1
|
Babkina AS, Pisarev MV, Grechko AV, Golubev AM. Arterial Thrombosis in Acute Respiratory Infections: An Underestimated but Clinically Relevant Problem. J Clin Med 2024; 13:6007. [PMID: 39408067 PMCID: PMC11477565 DOI: 10.3390/jcm13196007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
During the COVID-19 pandemic, there was increased interest in the issue of thrombotic complications of acute respiratory infections. Clinical reports and pathological studies have revealed that thrombus formation in COVID-19 may involve the venous and arterial vasculature. As thrombotic complications of infectious respiratory diseases are increasingly considered in the context of COVID-19, the fact that thrombosis in lung diseases of viral and bacterial etiology was described long before the pandemic is overlooked. Pre-pandemic studies show that bacterial and viral respiratory infections are associated with an increased risk of thrombotic complications such as myocardial infarction, ischemic stroke, pulmonary embolism, and other critical illnesses caused by arterial and venous thrombosis. This narrative review article aims to summarize the current evidence regarding thrombotic complications and their pathogenesis in acute lower respiratory tract infections.
Collapse
Affiliation(s)
- Anastasiya S. Babkina
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia; (M.V.P.); (A.V.G.); (A.M.G.)
| | | | | | | |
Collapse
|
2
|
The Role of Von Willebrand Factor in the Pathogenesis of Pulmonary Vascular Thrombosis in COVID-19. Viruses 2022; 14:v14020211. [PMID: 35215805 PMCID: PMC8874644 DOI: 10.3390/v14020211] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
The increased plasma levels of von Willebrand factor (VWF) in patients with COVID-19 was reported in many studies, and its correlation with disease severity and mortality suggest its important role in the pathogenesis of thrombosis in COVID-19. We performed histological and immunohistochemical studies of the lungs of 29 patients who died from COVID-19. We found a significant increase in the intensity of immunohistochemical reaction for VWF in the pulmonary vascular endothelium when the disease duration was more than 10 days. In the patients who had thrombotic complications, the VWF immunostaining in the pulmonary vascular endothelium was significantly more intense than in nonsurvivors without thrombotic complications. Duration of disease and thrombotic complications were found to be independent predictors of increased VWF immunostaining in the endothelium of pulmonary vessels. We also revealed that bacterial pneumonia was associated with increased VWF staining intensity in pulmonary arterial, arteriolar, and venular endothelium, while lung ventilation was an independent predictor of increased VWF immunostaining in arterial endothelium. The results of the study demonstrated an important role of endothelial VWF in the pathogenesis of thrombus formation in COVID-19.
Collapse
|
3
|
De Cristofaro R, Liuzzo G, Sacco M, Lancellotti S, Pedicino D, Andreotti F. Marked von Willebrand factor and factor VIII elevations in severe acute respiratory syndrome coronavirus-2-positive, but not severe acute respiratory syndrome coronavirus-2-negative, pneumonia: a case-control study. Blood Coagul Fibrinolysis 2021; 32:285-289. [PMID: 33443926 DOI: 10.1097/mbc.0000000000000998] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Patients with novel coronavirus pneumonia show increased thrombotic risk. Although hemostatic alterations have been described in novel coronavirus pneumonia patients, case-control studies of von Willebrand factor (VWF), factor VIII (FVIII), and a disintegrin-like and metalloprotease with thrombospondin type I motif, member 13 (ADAMTS13) are lacking. VWF, ADAMTS13, FVIII, d-dimer, C-reactive protein, and routine blood cells and chemistry were measured in 10 novel coronavirus pneumonia patients and 10 non-novel coronavirus pneumonia controls. Hemostatic factors were measured less than 48 h of hospital admission in patients without invasive ventilation. d-Dimer, C-reactive protein, and fibrinogen concentrations, high in both groups, did not differ significantly in novel coronavirus pneumonia vs. non-novel coronavirus pneumonia patients. Median VWF-antigen (324 vs. 153 IU/dl, P < 0.0001), VWF-Rco (342 vs. 133 IU/dl, P < 0.001), and FVIII-activity levels (203 vs. 123 IU/dl, P < 0.0001) were significantly higher in novel coronavirus pneumonia cases vs. controls ADAMTS13-activity was normal in both groups. Coronavirus pneumonia cases vs. non-novel coronavirus pneumonia controls showed marked VWF/FVIII elevation, suggesting specific virus-induced endothelial activation causing VWF/FVIII hypersecretion, which may represent a therapeutic target in novel coronavirus pneumonia.
Collapse
Affiliation(s)
- Raimondo De Cristofaro
- Servizio Malattie Emorragiche e Trombotiche, Fondazione Policlinico Universitario A. Gemelli IRCCS
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica S. Cuore, Facoltà di Medicina e Chirurgia 'Agostino Gemelli'
| | - Giovanna Liuzzo
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Monica Sacco
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica S. Cuore, Facoltà di Medicina e Chirurgia 'Agostino Gemelli'
| | - Stefano Lancellotti
- Servizio Malattie Emorragiche e Trombotiche, Fondazione Policlinico Universitario A. Gemelli IRCCS
| | - Daniela Pedicino
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS
| | - Felicita Andreotti
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS
- Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
4
|
Vassiliou AG, Kotanidou A, Dimopoulou I, Orfanos SE. Endothelial Damage in Acute Respiratory Distress Syndrome. Int J Mol Sci 2020; 21:ijms21228793. [PMID: 33233715 PMCID: PMC7699909 DOI: 10.3390/ijms21228793] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 01/01/2023] Open
Abstract
The pulmonary endothelium is a metabolically active continuous monolayer of squamous endothelial cells that internally lines blood vessels and mediates key processes involved in lung homoeostasis. Many of these processes are disrupted in acute respiratory distress syndrome (ARDS), which is marked among others by diffuse endothelial injury, intense activation of the coagulation system and increased capillary permeability. Most commonly occurring in the setting of sepsis, ARDS is a devastating illness, associated with increased morbidity and mortality and no effective pharmacological treatment. Endothelial cell damage has an important role in the pathogenesis of ARDS and several biomarkers of endothelial damage have been tested in determining prognosis. By further understanding the endothelial pathobiology, development of endothelial-specific therapeutics might arise. In this review, we will discuss the underlying pathology of endothelial dysfunction leading to ARDS and emerging therapies. Furthermore, we will present a brief overview demonstrating that endotheliopathy is an important feature of hospitalised patients with coronavirus disease-19 (COVID-19).
Collapse
Affiliation(s)
- Alice G. Vassiliou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (A.G.V.); (A.K.); (I.D.)
| | - Anastasia Kotanidou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (A.G.V.); (A.K.); (I.D.)
| | - Ioanna Dimopoulou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (A.G.V.); (A.K.); (I.D.)
| | - Stylianos E. Orfanos
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (A.G.V.); (A.K.); (I.D.)
- 2nd Department of Critical Care, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, 124 62 Athens, Greece
- Correspondence: or ; Tel.: +30-2107-235-521
| |
Collapse
|
5
|
Cong L, Li T, Wang H, Wu Y, Wang S, Zhao Y, Zhang G, Duan J. IL-17A-producing T cells exacerbate fine particulate matter-induced lung inflammation and fibrosis by inhibiting PI3K/Akt/mTOR-mediated autophagy. J Cell Mol Med 2020; 24:8532-8544. [PMID: 32643865 PMCID: PMC7412687 DOI: 10.1111/jcmm.15475] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/24/2020] [Accepted: 05/24/2020] [Indexed: 12/13/2022] Open
Abstract
Fine particulate matter (PM2.5) is the primary air pollutant that is able to induce airway injury. Compelling evidence has shown the involvement of IL-17A in lung injury, while its contribution to PM2.5-induced lung injury remains largely unknown. Here, we probed into the possible role of IL-17A in mouse models of PM2.5-induced lung injury. Mice were instilled with PM2.5 to construct a lung injury model. Flow cytometry was carried out to isolate γδT and Th17 cells. ELISA was adopted to detect the expression of inflammatory factors in the supernatant of lavage fluid. Primary bronchial epithelial cells (mBECs) were extracted, and the expression of TGF signalling pathway-, autophagy- and PI3K/Akt/mTOR signalling pathway-related proteins in mBECs was detected by immunofluorescence assay and Western blot analysis. The mitochondrial function was also evaluated. PM2.5 aggravated the inflammatory response through enhancing the secretion of IL-17A by γδT/Th17 cells. Meanwhile, PM2.5 activated the TGF signalling pathway and induced EMT progression in bronchial epithelial cells, thereby contributing to pulmonary fibrosis. Besides, PM2.5 suppressed autophagy of bronchial epithelial cells by up-regulating IL-17A, which in turn activated the PI3K/Akt/mTOR signalling pathway. Furthermore, IL-17A impaired the energy metabolism of airway epithelial cells in the PM2.5-induced models. This study suggested that PM2.5 could inhibit autophagy of bronchial epithelial cells and promote pulmonary inflammation and fibrosis by inducing the secretion of IL-17A in γδT and Th17 cells and regulating the PI3K/Akt/mTOR signalling pathway.
