thresholds and other hemodynamic variables do not reflect microcirculatory perfusion of patients. Blood transfusion at both thresholds 75 g/l and 90 g/l hemoglobin can either improve or harm the microcirculatory blood flow, questioning the concept of arbitrary transfusion thresholds.
Collapse
|
19
|
Hariri G, Bourcier S, Marjanovic Z, Joffre J, Lemarié J, Lavillegrand JR, Charue D, Duflot T, Bigé N, Baudel JL, Maury E, Mohty M, Guidet B, Bellien J, Blanc-Brude O, Ait-Oufella H. Exploring the microvascular impact of red blood cell transfusion in intensive care unit patients. Crit Care 2019; 23:292. [PMID: 31470888 PMCID: PMC6717366 DOI: 10.1186/s13054-019-2572-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/19/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Red blood cell (RBC) transfusion is a common treatment for hospitalized patients. However, the effects of RBC transfusion on microvascular function remain controversial. METHODS In a medical ICU in a tertiary teaching hospital, we prospectively included anemic patients requiring RBC transfusion. Skin microvascular reactivity was measured before and 30 min after RBC transfusion. Plasma was collected to analyze intravascular hemolysis and draw the lipidomic and cytokine profiles. RESULTS In a cohort of 59 patients, the median age was 66 [55-81] years and SAPS II was 38 [24-48]. After RBC transfusion, endothelium-dependent microvascular reactivity improved in 35 (59%) patients, but worsened in 24 others (41%). Comparing clinical and biological markers revealed that baseline blood leucokyte counts distinguished improving from worsening patients (10.3 [5.7; 19.7] vs. 4.6 [2.1; 7.3] × 109/L; p = 0.001) and correlated with variations of microvascular reactivity (r = 0.36, p = 0.005). Blood platelet count was also higher in improving patients (200 [97; 280] vs 160 [40; 199] × 103/mL, p = 0.03) but did not correlate with variations of microvascular reactivity. We observed no intravascular hemolysis (HbCO, heme, bilirubin, LDH), but recorded a significant increase in RBC microparticle levels specific to improving patients after transfusion (292 [108; 531] vs. 53 [34; 99] MP/μL; p = 0.03). The improvement in microvascular dilation was positively correlated with RBC microparticle levels (R = 0.83, p < 0.001) and conversion of arachidonic acid into vasodilating eicosanoids. CONCLUSIONS Patients displaying an improved microvascular reactivity after RBC transfusion had high blood leukocyte counts, increased RBC microparticle formation, and enhanced metabolism of arachidonic acid into vasodilating lipids. Our data suggested a contribution of recipient leukocytes to the vascular impact of RBC transfusion.
Collapse
Affiliation(s)
- Geoffroy Hariri
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
- Sorbonne Université, Université Pierre-et-Marie Curie-Paris 6, Paris, France
| | - Simon Bourcier
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
| | - Zora Marjanovic
- Assistance Publique, Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service d’hématologie, 75571 Paris Cedex 12, France
| | - Jérémie Joffre
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
- Sorbonne Université, Université Pierre-et-Marie Curie-Paris 6, Paris, France
| | - Jérémie Lemarié
- Service de Réanimation Médicale, Hôpital Central, Nancy, France
| | - Jean-Rémi Lavillegrand
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
- Sorbonne Université, Université Pierre-et-Marie Curie-Paris 6, Paris, France
| | - Dominique Charue
- Inserm U970, Centre de Recherche Cardiovasculaire de Paris (PARCC), Paris, France
| | - Thomas Duflot
- Normandie University, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000 Rouen, France
- Laboratory of Pharmacokinetics, Toxicology and Pharmacogenomics, Rouen University Hospital, 76000 Rouen, France
| | - Naïke Bigé
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
| | - Jean-Luc Baudel
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
| | - Eric Maury
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
- Sorbonne Université, Université Pierre-et-Marie Curie-Paris 6, Paris, France
| | - Mohamad Mohty
- Assistance Publique, Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service d’hématologie, 75571 Paris Cedex 12, France
| | - Bertrand Guidet
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
- Sorbonne Université, Université Pierre-et-Marie Curie-Paris 6, Paris, France
- Inserm U1136, F-75012 Paris, France
| | - Jeremy Bellien
- Normandie University, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000 Rouen, France
- Department of Pharmacology, Rouen University Hospital, 76000 Rouen, France
| | - Olivier Blanc-Brude
- Inserm U970, Centre de Recherche Cardiovasculaire de Paris (PARCC), Paris, France
| | - Hafid Ait-Oufella
- Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service de Réanimation Médicale, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France
- Sorbonne Université, Université Pierre-et-Marie Curie-Paris 6, Paris, France
- Inserm U970, Centre de Recherche Cardiovasculaire de Paris (PARCC), Paris, France
| |
Collapse
|
20
|
Rovas A, Seidel LM, Vink H, Pohlkötter T, Pavenstädt H, Ertmer C, Hessler M, Kümpers P. Association of sublingual microcirculation parameters and endothelial glycocalyx dimensions in resuscitated sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:260. [PMID: 31340868 PMCID: PMC6657098 DOI: 10.1186/s13054-019-2542-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
Background The endothelial glycocalyx (eGC) covers the luminal surface of the vascular endothelium and plays an important protective role in systemic inflammatory states and particularly in sepsis. Its breakdown leads to capillary leak and organ dysfunction. Moreover, sepsis-induced alterations of sublingual microcirculation are associated with a worse clinical outcome. The present study was performed to investigate the associations between eGC dimensions and established parameters of microcirculation dysfunction in sepsis. Methods This observational, prospective, cross-sectional study included 40 participants, of which 30 critically ill septic patients were recruited from intensive care units of a university hospital and 10 healthy volunteers served as controls. The established microcirculation parameters were obtained sublingually and analyzed according to the current recommendations. In addition, the perfused boundary region (PBR), an inverse parameter of the eGC dimensions, was measured sublingually, using novel data acquisition and analysis software (GlycoCheck™). Moreover, we exposed living endothelial cells to 5% serum from a subgroup of study participants, and the delta eGC breakdown, measured with atomic force microscopy (AFM), was correlated with the paired PBR values. Results In septic patients, sublingual microcirculation was impaired, as indicated by a reduced microvascular flow index (MFI) and a reduced proportion of perfused vessels (PPV) compared to those in healthy controls (MFI, 2.93 vs 2.74, p = 0.002; PPV, 98.53 vs 92.58, p = 0.0004). PBR values were significantly higher in septic patients compared to those in healthy controls, indicating damage of the eGC (2.04 vs 2.34, p < 0.0001). The in vitro AFM data correlated exceptionally well with paired PBR values obtained at the bedside (rs = − 0.94, p = 0.02). Both PBR values and microcirculation parameters correlated well with the markers of critical illness. Interestingly, no association was observed between the PBR values and established microcirculation parameters. Conclusion Our findings suggest that eGC damage can occur independently of microcirculatory impairment as measured by classical consensus parameters. Further studies in critically ill patients are needed to unravel the relationship of glycocalyx damage and microvascular impairment, as well as their prognostic and therapeutic importance in sepsis. Trial registration Retrospectively registered: Clinicaltrials.gov, NCT03960307 Electronic supplementary material The online version of this article (10.1186/s13054-019-2542-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandros Rovas
- Department of Medicine D, Division of General Internal Medicine, Nephrology, and Rheumatology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Laura Mareen Seidel
- Department of Anesthesiology, Intensive Care, and Pain Therapy, University Hospital Muenster, Münster, Germany
| | - Hans Vink
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Timo Pohlkötter
- Department of Medicine D, Division of General Internal Medicine, Nephrology, and Rheumatology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Hermann Pavenstädt
- Department of Medicine D, Division of General Internal Medicine, Nephrology, and Rheumatology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Christian Ertmer
- Department of Anesthesiology, Intensive Care, and Pain Therapy, University Hospital Muenster, Münster, Germany
| | - Michael Hessler
- Department of Anesthesiology, Intensive Care, and Pain Therapy, University Hospital Muenster, Münster, Germany
| | - Philipp Kümpers
- Department of Medicine D, Division of General Internal Medicine, Nephrology, and Rheumatology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| |
Collapse
|
21
|
Domizi R, Damiani E, Scorcella C, Carsetti A, Castagnani R, Vannicola S, Bolognini S, Gabbanelli V, Pantanetti S, Donati A. Association between sublingual microcirculation, tissue perfusion and organ failure in major trauma: A subgroup analysis of a prospective observational study. PLoS One 2019; 14:e0213085. [PMID: 30835764 PMCID: PMC6400441 DOI: 10.1371/journal.pone.0213085] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 02/14/2019] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Previous studies described impaired microvascular perfusion and tissue oxygenation as reliable predictors of Multiple Organ Failure in major trauma. However, this relationship has been incompletely investigated. The objective of this analysis is to further evaluate the association between organ dysfunction and microcirculation after trauma. MATERIALS AND METHODS This is a retrospective subgroup analysis on 28 trauma patients enrolled for the Microcirculation DAIly MONitoring in critically ill patients study (NCT 02649088). Patients were divided in two groups according with their Sequential Organ Failure Assessment (SOFA) score at day 4. At admission and every 24 hours, the sublingual microcirculation was evaluated with Sidestream Darkfield Imaging (SDF) and peripheral tissue perfusion was assessed with Near Infrared Spectroscopy (NIRS) and Vascular Occlusion Test (VOT). Simultaneously, hemodynamic, clinical/laboratory parameters and main organ supports were collected. RESULTS Median SOFA score at Day 4 was 6.5. Accordingly, patients were divided in two groups: D4-SOFA ≤6.5 and D4-SOFA >6.5. The Length of Stay in Intensive Care was significantly higher in patients with D4-SOFA>6.5 compared to D4-SOFA≤6.5 (p = 0.013). Total Vessel Density of small vessels was significantly lower in patients with high D4-SOFA score at Day 1 (p = 0.002) and Day 2 (p = 0.006) after admission; the Perfused Vessel Density was lower in patients with high D4-SOFA score at Day 1 (p = 0.007) and Day 2 (p = 0.033). At Day 1, NIRS monitoring with VOT showed significantly faster tissue oxygen saturation downslope (p = 0.018) and slower upslope (p = 0.04) in patients with high D4-SOFA. DISCUSSION In our cohort of major traumas, sublingual microcirculation and peripheral microvascular reactivity were significantly more impaired early after trauma in those patients who developed more severe organ dysfunctions. Our data would support the hypothesis that restoration of macrocirculation can be dissociated from restoration of peripheral and tissue perfusion, and that microvascular alterations can be associated with organ failure.
