1
|
Islam MM, Nawagamuwage SU, Parshin IV, Richard MC, Burin AL, Rubtsov IV. Probing the Hydrophobic Region of a Lipid Bilayer at Specific Depths Using Vibrational Spectroscopy. J Am Chem Soc 2023; 145:26363-26373. [PMID: 37982703 DOI: 10.1021/jacs.3c10178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
A novel spectroscopic approach for studying the flexibility and mobility in the hydrophobic interior of lipid bilayers at specific depths is proposed. A set of test compounds featuring an azido moiety and a cyano or carboxylic acid moiety, connected by an alkyl chain of different lengths, was synthesized. FTIR data and molecular dynamics calculations indicated that the test compounds in a bilayer are oriented so that the cyano or carboxylic acid moiety is located in the lipid head-group region, while the azido group stays inside the bilayer at the depth determined by its alkyl chain length. We found that the asymmetric stretching mode of the azido group (νN3) can serve as a reporter of the membrane interior dynamics. FTIR and two-dimensional infrared (2DIR) studies were performed at different temperatures, ranging from 22 to 45 °C, covering the Lβ-Lα phase transition temperature of dipalmitoylphosphatidylcholine (∼41 °C). The width of the νN3 peak was found to be very sensitive to the phase transition and to the temperature in general. We introduced an order parameter, SN3, which characterizes restrictions to motion inside the bilayer. 2DIR spectra of νN3 showed different extents of inhomogeneity at different depths in the bilayer, with the smallest inhomogeneity in the middle of the leaflet. The spectral diffusion dynamics of the N3 peak was found to be dependent on the depth of the N3 group location in the bilayer. The obtained results enhance our understanding of the bilayer dynamics and can be extended to investigate membranes with more complex compositions.
Collapse
Affiliation(s)
- Md Muhaiminul Islam
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | | | - Igor V Parshin
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Margaret C Richard
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Alexander L Burin
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Igor V Rubtsov
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
2
|
Wei Y, Liu C, Li L. Geniposide improves bleomycin-induced pulmonary fibrosis by inhibiting NLRP3 inflammasome activation and modulating metabolism. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
|
3
|
de Freitas Junior RA, Lossavaro PKDMB, Kassuya CAL, Paredes-Gamero EJ, Farias Júnior NC, Souza MIL, Silva-Comar FMDS, Cuman RKN, Silva DB, Toffoli-Kadri MC, Silva-Filho SE. Effect of Ylang-Ylang ( Cananga odorata Hook. F. & Thomson) Essential Oil on Acute Inflammatory Response In Vitro and In Vivo. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123666. [PMID: 35744789 PMCID: PMC9231162 DOI: 10.3390/molecules27123666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022]
Abstract
The aim of this study is to evaluate the phytochemical profile, oral acute toxicity, and the effect of ylang-ylang (Cananga odorata Hook. F. & Thomson) essential oil (YEO) on acute inflammation. YEO was analyzed by gas chromatography/mass spectrometry. For in vitro tests, YEO was assessed using cytotoxicity, neutrophil chemotaxis induced by N-formyl methionyl leucyl phenylalanine (fMLP), and phagocytic activity tests. YEO was orally administered in zymosan-induced peritonitis, carrageenan-induced leukocyte rolling, and adhesion events in the in situ microcirculation model and in carrageenan-induced paw edema models. YEO (2000 mg/kg) was also tested using an acute toxicity test in Swiss mice. YEO showed a predominance of benzyl acetate, linalool, benzyl benzoate, and methyl benzoate. YEO did not present in vitro cytotoxicity. YEO reduced the in vitro neutrophil chemotaxis induced by fMLP and reduced the phagocytic activity. The oral treatment with YEO reduced the leukocyte recruitment and nitric oxide production in the zymosan-induced peritonitis model, reduced rolling and adherent leukocyte number induced by carrageenan in the in situ microcirculation model, and reduced carrageenan-induced edema and mechanical hyperalgesia. YEO did not present signs of toxicity in the acute toxicity test. In conclusion, YEO affected the leukocyte activation, and presented antiedematogenic, anti-hyperalgesic, and anti-inflammatory properties.
Collapse
Affiliation(s)
- Robson Araújo de Freitas Junior
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (R.A.d.F.J.); (P.K.d.M.B.L.); (E.J.P.-G.); (D.B.S.); (M.C.T.-K.)
| | - Paloma Kênia de Moraes Berenguel Lossavaro
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (R.A.d.F.J.); (P.K.d.M.B.L.); (E.J.P.-G.); (D.B.S.); (M.C.T.-K.)
| | | | - Edgar Julian Paredes-Gamero
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (R.A.d.F.J.); (P.K.d.M.B.L.); (E.J.P.-G.); (D.B.S.); (M.C.T.-K.)
| | | | - Maria Inês Lenz Souza
- Biosciences Institute, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | | | - Roberto Kenji Nakamura Cuman
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá 87020-900, Brazil; (F.M.d.S.S.-C.); (R.K.N.C.)
| | - Denise Brentan Silva
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (R.A.d.F.J.); (P.K.d.M.B.L.); (E.J.P.-G.); (D.B.S.); (M.C.T.-K.)
| | - Mônica Cristina Toffoli-Kadri
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (R.A.d.F.J.); (P.K.d.M.B.L.); (E.J.P.-G.); (D.B.S.); (M.C.T.-K.)
| | - Saulo Euclides Silva-Filho
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (R.A.d.F.J.); (P.K.d.M.B.L.); (E.J.P.-G.); (D.B.S.); (M.C.T.-K.)
- Correspondence:
| |
Collapse
|
4
|
Teuben MPJ, Pfeifer R, Horst K, Simon TP, Heeres M, Kalbas Y, Blokhuis T, Hildebrand F, Koenderman L, Pape HC, Leenen L. Standardized porcine unilateral femoral nailing is associated with changes in PMN activation status, rather than aberrant systemic PMN prevalence. Eur J Trauma Emerg Surg 2022; 48:1601-1611. [PMID: 34114052 PMCID: PMC9192391 DOI: 10.1007/s00068-021-01703-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/13/2021] [Indexed: 10/26/2022]
Abstract
PURPOSE Intramedullary nailing (IMN) of fractures is associated with increased rates of inflammatory complications. The pathological mechanism underlying this phenomenon is unclear. However, polymorphonuclear granulocytes (PMNs) seem to play an important role. We hypothesized that a femur fracture and standardized IMN in pigs is associated with altered appearance of PMNs in circulation and enhanced activation status of these cells. METHODS A porcine model including a femur fracture and IMN was utilized. Animals were randomized for control [anesthesia + mechanical ventilation only (A/MV)] and intervention [A/MV and unilateral femur fracture (FF) + IMN] conditions. PMN numbers and responsiveness, integrin (CD11b), L-selectin (CD62L) and Fcγ-receptor (CD16 and CD32)-expression levels were measured by flowcytometry of blood samples. Animals were observed for 72 h. RESULTS Circulatory PMN numbers did not differ between groups. Early PMN-responsiveness was retained after insult. PMN-CD11b expression increased significantly upon insult and peaked after 24 h, whereas CD11b in control animals remained unaltered (P = 0.016). PMN-CD16 expression levels in the FF + IMN-group rose gradually over time and were significantly higher compared with control animals, after 48 h (P = 0.016) and 72 h (P = 0.032). PMN-CD62L and CD32 expression did not differ significantly between conditions. CONCLUSION This study reveals that a femur fracture and subsequent IMN in a controlled setting in pigs is associated with enhanced activation status of circulatory PMNs, preserved PMN-responsiveness and unaltered circulatory PMN-presence. Indicating that monotrauma plus IMN is a specific and substantial stimulus for the cellular immune system. Early alterations of circulatory PMN receptor expression dynamics may be predictive for the intensity of the post traumatic response.
Collapse
Affiliation(s)
- Michel Paul Johan Teuben
- Department of Traumatology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Department of Traumatology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Laboratory for Translational Immunology, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Harald Tscherne Laboratory for Orthopaedic and Trauma Research, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Roman Pfeifer
- Department of Traumatology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Harald Tscherne Laboratory for Orthopaedic and Trauma Research, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Klemens Horst
- Department of Trauma and Reconstructive Surgery, RWTH University Hospital Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Tim-Philipp Simon
- Department of Intensive Care and Intermediate Care, RWTH University Hospital Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Marjolein Heeres
- Department of Traumatology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Laboratory for Translational Immunology, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Yannik Kalbas
- Department of Traumatology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Harald Tscherne Laboratory for Orthopaedic and Trauma Research, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Taco Blokhuis
- Department of Surgery, University Hospital Maastricht, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Frank Hildebrand
- Department of Trauma and Reconstructive Surgery, RWTH University Hospital Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Leo Koenderman
- Laboratory for Translational Immunology, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Department of Pulmonology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Hans-Christoph Pape
- Department of Traumatology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Harald Tscherne Laboratory for Orthopaedic and Trauma Research, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Luke Leenen
- Department of Traumatology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
5
|
Alonso FH, Christopher MM, Paes PRO. The predominance and diagnostic value of neutrophils in differentiating transudates and exudates in dogs. Vet Clin Pathol 2021; 50:384-393. [PMID: 34337780 DOI: 10.1111/vcp.12987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/13/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND There is disagreement in the literature about the proportion of neutrophils expected in canine transudates. A cutoff of <30% neutrophils has been recommended for distinguishing transudates from exudates, but its validity has not been established. OBJECTIVE The aim of this study was to evaluate differential cell counts in canine effusions and analyze the percentage and number of neutrophils in transudates and exudates. METHODS Effusion data were obtained retrospectively from 263 dogs with pleural or peritoneal effusion. Low-protein transudates, high-protein transudates, and exudates were classified using the total protein (TP) concentration and total nucleated cell count (TNCC). Differential percentages and absolute neutrophil counts were compared by the effusion type and underlying etiology. RESULTS Low-protein transudates (n = 63), high-protein transudates (n = 84), and exudates (n = 77) had a median (range) of 35% (0%-100%), 59% (0%-100%), and 90% (50%-98%) neutrophils (P < .0001). All effusions with <50% neutrophils were transudates, but 53% of transudates had ≥50% neutrophils, and 69% had ≥30%. Median neutrophil counts were 62/µL (0-892/µL), 538/µL (0-4550/µL), and 45 590/µL (5400-496 800/µL) in low-protein transudates, high-protein transudates, and exudates, respectively (P < .0001). Neutrophil counts correlated with TNCC (r2 = 0.99), such that using neutrophil cutoffs did not affect effusion classifications in most cases. Neutrophil percentages and counts were higher in effusions from dogs with uroabdomen and sepsis (P < .01); neutrophil counts were lower in dogs with hepatic insufficiency (P < .0001). Uroabdomen usually caused low-protein, high-neutrophil exudates. CONCLUSIONS Although effusions with <50% neutrophils are transudates, most transudates and exudates have ≥50% neutrophils, limiting the diagnostic usefulness of % neutrophils for classifying effusions. Absolute neutrophil cutoffs did not notably improve effusion classification but could warrant future studies.