Collapse
Affiliation(s)
- Lu‐Hong Cong
- Department of EmergencyChina‐Japan Friendship HospitalBeijingChina
| | - Tao Li
- Surgical Intensive Care UnitChina‐Japan Friendship HospitalBeijingChina
| | - Hui Wang
- Surgical Intensive Care UnitChina‐Japan Friendship HospitalBeijingChina
| | - Yi‐Na Wu
- Surgical Intensive Care UnitChina‐Japan Friendship HospitalBeijingChina
| | - Shu‐Peng Wang
- Surgical Intensive Care UnitChina‐Japan Friendship HospitalBeijingChina
| | - Yu‐Yue Zhao
- Surgical Intensive Care UnitChina‐Japan Friendship HospitalBeijingChina
| | - Guo‐Qiang Zhang
- Department of EmergencyChina‐Japan Friendship HospitalBeijingChina
| | - Jun Duan
- Surgical Intensive Care UnitChina‐Japan Friendship HospitalBeijingChina
| |
Collapse
|
6
|
Chalmers S, Khawaja A, Wieruszewski PM, Gajic O, Odeyemi Y. Diagnosis and treatment of acute pulmonary inflammation in critically ill patients: The role of inflammatory biomarkers. World J Crit Care Med 2019. [DOI: 10.5492/wjccm.v8.i5.74] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
7
|
Chalmers S, Khawaja A, Wieruszewski PM, Gajic O, Odeyemi Y. Diagnosis and treatment of acute pulmonary inflammation in critically ill patients: The role of inflammatory biomarkers. World J Crit Care Med 2019; 8:59-71. [PMID: 31559145 PMCID: PMC6753396 DOI: 10.5492/wjccm.v8.i5.59] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/02/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
Pneumonia and acute respiratory distress syndrome are common and important causes of respiratory failure in the intensive care unit with a significant impact on morbidity, mortality and health care utilization despite early antimicrobial therapy and lung protective mechanical ventilation. Both clinical entities are characterized by acute pulmonary inflammation in response to direct or indirect lung injury. Adjunct anti-inflammatory treatment with corticosteroids is increasingly used, although the evidence for benefit is limited. The treatment decisions are based on radiographic, clinical and physiological variables without regards to inflammatory state. Current evidence suggests a role of biomarkers for the assessment of severity, and distinguishing sub-phenotypes (hyper-inflammatory versus hypo-inflammatory) with important prognostic and therapeutic implications. Although many inflammatory biomarkers have been studied the most common and of interest are C-reactive protein, procalcitonin, and pro-inflammatory cytokines including interleukin 6. While extensively studied as prognostic tools (prognostic enrichment), limited data are available for the role of biomarkers in determining appropriate initiation, timing and dosing of adjunct anti-inflammatory treatment (predictive enrichment).
Collapse
Affiliation(s)
- Sarah Chalmers
- Multidisciplinary Epidemiology and Translational Research in Intensive Care Group, Mayo Clinic, Rochester, MN 55905, United States
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Ali Khawaja
- Multidisciplinary Epidemiology and Translational Research in Intensive Care Group, Mayo Clinic, Rochester, MN 55905, United States
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Patrick M Wieruszewski
- Multidisciplinary Epidemiology and Translational Research in Intensive Care Group, Mayo Clinic, Rochester, MN 55905, United States
- Department of Pharmacy, Mayo Clinic, Rochester, MN 55905, United States
| | - Ognjen Gajic
- Multidisciplinary Epidemiology and Translational Research in Intensive Care Group, Mayo Clinic, Rochester, MN 55905, United States
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Yewande Odeyemi
- Multidisciplinary Epidemiology and Translational Research in Intensive Care Group, Mayo Clinic, Rochester, MN 55905, United States
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, United States
| |
Collapse
|
8
|
Al-Biltagi MA, Abo-Elezz AAAE, Abu-Ela KT, Suliman GA, Sultan TGH. The Prognostic Value of Soluble Intercellular Adhesion Molecule 1 Plasma Level in Children With Acute Lung Injury. J Intensive Care Med 2017; 32:320-325. [PMID: 26358469 DOI: 10.1177/0885066615605071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The objective of this study was to evaluate the prognostic significance of soluble intercellular adhesion molecule 1 (sICAM-1) measurement in plasma for the prediction of outcome of acute lung injury (ALI) in children that may allow early recognition of critical cases. METHODS The study was performed as a prospective, controlled cohort study involving 40 children with ALI and 30 healthy children. The plasma level of sICAM-1 was measured at days 1 and 3 of development of ALI for the patient group and measured only once for the control group. C-Reactive protein was measured in both groups on day 1 only. RESULTS There was significant increase in sICAM-1 in the patient group than in the control group ( P = .001*). The mortality rate reached 55% in children with ALI. The ceased group had significantly higher plasma sICAM-1 levels both at days 1 and 3 than the survived group ( P < .001*), and there was positive correlation between plasma sICAM-1 level and both duration of mechanical ventilation and the death rate, but more significant correlation was observed with plasma sICAM-1 levels at day 3 than day 1. CONCLUSION Plasma sICAM-1 level served as a good predictor biomarker for both mechanical ventilation duration and the mortality risk in children with ALI.
Collapse
Affiliation(s)
- Mohammed A Al-Biltagi
- 1 Pediatric Department, Faculty of Medicine, Medical Complex, Tanta University, Tanta, Egypt
| | | | - Khaled Talaat Abu-Ela
- 1 Pediatric Department, Faculty of Medicine, Medical Complex, Tanta University, Tanta, Egypt
| | | | | |
Collapse
|
9
|
Liu XW, Ma T, Cai Q, Wang L, Song HW, Liu Z. Elevation of Serum PARK7 and IL-8 Levels Is Associated With Acute Lung Injury in Patients With Severe Sepsis/Septic Shock. J Intensive Care Med 2017; 34:662-668. [PMID: 28506137 DOI: 10.1177/0885066617709689] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Methods containing only clinical information fail to meet the needs of prediction of acute lung injury (ALI) because of the relatively low positive predictive value. This study aimed to investigate the feasibility of using biomarkers as predictors of ALI in populations with severe sepsis/septic shock and to explore difference among biomarkers after adjustment for potential confounders. METHODS Serum specimens were collected from patients with severe sepsis/septic shock (n = 172) presented to the emergency department. Patients should be ruled out from the study if they were already suffering from ALI or if they deteriorated into ALI within 6 hours after specimen collection. The development of ALI of the remaining patients was tracked. RESULTS Of all patients with severe sepsis/septic shock who encountered ALI more than 6 hours succeeding to specimen collection, 19 deteriorated into ALI. Elevation in serum interleukin 8 (IL-8) and Parkinson disease 7 (PARK7) levels had significant connection with higher risk of developing ALI (P = .006; P = .0001). Sepsis treatment and vasopressor application led to a robust connection between PARK7 and succeeding ALI development. Patients who deteriorated into ALI were distinguished accurately from patients who avoided ALI using PARK7 or Lung Injury Prediction Score (LIPS; area under the receiver operating characteristic curve [AUROC], 0.73 and 0.72 for each). Combination of PARK7 and LIPS ameliorated AUROC to 0.86 (vs 0.73, P = .05). On the contrary, serum soluble receptor for advanced glycation end products and von Willebrand factor made no contribution to the prediction of ALI development. CONCLUSIONS Patients with PARK7 or IL-8 levels above normal are more vulnerable to ALI. Patients vulnerable to ALI can be distinguished with the combination of serum biomarkers and clinical prediction scores. In addition, the early rise in PARK7 emphasizes the importance of endothelial injury in the early pathogenesis of ALI.
