1
|
Grijsen ML, Nguyen TH, Pinheiro RO, Singh P, Lambert SM, Walker SL, Geluk A. Leprosy. Nat Rev Dis Primers 2024; 10:90. [PMID: 39609422 DOI: 10.1038/s41572-024-00575-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 11/30/2024]
Abstract
Leprosy, a neglected tropical disease, causes significant morbidity in marginalized communities. Before the COVID-19 pandemic, annual new case detection plateaued for over a decade at ~200,000 new cases. The clinical phenotypes of leprosy strongly parallel host immunity to its causative agents Mycobacterium leprae and Mycobacterium lepromatosis. The resulting spectrum spans from paucibacillary leprosy, characterized by vigorous pro-inflammatory immunity with few bacteria, to multibacillary leprosy, harbouring large numbers of bacteria with high levels of seemingly non-protective, anti-M. leprae antibodies. Leprosy diagnosis remains clinical, leaving asymptomatic individuals with infection undetected. Antimicrobial treatment is effective with recommended multidrug therapy for 6 months for paucibacillary leprosy and 12 months for multibacillary leprosy. The incubation period ranges from 2 to 6 years, although longer periods have been described. Given this lengthy incubation period and dwindling clinical expertise, there is an urgent need to create innovative, low-complexity diagnostic tools for detection of M. leprae infection. Such advancements are vital for enabling swift therapeutic and preventive interventions, ultimately transforming patient outcomes. National health-care programmes should prioritize early case detection and consider post-exposure prophylaxis for individuals in close contact with affected persons. These measures will help interrupt transmission, prevent disease progression, and mitigate the risk of nerve damage and disabilities to achieve the WHO goal 'Towards Zero Leprosy' and reduce the burden of leprosy.
Collapse
Affiliation(s)
- Marlous L Grijsen
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Thuan H Nguyen
- University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, (IOC/FIOCRUZ), Rio de Janeiro, Brazil
| | - Pushpendra Singh
- Microbial Pathogenesis & Genomics Laboratory, ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Saba M Lambert
- London School of Hygiene & Tropical Medicine, Faculty of Infectious Diseases, London, UK
- Africa Leprosy, Tuberculosis, Rehabilitation and Training (ALERT) Hospital, Addis Ababa, Ethiopia
| | - Stephen L Walker
- London School of Hygiene & Tropical Medicine, Faculty of Infectious Diseases, London, UK
| | - Annemieke Geluk
- Leiden University Center of Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
2
|
Assis BPN, Chaves AT, Lage DP, Cardoso MM, Freitas CS, Pereira IAG, Câmara RSB, Martins VT, de Oliveira ALG, Machado-de-Ávila RA, Galdino AS, Chávez-Fumagalli MA, Christodoulides M, Gonçalves DU, Bueno LL, Fujiwara RT, Coelho EAF, da Costa Rocha MO. Serodiagnosis of paucibacillary and multibacillary leprosy using a recombinant chimeric protein composed of specific B-cell epitopes derived from Mycobacterium leprae proteins. Tuberculosis (Edinb) 2024; 147:102505. [PMID: 38583359 DOI: 10.1016/j.tube.2024.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024]
Abstract
Leprosy diagnosis is difficult due to the clinical similarity with other infectious diseases, and laboratory tests presents problems related to sensitivity and/or specificity. In this study, we used bioinformatics to assess Mycobacterium leprae proteins and formulated a chimeric protein that was tested as a diagnostic marker for the disease. The amino acid sequences from ML0008, ML0126, ML0308, ML1057, ML2028, ML2038, ML2498 proteins were evaluated, and the B-cell epitopes QASVAYPATSYADFRAHNHWWNGP, SLQRSISPNSYNTARVDP and QLLGQTADVAGAAKSGPVQPMGDRGSVSPVGQ were considered M. leprae-specific and used to construct the gene encoding the recombinant antigen. The gene was constructed, the recombinant protein was expressed, purified and tested in ELISA using 252 sera, which contained samples from multibacillary (MB) or paucibacillary (PB) leprosy patients, from their household contacts and healthy individuals, as well as from patients with Chagas disease, visceral and tegumentary leishmaniases (VL/TL), malaria, tuberculosis, and HIV. Sensitivity (Se) and specificity (Sp) for MB and PB samples compared to sera from both healthy subjects and individuals with cross-reactive diseases were 100%. The Se value for MB and PB samples compared to sera from household contacts was 100%, but Sp was 64%. In conclusion, data suggest that this protein could be considered in future studies for leprosy diagnosis.
Collapse
Affiliation(s)
- Bárbara P N Assis
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil; Fundação Hospitalar do Estado de Minas Gerais, Hospital Eduardo de Menezes, Belo Horizonte, 30622-020, Minas Gerais, Brazil
| | - Ana T Chaves
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Daniela P Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Mariana M Cardoso
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Camila S Freitas
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Isabela A G Pereira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Raquel S B Câmara
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Vívian T Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Ana Laura G de Oliveira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Ricardo A Machado-de-Ávila
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, 88806-000, Santa Catarina, Brazil
| | - Alexsandro S Galdino
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Divinópolis, 35.501-296, Minas Gerais e Instituto Nacional de Ciência e Tecnologia em Biotecnologia Industrial (INCT-BI), Brasil
| | - Miguel A Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José S/N, Umacollo, Arequipa, 04000, Peru
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, England, UK
| | - Denise U Gonçalves
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Lílian L Bueno
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil; Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Ricardo T Fujiwara
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil; Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, Brazil.