Collapse
Affiliation(s)
- Flavio H Alonso
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Veterinary Medical Teaching Hospital and Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Mary M Christopher
- Veterinary Medical Teaching Hospital and Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Paulo R O Paes
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
6
|
Shin HY, Fukuda S, Schmid-Schönbein GW. Fluid shear stress-mediated mechanotransduction in circulating leukocytes and its defect in microvascular dysfunction. J Biomech 2021; 120:110394. [PMID: 33784517 DOI: 10.1016/j.jbiomech.2021.110394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022]
Abstract
Leukocytes (neutrophils, monocytes) in the active circulation exhibit multiple phenotypic indicators for a low level of cellular activity, like lack of pseudopods and minimal amounts of activated, cell-adhesive integrins on their surfaces. In contrast, before these cells enter the circulation in the bone marrow or when they recross the endothelium into extravascular tissues of peripheral organs they are fully activated. We review here a multifaceted mechanism mediated by fluid shear stress that can serve to deactivate leukocytes in the circulation. The fluid shear stress controls pseudopod formation via the FPR receptor, the same receptor responsible for pseudopod projection by localized actin polymerization. The bioactivity of macromolecular factors in the blood plasma that interfere with receptor stimulation by fluid flow, such as proteolytic cleavage in the extracellular domain of the receptor or the membrane actions of cholesterol, leads to a defective ability to respond to fluid shear stress by actin depolymerization. The cell reaction to fluid shear involves CD18 integrins, nitric oxide, cGMP and Rho GTPases, is attenuated in the presence of inflammatory mediators and modified by glucocorticoids. The mechanism is abolished in disease models (genetic hypertension and hypercholesterolemia) leading to an increased number of activated leukocytes in the circulation with enhanced microvascular resistance and cell entrapment. In addition to their role in binding to biochemical agonists/antagonists, membrane receptors appear to play a second role: to monitor local fluid shear stress levels. The fluid shear stress control of many circulating cell types such as lymphocytes, stem cells, tumor cells remains to be elucidated.
Collapse
Affiliation(s)
- Hainsworth Y Shin
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, KY, United States; Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories Center for Devices and Radiological Health, The Food & Drive Administration, Silver Spring, MD, United States
| | - Shunichi Fukuda
- Department of Neurosurgery, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | | |
Collapse
|
7
|
Liu Y, Hu JN, Luo N, Zhao J, Liu SC, Ma T, Yao YM. The Essential Involvement of the Omentum in the Peritoneal Defensive Mechanisms During Intra-Abdominal Sepsis. Front Immunol 2021; 12:631609. [PMID: 33815381 PMCID: PMC8012523 DOI: 10.3389/fimmu.2021.631609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
Although the abilities of the omentum to alleviate inflammation and prevent infection have been revealed over the past decades, the underlying mechanisms remain largely unelucidated. Here, we demonstrated that the mortality of mice exposed to cecal ligation and puncture (CLP) and omentectomy was remarkably increased compared to those treated with CLP alone. Moreover, the efficacy of the omentum was associated with an impairment in intraperitoneal bacterial clearance together with an increase in the expression of proinflammatory cytokines. Besides, in response to peritoneal infections, the size and quantity of the omental milky spots (MSs) were increased tremendously and they also support innate-like B1 cell responses and local IgM production in the peritoneal cavity. Furthermore, not only the migration but also the functional activities of neutrophils were diminished in the absence of the omentum. These data collectively show that the omentum contributes more to peritoneal immune responses during septic peritonitis than has heretofore been recognized. Thus, harnessing the function of MS-containing omentum to increase its protective effectiveness may exert important biological and therapeutic implications for the control of intra-abdominal infections.
Collapse
Affiliation(s)
- Ying Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jian-Nan Hu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Ning Luo
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Zhao
- Department of Intensive Care Unit, Tianjin Medical University General Hospital, Tianjin, China
| | - Shu-Chang Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yong-Ming Yao
- Department of Microbiology and Immunology, Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Jarczak D, Kluge S, Nierhaus A. Use of Intravenous Immunoglobulins in Sepsis Therapy-A Clinical View. Int J Mol Sci 2020; 21:E5543. [PMID: 32756325 PMCID: PMC7432410 DOI: 10.3390/ijms21155543] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction, defined by a dysregulated host immune response to infection. During sepsis, the finely tuned system of immunity, inflammation and anti-inflammation is disturbed in a variety of ways. Both pro-inflammatory and anti-inflammatory pathways are upregulated, activation of the coagulation cascade and complement and sepsis-induced lymphopenia occur. Due to the manifold interactions in this network, the use of IgM-enriched intravenous immunoglobulins seems to be a promising therapeutic approach. Unfortunately, there is still a lack of evidence-based data to answer the important questions of appropriate patient populations, optimal timing and dosage of intravenous immunoglobulins. With this review, we aim to provide an overview of the role of immunoglobulins, with emphasis on IgM-enriched formulations, in the therapy of adult patients with sepsis and septic shock.
Collapse
Affiliation(s)
| | | | - Axel Nierhaus
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (D.J.); (S.K.)
| |
Collapse
|
9
|
Shirai A, Sugiyama Y, Rieu JP. Differentiation of neutrophil-like HL-60 cells strongly impacts their rolling on surfaces with various adhesive properties under a pressing force. Technol Health Care 2018; 26:93-108. [PMID: 29309044 DOI: 10.3233/thc-171052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND HL-60 cells have been used in in vitro experiments of neutrophils rolling. They lose uniform spherical appearance and enhance deformability by differentiation to neutrophil-like cells, which would affect their rolling characteristics. OBJECTIVE We investigate the influence of differentiation and coating of target substrate on the fundamental rolling characteristics of the cells under a constant pressing force which mimics the pressing force to the vessel wall by erythrocytes in vivo. METHODS Motions of undifferentiated and differentiated HL-60 cells on plain or MPC-polymer-coated flat glass substrate were compared using a homemade inclined centrifuge microscope system. RESULTS Most of the cells alternated between stop and go during the motion. The differentiation resulted in a high temporal ratio of the non-moving state and low mean velocity during the moving state, together with a high suppression performance of cell adhesion by the polymer. It was also suggested that the cells were mostly rolling but that the coating probably induced an infrequent slip on the substrate to stabilize the cells motion. CONCLUSIONS Differentiation strongly affects adhesivity of HL-60 cells but less affects the mean velocity. Our findings also demonstrate the importance of the pressing force and advantage of the present system with respect to classical flow chambers.