Collapse
Affiliation(s)
- Xiao-Wei Liu
- 1 Department of Emergency, The First Affiliated Hospital of China Medical University, Liaoning, Shenyang, China
| | - Tao Ma
- 1 Department of Emergency, The First Affiliated Hospital of China Medical University, Liaoning, Shenyang, China
| | - Quan Cai
- 1 Department of Emergency, The First Affiliated Hospital of China Medical University, Liaoning, Shenyang, China
| | - Li Wang
- 1 Department of Emergency, The First Affiliated Hospital of China Medical University, Liaoning, Shenyang, China
| | - Hong-Wei Song
- 1 Department of Emergency, The First Affiliated Hospital of China Medical University, Liaoning, Shenyang, China
| | - Zhi Liu
- 1 Department of Emergency, The First Affiliated Hospital of China Medical University, Liaoning, Shenyang, China
| |
Collapse
|
10
|
Abstract
Acute respiratory distress syndrome (ARDS) is common among mechanically ventilated children and accompanies up to 30% of all pediatric intensive care unit deaths. Though ARDS diagnosis is based on clinical criteria, biological markers of acute lung damage have been extensively studied in adults and children. Biomarkers of inflammation, alveolar epithelial and capillary endothelial disruption, disordered coagulation, and associated derangements measured in the circulation and other body fluids, such as bronchoalveolar lavage, have improved our understanding of pathobiology of ARDS. The biochemical signature of ARDS has been increasingly well described in adult populations, and this has led to the identification of molecular phenotypes to augment clinical classifications. However, there is a paucity of data from pediatric ARDS (pARDS) patients. Biomarkers and molecular phenotypes have the potential to identify patients at high risk of poor outcomes, and perhaps inform the development of targeted therapies for specific groups of patients. Additionally, because of the lower incidence of and mortality from ARDS in pediatric patients relative to adults and lack of robust clinical predictors of outcome, there is an ongoing interest in biological markers as surrogate outcome measures. The recent definition of pARDS provides additional impetus for the measurement of established and novel biomarkers in future pediatric studies in order to further characterize this disease process. This chapter will review the currently available literature and discuss potential future directions for investigation into biomarkers in ARDS among children.
Collapse
Affiliation(s)
- Benjamin E. Orwoll
- Department of Pediatrics, Division of Critical Care, University of California San Francisco, San Francisco, CA, USA
| | - Anil Sapru
- Department of Pediatrics, Division of Critical Care, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, Division of Critical Care, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
11
|
Kimura D, Saravia J, Rovnaghi CR, Meduri GU, Schwingshackl A, Cormier SA, Anand KJ. Plasma Biomarker Analysis in Pediatric ARDS: Generating Future Framework from a Pilot Randomized Control Trial of Methylprednisolone: A Framework for Identifying Plasma Biomarkers Related to Clinical Outcomes in Pediatric ARDS. Front Pediatr 2016; 4:31. [PMID: 27066464 PMCID: PMC4815896 DOI: 10.3389/fped.2016.00031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/21/2016] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE Lung injury activates multiple pro-inflammatory pathways, including neutrophils, epithelial, and endothelial injury, and coagulation factors leading to acute respiratory distress syndrome (ARDS). Low-dose methylprednisolone therapy (MPT) improved oxygenation and ventilation in early pediatric ARDS without altering duration of mechanical ventilation or mortality. We evaluated the effects of MPT on biomarkers of endothelial [Ang-2 and soluble intercellular adhesion molecule-1 (sICAM-1)] or epithelial [soluble receptor for activated glycation end products (sRAGE)] injury, neutrophil activation [matrix metalloproteinase-8 (MMP-8)], and coagulation (plasminogen activator inhibitor-1). DESIGN Double-blind, placebo-controlled randomized trial. SETTING Tertiary-care pediatric intensive care unit (ICU). PATIENTS Mechanically ventilated children (0-18 years) with early ARDS. INTERVENTIONS Blood samples were collected on days 0 (before MPT), 7, and 14 during low-dose MPT (n = 17) vs. placebo (n = 18) therapy. The MPT group received a 2-mg/kg loading dose followed by 1 mg/kg/day continuous infusions from days 1 to 7, tapered off over 7 days; placebo group received equivalent amounts of 0.9% saline. We analyzed plasma samples using a multiplex assay for five biomarkers of ARDS. Multiple regression models were constructed to predict associations between changes in biomarkers and the clinical outcomes reported earlier, including P/F ratio on days 8 and 9, plateau pressure on days 1 and 2, PaCO2 on days 2 and 3, racemic epinephrine following extubation, and supplemental oxygen at ICU discharge. RESULTS No differences occurred in biomarker concentrations between the groups on day 0. On day 7, reduction in MMP-8 levels (p = 0.0016) occurred in the MPT group, whereas increases in sICAM-1 levels (p = 0.0005) occurred in the placebo group (no increases in sICAM-1 in the MPT group). sRAGE levels decreased in both MPT and placebo groups (p < 0.0001) from day 0 to day 7. On day 7, sRAGE levels were positively correlated with MPT group PaO2/FiO2 ratios on day 8 (r = 0.93, p = 0.024). O2 requirements at ICU transfer positively correlated with day 7 MMP-8 (r = 0.85, p = 0.016) and Ang-2 levels (r = 0.79, p = 0.036) in the placebo group and inversely correlated with day 7 sICAM-1 levels (r = -0.91, p = 0.005) in the MPT group. CONCLUSION Biomarkers selected from endothelial, epithelial, or intravascular factors can be correlated with clinical endpoints in pediatric ARDS. For example, MPT could reduce neutrophil activation (⇓MMP-8), decrease endothelial injury (⇔sICAM-1), and allow epithelial recovery (⇓sRAGE). Large ARDS clinical trials should develop similar frameworks. TRIAL REGISTRATION https://clinicaltrials.gov, NCT01274260.
Collapse
Affiliation(s)
- Dai Kimura
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Pediatrics, Le Bonheur Children's Hospital, Memphis, TN, USA; Children's Foundation Research Institute at Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Jordy Saravia
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Pediatrics, Le Bonheur Children's Hospital, Memphis, TN, USA; Children's Foundation Research Institute at Le Bonheur Children's Hospital, Memphis, TN, USA
| | | | - Gianfranco Umberto Meduri
- Department of Internal Medicine, Memphis Veterans Affairs Medical Center, Memphis, TN, USA; Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Andreas Schwingshackl
- Department of Pediatrics, University of California Los Angeles , Los Angeles, CA , USA
| | - Stephania A Cormier
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA; Children's Foundation Research Institute at Le Bonheur Children's Hospital, Memphis, TN, USA; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kanwaljeet J Anand
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
12
|
Extravascular lung water and pulmonary vascular permeability index as markers predictive of postoperative acute respiratory distress syndrome: a prospective cohort investigation. Crit Care Med 2015; 43:665-73. [PMID: 25513786 DOI: 10.1097/ccm.0000000000000765] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Robust markers of subclinical perioperative lung injury are lacking. Extravascular lung water indexed to predicted body weight and pulmonary vascular permeability index are two promising early markers of lung edema. We aimed to evaluate whether extravascular lung water indexed to predicted body weight and pulmonary vascular permeability index would identify patients at risk for clinically significant postoperative pulmonary edema, particularly resulting from the acute respiratory distress syndrome. DESIGN Prospective cohort study. SETTING Tertiary care academic medical center. PATIENTS Adults undergoing high-risk cardiac or aortic vascular surgery (or both) with risk of acute respiratory distress syndrome. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Extravascular lung water indexed to predicted body weight and pulmonary vascular permeability index measurements were obtained intraoperatively and in the early postoperative period. We assessed the accuracy of peak extravascular lung water indexed to predicted body weight and pulmonary vascular permeability index as predictive markers of clinically significant pulmonary edema (defined as acute respiratory distress syndrome or cardiogenic pulmonary edema) using area under the receiver-operating characteristic curves. Associations between extravascular lung water indexed to predicted body weight and pulmonary vascular permeability patient-important with important outcomes were assessed. Of 150 eligible patients, 132 patients (88%) had extravascular lung water indexed to predicted body weight and pulmonary vascular permeability index measurements. Of these, 13 patients (9.8%) had postoperative acute respiratory distress syndrome and 15 patients (11.4%) had cardiogenic pulmonary edema. Extravascular lung water indexed to predicted body weight effectively predicted development of clinically significant pulmonary edema (area under the receiver-operating characteristic curve, 0.79; 95% CI, 0.70-0.89). Pulmonary vascular permeability index discriminated acute respiratory distress syndrome from cardiogenic pulmonary edema alone or no edema (area under the receiver-operating characteristic curve, 0.77; 95% CI, 0.62-0.93). Extravascular lung water indexed to predicted body weight was associated with the worst postoperative PaO2/FIO2, duration of mechanical ventilation, ICU stay, and hospital stay. Peak values for extravascular lung water indexed to predicted body weight and pulmonary vascular permeability index were obtained within 2 hours of the primary intraoperative insult for the majority of patients (> 80%). CONCLUSIONS Perioperative extravascular lung water indexed to predicted body weight is an early marker that predicts risk of clinically significant postoperative pulmonary edema in at-risk surgical patients. Pulmonary vascular permeability index effectively discriminated postoperative acute respiratory distress syndrome from cardiogenic pulmonary edema. These measures will aid in the early detection of subclinical lung injury in at-risk surgical populations.