| | - Manoel O da Costa Rocha
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| |
Collapse
|
3
|
Brenner E, Sreevatsan S. Cold Cas: reevaluating the occurrence of CRISPR/Cas systems in Mycobacteriaceae. Front Microbiol 2023; 14:1204838. [PMID: 37440893 PMCID: PMC10333696 DOI: 10.3389/fmicb.2023.1204838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/22/2023] [Indexed: 07/15/2023] Open
Abstract
Bacterial CRISPR/Cas systems target foreign genetic elements such as phages and regulate gene expression by some pathogens, even in the host. The system is a marker for evolutionary history and has been used for inferences in Mycobacterium tuberculosis for 30 years. However, knowledge about mycobacterial CRISPR/Cas systems remains limited. It is believed that Type III-A Cas systems are exclusive to Mycobacterium canettii and the M. tuberculosis complex (MTBC) of organisms and that very few of the >200 diverse species of non-tuberculous mycobacteria (NTM) possess any CRISPR/Cas system. This study sought unreported CRISPR/Cas loci across NTM to better understand mycobacterial evolution, particularly in species phylogenetically near the MTBC. An analysis of available mycobacterial genomes revealed that Cas systems are widespread across Mycobacteriaceae and that some species contain multiple types. The phylogeny of Cas loci shows scattered presence in many NTM, with variation even within species, suggesting gains/losses of these loci occur frequently. Cas Type III-A systems were identified in pathogenic Mycobacterium heckeshornense and the geological environmental isolate Mycobacterium SM1. In summary, mycobacterial CRISPR/Cas systems are numerous, Type III-A systems are unreliable as markers for MTBC evolution, and mycobacterial horizontal gene transfer appears to be a frequent source of genetic variation.
Collapse
Affiliation(s)
| | - Srinand Sreevatsan
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
4
|
Sugawara-Mikami M, Tanigawa K, Kawashima A, Kiriya M, Nakamura Y, Fujiwara Y, Suzuki K. Pathogenicity and virulence of Mycobacterium leprae. Virulence 2022; 13:1985-2011. [PMID: 36326715 PMCID: PMC9635560 DOI: 10.1080/21505594.2022.2141987] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leprosy is caused by Mycobacterium leprae (M. leprae) and M. lepromatosis, an obligate intracellular organism, and over 200,000 new cases occur every year. M. leprae parasitizes histiocytes (skin macrophages) and Schwann cells in the peripheral nerves. Although leprosy can be treated by multidrug therapy, some patients relapse or have a prolonged clinical course and/or experience leprosy reaction. These varying outcomes depend on host factors such as immune responses against bacterial components that determine a range of symptoms. To understand these host responses, knowledge of the mechanisms by which M. leprae parasitizes host cells is important. This article describes the characteristics of leprosy through bacteriology, genetics, epidemiology, immunology, animal models, routes of infection, and clinical findings. It also discusses recent diagnostic methods, treatment, and measures according to the World Health Organization (WHO), including prevention. Recently, the antibacterial activities of anti-hyperlipidaemia agents against other pathogens, such as M. tuberculosis and Staphylococcus aureus have been investigated. Our laboratory has been focused on the metabolism of lipids which constitute the cell wall of M. leprae. Our findings may be useful for the development of future treatments.
Collapse
Affiliation(s)
- Mariko Sugawara-Mikami
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan.,West Yokohama Sugawara Dermatology Clinic, Yokohama, Japan
| | - Kazunari Tanigawa
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Akira Kawashima
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Mitsuo Kiriya
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Yasuhiro Nakamura
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Yoko Fujiwara
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| |
Collapse
|
5
|
Mi Z, Wang Z, Xue X, Liu T, Wang C, Sun L, Yu G, Zhang Y, Shi P, Sun Y, Yang Y, Ma S, Wang Z, Yu Y, Liu J, Liu H, Zhang F. The immune-suppressive landscape in lepromatous leprosy revealed by single-cell RNA sequencing. Cell Discov 2022; 8:2. [PMID: 35013182 PMCID: PMC8748782 DOI: 10.1038/s41421-021-00353-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 11/07/2021] [Indexed: 12/12/2022] Open
Abstract
Lepromatous leprosy (L-LEP), caused by the massive proliferation of Mycobacterium leprae primarily in macrophages, is an ideal disease model for investigating the molecular mechanism of intracellular bacteria evading or modulating host immune response. Here, we performed single-cell RNA sequencing of both skin biopsies and peripheral blood mononuclear cells (PBMCs) of L-LEP patients and healthy controls. In L-LEP lesions, we revealed remarkable upregulation of APOE expression that showed a negative correlation with the major histocompatibility complex II gene HLA-DQB2 and MIF, which encodes a pro-inflammatory and anti-microbial cytokine, in the subset of macrophages exhibiting a high expression level of LIPA. The exhaustion of CD8+ T cells featured by the high expression of TIGIT and LAG3 in L-LEP lesions was demonstrated. Moreover, remarkable enhancement of inhibitory immune receptors mediated crosstalk between skin immune cells was observed in L-LEP lesions. For PBMCs, a high expression level of APOE in the HLA-DRhighFBP1high monocyte subset and the expansion of regulatory T cells were found to be associated with L-LEP. These findings revealed the primary suppressive landscape in the L-LEP patients, providing potential targets for the intervention of intracellular bacteria caused persistent infections.
Collapse
Affiliation(s)
- Zihao Mi
- grid.410587.fShandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong China
| | - Zhenzhen Wang
- grid.410587.fShandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong China
| | - Xiaotong Xue
- grid.410587.fShandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong China
| | - Tingting Liu
- grid.410587.fShandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong China
| | - Chuan Wang
- grid.410587.fShandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong China
| | - Lele Sun
- grid.410587.fShandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong China
| | - Gongqi Yu
- grid.410587.fShandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong China
| | - Yuan Zhang
- grid.410587.fShandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong China
| | - Peidian Shi
- grid.410587.fShandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong China
| | - Yonghu Sun
- grid.410587.fShandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong China
| | - Yongliang Yang
- grid.460018.b0000 0004 1769 9639Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong China
| | - Shanshan Ma
- grid.410587.fShandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong China
| | - Zhe Wang
- grid.410587.fShandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong China
| | - Yueqian Yu
- grid.410587.fShandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong China
| | - Jianjun Liu
- grid.418377.e0000 0004 0620 715XHuman Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
6
|
Papadopoulos AO, Ealand C, Gordhan BG, VanNieuwenhze M, Kana BD. Characterisation of a putative M23-domain containing protein in Mycobacterium tuberculosis. PLoS One 2021; 16:e0259181. [PMID: 34784363 PMCID: PMC8594824 DOI: 10.1371/journal.pone.0259181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/14/2021] [Indexed: 12/01/2022] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis remains a global health concern, further compounded by the high rates of HIV-TB co-infection and emergence of multi- and extensive drug resistant TB, all of which have hampered efforts to eradicate this disease. As a result, novel anti-tubercular interventions are urgently required, with the peptidoglycan component of the M. tuberculosis cell wall emerging as an attractive drug target. Peptidoglycan M23 endopeptidases can function as active cell wall hydrolases or degenerate activators of hydrolases in a variety of bacteria, contributing to important processes such as bacterial growth, division and virulence. Herein, we investigate the function of the Rv0950-encoded putative M23 endopeptidase in M. tuberculosis. In silico analysis revealed that this protein is conserved in mycobacteria, with a zinc-binding catalytic site predictive of hydrolytic activity. Transcript analysis indicated that expression of Rv0950c was elevated during lag and log phases of growth and reduced in stationary phase. Deletion of Rv0950c yielded no defects in growth, colony morphology, antibiotic susceptibility or intracellular survival but caused a reduction in cell length. Staining with a monopeptide-derived fluorescent D-amino acid, which spatially reports on sites of active PG biosynthesis or repair, revealed an overall reduction in uptake of the probe in ΔRv0950c. When stained with a dipeptide probe in the presence of cell wall damaging agents, the ΔRv0950c mutant displayed reduced sidewall labelling. As bacterial peptidoglycan metabolism is important for survival and pathogenesis, the role of Rv0950c and other putative M23 endopeptidases in M. tuberculosis should be explored further.