Collapse
Affiliation(s)
- Roberta Domizi
- Anaesthesia and Intensive Care, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Elisa Damiani
- Anaesthesia and Intensive Care, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Claudia Scorcella
- Anaesthesia and Intensive Care, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Carsetti
- Anaesthesia and Intensive Care, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Roberta Castagnani
- Anaesthesia and Intensive Care, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Sara Vannicola
- Anaesthesia and Intensive Care, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Sandra Bolognini
- Anaesthesia and Intensive Care, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Vincenzo Gabbanelli
- Anaesthesia and Intensive Care, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Simona Pantanetti
- Anaesthesia and Intensive Care, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Abele Donati
- Anaesthesia and Intensive Care, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
22
|
Uchimido R, Schmidt EP, Shapiro NI. The glycocalyx: a novel diagnostic and therapeutic target in sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:16. [PMID: 30654825 PMCID: PMC6337861 DOI: 10.1186/s13054-018-2292-6] [Citation(s) in RCA: 394] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022]
Abstract
The glycocalyx is a gel-like layer covering the luminal surface of vascular endothelial cells. It is comprised of membrane-attached proteoglycans, glycosaminoglycan chains, glycoproteins, and adherent plasma proteins. The glycocalyx maintains homeostasis of the vasculature, including controlling vascular permeability and microvascular tone, preventing microvascular thrombosis, and regulating leukocyte adhesion.During sepsis, the glycocalyx is degraded via inflammatory mechanisms such as metalloproteinases, heparanase, and hyaluronidase. These sheddases are activated by reactive oxygen species and pro-inflammatory cytokines such as tumor necrosis factor alpha and interleukin-1beta. Inflammation-mediated glycocalyx degradation leads to vascular hyper-permeability, unregulated vasodilation, microvessel thrombosis, and augmented leukocyte adhesion. Clinical studies have demonstrated the correlation between blood levels of glycocalyx components with organ dysfunction, severity, and mortality in sepsis.Fluid resuscitation therapy is an essential part of sepsis treatment, but overaggressive fluid therapy practices (leading to hypervolemia) may augment glycocalyx degradation. Conversely, fresh frozen plasma and albumin administration may attenuate glycocalyx degradation. The beneficial and harmful effects of fluid and plasma infusion on glycocalyx integrity in sepsis are not well understood; future studies are warranted.In this review, we first analyze the underlying mechanisms of glycocalyx degradation in sepsis. Second, we demonstrate how the blood and urine levels of glycocalyx components are associated with patient outcomes. Third, we show beneficial and harmful effects of fluid therapy on the glycocalyx status during sepsis. Finally, we address the concept of glycocalyx degradation as a therapeutic target.
Collapse
Affiliation(s)
- Ryo Uchimido
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, 1 Deaconess Road, Boston, MA, 02215, USA.
| | - Eric P Schmidt
- Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, 13001 E 17th Pl, Aurora, CO, 80045, USA
| | - Nathan I Shapiro
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, 1 Deaconess Road, Boston, MA, 02215, USA
| |
Collapse
|
23
|
Veenstra G, Ince C, Barendrecht BW, Zijlstra HW, Boerma EC. Differences in capillary recruitment between cardiac surgery and septic patients after fluid resuscitation. Microvasc Res 2018; 123:14-18. [PMID: 30448399 DOI: 10.1016/j.mvr.2018.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Clinical evaluation of the effects of fluid therapy remains cumbersome and strategies are based on the assumption that normalization of macrohemodynamic variables will result in parallel improvement in organ perfusion. Recently, we and others suggested the use of direct in-vivo observation of the microcirculation to evaluate the effects of fluid therapy. METHODS A single-centre observational study, using in-vivo microscopy to assess total vessel density (TVD) in two subsets of ICU patients. RESULTS After fluid resuscitation TVD showed no difference between sepsis patients (N = 47) and cardiac surgery patients (N = 52): 18.4[16.8-20.8] vs 18.7[16.8-20.9] mm/mm2, p = 0.59. In cardiac surgery patients there was a significant correlation between the amount of fluids administered and TVD, with an optimum in the third quartile. However, such correlation was absent in septic patients. CONCLUSIONS TVD after fluid administration is not different between 2 subtypes of intensive care patients. However, only in septic patients we observed a lack of coherence between the amount of fluids administered and TVD. Further research is needed to determine if TVD may serve as potential endpoint for fluid administration.
Collapse
Affiliation(s)
- Gerke Veenstra
- Department of Intensive Care, Medical Center Leeuwarden, Leeuwarden, The Netherlands; Department of Translational Physiology, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Can Ince
- Department of Translational Physiology, Amsterdam UMC, Amsterdam, The Netherlands; Department of Intensive Care, Erasmus MC University Hospital Rotterdam, Rotterdam, The Netherlands.
| | - Bart W Barendrecht
- Department of Intensive Care, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | - Hendrik W Zijlstra
- Department of Intensive Care, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | - E Christiaan Boerma
- Department of Intensive Care, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| |
Collapse
|
24
|
Bedside analysis of the sublingual microvascular glycocalyx in the emergency room and intensive care unit - the GlycoNurse study. Scand J Trauma Resusc Emerg Med 2018; 26:16. [PMID: 29444696 PMCID: PMC5813422 DOI: 10.1186/s13049-018-0483-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 02/04/2018] [Indexed: 01/25/2023] Open
Abstract
Background Deterioration of the endothelial glycocalyx (eGC), a protective carbohydrate-rich layer lining the luminal surface of the endothelium, plays a key role in vascular barrier dysfunction and eventually organ-failure in systemic inflammatory response syndrome and sepsis. Early detection of glycocalyx damage could thus become an important goal in critical care. This study was designed to determine the feasibility and reproducibility of quantitative, real-time glycocalyx measurements performed at bedside in the emergency room (ER) and intensive care unit (ICU). Methods The observational study included 70 patients admitted to the ER or ICU of a university hospital. A physician and the nurse in charge of the patient performed sublingual microcirculatory measurements using sidestream dark field (SDF) imaging. A novel data acquisition and analysis software (GlycoCheck™) was used to analyze the perfused boundary region (PBR), an inverse parameter of endothelial glycocalyx dimensions in vessels with diameters of between 5 and 25 μm. Results The method showed a good intra-observer reproducibility. Specifically, intraclass correlation coefficient analysis showed an excellent reproducibility between the physician’s measurements (0.77 [CI 95%: 0.52–0.89]). The bias between the two PBRs was − 0.077 ± 0.24 μm. Moreover, there were no significant differences in the PBR values obtained by the nurses when compared to those reported by the physician (regarded as the “gold standard” measurement). Intraclass correlation coefficient analysis showed excellent reproducibility between the nurses’ and physician’s PBRs (0.75 [95% CI: 0.52–0.87]). The mean difference between the two PBRs (i.e., the bias) was 0.007 ± 0.25 μm. The nurses’ PBR assessment had a 90% sensitivity (95% CI: 60–99%) and 90% specificity (95% CI: 80–93%) to identify a severely impaired glycocalyx. Conclusion Glycocalyx dimensions can be measured at patients’ bedside precisely by non-invasive assessment of the PBR. This assessment could become part of standard monitoring and contribute to clinical decision-making and resuscitation protocols in clinical trials and daily practice. Electronic supplementary material The online version of this article (10.1186/s13049-018-0483-4) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Abstract
Microcirculatory abnormalities have been shown to be frequent in patients with septic shock despite "normalization" of systemic hemodynamics. Several studies have explored the impact of vasodilator therapy (prostacyclin, inhaled nitric oxide, topic acetylcholine, and nitroglycerin) on microcirculation and tissue perfusion, with contradictory findings.In this narrative review, we briefly present the pathophysiological aspects of microcirculatory dysfunction, and depict the evidence supporting the use of vasodilators and other therapeutic interventions (fluid administration, blood transfusion, vasopressors, and dobutamine) aiming to improve the microcirculatory flow in septic shock patients.