Collapse
|
13
|
Tidal volume and plateau pressure use for acute lung injury from 2000 to present: a systematic literature review. Crit Care Med 2014; 42:2278-89. [PMID: 25098333 DOI: 10.1097/ccm.0000000000000504] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Since publication of the Respiratory Management of Acute Lung Injury and Acute Respiratory Distress Syndrome (ARMA) trial in 2000, use of tidal volume (VT) less than or equal to 6 mL/kg predicted body weight with corresponding plateau airway pressures (PPlat) less than or equal to 30 cm H2O has been advocated for acute lung injury. However, compliance with these recommendations is unknown. We therefore investigated VT (mL/kg predicted body weight) and PPlat (cm H2O) practices reported in studies of acute lung injury since ARMA using a systematic literature review (i.e., not a meta-analysis). DATA SOURCES PubMed, Scopus, and EMBASE. STUDY SELECTION Randomized controlled trials and nonrandomized studies enrolling patients with acute lung injury from May 2000 to June 2013 and reporting VT. DATA EXTRACTION Whether the study was a randomized controlled trial or a nonrandomized study and performed or not at an Acute Respiratory Distress Syndrome Network center; in randomized controlled trials, the pre- and postrandomization VT (mL/kg predicted body weight) and PPlat (cm H2O) and whether a VT protocol was used postrandomization; in nonrandomized studies, baseline VT and PPlat. DATA SYNTHESIS Twenty-two randomized controlled trials and 71 nonrandomized studies were included. Since 2000 at acute respiratory distress syndrome Network centers, routine VT was similar comparing randomized controlled trials and nonrandomized studies (p = 0.25) and unchanged over time (p = 0.75) with a mean value of 6.81 (95% CI, 6.45, 7.18). At non-acute respiratory distress syndrome Network centers, routine VT was also similar when comparing randomized controlled trials and nonrandomized studies (p = 0.71), but decreased (p = 0.001); the most recent estimate for it was 6.77 (6.22, 7.32). All VT estimates were significantly greater than 6 (p ≤ 0.02). In randomized controlled trials employing VT protocols, routine VT was reduced in both acute respiratory distress syndrome Network (n = 4) and non-acute respiratory distress syndrome Network (n = 11) trials (p ≤ 0.01 for both), but even postrandomization was greater than 6 (6.47 [6.29, 6.65] and 6.80 [6.42, 7.17], respectively; p ≤ 0.0001 for both). In 59 studies providing data, routine PPlat, averaged across acute respiratory distress syndrome Network or non-acute respiratory distress syndrome Network centers, was significantly less than 30 (p ≤ 0.02). CONCLUSIONS For clinicians treating acute lung injury since 2000, achieving VT less than or equal to 6 mL/kg predicted body weight may not have been as attainable or important as PPlat less than or equal to 30 cm H2O. If so, there may be equipoise to test if VT less than or equal to 6 mL/kg predicted body weight are necessary to improve acute lung injury outcome.
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The article provides an overview of efforts to identify and validate biomarkers in acute respiratory distress syndrome (ARDS) and a discussion of the challenges confronting researchers in this area. RECENT FINDINGS Although various putative biomarkers have been investigated in ARDS, the data have been largely disappointing and the 'troponin' of ARDS remains elusive. Establishing a relationship between measurable biological processes and clinical outcomes is vital to advancing clinical trials in ARDS and expanding our arsenal of treatments for this complex syndrome. SUMMARY This article summarizes the current status of ARDS biomarker research and provides a framework for future investigation.
Collapse
|
15
|
Goolaerts A, Pellan-Randrianarison N, Larghero J, Vanneaux V, Uzunhan Y, Gille T, Dard N, Planès C, Matthay MA, Clerici C. Conditioned media from mesenchymal stromal cells restore sodium transport and preserve epithelial permeability in an in vitro model of acute alveolar injury. Am J Physiol Lung Cell Mol Physiol 2014; 306:L975-85. [PMID: 24682451 DOI: 10.1152/ajplung.00242.2013] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) or their media (MSC-M) were reported to reverse acute lung injury (ALI)-induced decrease of alveolar fluid clearance. To determine the mechanisms by which MSC-M exert their beneficial effects, an in vitro model of alveolar epithelial injury was created by exposing primary rat alveolar epithelial cells (AECs) to hypoxia (3% O2) plus cytomix, a combination of IL-1β, TNF-α, and IFN-γ. MSC-M were collected from human MSCs exposed for 12 h to either normoxia (MSC-M) or to hypoxia plus cytomix (HCYT-MSC-M). This latter condition was used to model the effect of alveolar inflammation and hypoxia on paracrine secretion of MSCs in the injured lung. Comparison of paracrine soluble factors in MSC media showed that the IL-1 receptor antagonist and prostaglandin E2 were markedly increased while keratinocyte growth factor (KGF) was twofold lower in HCYT-MSC-M compared with MSC-M. In AECs, hypoxia plus cytomix increased protein permeability, reduced amiloride-sensitive short-circuit current (AS-Isc), and also decreased the number of α-epithelial sodium channel (α-ENaC) subunits in the apical membrane. To test the effects of MSC media, MSC-M and HCYT-MSC-M were added for an additional 12 h to AECs exposed to hypoxia plus cytomix. MSC-M and HCYT-MSC-M completely restored epithelial permeability to normal. MSC-M, but not HCYT-MSC-M, significantly prevented the hypoxia plus cytomix-induced decrease of ENaC activity and restored apical α-ENaC channels. Interestingly, KGF-deprived MSC-M were unable to restore amiloride-sensitive sodium transport, indicating a possible role for KGF in the beneficial effect of MSC-M. These results indicate that MSC-M may be a preferable therapeutic option for ALI.
Collapse
Affiliation(s)
- Arnaud Goolaerts
- Institut National de la Santé et de la Recherche Médicale, U773, Paris, France
| | - Nadia Pellan-Randrianarison
- Institut National de la Santé et de la Recherche Médicale, U773, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Unité Mixte de Recherche 773 and Unité Mixte de Recherche 940, Paris, France
| | - Jérôme Larghero
- Université Paris Diderot, Sorbonne Paris Cité, Unité Mixte de Recherche 773 and Unité Mixte de Recherche 940, Paris, France; AP-HP, Hôpital Saint Louis, Unité de Thérapie Cellulaire et CIC de Biothérapies, Paris, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Valérie Vanneaux
- Université Paris Diderot, Sorbonne Paris Cité, Unité Mixte de Recherche 773 and Unité Mixte de Recherche 940, Paris, France; AP-HP, Hôpital Saint Louis, Unité de Thérapie Cellulaire et CIC de Biothérapies, Paris, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Yurdagül Uzunhan
- Université Paris 13, Sorbonne Paris Cité, EA2363, Bobigny, France; AP-HP, Hôpital Avicenne, Bobigny, France; and
| | - Thomas Gille
- Université Paris 13, Sorbonne Paris Cité, EA2363, Bobigny, France; AP-HP, Hôpital Avicenne, Bobigny, France; and
| | - Nicolas Dard
- Université Paris 13, Sorbonne Paris Cité, EA2363, Bobigny, France
| | - Carole Planès
- Université Paris 13, Sorbonne Paris Cité, EA2363, Bobigny, France; AP-HP, Hôpital Avicenne, Bobigny, France; and
| | - Michael A Matthay
- Institut National de la Santé et de la Recherche Médicale, U773, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Unité Mixte de Recherche 773 and Unité Mixte de Recherche 940, Paris, France
| | - Christine Clerici
- Institut National de la Santé et de la Recherche Médicale, U773, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Unité Mixte de Recherche 773 and Unité Mixte de Recherche 940, Paris, France; AP-HP, Hôpital Bichat, Paris, France
| |
Collapse
|
16
|
Gu WJ, Wan YD, Tie HT, Kan QC, Sun TW. Risk of acute lung injury/acute respiratory distress syndrome in critically ill adult patients with pre-existing diabetes: a meta-analysis. PLoS One 2014; 9:e90426. [PMID: 24587357 PMCID: PMC3937384 DOI: 10.1371/journal.pone.0090426] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/30/2014] [Indexed: 12/29/2022] Open
Abstract
Background The impact of pre-existing diabetes on the development of acute lung injury/acute respiratory distress syndrome (ALI/ARDS) in critically ill patients remains unclear. We performed a meta-analysis of cohort studies to evaluate the risk of ALI/ARDS in critically ill patients with and without pre-existing diabetes. Materials and Methods We searched PubMed and Embase from the inception to September 2013 for cohort studies assessing the effect of pre-existing diabetes on ALI/ARDS occurrence. Pooled odds ratio (OR) with 95% confidence interval (CI) was calculated using random- or fixed-effect models when appropriate. Results Seven cohort studies with a total of 12,794 participants and 2,937 cases of pre-existing diabetes, and 2,457 cases of ALI/ARDS were included in the meta-analysis. A fixed-effects model meta-analysis showed that pre-existing diabetes was associated with a reduced risk of ALI/ARDS (OR 0.66; 95% CI, 0.55–0.80; p<0.001), with low heterogeneity among the studies (I2 = 18.9%; p = 0.286). However, the asymmetric funnel plot and Egger's test (p = 0.007) suggested publication bias may exist. Conclusions Our meta-analysis suggests that pre-existing diabetes was associated with a decreased risk of ALI/ARDS in critically ill adult patients. However, the result should be interpreted with caution because of the potential bias and confounding in the included studies.