Collapse
Affiliation(s)
- Andrea Olga Papadopoulos
- Faculty of Health Sciences, DSI/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Christopher Ealand
- Faculty of Health Sciences, DSI/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Bhavna Gowan Gordhan
- Faculty of Health Sciences, DSI/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Michael VanNieuwenhze
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana, United States of America
| | - Bavesh Davandra Kana
- Faculty of Health Sciences, DSI/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
7
|
Zorrilla JG, Rial C, Cabrera D, Molinillo JMG, Varela RM, Macías FA. Pharmacological Activities of Aminophenoxazinones. Molecules 2021; 26:3453. [PMID: 34200139 PMCID: PMC8201375 DOI: 10.3390/molecules26113453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 01/21/2023] Open
Abstract
Aminophenoxazinones are degradation products resulting from the metabolism of different plant species, which comprise a family of natural products well known for their pharmacological activities. This review provides an overview of the pharmacological properties and applications proved by these compounds and their structural derivatives during 2000-2021. The bibliography was selected according to our purpose from the references obtained in a SciFinder database search for the Phx-3 structure (the base molecule of the aminophenoxazinones). Compounds Phx-1 and Phx-3 are among the most studied, especially as anticancer drugs for the treatment of gastric and colon cancer, glioblastoma and melanoma, among others types of relevant cancers. The main information available in the literature about their mechanisms is also described. Similarly, antibacterial, antifungal, antiviral and antiparasitic activities are presented, including species related directly or indirectly to significant diseases. Therefore, we present diverse compounds based on aminophenoxazinones with high potential as drugs, considering their levels of activity and few adverse effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Francisco A. Macías
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus CEIA3, School of Science, University of Cadiz, 11510 Puerto Real, Cádiz, Spain; (J.G.Z.); (C.R.); (D.C.); (J.M.G.M.); (R.M.V.)
| |
Collapse
|
8
|
Yasmin H, Varghese PM, Bhakta S, Kishore U. Pathogenesis and Host Immune Response in Leprosy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:155-177. [PMID: 34661895 DOI: 10.1007/978-3-030-67452-6_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Leprosy is an ancient insidious disease caused by Mycobacterium leprae, where the skin and peripheral nerves undergo chronic granulomatous infections, leading to sensory and motor impairment with characteristic deformities. Susceptibility to leprosy and its disease state are determined by the manifestation of innate immune resistance mediated by cells of monocyte lineage. Due to insufficient innate resistance, granulomatous infection is established, influencing the specific cellular immunity. The clinical presentation of leprosy ranges between two stable polar forms (tuberculoid to lepromatous) and three unstable borderline forms. The tuberculoid form involves Th1 response, characterized by a well demarcated granuloma, infiltrated by CD4+ T lymphocytes, containing epitheloid and multinucleated giant cells. In the lepromatous leprosy, there is no characteristic granuloma but only unstructured accumulation of ineffective macrophages containing engulfed pathogens. Th1 response, characterised by IFN-γ and IL-2 production, activates macrophages in order to kill intracellular pathogens. Conversely, a Th2 response, characterized by the production of IL-4, IL-5 and IL-10, helps in antibody production and consequently downregulates the cell-mediated immunity induced by the Th1 response. M. lepare has a long generation time and its inability to grow in culture under laboratory conditions makes its study challenging. The nine-banded armadillo still remains the best clinical and immunological model to study host-pathogen interaction in leprosy. In this chapter, we present cellular morphology and the genomic uniqueness of M. leprae, and how the pathogen shows tropism for Schwann cells, macrophages and dendritic cells.
Collapse
Affiliation(s)
- Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Praveen Mathews Varghese
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK.,School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sanjib Bhakta
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
9
|
The ATP-Binding Cassette (ABC) Transport Systems in Mycobacterium tuberculosis: Structure, Function, and Possible Targets for Therapeutics. BIOLOGY 2020; 9:biology9120443. [PMID: 33291531 PMCID: PMC7761784 DOI: 10.3390/biology9120443] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022]
Abstract
Simple Summary Mycobacterium tuberculosis is a bacterium of great medical importance because it causes tuberculosis, a disease that affects millions of people worldwide. Two important features are related to this bacterium: its ability to infect and survive inside the host, minimizing the immune response, and the burden of clinical isolates that are highly resistant to antibiotics treatment. These two phenomena are directly affected by cell envelope proteins, such as proteins from the ATP-Binding Cassette (ABC transporters) superfamily. In this review, we have compiled information on all the M. tuberculosis ABC transporters described so far, both from a functional and structural point of view, and show their relevance for the bacillus and the potential targets for studies aiming to control the microorganism and structural features. Abstract Mycobacterium tuberculosis is the etiological agent of tuberculosis (TB), a disease that affects millions of people in the world and that is associated with several human diseases. The bacillus is highly adapted to infect and survive inside the host, mainly because of its cellular envelope plasticity, which can be modulated to adapt to an unfriendly host environment; to manipulate the host immune response; and to resist therapeutic treatment, increasing in this way the drug resistance of TB. The superfamily of ATP-Binding Cassette (ABC) transporters are integral membrane proteins that include both importers and exporters. Both types share a similar structural organization, yet only importers have a periplasmic substrate-binding domain, which is essential for substrate uptake and transport. ABC transporter-type importers play an important role in the bacillus physiology through the transport of several substrates that will interfere with nutrition, pathogenesis, and virulence. Equally relevant, exporters have been involved in cell detoxification, nutrient recycling, and antibiotics and drug efflux, largely affecting the survival and development of multiple drug-resistant strains. Here, we review known ABC transporters from M. tuberculosis, with particular focus on the diversity of their structural features and relevance in infection and drug resistance.