Collapse
|
26
|
Hessler M, Arnemann PH, Rehberg S, Ertmer C. Misinterpretation of the sublingual microcirculation during therapy with levosimendan. Clin Hemorheol Microcirc 2018; 68:83-87. [DOI: 10.3233/ch-170315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Michael Hessler
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Münster, NRW, Germany
| | - Philip-Helge Arnemann
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Münster, NRW, Germany
| | | | - Christian Ertmer
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Münster, NRW, Germany
| |
Collapse
|
27
|
Abstract
Trauma represents a remarkable social and economical burden, being a leading cause of death and morbidity in the young population. The Endothelial Glycocalyx (EG) is a web of membrane bound to the luminal side of the blood vessels endothelium. Its role includes maintenance of the vascular permeability barrier and mediation of shear response. The contribution of the EG to a number of clinical conditions, sepsis, and ischemia/reperfusion injury among others has been well studied. With this review we initially explore the role of the EG in the microcirculatory dysfunction associated with trauma. Subsequently, we investigate the impact of fluid administration on the EG, including its potential of protecting the microcirculation from the detrimental effects of trauma. Particular emphasis is reserved to the role of inflammatory modulation and sensible fluid resuscitation.
Collapse
|
28
|
Morel N, Moisan M. Blood components are essential to regulate microcirculatory blood flow. Crit Care 2017; 21:49. [PMID: 28270178 PMCID: PMC5341198 DOI: 10.1186/s13054-017-1621-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 01/30/2017] [Indexed: 11/10/2022] Open
|
29
|
Wendelbo Ø, Hervig T, Haugen O, Seghatchian J, Reikvam H. Microcirculation and red cell transfusion in patients with sepsis. Transfus Apher Sci 2017; 56:900-905. [PMID: 29158076 DOI: 10.1016/j.transci.2017.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Early identification of sepsis followed by diagnostic blood cultures and prompt administration of appropriate intravenous antibiotics covering all likely pathogen remains the corner stone in the initial management of sepsis. Source control, obtained by harvesting microbiological cultures and removal or drainage of the infected foci, is mandatory. However, optimization of hemodynamically unstable patients including volume support supplemented with vasopressor, inotropic and transfusion of red blood cells (RBCs) in case of persistent hypoperfusion have the potential to reduce morbidity and mortality. Given the imbalance between the ability of the cardiovascular system to deliver enough oxygen to meet the oxygen demand, transfusion of RBCs should theoretically provide the ideal solution to the challenge. However, both changes in the septic patients' RBCs induced by endogenous factors as well as the storage lesion affecting transfused RBCs have negative effects on the microcirculation. RBC morphology, distribution of fatty acids on the membrane surface, RBC deformability needed for capillary circulation and the nitrogen oxide (NO) signaling systems are involved. Although these deteriorating effects develop during storage, transfusion of fresh RBCs has not proven to be beneficial, possibly due to limitations of the studies performed. Until better evidence exists, transfusion guidelines recommend a restrictive strategy of RBC transfusion i.e. transfuse when hemoglobin (Hb)<7g/dL in septic patients.
Collapse
Affiliation(s)
| | - Tor Hervig
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of immunology and Transfusion Medicine, Haukeland University Hospital, Norway
| | - Oddbjørn Haugen
- Department of Clinical Medicine, University of Bergen, Norway; Department of Anesthesiology, Haukeland University Hospital, Norway
| | - Jerard Seghatchian
- International Consultancy in Blood Components Quality/Safety Improvement and DDR Strategies, London, United Kingdom.
| | - Håkon Reikvam
- Department of Medicine, Haukeland University Hospital, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
30
|
Abstract
Transfusion decision making (TDM) in the critically ill requires consideration of: (1) anemia tolerance, which is linked to active pathology and to physiologic reserve, (2) differences in donor RBC physiology from that of native RBCs, and (3) relative risk from anemia-attributable oxygen delivery failure vs hazards of transfusion, itself. Current approaches to TDM (e.g. hemoglobin thresholds) do not: (1) differentiate between patients with similar anemia, but dissimilar pathology/physiology, and (2) guide transfusion timing and amount to efficacy-based goals (other than resolution of hemoglobin thresholds). Here, we explore approaches to TDM that address the above gaps.
Collapse
Affiliation(s)
- Chris Markham
- Division of Critical Care Medicine, Department of Pediatrics, Washington University School of Medicine, McDonnell Pediatric Research Building, Campus Box 8208, 660 South Euclid Avenue, St Louis, MO 63110-1093, USA
| | - Sara Small
- Social Systems Design Laboratory, Brown School of Social Work, Washington University, Campus Box 1196, 1 Brookings Drive, St Louis, MO 63130, USA
| | - Peter Hovmand
- Social Systems Design Laboratory, Brown School of Social Work, Washington University, Campus Box 1196, 1 Brookings Drive, St Louis, MO 63130, USA
| | - Allan Doctor
- Division of Critical Care Medicine, Department of Pediatrics, Washington University School of Medicine, McDonnell Pediatric Research Building, Campus Box 8208, 660 South Euclid Avenue, St Louis, MO 63110-1093, USA.
| |
Collapse
|
31
|
Chan YL, Han ST, Li CH, Wu CC, Chen KF. Transfusion of Red Blood Cells to Patients with Sepsis. Int J Mol Sci 2017; 18:ijms18091946. [PMID: 28891973 PMCID: PMC5618595 DOI: 10.3390/ijms18091946] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/26/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022] Open
Abstract
Sepsis is one of the major causes of death worldwide, and is the host response to infection which renders our organs malfunctioning. Insufficient tissue perfusion and oxygen delivery have been implicated in the pathogenesis of sepsis-related organ dysfunction, making transfusion of packed red blood cells (pRBCs) a reasonable treatment modality. However, clinical trials have generated controversial results. Even the notion that transfused pRBCs increase the oxygen-carrying capacity of blood has been challenged. Meanwhile, during sepsis, the ability of our tissues to utilize oxygen may also be reduced, and the increased blood concentrations of lactate may be the results of strong inflammation and excessive catecholamine release, rather than impaired cell respiration. Leukodepleted pRBCs more consistently demonstrated improvement in microcirculation, and the increase in blood viscosity brought about by pRBC transfusion helps maintain functional capillary density. A restrictive strategy of pRBC transfusion is recommended in treating septic patients.
Collapse
Affiliation(s)
- Yi-Ling Chan
- Department of Emergency Medicine, Chang Gung Memorial Hospital Linkou, Taoyuan 330, Taiwan.
| | - Shih-Tsung Han
- Department of Emergency Medicine, Chang Gung Memorial Hospital Linkou, Taoyuan 330, Taiwan.
| | - Chih-Huang Li
- Department of Emergency Medicine, Chang Gung Memorial Hospital Linkou, Taoyuan 330, Taiwan.
| | - Chin-Chieh Wu
- Department of Emergency Medicine, Chang Gung Memorial Hospital Keelung, Keelung 204, Taiwan.
| | - Kuan-Fu Chen
- Department of Emergency Medicine, Chang Gung Memorial Hospital Linkou, Taoyuan 330, Taiwan.