Collapse
Affiliation(s)
- Wan-Jie Gu
- Department of Anaesthesiology, the First Affiliated Hospital, Guangxi Medical University, Nanning, China
- Department of Integrated Intensive Care Unit, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - You-Dong Wan
- Department of Integrated Intensive Care Unit, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Hong-Tao Tie
- The First College of Clinical Medicine, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Quan-Cheng Kan
- Pharmaceutical Department, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Tong-Wen Sun
- Department of Integrated Intensive Care Unit, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
- * E-mail:
| |
Collapse
|
17
|
Ultrastructural study of alveolar epithelial type II cells by high-frequency oscillatory ventilation. BIOMED RESEARCH INTERNATIONAL 2013; 2013:240659. [PMID: 24386636 PMCID: PMC3872375 DOI: 10.1155/2013/240659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/17/2013] [Indexed: 01/23/2023]
Abstract
Alveolar epithelial type II cells (AECIIs) containing lamellar bodies (LBs) are alveolar epithelial stem cells that have important functions in the repair of lung structure and function after lung injury. The ultrastructural changes in AECIIs after high-frequency oscillatory ventilation (HFOV) with a high lung volume strategy or conventional ventilation were evaluated in a newborn piglet model with acute lung injury (ALI). After ALI with saline lavage, newborn piglets were randomly assigned into five study groups (three piglets in each group), namely, control (no mechanical ventilation), conventional ventilation for 24 h, conventional ventilation for 48 h, HFOV for 24 h, and HFOV for 48 h. The lower tissues of the right lung were obtained to observe the AECII ultrastructure. AECIIs with reduced numbers of microvilli, decreased LBs electron density, and vacuole-like LBs deformity were commonly observed in all five groups. Compared with conventional ventilation groups, the decrease in numbers of microvilli and LBs electron density, as well as LBs with vacuole-like appearance and polymorphic deformity, was less severe in HFOV with high lung volume strategy groups. AECIIs were injured during mechanical ventilation. HFOV with a high lung volume strategy resulted in less AECII damage than conventional ventilation.
Collapse
|
18
|
Abstract
Mechanical ventilation (MV) is, by definition, the application of external forces to the lungs. Depending on their magnitude, these forces can cause a continuum of pathophysiological alterations ranging from the stimulation of inflammation to the disruption of cell-cell contacts and cell membranes. These side effects of MV are particularly relevant for patients with inhomogeneously injured lungs such as in acute lung injury (ALI). These patients require supraphysiological ventilation pressures to guarantee even the most modest gas exchange. In this situation, ventilation causes additional strain by overdistension of the yet non-injured region, and additional stress that forms because of the interdependence between intact and atelectatic areas. Cells are equipped with elaborate mechanotransduction machineries that respond to strain and stress by the activation of inflammation and repair mechanisms. Inflammation is the fundamental response of the host to external assaults, be they of mechanical or of microbial origin and can, if excessive, injure the parenchymal tissue leading to ALI. Here, we will discuss the forces generated by MV and how they may injure the lungs mechanically and through inflammation. We will give an overview of the mechanotransduction and how it leads to inflammation and review studies demonstrating that ventilator-induced lung injury can be prevented by blocking pathways of mechanotransduction or inflammation.
Collapse
Affiliation(s)
- Ulrike Uhlig
- Department of Pharmacology & Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
19
|
Agrawal A, Matthay MA, Kangelaris KN, Stein J, Chu JC, Imp BM, Cortez A, Abbott J, Liu KD, Calfee CS. Plasma angiopoietin-2 predicts the onset of acute lung injury in critically ill patients. Am J Respir Crit Care Med 2013; 187:736-42. [PMID: 23328529 DOI: 10.1164/rccm.201208-1460oc] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Current clinical prediction scores for acute lung injury (ALI) have limited positive predictive value. No studies have evaluated predictive plasma biomarkers in a broad population of critically ill patients or as an adjunct to clinical prediction scores. OBJECTIVES To determine whether plasma angiopoietin-2 (Ang-2), von Willebrand factor (vWF), interleukin-8 (IL-8), and/or receptor for advanced glycation end products (sRAGE) predict ALI in critically ill patients. METHODS Plasma samples were drawn from critically ill patients (n = 230) identified in the emergency department. Patients who had ALI at baseline or in the subsequent 6 hours were excluded, and the remaining patients were followed for development of ALI. MEASUREMENTS AND MAIN RESULTS Nineteen patients developed ALI at least 6 hours after the sample draw. Higher levels of Ang-2 and IL-8 were significantly associated with increased development of ALI (P = 0.0008, 0.004, respectively). The association between Ang-2 and subsequent development of ALI was robust to adjustment for sepsis and vasopressor use. Ang-2 and the Lung Injury Prediction Score each independently discriminated well between those who developed ALI and those who did not (area under the receiver operating characteristic curve, 0.74 for each), and using the two together improved the area under the curve to 0.84 (vs. 0.74, P = 0.05). In contrast, plasma levels of sRAGE and vWF were not predictive of ALI. CONCLUSIONS Plasma biomarkers such as Ang-2 can improve clinical prediction scores and identify patients at high risk for ALI. In addition, the early rise of Ang-2 emphasizes the importance of endothelial injury in the early pathogenesis of ALI.
Collapse
Affiliation(s)
- Ashish Agrawal
- School of Medicine, University of California-San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sun X, Singleton PA, Letsiou E, Zhao J, Belvitch P, Sammani S, Chiang ET, Moreno-Vinasco L, Wade MS, Zhou T, Liu B, Parastatidis I, Thomson L, Ischiropoulos H, Natarajan V, Jacobson JR, Machado RF, Dudek SM, Garcia JGN. Sphingosine-1-phosphate receptor-3 is a novel biomarker in acute lung injury. Am J Respir Cell Mol Biol 2012; 47:628-36. [PMID: 22771388 DOI: 10.1165/rcmb.2012-0048oc] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The inflamed lung exhibits oxidative and nitrative modifications of multiple target proteins, potentially reflecting disease severity and progression. We identified sphingosine-1-phosphate receptor-3 (S1PR3), a critical signaling molecule mediating cell proliferation and vascular permeability, as a nitrated plasma protein in mice with acute lung injury (ALI). We explored S1PR3 as a potential biomarker in murine and human ALI. In vivo nitrated and total S1PR3 concentrations were determined by immunoprecipitation and microarray studies in mice, and by ELISA in human plasma. In vitro nitrated S1PR3 concentrations were evaluated in human lung vascular endothelial cells (ECs) or within microparticles shed from ECs after exposure to barrier-disrupting agonists (LPS, low-molecular-weight hyaluronan, and thrombin). The effects of S1PR3-containing microparticles on EC barrier function were assessed by transendothelial electrical resistance (TER). Nitrated S1PR3 was identified in the plasma of murine ALI and in humans with severe sepsis-induced ALI. Elevated total S1PR3 plasma concentrations (> 251 pg/ml) were linked to sepsis and ALI mortality. In vitro EC exposure to barrier-disrupting agents induced S1PR3 nitration and the shedding of S1PR3-containing microparticles, which significantly reduced TER, consistent with increased permeability. These changes were attenuated by reduced S1PR3 expression (small interfering RNAs). These results suggest that microparticles containing nitrated S1PR3 shed into the circulation during inflammatory lung states, and represent a novel ALI biomarker linked to disease severity and outcome.