Collapse
Affiliation(s)
- Atsushi Shirai
- Institute of Fluid Science, Tohoku University, Sendai, Miyagi, Japan
| | - Yoshiro Sugiyama
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Jean-Paul Rieu
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France
| |
Collapse
|
10
|
Steffen S, Abraham S, Herbig M, Schmidt F, Blau K, Meisterfeld S, Beissert S, Guck J, Günther C. Toll-Like Receptor-Mediated Upregulation of CXCL16 in Psoriasis Orchestrates Neutrophil Activation. J Invest Dermatol 2018; 138:344-354. [DOI: 10.1016/j.jid.2017.08.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/10/2017] [Accepted: 08/27/2017] [Indexed: 12/27/2022]
|
11
|
Zheng X, Chen M, Meng X, Chu X, Cai C, Zou F. Phosphorylation of dynamin-related protein 1 at Ser616 regulates mitochondrial fission and is involved in mitochondrial calcium uniporter-mediated neutrophil polarization and chemotaxis. Mol Immunol 2017; 87:23-32. [DOI: 10.1016/j.molimm.2017.03.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/14/2017] [Accepted: 03/28/2017] [Indexed: 11/28/2022]
|
12
|
Silva-Filho SE, Wiirzler LAM, Cavalcante HAO, Uchida NS, de Souza Silva-Comar FM, Cardia GFE, da Silva EL, Aguiar RP, Bersani-Amado CA, Cuman RKN. Effect of patchouli (Pogostemon cablin) essential oil on in vitro and in vivo leukocytes behavior in acute inflammatory response. Biomed Pharmacother 2016; 84:1697-1704. [DOI: 10.1016/j.biopha.2016.10.084] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 01/08/2023] Open
|
13
|
α-Phellandrene, a cyclic monoterpene, attenuates inflammatory response through neutrophil migration inhibition and mast cell degranulation. Life Sci 2016; 160:27-33. [DOI: 10.1016/j.lfs.2016.07.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/27/2016] [Accepted: 07/18/2016] [Indexed: 11/17/2022]
|
14
|
Tavares N, Afonso L, Suarez M, Ampuero M, Prates DB, Araújo-Santos T, Barral-Netto M, DosReis GA, Borges VM, Brodskyn C. Degranulating Neutrophils Promote Leukotriene B4 Production by Infected Macrophages To Kill Leishmania amazonensis Parasites. THE JOURNAL OF IMMUNOLOGY 2016; 196:1865-73. [PMID: 26800873 DOI: 10.4049/jimmunol.1502224] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/17/2015] [Indexed: 11/19/2022]
Abstract
Neutrophils mediate early responses against pathogens, and they become activated during endothelial transmigration toward the inflammatory site. In the current study, human neutrophils were activated in vitro with immobilized extracellular matrix proteins, such as fibronectin (FN), collagen, and laminin. Neutrophil activation by FN, but not other extracellular matrix proteins, induces the release of the granules' contents, measured as matrix metalloproteinase 9 and neutrophil elastase activity in culture supernatant, as well as reactive oxygen species production. Upon contact with Leishmania amazonensis-infected macrophages, these FN-activated neutrophils reduce the parasite burden through a mechanism independent of cell contact. The release of granule proteases, such as myeloperoxidase, neutrophil elastase, and matrix metalloproteinase 9, activates macrophages through TLRs, leading to the production of inflammatory mediators, TNF-α and leukotriene B4 (LTB4), which are involved in parasite killing by infected macrophages. The pharmacological inhibition of degranulation reverted this effect, abolishing LTB4 and TNF production. Together, these results suggest that FN-driven degranulation of neutrophils induces the production of LTB4 and TNF by infected macrophages, leading to the control of Leishmania infection.
Collapse
Affiliation(s)
- Natália Tavares
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Lilian Afonso
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Martha Suarez
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil; Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Mariana Ampuero
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil; Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Deboraci Brito Prates
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil; Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Théo Araújo-Santos
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Manoel Barral-Netto
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil; Universidade Federal da Bahia, Salvador, Bahia, Brazil; Instituto de Investigação em Imunologia, São Paulo, Brazil
| | - George A DosReis
- Instituto de Biofísica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; and Instituto Nacional de Saúde e Ambiente na Região Amazônica, Rio de Janeiro, Brazil
| | - Valéria Matos Borges
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil; Universidade Federal da Bahia, Salvador, Bahia, Brazil;
| | - Cláudia Brodskyn
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil; Universidade Federal da Bahia, Salvador, Bahia, Brazil; Instituto de Investigação em Imunologia, São Paulo, Brazil;
| |
Collapse
|
15
|
L. Akenhead M, Y. Shin H. The Contribution of Cell Surface Components to the Neutrophil Mechanosensitivity to Shear Stresses. AIMS BIOPHYSICS 2015. [DOI: 10.3934/biophy.2015.3.318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
16
|
Isolation of healthy individuals' and rheumatoid arthritis patients' peripheral blood neutrophils by the gelatin and Ficoll-Hypaque methods: Comparative efficiency and impact on the neutrophil oxidative metabolism and Fcγ receptor expression. J Immunol Methods 2014; 412:70-7. [DOI: 10.1016/j.jim.2014.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 11/18/2022]
|
17
|
De Oliveira SN, Ryan C, Giannoni F, Hardee CL, Tremcinska I, Katebian B, Wherley J, Sahaghian A, Tu A, Grogan T, Elashoff D, Cooper LJN, Hollis RP, Kohn DB. Modification of hematopoietic stem/progenitor cells with CD19-specific chimeric antigen receptors as a novel approach for cancer immunotherapy. Hum Gene Ther 2014; 24:824-39. [PMID: 23978226 DOI: 10.1089/hum.2012.202] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chimeric antigen receptors (CARs) against CD19 have been shown to direct T-cells to specifically target B-lineage malignant cells in animal models and clinical trials, with efficient tumor cell lysis. However, in some cases, there has been insufficient persistence of effector cells, limiting clinical efficacy. We propose gene transfer to hematopoietic stem/progenitor cells (HSPC) as a novel approach to deliver the CD19-specific CAR, with potential for ensuring persistent production of effector cells of multiple lineages targeting B-lineage malignant cells. Assessments were performed using in vitro myeloid or natural killer (NK) cell differentiation of human HSPCs transduced with lentiviral vectors carrying first and second generations of CD19-specific CAR. Gene transfer did not impair hematopoietic differentiation and cell proliferation when transduced at 1-2 copies/cell. CAR-bearing myeloid and NK cells specifically lysed CD19-positive cells, with second-generation CAR including CD28 domains being more efficient in NK cells. Our results provide evidence for the feasibility and efficacy of the modification of HSPC with CAR as a strategy for generating multiple lineages of effector cells for immunotherapy against B-lineage malignancies to augment graft-versus-leukemia activity.
Collapse
Affiliation(s)
- Satiro Nakamura De Oliveira
- 1 Division of Hematology/Oncology, Department of Pediatrics, University of California-Los Angeles , Los Angeles, CA 90095
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Groeneveld KM, Hietbrink F, Hardcastle TC, Warren BL, Koenderman L, Leenen LPH. Penetrating thorax injury leads to mild systemic activation of neutrophils without inflammatory complications. Injury 2014; 45:522-7. [PMID: 24119496 DOI: 10.1016/j.injury.2013.09.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/16/2013] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Trauma is one of the major causes of morbidity and mortality. Thoracic injuries are associated with inflammatory complications such as ARDS. The pathogenesis of this complication after pulmonary injury is incompletely understood, but neutrophils are thought to play a pivotal role. The aim of this project was to gain more insight in the role of thoracic injuries in the pathophysiological processes that link systemic neutrophil activation with inflammatory complications after trauma. METHODS In this prospective cohort study fifty-five patients with isolated penetrating thoracic injury were included at a level one Trauma Unit. Blood samples were analysed for neutrophil phenotype with the use of flowcytometry within 3 h of trauma and repeated six and 24 h after injury. The presence of inflammatory complications (e.g. ARDS or sepsis/septic shock) was assessed during admission, and this was related to the neutrophil phenotpe. RESULTS The clinical follow-up of fifty-three patients was uneventful. Only two patients developed an inflammatory complication. Within 3 h after trauma, neutrophils showed a decreased expression of FcγRII (p=0.007) and FcγRIII (p=0.001) compared to healthy individuals. After 6 h, expression of active FcγRII (p=0.017), C5aR (p=0.004) and CAECAM8 (p=0.043) increased, whereas L-selectin (p=0.002) decreased. After 24 h also CXCR-2 (CD182) expression increased compared to healthy individuals (p=0.001). CONCLUSIONS Penetrating thoracic trauma leads to a distinct primed activation status of circulating neutrophils within hours. In addition to activation of cells, both young and reverse migrated neutrophils are released into the circulation. This degree of systemic inflammation does not exceed a threshold of inflammation that is needed for the development of inflammatory complications like ARDS.
Collapse
Affiliation(s)
| | | | - Timothy C Hardcastle
- Department of Surgery, Tygerberg Hospital, University of Stellenbosch, Cape Town, South Africa.
| | - Brian L Warren
- Department of Surgery, Tygerberg Hospital, University of Stellenbosch, Cape Town, South Africa.
| | - Leo Koenderman
- Department of Respiratory Medicine, UMC Utrecht, The Netherlands.
| | | |
Collapse
|
19
|
Involvement of neutrophils in thrombus formation in living mice. ACTA ACUST UNITED AC 2014; 62:1-9. [PMID: 24485849 DOI: 10.1016/j.patbio.2013.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 11/12/2013] [Indexed: 12/24/2022]
Abstract
Thrombosis is one of the major causes of human death worldwide. Identification of the cellular and molecular mechanisms leading to thrombus formation is thus crucial for the understanding of the thrombotic process. To examine thrombus formation in a living mouse, new technologies have been developed. Digital intravital microscopy allows to visualize the development of thrombosis and generation of fibrin in real-time within living animal in a physiological context. This specific system allowed the identification of new cellular partners involved in platelet adhesion and activation. Furthermore, it improved, especially, the knowledge of the early phase of thrombus formation and fibrin generation in vivo. Until now, platelets used to be considered the sole central player in thrombus generation. However, recently, it has been demonstrated that leukocytes, particularly neutrophils, play a crucial role in the activation of the blood coagulation cascade leading to thrombosis. In this review, we summarized the mechanisms leading to thrombus formation in the microcirculation according to the method of injury in mice with a special focus on the new identified roles of neutrophils in this process.