- Department of Emergency Medicine, Chang Gung Memorial Hospital Keelung, Keelung 204, Taiwan.
- Clinical Informatics and Medical Statistics Research Center, Chang Gung University, Taoyuan 330, Taiwan.
- Community Medicine Research Center, Chang Gung Memorial Hospital Keelung, Keelung 204, Taiwan.
| |
Collapse
|
32
|
Nielsen ND, Martin-Loeches I, Wentowski C. The Effects of red Blood Cell Transfusion on Tissue Oxygenation and the Microcirculation in the Intensive Care Unit: A Systematic Review. Transfus Med Rev 2017; 31:205-222. [PMID: 28800876 DOI: 10.1016/j.tmrv.2017.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/12/2017] [Accepted: 07/11/2017] [Indexed: 01/15/2023]
Abstract
The transfusion of red blood cells (RBCs) is a common intervention in intensive care unit (ICU) patients, yet the benefits are far from clear in patients with moderate anemia (eg, hemoglobin (Hb) levels of 7-10 g/dL). Determining which of these patients benefit, and how to even define benefit, from transfusion is challenging. As the intended physiological benefit underpinning RBC transfusion is to improve tissue oxygenation, several studies utilizing a wide range of assessment techniques have attempted to study the effects of transfusion on tissue oxygenation and microcirculatory function. The objective of this systematic review was to determine whether RBC transfusion improves tissue oxygenation/microcirculatory indices in the ICU population, and to provide an introduction to the techniques used in these studies. Eligible studies published between January 1996 and February 2017 were identified from searches of PubMed, Embase, Cinahl, ScienceDirect, Web of Science, and The Cochrane Library. Seventeen studies met inclusion criteria, though there was significant heterogeneity in study design, patient population, assessment techniques and outcomes reported. Overall, the majority of studies (11 of 17) concluded that transfusion did not generally improve tissue oxygenation or microcirculation. Inter-individual effects were highly variable, however, and closer review of sub-groups available in 9 studies revealed that patients with abnormal tissue oxygenation or microcirculatory indices prior to transfusion had improvement in these indices with transfusion, irrespective of assessment method. This finding suggests a new strategy for future trials in the ICU: utilizing tissue oxygenation/microcirculatory parameters to determine the need for transfusion rather than largely arbitrary hemoglobin concentrations.
Collapse
Affiliation(s)
- Nathan D Nielsen
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
| | - Ignacio Martin-Loeches
- Multidisciplinary Intensive Care Research Organization (MICRO), St James's University Hospital, Department of Clinical Medicine, Trinity College, Dublin, Ireland
| | - Catherine Wentowski
- Division of Pulmonary and Critical Care Medicine, Ochsner Clinic Foundation, New Orleans, LA, USA
| |
Collapse
|
33
|
A microengineered model of RBC transfusion-induced pulmonary vascular injury. Sci Rep 2017; 7:3413. [PMID: 28611413 PMCID: PMC5469736 DOI: 10.1038/s41598-017-03597-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/02/2017] [Indexed: 11/08/2022] Open
Abstract
Red blood cell (RBC) transfusion poses significant risks to critically ill patients by increasing their susceptibility to acute respiratory distress syndrome. While the underlying mechanisms of this life-threatening syndrome remain elusive, studies suggest that RBC-induced microvascular injury in the distal lung plays a central role in the development of lung injury following blood transfusion. Here we present a novel microengineering strategy to model and investigate this key disease process. Specifically, we created a microdevice for culturing primary human lung endothelial cells under physiological flow conditions to recapitulate the morphology and hemodynamic environment of the pulmonary microvascular endothelium in vivo. Perfusion of the microengineered vessel with human RBCs resulted in abnormal cytoskeletal rearrangement and release of intracellular molecules associated with regulated necrotic cell death, replicating the characteristics of acute endothelial injury in transfused lungs in vivo. Our data also revealed the significant effect of hemodynamic shear stress on RBC-induced microvascular injury. Furthermore, we integrated the microfluidic endothelium with a computer-controlled mechanical stretching system to show that breathing-induced physiological deformation of the pulmonary microvasculature may exacerbate vascular injury during RBC transfusion. Our biomimetic microsystem provides an enabling platform to mechanistically study transfusion-associated pulmonary vascular complications in susceptible patient populations.
Collapse
|
34
|
Donati A, Damiani E, Zuccari S, Domizi R, Scorcella C, Girardis M, Giulietti A, Vignini A, Adrario E, Romano R, Mazzanti L, Pelaia P, Singer M. Effects of short-term hyperoxia on erythropoietin levels and microcirculation in critically Ill patients: a prospective observational pilot study. BMC Anesthesiol 2017; 17:49. [PMID: 28335733 PMCID: PMC5364633 DOI: 10.1186/s12871-017-0342-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 03/16/2017] [Indexed: 01/24/2023] Open
Abstract
Background The normobaric oxygen paradox states that a short exposure to normobaric hyperoxia followed by rapid return to normoxia creates a condition of ‘relative hypoxia’ which stimulates erythropoietin (EPO) production. Alterations in glutathione and reactive oxygen species (ROS) may be involved in this process. We tested the effects of short-term hyperoxia on EPO levels and the microcirculation in critically ill patients. Methods In this prospective, observational study, 20 hemodynamically stable, mechanically ventilated patients with inspired oxygen concentration (FiO2) ≤0.5 and PaO2/FiO2 ≥ 200 mmHg underwent a 2-hour exposure to hyperoxia (FiO2 1.0). A further 20 patients acted as controls. Serum EPO was measured at baseline, 24 h and 48 h. Serum glutathione (antioxidant) and ROS levels were assessed at baseline (t0), after 2 h of hyperoxia (t1) and 2 h after returning to their baseline FiO2 (t2). The microvascular response to hyperoxia was assessed using sublingual sidestream dark field videomicroscopy and thenar near-infrared spectroscopy with a vascular occlusion test. Results EPO increased within 48 h in patients exposed to hyperoxia from 16.1 [7.4–20.2] to 22.9 [14.1–37.2] IU/L (p = 0.022). Serum ROS transiently increased at t1, and glutathione increased at t2. Early reductions in microvascular density and perfusion were seen during hyperoxia (perfused small vessel density: 85% [95% confidence interval 79–90] of baseline). The response after 2 h of hyperoxia exposure was heterogeneous. Microvascular perfusion/density normalized upon returning to baseline FiO2. Conclusions A two-hour exposure to hyperoxia in critically ill patients was associated with a slight increase in EPO levels within 48 h. Adequately controlled studies are needed to confirm the effect of short-term hyperoxia on erythropoiesis. Trial registration ClinicalTrials.gov (www.clinicaltrials.gov), NCT02481843, registered 15th June 2015, retrospectively registered
Collapse
Affiliation(s)
- Abele Donati
- Anesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10, 6126, Torrette di Ancona, Italy.