Collapse
|
10
|
Whitaker M, Ruecker N, Hartman T, Klevorn T, Andres J, Kim J, Rhee K, Ehrt S. Two interacting ATPases protect Mycobacterium tuberculosis from glycerol and nitric oxide toxicity. J Bacteriol 2020; 202:JB.00202-20. [PMID: 32482725 PMCID: PMC8404711 DOI: 10.1128/jb.00202-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/28/2020] [Indexed: 01/29/2023] Open
Abstract
The Mycobacterium tuberculosis H37Rv genome has been sequenced and annotated over 20 years ago, yet roughly half of the protein-coding genes still lack a predicted function. We characterized two genes of unknown function, rv3679 and rv3680, for which inconsistent findings regarding their importance for virulence in mice have been reported. We confirmed that a rv3679-80 deletion mutant (Δrv3679-80) was virulent in mice and discovered that Δrv3679-80 suffered from a glycerol-dependent recovery defect on agar plates following mouse infection. Glycerol also exacerbated killing of Δrv3679-80 by nitric oxide. Rv3679-Rv3680 have previously been shown to form a complex with ATPase activity and we demonstrate that the ability of M. tuberculosis to cope with elevated levels of glycerol and nitric oxide requires intact ATP-binding motifs in both Rv3679 and Rv3680. Inactivation of glycerol kinase or Rv2370c, a protein of unknown function, suppressed glycerol mediated toxicity in Δrv3679-80 Glycerol catabolism led to increased intracellular methylglyoxal pools and Δrv3679-80 was hypersusceptible to extracellular methylglyoxal suggesting that glycerol toxicity in Δrv3679-80 is caused by methylglyoxal. Rv3679 and Rv3680 interacted with Rv1509, and Rv3679 had numerous additional interactors including proteins of the type II fatty acid synthase (FASII) pathway and mycolic acid modifying enzymes linking Rv3679 to fatty acid or lipid synthesis. This work provides experimentally determined roles for Rv3679 and Rv3680 and stimulates future research on these and other proteins of unknown function.Importance A better understanding of the pathogenesis of tuberculosis requires a better understanding of gene function in M. tuberculosis This work provides the first functional insight into the Rv3679/Rv3680 ATPase complex. We demonstrate that M. tuberculosis requires this complex and specifically its ATPase activity to resist glycerol and nitric oxide toxicity. We provide evidence that the glycerol-derived metabolite methylglyoxal causes toxicity in the absence of Rv3679/Rv3680. We further show that glycerol-dependent toxicity is reversed when glycerol kinase (GlpK) is inactivated. Our work uncovered other genes of unknown function that interact with Rv3679 and/or Rv3680 genetically or physically, underscoring the importance of understanding uncharacterized genes.
Collapse
Affiliation(s)
- Meredith Whitaker
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA
| | - Nadine Ruecker
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Travis Hartman
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Thais Klevorn
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA
| | - Jaclynn Andres
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Jia Kim
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Kyu Rhee
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, USA
| |
Collapse
|
11
|
Gallant J, Mouton J, Ummels R, Ten Hagen-Jongman C, Kriel N, Pain A, Warren RM, Bitter W, Heunis T, Sampson SL. Identification of gene fusion events in Mycobacterium tuberculosis that encode chimeric proteins. NAR Genom Bioinform 2020; 2:lqaa033. [PMID: 33575588 PMCID: PMC7671302 DOI: 10.1093/nargab/lqaa033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/16/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium tuberculosis is a facultative intracellular pathogen responsible for causing tuberculosis. The harsh environment in which M. tuberculosis survives requires this pathogen to continuously adapt in order to maintain an evolutionary advantage. However, the apparent absence of horizontal gene transfer in M. tuberculosis imposes restrictions in the ways by which evolution can occur. Large-scale changes in the genome can be introduced through genome reduction, recombination events and structural variation. Here, we identify a functional chimeric protein in the ppe38-71 locus, the absence of which is known to have an impact on protein secretion and virulence. To examine whether this approach was used more often by this pathogen, we further develop software that detects potential gene fusion events from multigene deletions using whole genome sequencing data. With this software we could identify a number of other putative gene fusion events within the genomes of M. tuberculosis isolates. We were able to demonstrate the expression of one of these gene fusions at the protein level using mass spectrometry. Therefore, gene fusions may provide an additional means of evolution for M. tuberculosis in its natural environment whereby novel chimeric proteins and functions can arise.