Collapse
|
20
|
Tomasdottir V, Vikingsson A, Freysdottir J, Hardardottir I. Dietary fish oil reduces the acute inflammatory response and enhances resolution of antigen-induced peritonitis. J Nutr Biochem 2013; 24:1758-65. [PMID: 23769761 DOI: 10.1016/j.jnutbio.2013.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/02/2013] [Accepted: 03/22/2013] [Indexed: 01/21/2023]
Abstract
Dietary n-3 polyunsaturated fatty acids (PUFA) influence the inductive phase of inflammation but less is known about their effects on the resolution phase. This study examined the effects of dietary fish oil on induction and resolution of antigen-induced inflammation in mice. Mice were fed a control diet with or without 2.8% fish oil, immunized twice with methylated BSA (mBSA) and inflammation induced by intraperitoneal injection of mBSA. Prior to and at different time points after mBSA administration, peritoneal cells were analyzed and expression of surface molecules determined by flow cytometry. Concentration of chemokines, cytokines and soluble cytokine receptors was determined by ELISA. Mice fed the fish oil diet had fewer peritoneal neutrophils, shorter resolution interval and lower levels of pro-inflammatory cytokines and chemokines than mice fed the control diet. In mice fed the fish oil diet there was an early peak in peritoneal levels of the immunosuppressive molecules sIL-6R and TGF-β, that was not seen in mice fed the control diet. In the resolution phase, peritoneal macrophages from mice fed the fish oil diet expressed more of the atypical chemokine receptor D6 and peritoneal TGF-β levels were higher than that in mice fed the control diet. Furthermore, in the late-resolution phase there were more peritoneal eosinophils and macrophages in mice fed the fish oil diet than in mice fed the control diet. These results demonstrate a suppressive effect of n-3 PUFA on the inductive phase of inflammation and indicate an enhancing effect of n-3 PUFA on resolution of inflammation.
Collapse
Affiliation(s)
- Valgerdur Tomasdottir
- Department of Biochemistry and Molecular Biology, Biomedical Center, University of Iceland, 101 Reykjavik, Iceland; Center of Rheumatology Research and Department of Immunology, Landspitali - The University Hospital of Iceland, Reykjavik, Iceland
| | | | | | | |
Collapse
|
21
|
Shankar-Hari M, Spencer J, Sewell WA, Rowan KM, Singer M. Bench-to-bedside review: Immunoglobulin therapy for sepsis - biological plausibility from a critical care perspective. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:206. [PMID: 22424150 PMCID: PMC3584720 DOI: 10.1186/cc10597] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sepsis represents a dysregulated host response to infection, the extent of which determines the severity of organ dysfunction and subsequent outcome. All trialled immunomodulatory strategies to date have resulted in either outright failure or inconsistent degrees of success. Intravenous immunoglobulin (IVIg) therapy falls into the latter category with opinion still divided as to its utility. This article provides a narrative review of the biological rationale for using IVIg in sepsis. A literature search was conducted using the PubMed database (1966 to February 2011). The strategy included the following text terms and combinations of these: IVIg, intravenous immune globulin, intravenous immunoglobulin, immunoglobulin, immunoglobulin therapy, pentaglobin, sepsis, inflammation, immune modulation, apoptosis. Preclinical and extrapolated clinical data of IVIg therapy in sepsis suggests improved bacterial clearance, inhibitory effects upon upstream mediators of the host response (for example, the nuclear factor kappa B (NF-κB) transcription factor), scavenging of downstream inflammatory mediators (for example, cytokines), direct anti-inflammatory effects mediated via Fcγ receptors, and a potential ability to attenuate lymphocyte apoptosis and thus sepsis-related immunosuppression. Characterizing the trajectory of change in immunoglobulin levels during sepsis, understanding mechanisms contributing to these changes, and undertaking IVIg dose-finding studies should be performed prior to further large-scale interventional trials to enhance the likelihood of a successful outcome.
Collapse
Affiliation(s)
- Manu Shankar-Hari
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK.
| | | | | | | | | |
Collapse
|
22
|
Padmanabhan J, Gonzalez AL. The effects of extracellular matrix proteins on neutrophil-endothelial interaction--a roadway to multiple therapeutic opportunities. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2012; 85:167-85. [PMID: 22737047 PMCID: PMC3375712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Polymorphoneuclear leukocytes or neutrophils, a major component of white blood cells, contribute to the innate immune response in humans. Upon sensing changes in the microenvironment, neutrophils adhere to the vascular wall, migrate through the endothelial cell (EC)-pericyte bilayer, and subsequently through the extracellular matrix to reach the site of inflammation. These cells are capable of destroying microbes, cell debris, and foreign proteins by oxidative and non-oxidative processes. While primarily mediators of tissue homeostasis, there are an increasing number of studies indicating that neutrophil recruitment and transmigration can also lead to host-tissue injury and subsequently inflammation-related diseases. Neutrophil-induced tissue injury is highly regulated by the microenvironment of the infiltrated tissue, which includes cytokines, chemokines, and the provisional extracellular matrix, remodeled through increased vascular permeability and other cellular infiltrates. Thus, investigation of the effects of matrix proteins on neutrophil-EC interaction and neutrophil transmigration may help identify the proteins that induce pro- or anti-inflammatory responses. This area of research presents an opportunity to identify therapeutic targets in inflammation-related diseases. This review will summarize recent literature on the role of neutrophils and the effects of matrix proteins on neutrophil-EC interactions, with focus on three different disease models: 1) atherosclerosis, 2) COPD, and 3) tumor growth and progression. For each disease model, inflammatory molecules released by neutrophils, important regulatory matrix proteins, current anti-inflammatory treatments, and the scope for further research will be summarized.
Collapse
Affiliation(s)
- Jagannath Padmanabhan
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut
| | - Anjelica L. Gonzalez
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, Connecticut
| |
Collapse
|
23
|
Role of cytokines in systemic lupus erythematosus: recent progress from GWAS and sequencing. J Biomed Biotechnol 2012; 2012:798924. [PMID: 22654485 PMCID: PMC3359833 DOI: 10.1155/2012/798924] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/24/2012] [Accepted: 02/24/2012] [Indexed: 12/27/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder, known to have a strong genetic component. Concordance between monozygotic twins is approximately 30-40%, which is 8-20 times higher than that of dizygotic twins. In the last decade, genome-wide approaches to understanding SLE have yielded many candidate genes, which are important to understanding the pathophysiology of the disease and potential targets for pharmaceutical intervention. In this paper, we focus on the role of cytokines and examine how genome-wide association studies, copy number variation studies, and next-generation sequencing are being employed to understand the etiology of SLE. Prominent genes identified by these approaches include BLK, FCγR3B, and TREX1. Our goal is to present a brief overview of genomic approaches to SLE and to introduce some of the key discussion points pertinent to the field.
Collapse
|
24
|
Li HM, Wang YY, Wang HD, Cao WJ, Yu XH, Lu DX, Qi RB, Hu CF, Yan YX. Berberine protects against lipopolysaccharide-induced intestinal injury in mice via alpha 2 adrenoceptor-independent mechanisms. Acta Pharmacol Sin 2011; 32:1364-72. [PMID: 21963898 PMCID: PMC4002724 DOI: 10.1038/aps.2011.102] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM To investigate the mechanisms responsible for the protective action of berberine (Ber) against gut damage in endotoxemic mice. METHODS Male BALB/c mice were administered intragastrically with distilled water (0.1 mL/10 g), Ber (50 mg/kg) alone, yohimbine (2 mg/kg) alone, or Ber (50 mg/kg) in combination with yohimbine (2 mg/kg) for 3 d. On the third day, lipopolysaccharide (LPS, 18 mg/kg) or normal saline was intraperitoneally injected one hour after the intragastric administration. Following the treatment, intestinal injury in the ileum was histopathologically accessed; enterocyte apoptosis was examined using TUNEL method; Toll-like receptor 4 (TLR4) mRNA expression was measured using RT-PCR assay; inhibitor protein-κBα (I-κBα) phosphorylation and myeloperoxidase content were examined using Western blloting. The macrophage inflammatory protein-2 (MIP-2) production was measured using ELISA assay. RESULTS Mice challenged with LPS caused extensive ileum injury, including a significantly increased injury score, decreased intestinal villus height, reduced gut mucosal weight and increased intestinal permeability. Furthermore, LPS significantly induced enterocyte apoptosis, increased TLR4 mRNA expression, I-κBα phosphorylation, MIP-2 production and myeloperoxidase content in the ileum. Pretreatment with Ber significantly alleviated all the alterations in the ileum in the endotoxemic mice. Pretreatment with the α2-adrenoceptor antagonist yohimbine did not block the protective action of Ber against LPS-induced intestinal injury. In addition, treatment with yohimbine alone did not prevent LPS-induced intestinal injury. CONCLUSION Pretreatment with Ber provides significant protection against LPS-induced intestinal injury in mice, via reducing enterocyte apoptosis, inhibiting the TLR4-nuclear factor κB-MIP-2 pathway and decreasing neutrophil infiltration that are independent of α2-adrenoceptors.