Collapse
Affiliation(s)
- Xiaoguang Sun
- Institute for Personalized Respiratory Medicine, College of Medicine, University of Illinois at Chicago, 914 South Wood St., MC 719, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Serial Measurement of Extravascular Lung Water and Blood Volume During the Course of Neurogenic Pulmonary Edema after Subarachnoid Hemorrhage. J Neurosurg Anesthesiol 2012; 24:203-8. [DOI: 10.1097/ana.0b013e318242e52e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Xing K, Murthy S, Liles WC, Singh JM. Clinical utility of biomarkers of endothelial activation in sepsis--a systematic review. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:R7. [PMID: 22248019 PMCID: PMC3396237 DOI: 10.1186/cc11145] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/29/2011] [Accepted: 01/16/2012] [Indexed: 12/18/2022]
Abstract
INTRODUCTION A strong biologic rationale exists for targeting markers of endothelial cell (EC) activation as clinically informative biomarkers to improve diagnosis, prognostic evaluation or risk-stratification of patients with sepsis. METHODS The objective was to review the literature on the use of markers of EC activation as prognostic biomarkers in sepsis. MEDLINE was searched for publications using the keyword 'sepsis' and any of the identified endothelial-derived biomarkers in any searchable field. All clinical studies evaluating markers reflecting activation of ECs were included. Studies evaluating other exogenous mediators of EC dysfunction and studies of patients with malaria and febrile neutropenia were excluded. RESULTS Sixty-one studies were identified that fulfilled the inclusion criteria. Overall, published studies report positive correlations between multiple EC-derived molecules and the diagnosis of sepsis, supporting the critical role of EC activation in sepsis. Multiple studies also reported positive associations for mortality and severity of illness, although these results were less consistent than for the presence of sepsis. Very few studies, however, reported thresholds or receiver operating characteristics that would establish these molecules as clinically-relevant biomarkers in sepsis. CONCLUSIONS Multiple endothelial-derived molecules are positively correlated with the presence of sepsis in humans, and variably correlated to other clinically-important outcomes. The clinical utility of these biomarkers is limited by a lack of assay standardization, unknown receiver operating characteristics and lack of validation. Additional large-scale prospective clinical trials will be required to determine the clinical utility of biomarkers of endothelial activation in the management of patients with sepsis.
Collapse
Affiliation(s)
- Katharine Xing
- Division of Hematology, University of British Columbia, Vancouver General Hospital, 855 12th Ave W, Vancouver, BC V5Z 1M9, Canada
| | | | | | | |
Collapse
|
23
|
Grinnell KL, Chichger H, Braza J, Duong H, Harrington EO. Protection against LPS-induced pulmonary edema through the attenuation of protein tyrosine phosphatase-1B oxidation. Am J Respir Cell Mol Biol 2011; 46:623-32. [PMID: 22180868 DOI: 10.1165/rcmb.2011-0271oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
One hallmark of acute lung injury is the disruption of the pulmonary endothelial barrier. Such disruption correlates with increased endothelial permeability, partly through the disruption of cell-cell contacts. Protein tyrosine phosphatases (PTPs) are known to affect the stability of both cell-extracellular matrix adhesions and intercellular adherens junctions (AJs). However, evidence for the role of select PTPs in regulating endothelial permeability is limited. Our investigations noted that the inhibition of PTP1B in cultured pulmonary endothelial cells (ECs), as well as in the vasculature of intact murine lungs via the transient overexpression of a catalytically inactive PTP1B, decreased the baseline resistance of cultured EC monolayers and increased the formation of edema in murine lungs, respectively. In addition, we observed that the overexpression of wild-type PTP1B enhanced basal barrier function in vitro. Immunohistochemical analyses of pulmonary ECs and the coimmunoprecipitation of murine lung homogenates demonstrated the association of PTP1B with the AJ proteins β-catenin, p120-catenin, and VE-cadherin both in vitro and ex vivo. Using LPS in a model of sepsis-induced acute lung injury, we showed that reactive oxygen species were generated in response to LPS, which correlated with enhanced PTP1B oxidation, inhibited phosphatase activity, and attenuation of the interactions between PTP1B and β-catenin, as well as enhanced β-catenin tyrosine phosphorylation. Finally, the overexpression of a cytosolic PTP1B fragment, shown to be resistant to nicotinamide adenine dinucleotide phosphate-reduced oxidase-4 (Nox4)-mediated oxidation, significantly attenuated LPS-induced endothelial barrier dysfunction and the formation of lung edema, and preserved the associations of PTP1B with AJ protein components, independent of PTP1B phosphatase activity. We conclude that PTP1B plays an important role in maintaining the pulmonary endothelial barrier, and PTP1B oxidation appears to contribute to sepsis-induced pulmonary vascular dysfunction, possibly through the disruption of AJs.
Collapse
Affiliation(s)
- Katie L Grinnell
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, 830 Chalkstone Avenue, Providence, RI 02908, USA
| | | | | | | | | |
Collapse
|
24
|
Sarafidis K, Stathopoulou T, Agakidou E, Taparkou A, Soubasi V, Diamanti E, Drossou V. Comparable effect of conventional ventilation versus early high-frequency oscillation on serum CC16 and IL-6 levels in preterm neonates. J Perinatol 2011; 31:104-11. [PMID: 20671716 DOI: 10.1038/jp.2010.78] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Clara cell 16 kD protein (CC16) and interleukin (IL)-6 have been used as peripheral blood biomarkers of alveolar leakage and inflammation, respectively. Thus, their measurement in the bloodstream could be used to assess ventilator-induced lung injury. The objective of this study was to evaluate the effect of optimized synchronized intermittent mandatory ventilation (SIMV) and high-frequency oscillatory ventilation (HFOV) on circulating CC16 and IL-6 levels when used as the initial ventilation modes in preterm neonates. STUDY DESIGN Single center, prospective, randomized clinical study in preterm neonates (gestational age 30 weeks) requiring mechanical ventilation within the first 2 h of life. Serum CC16 and IL-6 were measured on establishment of the assigned ventilation mode after admission, at days 3 and 14 of life as well as at 36 weeks postmenstrual age. Demographic-perinatal data and clinical parameters were also recorded. RESULT Of the 30 neonates studied, 24 (gestational age 27.1±1.7 weeks, birth weight 942±214 g) were finally analyzed, equally assigned into the SIMV and HFOV groups. Both groups had comparable demographic-perinatal characteristics and clinical parameters. Serum CC16 and IL-6 altered significantly over time (repeated-measures analysis of variance, both P<0.001). However, changes were not affected by the ventilation mode. Post hoc analysis showed a significant decrease in CC16 and IL-6 from birth up to 36 weeks postmenstrual age in both groups. CONCLUSION In preterm neonates, SIMV and HFOV are associated with comparable circulating CC16 and IL-6 levels. These findings suggest a similar alveolar leakage and systemic inflammation with any of the ventilation modes evaluated when their usage is optimized.