| | - Elisa Damiani
- Anesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10, 6126, Torrette di Ancona, Italy
| | - Samuele Zuccari
- Anesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10, 6126, Torrette di Ancona, Italy
| | - Roberta Domizi
- Anesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10, 6126, Torrette di Ancona, Italy
| | - Claudia Scorcella
- Anesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10, 6126, Torrette di Ancona, Italy
| | - Massimo Girardis
- Department of Anesthesiology and Intensive Care, Modena University Hospital, L.go del Pozzo 71, 41100, Modena, Italy
| | - Alessia Giulietti
- Department of Clinical Sciences, Section of Biochemistry, Università Politecnica delle Marche, via Tronto 10, 60126, Torrette di Ancona, Italy
| | - Arianna Vignini
- Department of Clinical Sciences, Section of Biochemistry, Università Politecnica delle Marche, via Tronto 10, 60126, Torrette di Ancona, Italy
| | - Erica Adrario
- Anesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10, 6126, Torrette di Ancona, Italy
| | - Rocco Romano
- Anesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10, 6126, Torrette di Ancona, Italy
| | - Laura Mazzanti
- Department of Clinical Sciences, Section of Biochemistry, Università Politecnica delle Marche, via Tronto 10, 60126, Torrette di Ancona, Italy
| | - Paolo Pelaia
- Anesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10, 6126, Torrette di Ancona, Italy
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
35
|
Hemolysis in six week-old autologous red blood cell components questioned: Worth addressing the issue of homologous components as well? Transfus Apher Sci 2017; 56:261-262. [PMID: 28343936 DOI: 10.1016/j.transci.2017.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Garraud O. Effect of "old" versus "fresh" transfused red blood cells on patients' outcome: probably more complex than appears. J Thorac Dis 2017; 9:E146-E148. [PMID: 28275500 DOI: 10.21037/jtd.2017.02.03] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Olivier Garraud
- EA3064, Faculty of medicine of Saint-Etienne, University of Lyon, 42023 Saint-Etienne, France; ; National Institute of Blood Transfusion, 75015 Paris, France
| |
Collapse
|
37
|
Stowell CP, Whitman G, Granger S, Gomez H, Assmann SF, Massey MJ, Shapiro NI, Steiner ME, Bennett-Guerrero E. The impact of red blood cell storage duration on tissue oxygenation in cardiac surgery. J Thorac Cardiovasc Surg 2016; 153:610-619.e2. [PMID: 28027790 DOI: 10.1016/j.jtcvs.2016.11.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 10/07/2016] [Accepted: 11/05/2016] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Although storage alters red blood cells, several recent, randomized trials found no differences in clinical outcomes between patients transfused with red blood cells stored for shorter versus longer periods of time. The objective of this study was to see whether storage impairs the in vivo ability of erythrocytes to traverse the microcirculation and deliver oxygen at the tissue level. METHODS A subset of subjects from a clinical trial of cardiac surgery patients randomized to receive transfusions of red blood cells stored ≤10 days or ≥21 days were assessed for thenar eminence and cerebral tissue hemoglobin oxygen saturation (StO2) via the use of near-infrared spectroscopy and sublingual microvascular blood flow via side-stream darkfield videomicroscopy. RESULTS Among 55 subjects, there was little change in the primary endpoint (thenar eminence StO2 from before to after transfusion of one unit) and the change was similar in the 2 groups: +1.7% (95% confidence interval, -0.3, 3.8) for shorter-storage and +0.8% (95% confidence interval, -1.1, 2.9) for longer-storage; P = .61). Similarly, no significant differences were observed for cerebral StO2 or sublingual microvascular blood flow. These parameters also were not different from preoperatively to 1 day postoperatively, reflecting the absence of a cumulative effect of all red blood cell units transfused during this period. CONCLUSIONS There were no differences in thenar eminence or cerebral StO2, or sublingual microcirculatory blood flow, in cardiac surgery patients transfused with red blood cells stored ≤10 days or ≥21 days. These results are consistent with the clinical outcomes in the parent study, which also did not differ, indicating that storage may not impair oxygen delivery by red blood cells in this setting.
Collapse
Affiliation(s)
- Christopher P Stowell
- Blood Transfusion Service, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass.
| | - Glenn Whitman
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins Hospital, Baltimore, Md
| | | | - Hernando Gomez
- Department of Critical Care Medicine, Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, Pa
| | | | - Michael J Massey
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Mass
| | - Nathan I Shapiro
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Marie E Steiner
- Department of Pediatrics, University of Minnesota, Minneapolis, Minn
| | | |
Collapse
|
38
|
Sut C, Hamzeh-Cognasse H, Laradi S, Bost V, Aubrège C, Acquart S, Vignal M, Boutahar N, Arthaud CA, Ange Eyraud M, Pozzetto B, Tiberghien P, Garraud O, Cognasse F. Properties of donated red blood cell components from patients with hereditary hemochromatosis. Transfusion 2016; 57:166-177. [PMID: 27807848 DOI: 10.1111/trf.13890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/25/2016] [Accepted: 08/25/2016] [Indexed: 01/28/2023]
Abstract
BACKGROUND Red blood cells (RBCs) contain large amounts of iron, and periodic therapeutic phlebotomy is thus the main treatment for hereditary hemochromatosis (HH). However, the donation of therapeutic phlebotomy products from asymptomatic patients for transfusion purposes remains controversial. In this study, we compared the quality of RBCs obtained from HH patients with those of non-HH RBCs, within the allowed 42-day storage period. STUDY DESIGN AND METHODS RBCs were obtained from HH patient donors and random regular blood donors by whole blood collection. RBCs were stored for up to 42 days, according to national regulations and standard blood bank conditions in France. The following variables were assessed: hematologic and biochemical results, RBC membrane and soluble inflammatory markers, and the proinflammatory potential of HH RBC supernatant toward endothelial cells in an in vitro model. RESULTS There were no major differences between the two groups in terms of biophysical, biochemical, or soluble immunomodulatory factors. However, we observed small but significant differences in changes in RBC membrane proteins during storage, including increased phosphatidylserine expression and decreased hemolysis in HH compared with normal RBCs. However, there were no differences in terms of bioactivity of soluble immunomodulatory factors in the RBC supernatant during storage between HH and control donors, as determined by their effects on endothelial cells in vitro. CONCLUSIONS These in vitro studies suggest that RBCs from HH patients appear, while exhibiting subtle differences, to be suitable for transfusion purposes according to currently accepted criteria.
Collapse
Affiliation(s)
- Caroline Sut
- Etablissement Français du Sang Rhône-Alpes-Auvergne.,Université de Lyon, GIMAP-EA3064
| | | | - Sandrine Laradi
- Etablissement Français du Sang Rhône-Alpes-Auvergne.,Université de Lyon, GIMAP-EA3064
| | - Vincent Bost
- Etablissement Français du Sang Rhône-Alpes-Auvergne
| | | | | | | | - Nadia Boutahar
- Département de Biochimie Hôpital Nord, CHU de Saint-Etienne, Saint Etienne
| | | | | | - Bruno Pozzetto
- Université de Lyon, GIMAP-EA3064.,Département de Microbiologie Hôpital Nord, CHU de Saint-Etienne, Saint Etienne, France
| | - Pierre Tiberghien
- UMR1098, INSERM, Etablissement Français du Sang, Université de Franche-Comté, Besançon, France.,Etablissement Français du Sang, Saint-Denis, France
| | - Olivier Garraud
- Université de Lyon, GIMAP-EA3064.,Institut National de Transfusion Sanguine (INTS), Paris, France
| | - Fabrice Cognasse
- Etablissement Français du Sang Rhône-Alpes-Auvergne.,Université de Lyon, GIMAP-EA3064
| |
Collapse
|
39
|
Kuiper JW, Tibboel D, Ince C. The vulnerable microcirculation in the critically ill pediatric patient. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:352. [PMID: 27794361 PMCID: PMC5086412 DOI: 10.1186/s13054-016-1496-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In neonates, cardiovascular system development does not stop after the transition from intra-uterine to extra-uterine life and is not limited to the macrocirculation. The microcirculation (MC), which is essential for oxygen, nutrient, and drug delivery to tissues and cells, also develops. Developmental changes in the microcirculatory structure continue to occur during the initial weeks of life in healthy neonates. The physiologic hallmarks of neonates and developing children make them particularly vulnerable during critical illness; however, the cardiovascular monitoring possibilities are limited compared with critically ill adult patients. Therefore, the development of non-invasive methods for monitoring the MC is necessary in pediatric critical care for early identification of impending deterioration and to enable the initiation and titration of therapy to ensure cell survival. To date, the MC may be non-invasively monitored at the bedside using hand-held videomicroscopy, which provides useful information regarding the microcirculation. There is an increasing number of studies on the MC in neonates and pediatric patients; however, additional steps are necessary to transition MC monitoring from bench to bedside. The recently introduced concept of hemodynamic coherence describes the relationship between changes in the MC and macrocirculation. The loss of hemodynamic coherence may result in a depressed MC despite an improvement in the macrocirculation, which represents a condition associated with adverse outcomes. In the pediatric intensive care unit, the concept of hemodynamic coherence may function as a framework to develop microcirculatory measurements towards implementation in daily clinical practice.