Collapse
Affiliation(s)
- Hong-mei Li
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Ji-nan University, Guangzhou 510632, China
| | - Yi-yang Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Ji-nan University, Guangzhou 510632, China
| | - Hua-dong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Ji-nan University, Guangzhou 510632, China
- Institute of Integrative Medicine, Ji-nan University, Guangzhou 510632, China
- E-mail
| | - Wen-juan Cao
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Ji-nan University, Guangzhou 510632, China
| | - Xiao-hui Yu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Ji-nan University, Guangzhou 510632, China
| | - Da-xiang Lu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Ji-nan University, Guangzhou 510632, China
- Institute of Integrative Medicine, Ji-nan University, Guangzhou 510632, China
| | - Ren-bin Qi
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Ji-nan University, Guangzhou 510632, China
- Institute of Integrative Medicine, Ji-nan University, Guangzhou 510632, China
| | - Chao-feng Hu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Ji-nan University, Guangzhou 510632, China
| | - Yu-xia Yan
- Department of Biochemistry, School of Medicine, Ji-nan University, Guangzhou 510632, China
| |
Collapse
|
25
|
El Sawy NAEH, Hamid MMA, El Sawy MM, Hussein NAMM. Complex regional pain syndromes: Clinical characteristics and pathophysiological factors. THE EGYPTIAN RHEUMATOLOGIST 2011; 33:121-129. [DOI: 10.1016/j.ejr.2011.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
26
|
Zhang X, Hurng J, Rateri DL, Daugherty A, Schmid-Schönbein GW, Shin HY. Membrane cholesterol modulates the fluid shear stress response of polymorphonuclear leukocytes via its effects on membrane fluidity. Am J Physiol Cell Physiol 2011; 301:C451-60. [PMID: 21525434 DOI: 10.1152/ajpcell.00458.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Continuous exposure of polymorphonuclear leukocytes (PMNLs) to circulatory hemodynamics points to fluid flow as a biophysical regulator of their activity. Specifically, fluid flow-derived shear stresses deactivate leukocytes via actions on the conformational activities of proteins on the cell surface. Because membrane properties affect activities of membrane-bound proteins, we hypothesized that changes in the physical properties of cell membranes influence PMNL sensitivity to fluid shear stress. For this purpose, we modified PMNL membranes and showed that the cellular mechanosensitivity to shear was impaired whether we increased, reduced, or disrupted the organization of cholesterol within the lipid bilayer. Notably, PMNLs with enriched membrane cholesterol exhibited attenuated pseudopod retraction responses to shear that were recovered by select concentrations of benzyl alcohol (a membrane fluidizer). In fact, PMNL responses to shear positively correlated (R(2) = 0.96; P < 0.0001) with cholesterol-related membrane fluidity. Moreover, in low-density lipoprotein receptor-deficient (LDLr(-/-)) mice fed a high-fat diet (a hypercholesterolemia model), PMNL shear-responses correlated (R(2) = 0.5; P < 0.01) with blood concentrations of unesterified (i.e., free) cholesterol. In this regard, the shear-responses of PMNLs gradually diminished and eventually reversed as free cholesterol levels in blood increased during 8 wk of the high-fat diet. Collectively, our results provided evidence that cholesterol is an important component of the PMNL mechanotransducing capacity and elevated membrane cholesterol impairs PMNL shear-responses at least partially through its impact on membrane fluidity. This cholesterol-linked perturbation may contribute to dysregulated PMNL activity (e.g., chronic inflammation) related to hypercholesterolemia and causal for cardiovascular pathologies (e.g., atherosclerosis).
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Center for Biomedical Engineering, University of Kentucky, Lexington, KY 40506-0070, USA
| | | | | | | | | | | |
Collapse
|
27
|
Malam Z, Parodo J, Waheed F, Szaszi K, Kapus A, Marshall JC. Pre-B cell colony-enhancing factor (PBEF/Nampt/visfatin) primes neutrophils for augmented respiratory burst activity through partial assembly of the NADPH oxidase. THE JOURNAL OF IMMUNOLOGY 2011; 186:6474-84. [PMID: 21518975 DOI: 10.4049/jimmunol.1003706] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pre-B cell colony-enhancing factor ([PBEF] also known as Nampt/visfatin) is a pleiotropic 52-kDa cytokine-like molecule whose activity has been implicated in multiple inflammatory disease states. PBEF promotes polymorphonuclear neutrophil (PMN) proinflammatory function by inhibiting constitutive PMN apoptosis. We investigated whether PBEF activates or primes for PMN respiratory burst. We found that although PBEF did not activate respiratory burst on its own, it primed for increased reactive oxygen species generation through the NADPH oxidase. PBEF promoted membrane translocation of cytosolic NADPH oxidase subunits p40 and p47, but not p67, induced p40 phosphorylation on Thr(154), and activated the small GTPase Rac. Priming, translocation, and phosphorylation were dependent on activation of p38 and ERK MAPKs, but not of PI3K. Priming by PBEF occurred independent of its NAD-generating capacity because neither nicotinamide mononucleotide or NAD could recapitulate the effects, and a specific inhibitor of PBEF, APO-866, could not inhibit priming. Taken together, these results demonstrate that PBEF can prime for PMN respiratory burst activity by promoting p40 and p47 translocation to the membrane, and this occurs in a MAPK-dependent fashion.
Collapse
Affiliation(s)
- Zeenat Malam
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Apheresis of activated leukocytes with an immobilized polymyxin B filter in patients with septic shock. Shock 2011; 34:461-6. [PMID: 20386499 DOI: 10.1097/shk.0b013e3181e14ca0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this study, we examined the effects of direct hemoperfusion through filters with immobilized polymyxin B (PMX-DHP) on leukocyte function and plasma levels of cytokines in patients with septic shock. We found that PMX-DHP caused increased expression of C-X-C chemokine receptor 1 (CXCR1) and CXCR2, along with decreased expression of CD64 and CD11b, by circulating neutrophils in patients with septic shock. Plasma levels of cytokines, including interleukin 6 (IL-6), IL-8, IL-10, and high-mobility group box 1, were elevated in patients with septic shock compared with healthy controls, but cytokine levels were not altered by PMX-DHP. These results suggest that PMX-DHP influences neutrophils via a mechanism that does not involve cytokine. Ex vivo perfusion of heparinized blood from patients with sepsis and septic shock through PMX filters in a laboratory circuit caused a significant decrease in neutrophil and monocyte counts. After 120 min of perfusion, neutrophils, monocytes, and lymphocytes were decreased by 78%, 70%, and 10%, respectively, compared with baseline values. Flow cytometric analysis indicated that activated neutrophils with high levels of CD11b/CD64 expression and low levels of CXCR1/CXCR2 expression showed preferential adhesion to PMX filters. Neutrophils isolated from the blood after ex vivo PMX perfusion caused less damage to an endothelial cell monolayer than cells from sham-treated blood, whereas neutrophil phagocytosis of opsonized Escherichia coli was unaffected. These results indicate that PMX-DHP selectively removes activated neutrophils and reduces the ability of circulating cells to cause endothelial damage. Selective removal of activated neutrophils using PMX-DHP may improve the systemic inflammatory response in patients with septic shock.
Collapse
|
29
|
Zhao Y, Sharma AK, LaPar DJ, Kron IL, Ailawadi G, Liu Y, Jones DR, Laubach VE, Lau CL. Depletion of tissue plasminogen activator attenuates lung ischemia-reperfusion injury via inhibition of neutrophil extravasation. Am J Physiol Lung Cell Mol Physiol 2011; 300:L718-29. [PMID: 21378024 DOI: 10.1152/ajplung.00227.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ischemia-reperfusion (IR) injury following lung transplantation remains a major source of early morbidity and mortality. Histologically, this inflammatory process is characterized by neutrophil infiltration and activation. We previously reported that lung IR injury was significantly attenuated in plasminogen activator inhibitor-1-deficient mice. In this study, we explored the potential role of tissue plasminogen activator (tPA) in a mouse lung IR injury model. As a result, tPA knockout (KO) mice were significantly protected from lung IR injury through several mechanisms. At the cellular level, tPA KO specifically blocked neutrophil extravasation into the interstitium, and abundant homotypic neutrophil aggregation (HNA) was detected in the lung microvasculature of tPA KO mice after IR. At the molecular level, inhibition of neutrophil extravasation was associated with reduced expression of platelet endothelial cell adhesion molecule-1 mediated through the tPA/ LDL receptor-related protein/NF-κB signaling pathway, whereas increased P-selectin triggered HNA. At the functional level, tPA KO mice incurred significantly decreased vascular permeability and improved lung function following IR. Protection from lung IR injury in tPA KO mice occurs through a fibrinolysis-independent mechanism. These results suggest that tPA could serve as an important therapeutic target for the prevention and treatment of acute IR injury after lung transplantation.
Collapse
Affiliation(s)
- Yunge Zhao
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Phagocytosis and digestion of pH-sensitive fluorescent dye (Eos-FP) transfected E. coli in whole blood assays from patients with severe sepsis and septic shock. J Cell Commun Signal 2011; 5:135-44. [PMID: 21484193 PMCID: PMC3088796 DOI: 10.1007/s12079-010-0112-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Accepted: 12/04/2010] [Indexed: 01/28/2023] Open
Abstract
The function of phagocytic and antigen presenting cells is of crucial importance to sustain immune competence against infectious agents as well as malignancies. We here describe a reproducible procedure for the quantification of phagocytosis by leukocytes in whole blood. For this, a pH-sensitive green-fluorescent protein- (GFP) like dye (Eos-FP) is transfected into infectious microroganisms. After UV-irradiation, the transfected bacteria emit green (≈5160 nm) and red (≈581 nm) fluorescent light at 490 nm excitation. Since the red fluorescent light is sensitive to acidic pH, the phagocytosed bacteria stop emitting red fluorescent light as soon as the phagosomes fuse with lysosomes. The green fluorescence is maintained in the phagolysosome until pathogen degradation is completed. Fluorescence emission can be followed by flow cytometry with filter settings documenting fluorescence 1 (FL 1, FITC) and fluorescence 2 (FL 2, phycoerythrin, PE). Eos-FP transfected bacteria can also be traced within phagocytes using microscopical techniques. A standardized assay has been developed which is suitable for clinical studies by providing clinicians with syringes pre-filled with fixed and appropriately UV-irradiated Eos-FP E. coli (TruCulture™). After adding blood or body fluids to these containers and starting the incubation at 37°C, phagocytosis by granulocytes proceeds over time. Cultures can be terminated at a given time by lysing red blood cells followed by flow cytometry. A pilot study demonstrated that Eos-FP E. coli phagocytosis and digestion was up-regulated in the majority of patients with either severe sepsis or septic shock as compared to healthy donors (p < 0.0001 after o/n incubation). Following treatment with recombinant human granulocyte colony-stimulating factor (rhG-CSF) in selected patients with sepsis, phagolysosome fusion appeared to be accelerated.