Collapse
Affiliation(s)
- James Gallant
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa.,Section of Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Jomien Mouton
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| | - Roy Ummels
- Medical Microbiology and Infection Control, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
| | - Corinne Ten Hagen-Jongman
- Section of Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Nastassja Kriel
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| | - Arnab Pain
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.,Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, 001-0020, N20 W10 Kita-ku, Sapporo, Japan
| | - Robin M Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| | - Wilbert Bitter
- Section of Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands.,Medical Microbiology and Infection Control, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
| | - Tiaan Heunis
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa.,Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Samantha L Sampson
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Science, Faculty of Medicine and Health Science, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| |
Collapse
|
12
|
Rastogi R, Kaur G, Maan P, Bhatnagar A, Narang T, Dogra S, Kaur J. Molecular characterization and immunogenic function of ML1899 (LipG) of Mycobacterium leprae. J Med Microbiol 2019; 68:1629-1640. [PMID: 31553301 DOI: 10.1099/jmm.0.001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. ML1899 is conserved in all mycobacterium sp. and is a middle member of mle-ML1898 operon involved in mycolic acid modification.Aim. In the present study attempts were made to characterize ML1899 in detail.Methodology. Bioinformatics tools were used for prediction of active-site residues, antigenic epitopes and a three-dimensional model of protein. The gene was cloned, expressed and purified as His-tagged protein in Escherichia coli for biophysical/biochemical characterization. Recombinant protein was used to treat THP-1 cells to study change in production of nitric oxide (NO), reactive oxygen species (ROS), cytokines and chemokines using flowcytometry/ELISA.Results. In silico analysis predicted ML1899 as a member of α/β hydrolase family with GXSXG-motif and Ser126, His282, Asp254 as active-site residues that were confirmed by site-directed mutagensis. ML1899 exhibited esterase activity. It hydrolysed pNP-butyrate as optimum substrate at pH 8.0 and 50 °C with 5.56 µM-1 min-1 catalytic efficiency. The enzyme exhibited stability up to 60 °C temperature and between pH 6.0 to 9.0. K m, V max and specific activity of ML1899 were calculated to be 400 µM, 40 µmoles min-1 ml-1 and 27 U mg- 1, respectively. ML1899 also exhibited phospholipase activity. The protein affected the survival of macrophages when treated at higher concentration. ML1899 enhanced ROS/NO production and up-regulated pro-inflammatory cytokines and chemokine including TNF-α, IFN-γ, IL-6 and IL-8 in macrophages. ML1899 was also observed to elicit humoral response in 69 % of leprosy patients.Conclusion. These results suggested that ML1899, an esterase could up-regulate the immune responses in favour of macrophages at a low concentration but kills the THP-1 macrophages cells at a higher concentration.
Collapse
Affiliation(s)
- Ruchi Rastogi
- Department of Biochemistry, BMS Block 2, South Campus, Panjab University, Sector 25, Chandigarh 160014, India
| | - Gurkamaljit Kaur
- Department of Biotechnology, BMS Block 1, South Campus, Panjab University, Sector 25, Chandigarh 160014, India
| | - Pratibha Maan
- Present address: Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, 160012, India.,Department of Biotechnology, BMS Block 1, South Campus, Panjab University, Sector 25, Chandigarh 160014, India
| | - Archana Bhatnagar
- Department of Biochemistry, BMS Block 2, South Campus, Panjab University, Sector 25, Chandigarh 160014, India
| | - Tarun Narang
- Department of Dermatology, Veberology and Leprology, PGIMER, Chandigarh, 160012, India
| | - Sunil Dogra
- Department of Dermatology, Veberology and Leprology, PGIMER, Chandigarh, 160012, India
| | - Jagdeep Kaur
- Department of Biotechnology, BMS Block 1, South Campus, Panjab University, Sector 25, Chandigarh 160014, India
| |
Collapse
|
13
|
Chavarro-Portillo B, Soto CY, Guerrero MI. Mycobacterium leprae's evolution and environmental adaptation. Acta Trop 2019; 197:105041. [PMID: 31152726 DOI: 10.1016/j.actatropica.2019.105041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 11/24/2022]
Abstract
Leprosy is an ancient disease caused by the acid-fast bacillus Mycobacterium leprae, also known as Hansen's bacillus. M. leprae is an obligate intracellular microorganism with a marked Schwann cell tropism and is the only human pathogen capable of invading the superficial peripheral nerves. The transmission mechanism of M. leprae is not fully understood; however, the nasal mucosa is accepted as main route of M. leprae entry to the human host. The complete sequencing and the comparative genome analysis show that M. leprae underwent a genome reductive evolution process, as result of lifestyle change and adaptation to different environments; some of lost genes are homologous to those of host cells. Thus, M. leprae reduced its genome size to 3.3 Mbp, contributing to obtain the lowest GC content (approximately 58%) among mycobacteria. The M. leprae genome contains 1614 open reading frames coding for functional proteins, and 1310 pseudogenes corresponding to 41% of the genome, approximately. Comparative analyses to different microorganisms showed that M. leprae possesses the highest content of pseudogenes among pathogenic and non-pathogenic bacteria and archaea. The pathogen adaptation into host cells, as the Schwann cells, brought about the reduction of the genome and induced multiple gene inactivation. The present review highlights the characteristics of genome's reductive evolution that M. leprae experiences in the genetic aspects compared with other pathogens. The possible mechanisms of pseudogenes formation are discussed.
Collapse
|
14
|
Bohlin J, Pettersson JHO. Evolution of Genomic Base Composition: From Single Cell Microbes to Multicellular Animals. Comput Struct Biotechnol J 2019; 17:362-370. [PMID: 30949307 PMCID: PMC6429543 DOI: 10.1016/j.csbj.2019.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/07/2023] Open
Abstract
Whole genome sequencing (WGS) of thousands of microbial genomes has provided considerable insight into evolutionary mechanisms in the microbial world. While substantially fewer eukaryotic genomes are available for analyses the number is rapidly increasing. This mini-review summarizes broadly evolutionary dynamics of base composition in the different domains of life from the perspective of prokaryotes. Common and different evolutionary mechanisms influencing genomic base composition in eukaryotes and prokaryotes are discussed. The conclusion from the data currently available suggests that while there are similarities there are also striking differences in how genomic base composition has evolved within prokaryotes and eukaryotes. For instance, homologous recombination appears to increase GC content locally in eukaryotes due to a non-selective process termed GC-biased gene conversion (gBGC). For prokaryotes on the other hand, increase in genomic GC content seems to be driven by the environment and selection. We find that similar phenomena observed for some organisms in each respective domain may be caused by very different mechanisms: while gBGC and recombination rates appear to explain the negative correlation between GC3 (GC content based on the third codon nucleotides) and genome size in some eukaryotes uptake of AT rich DNA sequences is the main reason for a similar negative correlation observed in prokaryotes. We provide further examples that indicate that base composition in prokaryotes and eukaryotes have evolved under very different constraints.