Collapse
Affiliation(s)
- J W Kuiper
- Intensive Care and Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Postbox 2040, 3000 CA, Rotterdam, The Netherlands.
| | - D Tibboel
- Intensive Care and Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Postbox 2040, 3000 CA, Rotterdam, The Netherlands
| | - C Ince
- Department of Intensive Care, Erasmus MC, University Medical Center Rotterdam, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| |
Collapse
|
40
|
Impact of microcirculatory video quality on the evaluation of sublingual microcirculation in critically ill patients. J Clin Monit Comput 2016; 31:981-988. [PMID: 27539312 DOI: 10.1007/s10877-016-9924-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/10/2016] [Indexed: 12/25/2022]
Abstract
We aimed to assess the impact of image quality on microcirculatory evaluation with sidestream dark-field (SDF) videomicroscopy in critically ill patients and explore factors associated with low video quality. This was a retrospective analysis of a single-centre prospective observational study. Videos of the sublingual microcirculation were recorded using SDF videomicroscopy in 100 adult patients within 12 h from admittance to the intensive care unit and every 24 h until discharge/death. Parameters of vessel density and perfusion were calculated offline for small vessels. For all videos, a quality score (-12 = unacceptable, 1 = suboptimal, 2 = optimal) was assigned for brightness, focus, content, stability, pressure and duration. Videos with a total score ≤8 were deemed as unacceptable. A total of 2455 videos (853 triplets) was analysed. Quality was acceptable in 56 % of videos. Lower quality was associated with worse microvascular density and perfusion. Unreliable triplets (≥1 unacceptable or missing video, 65 % of total) showed lower vessel density, worse perfusion and higher flow heterogeneity as compared to reliable triplets (p < 0.001). Quality was higher among triplets collected by an extensively-experienced investigator or in patients receiving sedation or mechanical ventilation. Perfused vessel density was higher in patients with Glasgow Coma Scale (GCS) ≤8 (18.9 ± 4.5 vs. 17.0 ± 3.9 mm/mm2 in those with GCS >8, p < 0.001) or requiring mechanical ventilation (18.0 ± 4.5 vs. 17.2 ± 3.8 mm/mm2 in not mechanically ventilated patients, p = 0.059). We concluded that SDF video quality depends on both the operator's experience and patient's cooperation. Low-quality videos may produce spurious data, leading to an overestimation of microvascular alterations.
Collapse
|
41
|
Damiani E, Ince C, Orlando F, Pierpaoli E, Cirioni O, Giacometti A, Mocchegiani F, Pelaia P, Provinciali M, Donati A. Effects of the Infusion of 4% or 20% Human Serum Albumin on the Skeletal Muscle Microcirculation in Endotoxemic Rats. PLoS One 2016; 11:e0151005. [PMID: 26942605 PMCID: PMC4778913 DOI: 10.1371/journal.pone.0151005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/21/2016] [Indexed: 12/29/2022] Open
Abstract
Background Sepsis-induced microcirculatory alterations contribute to tissue hypoxia and organ dysfunction. In addition to its plasma volume expanding activity, human serum albumin (HSA) has anti-oxidant and anti-inflammatory properties and may have a protective role in the microcirculation during sepsis. The concentration of HSA infused may influence these effects. We compared the microcirculatory effects of the infusion of 4% and 20% HSA in an experimental model of sepsis. Methods Adult male Wistar rats were equipped with arterial and venous catheters and received an intravenous infusion of lipopolysaccharide (LPS, serotype O127:B8, 10 mg/kg over 30 minutes) or vehicle (SHAM, n = 6). Two hours later, endotoxemic animals were randomized to receive 10 mL/kg of either 4% HSA (LPS+4%HSA, n = 6), 20% HSA (LPS+20%HSA, n = 6) or 0.9% NaCl (LPS+0.9%NaCl, n = 6). No fluids were given to an additional 6 animals (LPS). Vessel density and perfusion were assessed in the skeletal muscle microcirculation with sidestream dark field videomicroscopy at baseline (t0), 2 hours after LPS injection (t1), after HSA infusion (t2) and 1 hour later (t3). The mean arterial pressure (MAP) and heart rate were recorded. Serum endothelin-1 was measured at t2. Results MAP was stable over time in all groups. The microcirculatory parameters were significantly altered in endotoxemic animals at t1. The infusion of both 4% and 20% HSA similarly increased the perfused vessel density and blood flow velocity and decreased the flow heterogeneity to control values. Microvascular perfusion was preserved in the LPS+20%HSA group at t3, whereas alterations reappeared in the LPS+4%HSA group. Conclusions In a rat model of normotensive endotoxemia, the infusion of 4% or 20% HSA produced a similar acute improvement in the microvascular perfusion in otherwise unresuscitated animals.
Collapse
Affiliation(s)
- Elisa Damiani
- Anaesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Can Ince
- Department of Translational Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Fiorenza Orlando
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS-INRCA, Ancona, Italy
| | - Elisa Pierpaoli
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS-INRCA, Ancona, Italy
| | - Oscar Cirioni
- Institute of Infectious Disease and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Giacometti
- Institute of Infectious Disease and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Federico Mocchegiani
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Paolo Pelaia
- Anaesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS-INRCA, Ancona, Italy
| | - Abele Donati
- Anaesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
- * E-mail:
| |
Collapse
|
42
|
Abstract
Functional components of the microcirculation provide oxygen and nutrients and remove waste products from the tissue beds of the body's organs. Shock states overwhelmingly stress functional capacity of the microcirculation, resulting in microcirculatory failure. In septic shock, inflammatory mediators contribute to hemodynamic instability. In nonseptic shock states, the microcirculation is better able to compensate for alterations in vascular resistance, cardiac output, and blood pressure. Therefore, global hemodynamic and oxygen delivery parameters are appropriate for assessing, monitoring, and guiding therapy in hypovolemic and cardiogenic shock but, alone, are inadequate for septic shock.
Collapse
Affiliation(s)
- Shannan K Hamlin
- Nursing Research and Evidence-Based Practice, Houston Methodist Hospital, MGJ 11-017, Houston, TX 77030, USA.
| | - C Lee Parmley
- Vanderbilt University Hospital, 1211 21st Avenue South, S3408 MCN, Nashville, TN 37212, USA; Department of Anesthesiology, Division of Critical Care, Vanderbilt University School of Medicine, 1211 21st Avenue South, S3408 MCN, Nashville, TN 37212, USA
| | - Sandra K Hanneman
- Center for Nursing Research, University of Texas Health Science Center at Houston School of Nursing, Room #594, 6901 Bertner Avenue, Houston, TX 77030, USA
| |
Collapse
|
43
|
Ince C. Hemodynamic coherence and the rationale for monitoring the microcirculation. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19 Suppl 3:S8. [PMID: 26729241 PMCID: PMC4699073 DOI: 10.1186/cc14726] [Citation(s) in RCA: 321] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This article presents a personal viewpoint of the shortcoming of conventional hemodynamic resuscitation procedures in achieving organ perfusion and tissue oxygenation following conditions of shock and cardiovascular compromise, and why it is important to monitor the microcirculation in such conditions. The article emphasizes that if resuscitation procedures are based on the correction of systemic variables, there must be coherence between the macrocirculation and microcirculation if systemic hemodynamic-driven resuscitation procedures are to be effective in correcting organ perfusion and oxygenation. However, in conditions of inflammation and infection, which often accompany states of shock, vascular regulation and compensatory mechanisms needed to sustain hemodynamic coherence are lost, and the regional circulation and microcirculation remain in shock. We identify four types of microcirculatory alterations underlying the loss of hemodynamic coherence: type 1, heterogeneous microcirculatory flow; type 2, reduced capillary density induced by hemodilution and anemia; type 3, microcirculatory flow reduction caused by vasoconstriction or tamponade; and type 4, tissue edema. These microcirculatory alterations can be observed at the bedside using direct visualization of the sublingual microcirculation with hand-held vital microscopes. Each of these alterations results in oxygen delivery limitation to the tissue cells despite the presence of normalized systemic hemodynamic variables. Based on these concepts, we propose how to optimize the volume of fluid to maximize the oxygen-carrying capacity of the microcirculation to transport oxygen to the tissues.