Collapse
|
31
|
|
32
|
Immunosuppression following surgical and traumatic injury. Surg Today 2010; 40:793-808. [PMID: 20740341 PMCID: PMC7101797 DOI: 10.1007/s00595-010-4323-z] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 03/01/2010] [Indexed: 02/08/2023]
Abstract
Severe sepsis and organ failure are still the major causes of postoperative morbidity and mortality after major hepatobiliary pancreatic surgery. Despite recent progress in understanding the immune conditions of abdominal sepsis, the postoperative incidence of septic complications after major visceral surgery remains high. This review focuses on the clinical and immunological parameters that determine the risk of the development and lethal outcome of postoperative septic complication following major surgery and trauma. A review of the literature indicates that surgical and traumatic injury profoundly affects the innate and adaptive immune responses, and that a marked suppression in cell-mediated immunity following an excessive inflammatory response appears to be responsible for the increased susceptibility to subsequent sepsis. The innate and adaptive immune responses are initiated and modulated by pathogen-associated molecular-pattern molecules and by damage-associated molecular-pattern molecules through the pattern-recognition receptors. Suppression of cell-mediated immunity may be caused by multifaceted cytokine/inhibitor profiles in the circulation and other compartments of the host, excessive activation and dysregulated recruitment of polymorphonuclear neutrophils, induction of alternatively activated or regulatory macrophages that have anti-inflammatory properties, a shift in the T-helper (Th)1/Th2 balance toward Th2, appearance of regulatory T cells, which are potent suppressors of the innate and adaptive immune system, and lymphocyte apoptosis in patients with sepsis. Recent basic and clinical studies have elucidated the functional effects of surgical and traumatic injury on the immune system. The research studies of interest may in future aid in the selection of appropriate therapeutic protocols.
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Severely injured children have a decreased incidence and different pattern of multiple organ failure when compared with adults. This article reviews recent advances in understanding the mechanisms leading to this discrepancy. RECENT FINDINGS Post injury, inflammation-related outcomes are age-related, as demonstrated by epidemiological and laboratory investigations that confirm a relative protection from acute lung injury and multiple organ failure in children. The importance of the innate immune system in initiating and regulating the inflammatory response to injury is also increasingly well understood, but relatively little research has focused on the implications of a maturing innate immune system for the inflammatory response to injury in children. The development of age-appropriate immunomodulatory interventions for the prevention and treatment of postinjury inflammatory dysregulation depends on continued investigation of mechanisms responsible for the unique pediatric inflammatory response to trauma. SUMMARY The inflammatory response to injury in children is functionally and mechanistically unique, as suggested by age-related differences in the incidence and pattern of systemic inflammation and multiple organ failure after major trauma. We review the current clinical and basic science literature related to postinjury inflammation in childhood, focusing on the developmental biology of innate immunity and the implications of a maturing immune system for trauma-related interventions and outcomes.
Collapse
|
34
|
Liz R, Vigil SVG, Goulart S, Izabel M, Moritz G, Schenkel EP, Fröde TS. The anti-inflammatory modulatory role of Solidago chilensis Meyen in the murine model of the air pouch. J Pharm Pharmacol 2010; 60:515-21. [DOI: 10.1211/jpp.60.4.0015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
The aim of this study was to investigate the anti-inflammatory efficacy of an aqueous extract (AE), and its butanolic (BuOH) and aqueous residual (AR) fractions, derived from the rhizome of Solidago chilensis in inflammation caused by carrageenan in mice. Solidago chilensis Meyen rhizome was extracted using hot water at 90°C under infusion. The extract was filtered and lyophilized. Part of the aqueous extract was fractionated with n-BuOH, resulting in butanolic (BuOH) and aqueous residual (AR) fractions. Adult Swiss mice were used in the in-vivo experiments. We evaluated the effect of rhizome aqueous extract of Solidago chilensis and these two derived fractions on the inflammation induced by carrageenan in the mouse model of the air pouch. The aqueous extract and its derived fractions significantly inhibited leucocytes, neutrophils, exudation, myeloperoxidase and adenosine deaminase activity, as well as nitric oxide, interleukin-1 beta (IL-1β), neutrophil chemokine (KC) and tumour necrosis factor-alpha (TNF-α) levels (P < 0.05). Indometacin and dexamethasone inhibited all the studied inflammatory parameters (P < 0.01) with the exceptions that indometacin did not inhibit TNF-α levels and dexamethasone did not inhibit KC levels (P > 0.05). These results indicate that Solidago chilensis has a significant anti-inflammatory action on acute inflammatory responses and that its inhibitory activity may be due not only to the inhibition of pro-inflammatory mediators, but also to the inhibition of leucocyte infiltration.
Collapse
Affiliation(s)
- Rafael Liz
- Department of Clinical Analysis, Centre of Health Sciences, Federal University of Santa Catarina, Campus Universitário-Trindade, 88040-970, Florianópolis, SC, Brazil
| | - Silvana Virginia Gagliotti Vigil
- Department of Clinical Analysis, Centre of Health Sciences, Federal University of Santa Catarina, Campus Universitário-Trindade, 88040-970, Florianópolis, SC, Brazil
| | - Stella Goulart
- Department of Clinical Analysis, Centre of Health Sciences, Federal University of Santa Catarina, Campus Universitário-Trindade, 88040-970, Florianópolis, SC, Brazil
| | - Maria Izabel
- Department of Pharmaceutical Science, Centre of Health Sciences, Federal University of Santa Catarina, Campus Universitário-Trindade, 88040-970, Florianópolis, SC, Brazil
| | - Goularte Moritz
- Department of Pharmaceutical Science, Centre of Health Sciences, Federal University of Santa Catarina, Campus Universitário-Trindade, 88040-970, Florianópolis, SC, Brazil
| | - Eloir Paulo Schenkel
- Department of Pharmaceutical Science, Centre of Health Sciences, Federal University of Santa Catarina, Campus Universitário-Trindade, 88040-970, Florianópolis, SC, Brazil
| | - Tânia Silvia Fröde
- Department of Clinical Analysis, Centre of Health Sciences, Federal University of Santa Catarina, Campus Universitário-Trindade, 88040-970, Florianópolis, SC, Brazil
| |
Collapse
|
35
|
Ramos MV, Oliveira JS, Figueiredo JG, Figueiredo IST, Kumar VL, Bitencourt FS, Cunha FQ, Oliveira RSB, Bomfim LR, Vitor Lima-Filho J, Alencar NMN. Involvement of NO in the inhibitory effect of Calotropis procera latex protein fractions on leukocyte rolling, adhesion and infiltration in rat peritonitis model. JOURNAL OF ETHNOPHARMACOLOGY 2009; 125:387-392. [PMID: 19647058 DOI: 10.1016/j.jep.2009.07.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/26/2009] [Accepted: 07/22/2009] [Indexed: 05/28/2023]
Abstract
AIM OF THE STUDY The latex of Calotropis procera has been used in the traditional medicinal system for the treatment of leprosy, ulcers, tumors, piles and diseases of liver, spleen, abdomen and toothache. It comprises of a non-dialyzable protein fraction (LP) that exhibits anti-inflammatory properties and a dialyzable fraction (DF) exhibiting pro-inflammatory properties. The present study was carried out to evaluate the effect of LP sub-fractions on neutrophil functions and nociception in rodent models and to elucidate the mediatory role of nitric oxide (NO). MATERIAL AND METHODS The LP was subjected to ion exchange chromatography and the effect of its three sub-fractions (LP(PI), LP(PII) and LP(PIII)) thus obtained was evaluated on leukocyte functions in the rat peritonitis model and on nociception in the mouse model. RESULTS LP sub-fractions exhibit distinct protein profile and produce a significant decrease in the carrageenan and DF induced neutrophil influx and exhibit anti-nociceptive property. The LP and its sub-fractions produced a marked reduction in the number of rolling and adherent leukocytes in the mesenteric microvasculature as revealed by intravital microscopy. The anti-inflammatory effect of LP(PI), the most potent anti-inflammatory fraction of LP, was accompanied by an increase in the serum levels of NO. Further, our study shows that NO is also involved in the inhibitory effect of LP(PI) on neutrophil influx. CONCLUSIONS Our study shows that LP fraction of Calotropis procera comprises of three distinct sets of proteins exhibiting anti-inflammatory and anti-nociceptive properties of which LP(PI) was most potent in inhibiting neutrophil functions and its effects are mediated through NO production.
Collapse
Affiliation(s)
- Márcio V Ramos
- Departamento de Bioquímica de Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Cx. Postal 6033, Fortaleza-Ce Brasil, CEP 60451-970, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tomazella GG, da Silva I, Laure HJ, Rosa JC, Chammas R, Wiker HG, de Souza GA, Greene LJ. Proteomic analysis of total cellular proteins of human neutrophils. Proteome Sci 2009; 7:32. [PMID: 19719850 PMCID: PMC3224919 DOI: 10.1186/1477-5956-7-32] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 08/31/2009] [Indexed: 01/12/2023] Open
Abstract
Background Neutrophils are the most abundant leukocytes in peripheral blood and represent one of the most important elements of innate immunity. Recent subcellular proteomic studies have focused on the identification of human neutrophil proteins in various subcellular membrane and granular fractions. Although there are relatively few studies dealing with the analysis of the total extract of human neutrophils, many biological problems such as the role of chemokines, adhesion molecules, and other activating inputs involved in neutrophil responses and signaling can be approached on the basis of the identification of the total cellular proteins. Results Using gel-LC-MS/MS, 251 total cellular proteins were identified from resting human neutrophils. This is more than ten times the number of proteins identified by an initial proteome analysis of human neutrophils and almost five times the number of proteins identified by the first 2-DE map of extracts of rat polymorphonuclear leukocytes. Most of the proteins identified in the present study are well-known, but some of them, such as neutrophil-secreted proteins and centaurin beta-1, a cytoplasmic protein involved in the regulation of NF-κB activity, are described here for the first-time. Conclusion The present report provides new information about the protein content of human neutrophils. Importantly, our study resulted in the discovery of a series of proteins not previously reported to be associated with human neutrophils. These data are relevant to the investigation of comparative pathological states and models for novel classes of pharmaceutical drugs that could be useful in the treatment of inflammatory disorders in which neutrophils participate.