Collapse
Affiliation(s)
- K Sarafidis
- First Department of Neonatology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | | | | | | | | | |
Collapse
|
25
|
BASTIN AJ, SATO H, DAVIDSON SJ, QUINLAN GJ, GRIFFITHS MJ. Biomarkers of lung injury after one-lung ventilation for lung resection. Respirology 2010; 16:138-45. [DOI: 10.1111/j.1440-1843.2010.01870.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Calfee CS, Thompson BT, Parsons PE, Ware LB, Matthay MA, Wong HR. Plasma interleukin-8 is not an effective risk stratification tool for adults with vasopressor-dependent septic shock. Crit Care Med 2010; 38:1436-41. [PMID: 20386309 PMCID: PMC3348116 DOI: 10.1097/ccm.0b013e3181de42ad] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Plasma interleukin-8 levels of <220 pg/mL have an excellent negative predictive value (94% to 95%) for death at 28 days in children with septic shock and thus may be useful for risk stratification in clinical trial enrollment in this population. Whether plasma interleukin-8 would have similar utility in adults with septic shock is unknown. DESIGN Analysis of plasma interleukin-8 levels and prospectively collected clinical data from patients enrolled in two large randomized controlled trials of ventilator strategy for acute lung injury. SETTING Intensive care units of university hospitals participating in the National Institutes of Health Acute Respiratory Distress Syndrome Network. PATIENTS One hundred ninety-two adult patients with vasopressor-dependent septic shock. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Plasma interleukin-8 levels > or =220 pg/mL were significantly associated with death at 28 days in this cohort (odds ratio, 2.92; 95% confidence interval, 1.42 to 5.99; p = .001). However, in contrast to the findings in pediatric septic shock, a plasma interleukin-8 cutoff <220 pg/mL had a negative predictive value for death of only 74% (95% confidence interval, 66% to 81%) in adults with septic shock. Receiver operating characteristic analysis found an area under the curve of 0.59 for plasma interleukin-8, indicating that plasma interleukin-8 is a poor predictor of mortality in this group. In adults aged <40 yrs, a plasma interleukin-8 cutoff <220 pg/mL had a negative predictive value of 92%. CONCLUSIONS In contrast to similar pediatric patients, plasma interleukin-8 levels are not an effective risk stratification tool in older adults with septic shock. Future studies of biomarkers for risk stratification in critically ill subjects will need to be replicated in multiple different populations before being applied in screening for clinical trials.
Collapse
Affiliation(s)
- Carolyn S Calfee
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, CA, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Surfactant phospholipids, surfactant proteins, and inflammatory markers during acute lung injury in children. Pediatr Crit Care Med 2010; 11:82-91. [PMID: 19550365 DOI: 10.1097/pcc.0b013e3181ae5a4c] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To explore the pathophysiology of acute lung injury in children. DESIGN Prospective cohort study. SETTING Regional University Hospital, pediatric intensive care unit. PATIENTS Children without a preexisting lung injury who developed acute lung injury and were intubated were eligible for the study. Children without lung injury and intubated for minor surgical procedures acted as controls. INTERVENTIONS Bronchoalveolar lavage fluid and blood were collected on days 1 to 4, weekly, and immediately before extubation during acute lung injury. Molecular species compositions of phosphatidylcholine were determined by electrospray ionization mass spectrometry of lipid extracts of bronchoalveolar lavage fluid supernatants. Surfactant proteins A, B, and D and interleukin-8 were measured in bronchoalveolar lavage fluid and plasma by enzyme-linked immunosorbent assay and Western blotting. MEASUREMENTS AND MAIN RESULTS Eighteen children with acute lung injury were enrolled in the study and compared with eight controls. In children with acute lung injury, there were significant changes in the bronchoalveolar lavage fluid phosphatidylcholine species. Bronchoalveolar lavage fluid dipalmitoyl phosphatidylcholine (PC 16:0/16:0) and palmitoyl-myristoyl phosphatidylcholine (PC 16:0/14:0) significantly deceased during acute lung injury (p < .001 and p < .001, respectively), whereas oleoyl-linoleoyl PC (18:1/18:2), palmitoyl-linoleoyl PC (16:0/18:2) and stearoyl-linoleoyl PC (18:0/18:2) characteristic of plasma PC were significantly increased (p < .05, p < .02, and p < .05 respectively), as well as palmitoyl-oleoyl PC (16:0/18:1), and stearoyl-arachidonoyl PC (18:0/20:4) which are characteristic of cell membranes (p < .02, and p < .02, respectively). There were no significant changes to bronchoalveolar lavage fluid, surfactant protein A or B levels compared with controls during acute lung injury, whereas bronchoalveolar lavage fluid, surfactant protein D, and interleukin-8 levels significantly increased (p < .05 and p < .02, respectively). In plasma during acute lung injury, there were significant increases in surfactant proteins A, B, and D, and interleukin-8 (p < .001, p < .001, p < .05, and p < .001, respectively). CONCLUSION Changes to the phosphatidylcholine profile, surfactant proteins, and inflammatory markers of bronchoalveolar lavage fluid and plasma in children with acute lung injury are consistent with an alveolar/blood leakage and inflammatory cell membrane degradation products. These changes are due to alveolar capillary membrane damage and cellular infiltration.
Collapse
|
28
|
Reel B, Oishi PE, Hsu JH, Gildengorin G, Matthay MA, Fineman JR, Flori H. Early elevations in B-type natriuretic peptide levels are associated with poor clinical outcomes in pediatric acute lung injury. Pediatr Pulmonol 2009; 44:1118-24. [PMID: 19830720 PMCID: PMC4427345 DOI: 10.1002/ppul.21111] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVES To determine B-type natriuretic peptide (BNP) levels in infants and children with acute lung injury (ALI), and to investigate associations between BNP levels and clinical outcome. DESIGN Prospective observational study. SUBJECTS After informed consent, plasma was collected from 48 pediatric patients on day 1 of ALI. METHODOLOGY Plasma BNP levels were measured by immunoassay on day 1 of ALI in 48 pediatric patients. Associations between BNP levels and outcome were determined. RESULTS The mean PaO(2)/FiO(2) at the onset of ALI was 155 (+/-74) and BNP values ranged from 5 to 2,060 pg/ml with a mean of 109 (+/-311). BNP levels were inversely correlated with ventilator-free days (Spearman rho -0.30, P = 0.04), and positively correlated with exhaled tidal volume (Spearman rho 0.44, P = 0.02). BNP levels were higher in patients receiving inotropic support (n = 12) than patients not receiving inotropic support (n = 33, P = 0.02). BNP levels were correlated with PRISM III scores (Spearman rho 0.55, P < 0.001) and PELOD scores (Spearman rho 0.4, P = 0.006). Mortality for the cohort was 15%. BNP levels were higher in non-survivors (n = 7) than survivors (n = 41, P = 0.055). CONCLUSIONS BNP levels are elevated in children with ALI/ARDS early in the disease course, and increased levels are associated with worse clinical outcome.
Collapse
Affiliation(s)
- Bhupinder Reel
- Department of Pediatrics, University of California, San Francisco, California, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Lee YL, Chen W, Chen LY, Chen CH, Lin YC, Liang SJ, Shih CM. Systemic and bronchoalveolar cytokines as predictors of in-hospital mortality in severe community-acquired pneumonia. J Crit Care 2009; 25:176.e7-13. [PMID: 19592208 DOI: 10.1016/j.jcrc.2009.05.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 04/21/2009] [Accepted: 05/09/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVES The aim of this study was to determine whether cytokine expression (interleukin [IL]-1beta, IL-6, IL-8, IL-10, and tumor necrosis factor [TNF]-alpha), C-reactive protein, and endotoxins on the first day of intensive care unit (ICU) admission are associated with hospital mortality in severe community-acquired pneumonia (CAP). DESIGN This was a prospective study with bronchoalveolar lavage (BAL) and blood sampling. SETTING This study was carried out in a 44-bed medical ICU of a 1700-bed university hospital. PATIENTS Participants included 112 mechanically ventilated patients with severe CAP. INTERVENTIONS Serum and BAL fluid IL-1beta, IL-6, IL-8, IL-10, TNF-alpha, C-reactive protein, and endotoxins on the first day of ICU admission were obtained. MEASUREMENTS AND MAIN RESULTS The concentrations of TNF-alpha in BALF and IL-6, IL-8, IL-10, and TNF-alpha in serum were higher in nonsurvivors than in survivor patients with CAP. Of these 112 patients with severe CAP (39%), 44 developed acute respiratory distress syndrome (ARDS); these patients seemed to have higher serum IL-6, IL-8, and IL-10 levels than did the non-ARDS group. Furthermore, in the ARDS population, we found that the endotoxin levels in the BAL fluid were higher in the survival than in the nonsurvival group and BAL fluid concentrations of IL-6, IL-8, and IL-1beta and sera levels of IL-6 and IL-10 were lower in the survival than in the nonsurvival group, and they were associated with a high negative predictive value. CONCLUSIONS Serum and BAL fluid levels of the studied cytokines on admission may provide valuable prognostic information for patients with severe CAP.