Collapse
|
44
|
Simancas-Racines D, Osorio D, Martí-Carvajal AJ, Arevalo-Rodriguez I. Leukoreduction for the prevention of adverse reactions from allogeneic blood transfusion. Cochrane Database Syst Rev 2015; 2015:CD009745. [PMID: 26633306 PMCID: PMC8214224 DOI: 10.1002/14651858.cd009745.pub2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND A blood transfusion is an acute intervention, implemented to solve life and health-threatening conditions on a short-term basis. However, blood transfusions have adverse events, some of them potentially related to immune modulation or to a direct transmission of infectious agents (e.g. cytomegalovirus). Leukoreduction is a process in which the white blood cells are intentionally reduced in packed red blood cells (PRBCs) in order to reduce the risk of adverse reactions. The potential benefits of leukoreduced PRBCs in all types of transfused patients for decreasing infectious and non-infectious complications remain unclear. OBJECTIVES To determine the clinical effectiveness of leukoreduction of packed red blood cells for preventing adverse reactions following allogeneic blood transfusion. SEARCH METHODS We ran the most recent search on 10th November 2015. We searched the Cochrane Injuries Group's Specialised Register, Cochrane Central Register of Controlled Trials (CENTRAL, the Cochrane Library), MEDLINE (OvidSP), Embase(OvidSP), CINAHL Plus (EBSCO), LILACS (BIREME), and clinical trials registers. In addition, we checked the reference lists of all relevant trials and reviews identified in the literature searches. SELECTION CRITERIA Randomised clinical trials including patients of all ages requiring PRBC allogeneic transfusion. Any study was eligible for inclusion, regardless of the length of participant follow-up or country where the study was performed. The primary outcome was transfusion-related acute lung injury (TRALI). Secondary outcomes were death from any cause, infection from any cause, non-infectious complications and any other adverse event. DATA COLLECTION AND ANALYSIS At least two review authors independently performed study selection, 'Risk of bias' assessments and data extraction. We estimated pooled relative risk for dichotomous outcomes, and we measured statistical heterogeneity using I² statistic. The random-effects model was used to synthesise results. We conducted a trial sequential analysis to assess the risk of random errors in cumulative meta-analyses. MAIN RESULTS Thirteen studies, most including adult patients, met the eligibility criteria. We found no clear evidence of an effect of leukoreduced PRBC versus non-leukoreduced PRBC in patients that were randomised to receive transfusion for the following outcomes: TRALI: RR 0.96, 95% CI 0.67 to 1.36, P = 0.80 from one trial reporting data on 1864 trauma patients. The accrued information of 1864 participants constituted only 28.5% of the diversity-adjusted required information size (DARIS) of 6548 participants. The quality of evidence was low. Death from any cause: RR 0.81, 95% CI 0.58 to 1.12, I² statistic = 63%, P = 0.20 from nine trials reporting data on 6485 cardiovascular surgical patients, gastro-oncology surgical patients, trauma patients and HIV infected patients. The accrued information of 6485 participants constituted only 55.3% of the DARIS of 11,735 participants. The quality of evidence was very low. Infection from any cause: RR 0.80, 95% CI 0.62 to 1.03, I² statistic = 84%, P = 0.08 from 10 trials reporting data on 6709 cardiovascular surgical patients, gastro-oncology surgical patients, trauma patients and HIV infected patients. The accrued information of 6709 participants constituted only 60.6% of the DARIS of 11,062 participants. The quality of evidence was very low. Adverse events: The only adverse event reported as an adverse event was fever (RR 0.81, 95% CI 0.64 to 1.02; I² statistic= 0%, P = 0.07). Fever was reported in two trials on 634 cardiovascular surgical and gastro-oncology surgical patients. The accrued information of 634 participants constituted only 84.4% of the DARIS of 751 participants. The quality of evidence was low. Incidence of other non-infectious complications: This outcome was not assessed in any included trial. AUTHORS' CONCLUSIONS There is no clear evidence for supporting or rejecting the routine use of leukoreduction in all patients requiring PRBC transfusion for preventing TRALI, death, infection, non-infectious complications and other adverse events. As the quality of evidence is very low to low, more evidence is needed before a definitive conclusion can be drawn.
Collapse
Affiliation(s)
- Daniel Simancas-Racines
- Facultad de Ciencias de la Salud Eugenio Espejo, Universidad Tecnológica Equinoccial, Avenida Occidental s/n, y Avenida Mariana de Jesús, Edificio Bloque D. Of. Centro Cochrane, Quito, Ecuador, Casilla Postal 17-01-2764
| | | | | | | |
Collapse
|
45
|
Improving platelet transfusion safety: biomedical and technical considerations. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2015; 14:109-22. [PMID: 26674828 DOI: 10.2450/2015.0042-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/16/2015] [Indexed: 12/25/2022]
Abstract
Platelet concentrates account for near 10% of all labile blood components but are responsible for more than 25% of the reported adverse events. Besides factors related to patients themselves, who may be particularly at risk of side effects because of their underlying illness, there are aspects of platelet collection and storage that predispose to adverse events. Platelets for transfusion are strongly activated by collection through disposal equipment, which can stress the cells, and by preservation at 22 °C with rotation or rocking, which likewise leads to platelet activation, perhaps more so than storage at 4 °C. Lastly, platelets constitutively possess a very large number of bioactive components that may elicit pro-inflammatory reactions when infused into a patient. This review aims to describe approaches that may be crucial to minimising side effects while optimising safety and quality. We suggest that platelet transfusion is complex, in part because of the complexity of the "material" itself: platelets are highly versatile cells and the transfusion process adds a myriad of variables that present many challenges for preserving basal platelet function and preventing dysfunctional activation of the platelets. The review also presents information showing--after years of exhaustive haemovigilance--that whole blood buffy coat pooled platelet components are extremely safe compared to the gold standard (i.e. apheresis platelet components), both in terms of acquired infections and of immunological/inflammatory hazards.
Collapse
|
46
|
Garraud O, Hamzeh-Cognasse H, Laradi S, Pozzetto B, Cognasse F. Transfusion et inflammation : hier – aujourd’hui – demain. Transfus Clin Biol 2015; 22:168-77. [PMID: 25956744 DOI: 10.1016/j.tracli.2015.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Indexed: 12/11/2022]
|
47
|
Memtsoudis SG, Danninger T, Stundner O, Yoo D, Girardi FP, Boettner F, Kao I, Fields KG, Urban MK, Heard SO, Walz JM. Blood Transfusions May Have Limited Effect on Muscle Oxygenation After Total Knee Arthroplasty. HSS J 2015; 11:136-42. [PMID: 26140033 PMCID: PMC4481255 DOI: 10.1007/s11420-015-9434-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/21/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Traditionally, blood transfusions in the perioperative setting are used to maintain adequate delivery of nutrients and oxygen to organs. However, the effect of blood administration on tissue oxygenation in the perioperative setting remains poorly understood. QUESTIONS/PURPOSES The aim of this study was to determine changes in muscle tissue oxygenation saturation (SmO2) in response to perioperative blood transfusions. PATIENTS AND METHODS Patients undergoing total knee arthroplasty were enrolled. SmO2, continuous hemoglobin (SpHb), stroke volume (SV), cardiac index, and standard hemodynamic parameters including heart rate (HR), mean arterial blood pressure (MAP), and arterial oxygen saturation (SO2) were recorded. To assess fluid responsiveness, a passive leg raise (PLR) test was performed before the transfusions were started. RESULTS Twenty-eight patients were included in the analysis. Mean (±SD) SmO2 before transfusion was 63.18 ± 10.04%, SpHb was 9.27 ± 1.16 g/dl, and cardiac index was 2.62 ± 0.75 L/min/m(2). A significant increase during the course of blood transfusion was found for SmO2 (+3.44 ± 5.81% [95% confidence interval (CI) 1.04 to 5.84], p = 0.007), SpHb (0.74 ± 0.92 g/dl [95% CI 0.35 to 1.12], p < 0.001), and cardiac index (0.38 ± 0.51 L/min/m2 [95% CI 0.15 to 0.60], p = 0.002), respectively. However, the correlation between SmO2 and SpHb over the course of the transfusion was negligible (ρ = 0.25 [95% CI -0.03 to 0.48]). A similar lack of correlation was found when analyzing data of those patients who showed a positive leg raise test before the start of the transfusion (ρ = 0.37 [95% CI -0.11 to 0.84]). CONCLUSION We detected a statistically significant increase in SmO2 during the course of a single unit blood transfusion compared to baseline. However, there was no evidence of a correlation between longitudinal SmO2 and SpHb measurements.