Collapse
Affiliation(s)
- Gisele G Tomazella
- Centro de Química de Proteínas, Universidade de São Paulo, Ribeirão Preto, Brasil.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hoffmann JJ. Neutrophil CD64: a diagnostic marker for infection and sepsis. Clin Chem Lab Med 2009; 47:903-16. [DOI: 10.1515/cclm.2009.224] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Abstract
Neutrophils are key effectors of the innate immune response. Reduction of neutrophil migration to infection sites is associated with a poor outcome in sepsis. We have demonstrated a failure of neutrophil migration in lethal sepsis. Together with this failure, we observed more bacteria in both peritoneal exudates and blood, followed by a reduction in survival rate. Furthermore, neutrophils obtained from severe septic patients displayed a marked reduction in chemotactic response compared with neutrophils from healthy subjects. The mechanisms of neutrophil migration failure are not completely understood. However, it is known that they involve systemic Toll-like receptor activation by bacteria and/or their products and result in excessive levels of circulating cytokines/chemokines. These mediators acting together with LPS stimulate expression of iNOS that produces high amounts of NO, which in turn mediates the failure of neutrophil migration. NO reduced expression of CXCR2 on neutrophils and the levels of adhesion molecules on both endothelial cells and neutrophils. These events culminate in decreased endothelium-leukocyte interactions, diminished neutrophil chemotactic response, and neutrophil migration failure. Additionally, the NO effect, at least in part, is mediated by peroxynitrite. In this review, we summarize what is known regarding the mechanisms of neutrophil migration impairment in severe sepsis.
Collapse
|
39
|
Rahman FZ, Marks DJB, Hayee BH, Smith AM, Bloom SL, Segal AW. Phagocyte dysfunction and inflammatory bowel disease. Inflamm Bowel Dis 2008; 14:1443-52. [PMID: 18421761 DOI: 10.1002/ibd.20449] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inflammatory bowel diseases are common chronic inflammatory disorders. The majority are idiopathic and can be broadly divided into Crohn's disease and ulcerative colitis. Their cause is unknown, but most hypotheses focus on a primary role for T-cell dysfunction. Conversely, there is a collection of congenital disorders of phagocyte function that result not only in immunodeficiency but also in noninfectious inflammatory bowel disease. In all cases, the latter is strikingly reminiscent of the clinical and pathological features of Crohn's disease. This coincides with recent work demonstrating that despite previous emphasis on adaptive immune dysfunction, patients with Crohn's disease actually possess an unusually weak acute innate inflammatory response. This review consolidates the literature on inflammatory bowel disease in congenital immunodeficiencies and considers the role of phagocyte dysfunction in Crohn's disease. Concepts about pathogenesis and treatment that can be carried across these disorders are also discussed.
Collapse
Affiliation(s)
- Farooq Z Rahman
- Department of Medicine, University College London, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
40
|
Impact of neutrophil apoptosis on haemostatic activation in chronic liver disease patients. Blood Coagul Fibrinolysis 2008; 19:535-42. [PMID: 18685437 DOI: 10.1097/mbc.0b013e3283079e15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent studies suggest the impact of apoptosis on the mechanisms leading to hypercoagulability. We aimed to clarify the potential role of neutrophil apoptosis in neutropenia and hypercoagulable state encountered in chronic liver disease patients. This study was conducted on 15 normal controls and 45 patients with chronic liver disease classified according to modified Child Pugh classification into, Child A, B and C groups (15 cases each). Haemostatic parameters studied include, prothrombin time, partial thromboplastin time, tissue factor, protein C antigen, protein S antigen, and markers of haemostatic activation [prothrombin fragment 1+2 (F1+2), thrombus precursor protein (TpP) and D-dimer]. Flowcytometric study was done for quantitative assay of neutrophil apoptotic subpopulations to detect the percentage of early and late apoptotic, and necrotic neutrophils using Annexin V-FITC/propidium iodide dye. Semiquantitative assay of apoptotic neutrophils showing DNA fragmentation was performed on neutrophil culture using terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate nick end labelling test. In addition to enzyme-linked immunosorbent assay for soluble Fas (APO-1/CD95) in culture supernatant. The results revealed a rise in the neutrophil apoptotic and necrotic markers with progression of the disease, and they were inversely correlated with the absolute neutrophil count. The apoptotic neutrophil cells showed a significant positive correlation with several haemostatic parameters (tissue factor, prothrombin fragment 1+2, thrombus precursor protein and D-dimer). Regression analysis proved that apoptotic parameters are independent determinants of prothrombotic markers, which further incriminate the apoptotic mechanisms in the hypercoagulable state encountered in this clinical setting.
Collapse
|
41
|
Abstract
Chemotaxis allows polymorphonuclear neutrophils (PMN) to rapidly reach infected and inflamed sites. However, excessive influx of PMN damages host tissues. Better knowledge of the mechanisms that control PMN chemotaxis may lead to improved treatments of inflammatory diseases. Recent findings suggest that ATP and adenosine are involved in PMN chemotaxis. Therefore, these purinergic signaling processes may be suitable targets for novel therapeutic approaches to ameliorate host tissue damage.
Collapse
Affiliation(s)
- W G Junger
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, East Stoneman 8M 10C, Boston, Massachusetts 02215, USA.
| |
Collapse
|
42
|
Trittibach P, Barker SE, Broderick CA, Natkunarajah M, Duran Y, Robbie SJ, Bainbridge JWB, Smith AJ, Sarra GM, Dick AD, Ali RR. Lentiviral-vector-mediated expression of murine IL-1 receptor antagonist or IL-10 reduces the severity of endotoxin-induced uveitis. Gene Ther 2008; 15:1478-88. [PMID: 18580969 DOI: 10.1038/gt.2008.109] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Uveitis is a sight threatening inflammatory disorder that remains a significant cause of visual loss. We investigated lentiviral gene delivery of interleukin 1 receptor antagonist (IL-1ra) or interleukin (IL)-10 to ameliorate murine endotoxin-induced uveitis (EIU). An human immunodeficiency virus-1-based vector containing the mIL-1ra or mIL-10 cDNA demonstrated high expression of biologically active cytokine. Following administration of Lenti.GFP into the anterior chamber, transgene expression was observed in corneal endothelial cells, trabecular meshwork and iris cells. To treat EIU, mice were injected with Lenti.IL-1ra, Lenti.IL-10 or a combination of these. EIU was induced 14 days after vector administration and mice were culled 12 h following disease induction. Lenti.IL-1ra or Lenti.IL-10-treated eyes showed significantly lower mean inflammatory cell counts in the anterior and posterior chambers compared with controls. The aqueous total protein content was also significantly lower in treated eyes, demonstrating better preservation of the blood-ocular barrier. Furthermore, the treated eyes showed less in vivo fluorescein leakage from inner retinal vessels compared with controls. The combination of both IL-1ra and IL-10 had no additive effect. Thus, lentiviral gene delivery of IL-1ra or IL-10 significantly reduces the severity of experimental uveitis, suggesting that lentiviral-mediated expression of immunomodulatory genes in the anterior chamber offers an opportunity to treat uveitis.
Collapse
Affiliation(s)
- P Trittibach
- Division of Molecular Therapy, Institute of Ophthalmology, University College London, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
The systemic inflammatory response syndrome induces functional changes and relative hyporesponsiveness in neutrophils. J Crit Care 2008; 23:542-9. [PMID: 19056020 DOI: 10.1016/j.jcrc.2007.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 08/28/2007] [Accepted: 09/24/2007] [Indexed: 11/24/2022]
Abstract
PURPOSE To study the effects of systemic inflammatory response syndrome (SIRS) on polymorhonuclear neutrophil (PMN) function and phenotype by comparing neutrophils from critically ill patients with SIRS against those from healthy blood donors. MATERIAL AND METHODS Intensive care unit patients (n = 110) who met at least one SIRS criterion were recruited to the study. One hundred healthy blood donors were recruited as normal controls. RESULTS Polymorphonuclear cells from critically ill patients with SIRS were more resistant to activation than PMNs from healthy donors, but when stimulated had an exaggerated microbicidal response. Buffer-treated PMNs from patients with SIRS had significantly higher CD43 surface expression that may inhibit heterotypic cellular contact or ligand stimulation of membrane receptors, had significantly lower expression of IgG receptor CD16, demonstrated resistance to shedding of L-selectin when primed by platelet-activating factor which could be pro-inflammatory, and had reduced respiratory burst when primed by platelet-activating factor than activated by formyl-Met-Leu-Phe. CONCLUSION The phenotypic and functional changes observed in neutrophils in the critically ill indicate that they require a higher level of stimulus to become activated. This may represent an auto-protective mechanism where the neutrophils in the already inflamed host may, by this mechanism, avoid excessive inflammation reducing the risk of further host cell injury and death.