Collapse
Affiliation(s)
- Jon Bohlin
- Norwegian Institute of Public Health, Division of Infection Control and Environmental Health, Department of Infectious Disease Epidemiology and Modelling, Lovisenberggata 8, 0456 Oslo, Norway.,Centre for Fertility and Health, Norwegian Institute of Public Health, PO-Box 222 Skøyen, N-0213 Oslo, Norway.,Norwegian University of Life Sciences, Faculty of Veterinary Sciences, Production Animal Clinical Sciences, Ullevålsveien 72, 0454 Oslo, Norway
| | - John H-O Pettersson
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School the University of Sydney, New South Wales 2006, Australia.,Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Public Health Agency of Sweden, Nobels vg 18, SE-171 82 Solna, Sweden
| |
Collapse
|
15
|
Aspatwar A, Winum JY, Carta F, Supuran CT, Hammaren M, Parikka M, Parkkila S. Carbonic Anhydrase Inhibitors as Novel Drugs against Mycobacterial β-Carbonic Anhydrases: An Update on In Vitro and In Vivo Studies. Molecules 2018; 23:molecules23112911. [PMID: 30413024 PMCID: PMC6278287 DOI: 10.3390/molecules23112911] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 12/18/2022] Open
Abstract
Mycobacteria cause a variety of diseases, such as tuberculosis, leprosy, and opportunistic diseases in immunocompromised people. The treatment of these diseases is problematic, necessitating the development of novel treatment strategies. Recently, β-carbonic anhydrases (β-CAs) have emerged as potential drug targets in mycobacteria. The genomes of mycobacteria encode for three β-CAs that have been cloned and characterized from Mycobacterium tuberculosis (Mtb) and the crystal structures of two of the enzymes have been determined. Different classes of inhibitor molecules against Mtb β-CAs have subsequently been designed and have been shown to inhibit these mycobacterial enzymes in vitro. The inhibition of these centrally important mycobacterial enzymes leads to reduced growth of mycobacteria, lower virulence, and impaired biofilm formation. Thus, the inhibition of β-CAs could be a novel approach for developing drugs against the severe diseases caused by pathogenic mycobacteria. In the present article, we review the data related to in vitro and in vivo inhibition studies in the field.
Collapse
Affiliation(s)
- Ashok Aspatwar
- Faculty of Medicine and Health Technology, University of Tampere, 33014 Tampere, Finland.
| | - Jean-Yves Winum
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, ENSCM, Université de Montpellier, 34296 Montpellier CEDEX 05, France.
| | - Fabrizio Carta
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Milka Hammaren
- Faculty of Medicine and Health Technology, University of Tampere, 33014 Tampere, Finland.
| | - Mataleena Parikka
- Faculty of Medicine and Health Technology, University of Tampere, 33014 Tampere, Finland.
- Oral and Maxillofacial Unit, Tampere University Hospital, 33521 Tampere, Finland.
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, University of Tampere, 33014 Tampere, Finland.
- Fimlab Ltd. and Tampere University Hospital, 33520 Tampere, Finland.
| |
Collapse
|
16
|
Lefebvre C, Boulon R, Ducoux M, Gavalda S, Laval F, Jamet S, Eynard N, Lemassu A, Cam K, Bousquet MP, Bardou F, Burlet-Schiltz O, Daffé M, Quémard A. HadD, a novel fatty acid synthase type II protein, is essential for alpha- and epoxy-mycolic acid biosynthesis and mycobacterial fitness. Sci Rep 2018; 8:6034. [PMID: 29662082 PMCID: PMC5902629 DOI: 10.1038/s41598-018-24380-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/03/2018] [Indexed: 02/05/2023] Open
Abstract
Mycolic acids (MAs) have a strategic location within the mycobacterial envelope, deeply influencing its architecture and permeability, and play a determinant role in the pathogenicity of mycobacteria. The fatty acid synthase type II (FAS-II) multienzyme system is involved in their biosynthesis. A combination of pull-downs and proteomics analyses led to the discovery of a mycobacterial protein, HadD, displaying highly specific interactions with the dehydratase HadAB of FAS-II. In vitro activity assays and homology modeling showed that HadD is, like HadAB, a hot dog folded (R)-specific hydratase/dehydratase. A hadD knockout mutant of Mycobacterium smegmatis produced only the medium-size alpha’-MAs. Data strongly suggest that HadD is involved in building the third meromycolic segment during the late FAS-II elongation cycles, leading to the synthesis of the full-size alpha- and epoxy-MAs. The change in the envelope composition induced by hadD inactivation strongly altered the bacterial fitness and capacities to aggregate, assemble into colonies or biofilms and spread by sliding motility, and conferred a hypersensitivity to the firstline antimycobacterial drug rifampicin. This showed that the cell surface properties and the envelope integrity were greatly affected. With the alarmingly increasing case number of nontuberculous mycobacterial diseases, HadD appears as an attractive target for drug development.
Collapse
Affiliation(s)
- Cyril Lefebvre
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Richard Boulon
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Manuelle Ducoux
- Département Biologie Structurale & Biophysique, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Sabine Gavalda
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Françoise Laval
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Stevie Jamet
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Nathalie Eynard
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Anne Lemassu
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Kaymeuang Cam
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Marie-Pierre Bousquet
- Département Biologie Structurale & Biophysique, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Fabienne Bardou
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Odile Burlet-Schiltz
- Département Biologie Structurale & Biophysique, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Mamadou Daffé
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Annaïk Quémard
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France.
| |
Collapse
|
17
|
Abstract
How Mycobacterium leprae infection causes demyelination to mediate leprosy pathogenesis has been a long-standing question. In a recent Cell paper, Madigan et al. (2017) use a zebrafish model of M. leprae infection to show that infected macrophages patrol axons to trigger mitochondrial damage and induce demyelination of nerve cells.
Collapse
|
18
|
Abstract
Mycobacterium leprae must adopt a metabolic strategy and undergo various metabolic alterations upon infection to survive inside the human body for years in a dormant state. A change in lipid homeostasis upon infection is highly pronounced in Mycobacterium leprae. Lipids play an essential role in the survival and pathogenesis of mycobacteria. Lipids are present in several forms and serve multiple roles from being a source of nutrition, providing rigidity, evading the host immune response to serving as virulence factors, etc. The synthesis and degradation of lipids is a highly regulated process and is the key to future drug designing and diagnosis for mycobacteria. In the current review, an account of the distinct roles served by lipids, the mechanism of their synthesis and degradation has been elucidated.