Collapse
Affiliation(s)
- Stavros G. Memtsoudis
- />Department of Anesthesiology, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 USA
| | - Thomas Danninger
- />Department of Anesthesiology, State Hospital of Salzburg, Salzburg, Austria
| | - Ottokar Stundner
- />Department of Anesthesiology, State Hospital of Salzburg, Salzburg, Austria
| | - Daniel Yoo
- />Department of Anesthesiology, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 USA
| | | | - Friedrich Boettner
- />Department of Orthopedics, Hospital for Special Surgery, New York, NY USA
| | - Isabelle Kao
- />College of Medicine, SUNY Downstate Medical Center, New York, NY USA
| | - Kara G. Fields
- />Healthcare Research Institute, Hospital for Special Surgery, New York, NY USA
| | - Michael K. Urban
- />Department of Anesthesiology, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 USA
| | - Stephen O. Heard
- />Department of Anesthesiology, UMass Memorial Medical Center, Worcester, MA USA
| | - J. Matthias Walz
- />Department of Anesthesiology, UMass Memorial Medical Center, Worcester, MA USA
| |
Collapse
|
48
|
Prudent M, Tissot JD, Lion N. In vitro assays and clinical trials in red blood cell aging: Lost in translation. Transfus Apher Sci 2015; 52:270-6. [PMID: 25982219 DOI: 10.1016/j.transci.2015.04.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The age of erythrocyte concentrates (EC) in transfusion medicine and the adverse outcomes when transfusing long-term-stored EC are highly controversial issues. Whereas the definition of a short-term-stored EC or a long-term-stored EC is unclear in clinical trials, data based on in vitro storage assays can help defining a limit in addition of the expiration date. The present review merges together these data in order to highlight an EC age cut-off and points out potential misleading consideration. The analysis of in vitro data highlights the presence of reversible and irreversible storage lesions and demonstrates that red blood cells (RBC) exhibit two limits during storage: one around 2 weeks and another one around 4 weeks of storage. Of particular importance, the first lesions to appear, i.e. the reversible ones, are per se reversible once transfused, whereas the irreversible lesions are not. In clinical trials, the EC age cut-off for short-term storage is in general fewer than 14 days (11 ± 4 days) and more disperse for long-term-stored EC (17 ± 13 days), regardless the clinical outcomes. Taking together, EC age cut-off in clinical trials does not totally fall into line of in vitro aging data, whereas it is the key criteria in clinical studies. Long-term-stored EC considered in clinical trials are not probably old enough to answer the question: "Does transfusion of long-term-stored EC (older than 4 weeks) result in worse clinical outcomes?" Depending on ethical concerns and clinical practices, older EC than currently assayed in clinical trials should have to be considered. These two worlds trying to understand the aging of erythrocytes and the impact on patients do not seem to speak the same language.
Collapse
Affiliation(s)
- Michel Prudent
- Transfusion Interrégionale CRS, Laboratoire de Recherche sur les Produits Sanguins, Lausanne, Switzerland
| | - Jean-Daniel Tissot
- Transfusion Interrégionale CRS, Laboratoire de Recherche sur les Produits Sanguins, Lausanne, Switzerland
| | - Niels Lion
- Transfusion Interrégionale CRS, Laboratoire de Recherche sur les Produits Sanguins, Lausanne, Switzerland.
| |
Collapse
|
49
|
Becker BF, Jacob M, Leipert S, Salmon AHJ, Chappell D. Degradation of the endothelial glycocalyx in clinical settings: searching for the sheddases. Br J Clin Pharmacol 2015; 80:389-402. [PMID: 25778676 DOI: 10.1111/bcp.12629] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/10/2015] [Accepted: 03/11/2015] [Indexed: 12/11/2022] Open
Abstract
The endothelial glycocalyx has a profound influence at the vascular wall on the transmission of shear stress, on the maintenance of a selective permeability barrier and a low hydraulic conductivity, and on attenuating firm adhesion of blood leukocytes and platelets. Major constituents of the glycocalyx, including syndecans, heparan sulphates and hyaluronan, are shed from the endothelial surface under various acute and chronic clinical conditions, the best characterized being ischaemia and hypoxia, sepsis and inflammation, atherosclerosis, diabetes, renal disease and haemorrhagic viral infections. Damage has also been detected by in vivo microscopic techniques. Matrix metalloproteases may shed syndecans and heparanase, released from activated mast cells, cleaves heparan sulphates from core proteins. According to new data, not only hyaluronidase but also the serine proteases thrombin, elastase, proteinase 3 and plasminogen, as well as cathepsin B lead to loss of hyaluronan from the endothelial surface layer, suggesting a wide array of potentially destructive conditions. Appropriately, pharmacological agents such as inhibitors of inflammation, antithrombin and inhibitors of metalloproteases display potential to attenuate shedding of the glycocalyx in various experimental models. Also, plasma components, especially albumin, stabilize the glycocalyx and contribute to the endothelial surface layer. Though symptoms of the above listed diseases and conditions correlate with sequelae expected from disturbance of the endothelial glycocalyx (oedema, inflammation, leukocyte and platelet adhesion, low reflow), therapeutic studies to prove a causal connection have yet to be designed. With respect to studies on humans, some clinical evidence exists for benefits from application of sulodexide, a preparation delivering precursors of the glycocalyx constituent heparan sulphate. At present, the simplest option for protecting the glycocalyx seems to be to ensure an adequate level of albumin. However, also in this case, definite proof of causality needs to be delivered.
Collapse
Affiliation(s)
- Bernhard F Becker
- Walter-Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Matthias Jacob
- Department of Anaesthesiology, Hospital St Elisabeth, Straubing, Germany
| | - Stephanie Leipert
- Walter-Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andrew H J Salmon
- Bristol Renal, School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - Daniel Chappell
- Department of Anaesthesiology, University Hospital Munich, Munich, Germany
| |
Collapse
|
50
|
Damiani E, Adrario E, Luchetti MM, Scorcella C, Carsetti A, Mininno N, Pierantozzi S, Principi T, Strovegli D, Bencivenga R, Gabrielli A, Romano R, Pelaia P, Ince C, Donati A. Plasma free hemoglobin and microcirculatory response to fresh or old blood transfusions in sepsis. PLoS One 2015; 10:e0122655. [PMID: 25932999 PMCID: PMC4416810 DOI: 10.1371/journal.pone.0122655] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/10/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Free hemoglobin (fHb) may induce vasoconstriction by scavenging nitric oxide. It may increase in older blood units due to storage lesions. This study evaluated whether old red blood cell transfusion increases plasma fHb in sepsis and how the microvascular response may be affected. METHODS This is a secondary analysis of a randomized study. Twenty adult septic patients received either fresh or old (<10 or >15 days storage, respectively) RBC transfusions. fHb was measured in RBC units and in the plasma before and 1 hour after transfusion. Simultaneously, the sublingual microcirculation was assessed with sidestream-dark field imaging. The perfused boundary region was calculated as an index of glycocalyx damage. Tissue oxygen saturation (StO2) and Hb index (THI) were measured with near-infrared spectroscopy and a vascular occlusion test was performed. RESULTS Similar fHb levels were found in the supernatant of fresh and old RBC units. Despite this, plasma fHb increased in the old RBC group after transfusion (from 0.125 [0.098-0.219] mg/mL to 0.238 [0.163-0.369] mg/mL, p = 0.006). The sublingual microcirculation was unaltered in both groups, while THI increased. The change in plasma fHb was inversely correlated with the changes in total vessel density (r = -0.57 [95% confidence interval -0.82, -0.16], p = 0.008), De Backer score (r = -0.63 [95% confidence interval -0.84, -0.25], p = 0.003) and THI (r = -0.72 [95% confidence interval -0.88, -0.39], p = 0.0003). CONCLUSIONS Old RBC transfusion was associated with an increase in plasma fHb in septic patients. Increasing plasma fHb levels were associated with decreased microvascular density. TRIAL REGISTRATION ClinicalTrials.gov NCT01584999.
Collapse
Affiliation(s)
- Elisa Damiani
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Torrette di Ancona, Italy
| | - Erica Adrario
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Torrette di Ancona, Italy
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria “Ospedali Riuniti”, Torrette di Ancona, Italy
| | - Michele Maria Luchetti
- Department of Clinical and Molecular Sciences, Clinica Medica, Università Politecnica delle Marche, Torrette di Ancona, Italy
| | - Claudia Scorcella
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Torrette di Ancona, Italy
| | - Andrea Carsetti
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Torrette di Ancona, Italy
| | - Nicoletta Mininno
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Torrette di Ancona, Italy
| | - Silvia Pierantozzi
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Torrette di Ancona, Italy
| | - Tiziana Principi
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria “Ospedali Riuniti”, Torrette di Ancona, Italy
| | - Daniele Strovegli
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria “Ospedali Riuniti”, Torrette di Ancona, Italy
| | - Rosella Bencivenga
- Immunohematology and Transfusional Medicine, AOU Ospedali Riuniti, Torrette di Ancona, Italy
| | - Armando Gabrielli
- Department of Clinical and Molecular Sciences, Clinica Medica, Università Politecnica delle Marche, Torrette di Ancona, Italy
| | - Rocco Romano
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Torrette di Ancona, Italy
| | - Paolo Pelaia
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Torrette di Ancona, Italy
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria “Ospedali Riuniti”, Torrette di Ancona, Italy
| | - Can Ince
- Department of Translational Physiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Abele Donati
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Torrette di Ancona, Italy
- Anesthesia and Intensive Care Unit, Azienda Ospedaliera Universitaria “Ospedali Riuniti”, Torrette di Ancona, Italy
- Department of Translational Physiology, Academic Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|