Collapse
|
44
|
Nossaman BD. Transfusion-Related Acute Lung Injury (TRALI): Report of 2 Cases and a Review of The Literature. Ochsner J 2008; 8:32-38. [PMID: 21603554 PMCID: PMC3096419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023] Open
Abstract
Transfusion of allogeneic blood products is given for correction of coagulation deficits and for the improvement in oxygen-carrying capacity or delivery. Blood transfusion has become safer following the advancement in blood testing using state-of-the-art viral assays; however, there continues to exist a variety of noninfectious transfusion risks that still remain and that cannot be entirely eliminated. Research is now directed towards understanding these lesser-known, but serious transfusion-related complications. This purpose of this review is to discuss a serious noninfectious cause of acute lung injury, transfusion-related acute lung injury (TRALI), which occurred in 2 recent cases in the intensive care unit, and to review the current literature of this syndrome.
Collapse
Affiliation(s)
- Bobby D. Nossaman
- Department of Anesthesiology, Ochsner Clinic Foundation, New Orleans, LA
| |
Collapse
|
45
|
Hallevi H, Hazan-Halevy I, Paran E. Modification of neutrophil adhesion to human endothelial cell line in acute ischemic stroke by dipyridamole and candesartan. Eur J Neurol 2007; 14:1002-7. [PMID: 17718692 DOI: 10.1111/j.1468-1331.2007.01847.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ischemic stroke is a leading cause of disability. Inflammation of the vessel wall following neutrophil adhesion to vascular endothelium may contribute to ischemic damage. We studied the effect of a platelet inhibitor and an angiotensin II receptor antagonist: alone or in combination, on the adhesion of neutrophils to endothelial cell line in stroke patients. Neutrophils were collected from 12 patients with ischemic stroke within 48 h. Six patients with previous stroke and six healthy volunteers served as control. Neutrophils were incubated with dipyridamole, candesartan or both and allowed to adhere to human endothelial cell line (ECV-304). Adhesion and expression of adhesion molecules (AM) were determined using fluorescence-activated cell-sorting (FACS). Dipyridamole and the combination of dipyridamole and candesartan inhibited significantly the adhesion of neutrophils from ischemic stroke patients as compared to controls with a prominent additive effect. No inhibition was seen in the control groups. These drugs also reduced significantly the expression of the AM Mac-1. Both candesartan and dipyridamole inhibited the adhesion of neutrophils to vascular endothelium in ischemic stroke patients but not in chronic stroke patients or healthy persons. This effect may be related to specific downregulation of Mac-1 by these drugs or other intracellular events.
Collapse
Affiliation(s)
- H Hallevi
- Department of Neurology, Soroka University Hopsital, Beer-Sheva, Israel.
| | | | | |
Collapse
|
46
|
Leaphart CL, Tepas JJ. The gut is a motor of organ system dysfunction. Surgery 2007; 141:563-9. [PMID: 17462455 DOI: 10.1016/j.surg.2007.01.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 01/25/2007] [Accepted: 01/27/2007] [Indexed: 12/12/2022]
Affiliation(s)
- Cynthia L Leaphart
- Department of Surgery, University of Florida College of Medicine, Jacksonville, FL, USA
| | | |
Collapse
|
47
|
Hietbrink F, Oudijk EJ, Braams R, Koenderman L, Leenen L. Aberrant regulation of polymorphonuclear phagocyte responsiveness in multitrauma patients. Shock 2007; 26:558-64. [PMID: 17117129 DOI: 10.1097/01.shk.0000233196.40989.78] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A systemic inflammatory response often follows severe trauma. Priming (preactivation) of polymorphonuclear phagocytes (PMNs) is an essential first step in the processes that lead to damage caused by the systemic activation of innate immune response. Until recently, priming could only accurately be measured by functional assays, which require isolation of cells, thereby potentially inducing artificial activation. The aim of this study was to identify primed PMNs in response to trauma by using a whole blood analysis with a broad detection range. Twenty-two trauma patients were analyzed for PMN priming with novel developed antibodies recognizing priming epitopes by flow cytometric analysis. Expression of priming epitopes on PMNs was analyzed with respect to time, injury, and disease severity. Expression of priming epitopes in the circulation was compared with expression profiles of PMNs obtained from lung fluid. Fourteen healthy volunteers served as controls. Expression of priming epitopes on peripheral blood PMNs of injured patients was similar, as found in healthy controls, whereas highly primed cells were found in the lung fluid of injured patients (increase of >50 times as compared with peripheral blood cells). In fact, the responsiveness of PMNs toward the bacteria-derived stimulus N-formyl-methionyl-leucyl-phenylalanine was markedly decreased in trauma patients. Lack of expression of priming epitopes and the unresponsiveness to N-formyl-methionyl-leucyl-phenylalanine demonstrates the presence of partially refractory cells in the circulation of trauma patients. An increased expression of epitopes found on pulmonary PMNs suggests that optimal (pre)activation of these cells only occurs in the tissues.
Collapse
Affiliation(s)
- Falco Hietbrink
- Department of Surgery, University Medical Centre Utrecht, 3508 GA Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
48
|
Guvakova MA. Insulin-like growth factors control cell migration in health and disease. Int J Biochem Cell Biol 2007; 39:890-909. [PMID: 17113337 DOI: 10.1016/j.biocel.2006.10.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 10/13/2006] [Accepted: 10/19/2006] [Indexed: 12/30/2022]
Abstract
Insulin-like growth factors I and II (IGF-I and IGF-II) have an ancient origin and play essential roles in fundamental biological processes. Although IGFs are principally known for their roles in regulating cell growth and survival, their ability to influence cell motility is just as significant. In the past 20 years, research has provided indisputable evidence for the regulatory role of IGFs in the migration of various cell types. Cell migration is crucial for reproduction, development, and tissue regeneration; IGFs play an important role in coordinating these processes. Moreover, studies continue to uncover the IGFs' role in stimulating cancer cell migration, invasion and metastasis. This review surveys current knowledge on the cell migration-modulating properties of IGFs and the biochemical pathways by which these peptides regulate cell movement in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Marina A Guvakova
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
49
|
Stie J, Jesaitis AJ. Reorganization of the human neutrophil plasma membrane is associated with functional priming: implications for neutrophil preparations. J Leukoc Biol 2006; 81:672-85. [PMID: 17170075 DOI: 10.1189/jlb.0806513] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Changes in the functional and plasma membrane organizational states of human neutrophils were examined using two isolation procedures, which may simulate altered physiological states in vivo. A gelatin-based method of blood-neutrophil isolation was used to model in vivo priming, and neutrophils isolated by this method were compared with control populations prepared by a pyrogen-free, dextran-based method. Gelatin-prepared neutrophils were functionally primed for adherence and agonist-stimulated superoxide generation relative to unprimed, control neutrophils. The organizational state of the membrane cortex was examined by mapping the subcellular distribution of select cortical and transmembrane proteins by several methods, including subcellular fractionation, indirect immunofluorescence, and compositional analysis of Triton X-100-insoluble membrane skeleton preparations. Filamentous actin, fodrin, and the fodrin anchor, CD45, were largely cytoplasmic in unprimed neutrophils but translocated to plasma membranes upon priming, whereas CD43 and ezrin were exclusively surface-associated in both populations. Isopycnic sucrose density gradient analysis of N(2)-cavitated neutrophils revealed a major shift in the distribution of surface-associated transmembrane and membrane cortical components relative to the plasma membrane marker alkaline phosphatase in primed but not unprimed neutrophils. Similar results were obtained after neutrophil stimulation with known priming agents, LPS, TNF-alpha, or GM-CSF. Together, these results may suggest that priming of suspended, circulating neutrophils is associated with a large-scale reorganization of the plasma membrane and associated membrane cortex in a process that is independent of cellular adhesion and gross morphologic polarization.
Collapse
Affiliation(s)
- Jamal Stie
- Montana State University, Department of Microbiology, 109 Lewis Hall, Bozeman, MT 59717, USA
| | | |
Collapse
|
50
|
Ciuman M, Siednienko J, Czyzyk R, Witwicka H, Kołosionek E, Kobiałka M, Gorczyca WA. Cyclic GMP-dependent protein kinase and soluble guanylyl cyclase disappear in elicited rat neutrophils. Biochim Biophys Acta Gen Subj 2006; 1760:1618-23. [PMID: 17045402 DOI: 10.1016/j.bbagen.2006.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 07/24/2006] [Accepted: 09/05/2006] [Indexed: 10/24/2022]
Abstract
The nitric oxide/soluble guanylyl cyclase/cGMP-dependent protein kinase (NO/sGC/PKG) cascade has been shown to affect important functions of circulating neutrophils. We demonstrate that neutrophils isolated from rats treated intraperitoneally with peptone protease cannot use this signaling pathway. Although PKG was detected at both the mRNA and protein levels in peripheral blood neutrophils (PBNs) of control rats, it was expressed neither in PBNs nor in peritoneal exudate neutrophils (PENs) of provoked rats. Also, mRNA of the alpha and beta chains of heterodimeric sGC was present in PBNs, but absent in PENs. Consistently, PBNs responded to activators of sGC with cGMP synthesis, while PENs did not. These results showed that neutrophils recruited by a provoking agent lost PKG and, in the case of PENs, also sGC and thus the capacity to respond to NO with cGMP signaling. We speculate that such downregulation of the sGC/PKG pathway is likely a result of the high activity of inducible NO synthase observed in inflammatory neutrophils.
Collapse
Affiliation(s)
- Małgorzata Ciuman
- Laboratory of Signaling Proteins, L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wrocław, Poland
| | | | | | | | | | | | | |
Collapse
|