Collapse
Affiliation(s)
- Yao-Ling Lee
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, 402 Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
30
|
Howrylak JA, Dolinay T, Lucht L, Wang Z, Christiani DC, Sethi JM, Xing EP, Donahoe MP, Choi AMK. Discovery of the gene signature for acute lung injury in patients with sepsis. Physiol Genomics 2009; 37:133-9. [PMID: 19174476 DOI: 10.1152/physiolgenomics.90275.2008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The acute respiratory distress syndrome (ARDS)/acute lung injury (ALI) was described 30 yr ago, yet making a definitive diagnosis remains difficult. The identification of biomarkers obtained from peripheral blood could provide additional noninvasive means for diagnosis. To identify gene expression profiles that may be used to classify patients with ALI, 13 patients with ALI + sepsis and 20 patients with sepsis alone were recruited from the Medical Intensive Care Unit of the University of Pittsburgh Medical Center, and microarrays were performed on peripheral blood samples. Several classification algorithms were used to develop a gene signature for ALI from gene expression profiles. This signature was validated in an independently obtained set of patients with ALI + sepsis (n = 8) and sepsis alone (n = 1). An eight-gene expression profile was found to be associated with ALI. Internal validation found that the gene signature was able to distinguish patients with ALI + sepsis from patients with sepsis alone with 100% accuracy, corresponding to a sensitivity of 100%, a specificity of 100%, a positive predictive value of 100%, and a negative predictive value of 100%. In the independently obtained external validation set, the gene signature was able to distinguish patients with ALI + sepsis from patients with sepsis alone with 88.9% accuracy. The use of classification models to develop a gene signature from gene expression profiles provides a novel and accurate approach for classifying patients with ALI.
Collapse
Affiliation(s)
- Judie A Howrylak
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Circulating angiopoietin 2 correlates with mortality in a surgical population with acute lung injury/adult respiratory distress syndrome. Shock 2008; 29:656-61. [PMID: 18091573 DOI: 10.1097/shk.0b013e31815dd92f] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
There are few blood biomarkers predictive of mortality in adult respiratory distress syndrome (ARDS), and none that currently serve as therapeutic targets. Here, we ask whether a circulating protein angiopoietin 2 (Ang2) correlates with severity of lung injury and mortality in a surgical intensive care unit cohort with acute lung injury (ALI)/ARDS. Tie 2 is a tyrosine kinase receptor expressed on endothelial cells. One ligand, angiopoietin 1, phosphorylates Tie 2 and stabilizes adult vasculature. An alternate ligand, Ang2, serves as a context-dependent antagonist and disrupts barrier function. Previously, our laboratory detected high circulating Ang2 levels in septic patients and a correlation with low Pa(O2)/F(IO2). In this study, daily plasma was collected in 63 surgical intensive care unit patients. Eighteen patients met clinical criteria for ALI or ARDS. The median Ang2 at admission in patients who never developed ALI/ARDS was 3.7 ng/mL (interquartile range [IQR], 5.6; n = 45). The Ang2 on the day a patient met criteria for ALI/ARDS was 5.3 ng/mL (IQR, 6.7) for survivors (n = 11) and 19.8 ng/mL (IQR, 19.2) for nonsurvivors (n = 7; P= 0.004). To explore the mechanism of high Ang 2 leading to increased permeability, plasma from patients with ALI was applied to cultured lung endothelial cells and found to disrupt normal junctional architecture. This effect can be rescued with the Tie 2 agonist angiopoietin 1. A patient's convalescent (low Ang2) plasma did not disrupt junctional architecture. Although further studies with larger sample sizes will be needed to confirm these results, high Ang2 in critically ill patients with ALI/ARDS is associated with a poor outcome. These data, coupled with our cell culture experiments, suggest that antagonism of Ang2 may provide a future novel therapeutic target for ARDS.
Collapse
|
32
|
Binder H, Flegel WA, Emran J, Müller A, Dittrich R, Beckmann MW, Zingsem J, Eckstein R, Ringwald J. Association of blood group A with early-onset ovarian hyperstimulation syndrome. Transfus Clin Biol 2008; 15:395-401. [PMID: 18757223 DOI: 10.1016/j.tracli.2008.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 06/24/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE OF THE STUDY Ovarian hyperstimulation syndrome is a potentially life-threatening complication during controlled ovarian stimulation for fertility treatment. Since no association of this condition with ABO blood groups was known, we compared ABO antigens with severity and onset of symptoms in a case-control study. PATIENTS AND METHODS One hundred and twenty-one patients, mainly Caucasians, were hospitalized because of ovarian hyperstimulation syndrome after receiving in vitro fertilisation, in the period from January 2000 to February 2007. Severity of symptoms, pregnancy rate and ABO blood group were collated. The ABO blood group distribution was compared to four independent control groups. RESULTS Blood group A was markedly more frequent and blood group O less frequent in patients with ovarian hyperstimulation syndrome compared to the blood group distribution in all control cohorts. The odds ratio for patients undergoing controlled ovarian stimulation with blood group A versus O to develop the early-onset form of this condition was 2.171 (p-value 0.002). No association for late-onset form could be found. The overall pregnancy rate was 50.4% and three times higher in the group of late-onset ovarian hyperstimulation syndrome compared to the early-onset form. Four patients developed thromboses in the jugular or subclavian vein, none of whom had blood group O. CONCLUSION Blood group A may be associated with early-onset ovarian hyperstimulation syndrome in Caucasians. Depending on further studies, this possible association may be considered for an individualized hormone dosing in controlled ovarian stimulation.
Collapse
Affiliation(s)
- H Binder
- Department of Obstetrics and Gynaecology, University, Hospital of Erlangen, Universitaetsstrasse 21-23, 91054 Erlangen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Although smoke inhalation injury victims frequently develop severe hypoxemia and are at increased risk of acute respiratory distress syndrome (ARDS), no early prognostic tests are currently available. The objectives were to determine early longitudinal changes in tracheobronchial fluid inflammatory markers and assess the value of initial concentrations as predictors of subsequent lung injury. Partial pressure of arterial oxygen (Pao2) and the fraction of inspired oxygen (Fio2) were recorded approximately every 6 hours from intubated smoke inhalation victims admitted to a regional burn center. Tracheobronchial suction fluid was collected every 2 hours and assayed for interleukins (IL-1beta, -8, and -10), tumor necrosis factor-alpha, transforming growth factor-beta1, soluble Fas ligand (sFasL), and complement factor 5a. Temporal trends in marker concentrations during 36 hours and the relations between initial concentrations and lowest Pao2/Fio2 or ARDS within 72 hours were assessed using random coefficients modeling and cross-sectional analysis. In 21 subjects with tracheobronchial samples collected within 6.5 hours of intubation, 14 (66.7%) developed acute hypoxemia (Pao2/Fio2 < or =200) within 72 hours of exposure and nine (42.9%) developed ARDS, as defined by the American-European consensus conference on ARDS. IL-8 increased sharply in the first 6.5 hours postexposure (P < .001), and IL-1beta in the first 6.1 hours (P < .001). No significant temporal trends in IL-10, tumor necrosis factor-alpha, transforming growth factor-beta1, sFasL, or complement factor 5a were found. Only initial IL-8 was associated with increased Pao2/Fio2 (P = .013) and with a minimum Pao2/Fio2 >200 (P = .042) during 72 hours. In smoke inhalation victims, tracheobronchial IL-1beta and IL-8 increase rapidly and high initial IL-8 may predict improved oxygenation.
Collapse
|
34
|
|
35
|
Vasquez D, Singh JM, Ferguson ND. Year in review 2006: Critical Care--Respirology. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2008; 11:224. [PMID: 17764586 PMCID: PMC2206500 DOI: 10.1186/cc5963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present article summarises and places in context original research articles from the respirology section published in Critical Care in 2006. Twenty papers were identified and were grouped by topic into those addressing acute lung injury and ventilator-induced lung injury, those examining high-frequency oscillation, those studying pulmonary physiology and mechanics, those assessing tracheostomy, and those exploring other topics.
Collapse
Affiliation(s)
- Daniela Vasquez
- Interdepartmental Division of Critical Care Medicine, University of Toronto, and University Health Network, Toronto, Ontario, Canada
| | - Jeffrey M Singh
- Interdepartmental Division of Critical Care Medicine, University of Toronto, and University Health Network, Toronto, Ontario, Canada
| | - Niall D Ferguson
- Interdepartmental Division of Critical Care Medicine, University of Toronto, and University Health Network, Toronto, Ontario, Canada
| |
Collapse
|