Collapse
Affiliation(s)
- Gurkamaljit Kaur
- Research Scholar, Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| |
Collapse
|
19
|
Das M, Sharma M, Vedithi S, Roy A, Ebenezer M. Sequence homology and expression profile of genes associated with dna repair pathways in Mycobacterium leprae. Int J Mycobacteriol 2017; 6:365-378. [DOI: 10.4103/ijmy.ijmy_111_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
20
|
Comparative analysis of metabolic machinery of Frankia along with other selected actinobacteria. Symbiosis 2016. [DOI: 10.1007/s13199-016-0410-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Sultana R, Tanneeru K, Kumar ABR, Guruprasad L. Prediction of Certain Well-Characterized Domains of Known Functions within the PE and PPE Proteins of Mycobacteria. PLoS One 2016; 11:e0146786. [PMID: 26891364 PMCID: PMC4758615 DOI: 10.1371/journal.pone.0146786] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/22/2015] [Indexed: 11/18/2022] Open
Abstract
The PE and PPE protein family are unique to mycobacteria. Though the complete genome sequences for over 500 M. tuberculosis strains and mycobacterial species are available, few PE and PPE proteins have been structurally and functionally characterized. We have therefore used bioinformatics tools to characterize the structure and function of these proteins. We selected representative members of the PE and PPE protein family by phylogeny analysis and using structure-based sequence annotation identified ten well-characterized protein domains of known function. Some of these domains were observed to be common to all mycobacterial species and some were species specific.
Collapse
Affiliation(s)
- Rafiya Sultana
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| | | | | | | |
Collapse
|
22
|
Yamaryo-Botte Y, Rainczuk AK, Lea-Smith DJ, Brammananth R, van der Peet PL, Meikle P, Ralton JE, Rupasinghe TWT, Williams SJ, Coppel RL, Crellin PK, McConville MJ. Acetylation of trehalose mycolates is required for efficient MmpL-mediated membrane transport in Corynebacterineae. ACS Chem Biol 2015; 10:734-46. [PMID: 25427102 DOI: 10.1021/cb5007689] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pathogenic species of Mycobacteria and Corynebacteria, including Mycobacterium tuberculosis and Corynebacterium diphtheriae, synthesize complex cell walls that are rich in very long-chain mycolic acids. These fatty acids are synthesized on the inner leaflet of the cell membrane and are subsequently transported to the periplasmic space as trehalose monomycolates (TMM), where they are conjugated to other cell wall components and to TMM to form trehalose dimycolates (TDM). Mycobacterial TMM, and the equivalent Corynebacterium glutamicum trehalose corynomycolates (TMCM), are transported across the inner membrane by MmpL3, or NCgl0228 and NCgl2769, respectively, although little is known about how this process is regulated. Here, we show that transient acetylation of the mycolyl moiety of TMCM is required for periplasmic export. A bioinformatic search identified a gene in a cell wall biosynthesis locus encoding a putative acetyltransferase (M. tuberculosis Rv0228/C. glutamicum NCgl2759) that was highly conserved in all sequenced Corynebacterineae. Deletion of C. glutamicum NCgl2759 resulted in the accumulation of TMCM, with a concomitant reduction in surface transport of this glycolipid and syntheses of cell wall trehalose dicorynomycolates. Strikingly, loss of NCgl2759 was associated with a defect in the synthesis of a minor, and previously uncharacterized, glycolipid species. This lipid was identified as trehalose monoacetylcorynomycolate (AcTMCM) by mass spectrometry and chemical synthesis of the authentic standard. The in vitro synthesis of AcTMCM was dependent on acetyl-CoA, whereas in vivo [(14)C]-acetate pulse-chase labeling showed that this lipid was rapidly synthesized and turned over in wild-type and genetically complemented bacterial strains. Significantly, the biochemical and TMCM/TDCM transport phenotype observed in the ΔNCgl2759 mutant was phenocopied by inhibition of the activities of the two C. glutamicum MmpL3 homologues. Collectively, these data suggest that NCgl2759 is a novel TMCM mycolyl acetyltransferase (TmaT) that regulates transport of TMCM and is a potential drug target in pathogenic species.
Collapse
Affiliation(s)
| | | | | | | | | | - Peter Meikle
- Metabolomics
Laboratory, Baker IDI Heart and Diabetes Institute, 75 Commercial
Road, Melbourne, Victoria 3004, Australia
| | | | | | | | | | | | | |
Collapse
|
23
|
Lastória JC, Abreu MAMMD. Leprosy: review of the epidemiological, clinical, and etiopathogenic aspects - part 1. An Bras Dermatol 2014; 89:205-18. [PMID: 24770495 PMCID: PMC4008049 DOI: 10.1590/abd1806-4841.20142450] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/21/2013] [Indexed: 12/01/2022] Open
Abstract
Leprosy is caused by Mycobacterium leprae and has been known since biblical times. It
is still endemic in many regions of the world and a public health problem in Brazil.
The prevalence rate in 2011 reached 1.54 cases per 10,000 inhabitants in Brazil. The
mechanism of transmission of leprosy consists of prolonged close contact between
susceptible and genetically predisposed individuals and untreated multibacillary
patients. Transmission occurs through inhalation of bacilli present in upper airway
secretion. The nasal mucosa is the main entry or exit route of M. leprae. The deeper
understanding of the structural and biological characteristics of M. leprae, the
sequencing of its genome, along with the advances in understanding the mechanisms of
host immune response against the bacilli, dependent on genetic susceptibility, have
contributed to the understanding of the pathogenesis, variations in the clinical
characteristics, and progression of the disease. This article aims to update
dermatologist on epidemiological, clinical, and etiopathogenic leprosy aspects.
Collapse
Affiliation(s)
- Joel Carlos Lastória
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, SP, Brazil
| | | |
Collapse
|
24
|
Nuccio SP, Bäumler AJ. Comparative analysis of Salmonella genomes identifies a metabolic network for escalating growth in the inflamed gut. mBio 2014; 5:e00929-14. [PMID: 24643865 PMCID: PMC3967523 DOI: 10.1128/mbio.00929-14] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 11/29/2022] Open
Abstract
The Salmonella genus comprises a group of pathogens associated with illnesses ranging from gastroenteritis to typhoid fever. We performed an in silico analysis of comparatively reannotated Salmonella genomes to identify genomic signatures indicative of disease potential. By removing numerous annotation inconsistencies and inaccuracies, the process of reannotation identified a network of 469 genes involved in central anaerobic metabolism, which was intact in genomes of gastrointestinal pathogens but degrading in genomes of extraintestinal pathogens. This large network contained pathways that enable gastrointestinal pathogens to utilize inflammation-derived nutrients as well as many of the biochemical reactions used for the enrichment and biochemical discrimination of Salmonella serovars. Thus, comparative genome analysis identifies a metabolic network that provides clues about the strategies for nutrient acquisition and utilization that are characteristic of gastrointestinal pathogens. IMPORTANCE While some Salmonella serovars cause infections that remain localized to the gut, others disseminate throughout the body. Here, we compared Salmonella genomes to identify characteristics that distinguish gastrointestinal from extraintestinal pathogens. We identified a large metabolic network that is functional in gastrointestinal pathogens but decaying in extraintestinal pathogens. While taxonomists have used traits from this network empirically for many decades for the enrichment and biochemical discrimination of Salmonella serovars, our findings suggest that it is part of a "business plan" for growth in the inflamed gastrointestinal tract. By identifying a large metabolic network characteristic of Salmonella serovars associated with gastroenteritis, our in silico analysis provides a blueprint for potential strategies to utilize inflammation-derived nutrients and edge out competing gut microbes.
Collapse
Affiliation(s)
- Sean-Paul Nuccio
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | | |
Collapse
|
25
|
Anusuya S, Natarajan J. The eradication of leprosy: molecular modeling techniques for novel drug discovery. Expert Opin Drug Discov 2013; 8:1239-51. [PMID: 23924296 DOI: 10.1517/17460441.2013.826188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Leprosy is a slowly progressing bacterial infection caused by Mycobacterium leprae. The World Health Organization recommended multidrug therapy (MDT) which is extremely effective and halts the progress of the disease. Even though the objective of eliminating leprosy as a public health problem has been achieved successfully, leprosy is not yet eradicated. Furthermore, the long-term use of MDT results in single- and multidrug resistance. Therefore, there is still a need for new drug discovery for leprosy. AREAS COVERED The authors explain the importance of discovery of new drug to leprosy and the significance of homology modeling to drug discovery. This review highlights the principle steps, applications, and the resources of homology modeling. Finally, the authors emphasize the application of different structure-based drug design (SBDD) approaches to design novel therapeutics for leprosy. EXPERT OPINION MDT has proved to be effective in controlling infection, with prevalence of leprosy now predominantly isolated to the developing countries. The emergence of single- and multidrug-resistant strains of M. leprae has, however, provided some concern with the need for newer antibacterial agents. Drug resistance can be overcome by multi-targeted therapy. SBDD approaches, which reported many successful drugs, depend predominantly on the three-dimensional (3D) structure of drug targets. As of 2013, only very few experimental structures are available for M. leprae proteins. Hence, SBDD, in leprosy research, relies heavily on homology modeling to predict the 3D structure of drug targets and to design better therapeutics.
Collapse
Affiliation(s)
- Shanmugam Anusuya
- V.M.K.V. Engineering College, Department of Bioinformatics , Salem 636308, Tamil Nadu , India
| | | |
Collapse
|
26
|
Bacterial protein-O-mannosylating enzyme is crucial for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2013; 110:6560-5. [PMID: 23550160 DOI: 10.1073/pnas.1219704110] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A posttranslational protein O-mannosylation process resembling that found in fungi and animals has been reported in the major human pathogen Mycobacterium tuberculosis (Mtb) and related actinobacteria. However, the role and incidence of this process, which is essential in eukaryotes, have never been explored in Mtb. We thus analyzed the impact of interrupting O-mannosylation in the nonpathogenic saprophyte Mycobacterium smegmatis and in the human pathogen Mtb by inactivating the respective putative protein mannosyl transferase genes Msmeg_5447 and Rv1002c. Loss of protein O-mannosylation in both mutant strains was unambiguously demonstrated by efficient mass spectrometry-based glycoproteomics analysis. Unexpectedly, although the M. smegmatis phenotype was unaffected by the lack of manno-proteins, the Mtb mutant had severely impacted growth in vitro and in cellulo associated with a strong attenuation of its pathogenicity in immunocompromised mice. These data are unique in providing evidence of the biological significance of protein O-mannosylation in mycobacteria and demonstrate the crucial contribution of this protein posttranslational modification to Mtb virulence in the host.
Collapse
|
27
|
Gene expression profile and immunological evaluation of unique hypothetical unknown proteins of Mycobacterium leprae by using quantitative real-time PCR. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 20:181-90. [PMID: 23239802 DOI: 10.1128/cvi.00419-12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cell-mediated immunity (CMI)-based in vitro gamma interferon release assay (IGRA) of Mycobacterium leprae-specific antigens has potential as a promising diagnostic means to detect those individuals in the early stages of M. leprae infection. Diagnosis of leprosy is a major obstacle toward ultimate disease control and has been compromised in the past by the lack of specific markers. Comparative bioinformatic analysis among mycobacterial genomes identified potential M. leprae-specific proteins called "hypothetical unknowns." Due to massive gene decay and the prevalence of pseudogenes, it is unclear whether any of these proteins are expressed or are immunologically relevant. In this study, we performed cDNA-based quantitative real-time PCR to investigate the expression status of 131 putative open reading frames (ORFs) encoding hypothetical unknowns. Twenty-six of the M. leprae-specific antigen candidates showed significant levels of gene expression compared to that of ESAT-6 (ML0049), which is an important T cell antigen of low abundance in M. leprae. Fifteen of 26 selected antigen candidates were expressed and purified in Escherichia coli. The seroreactivity to these proteins of pooled sera from lepromatous leprosy patients and cavitary tuberculosis patients revealed that 9 of 15 recombinant hypothetical unknowns elicited M. leprae-specific immune responses. These nine proteins may be good diagnostic reagents to improve both the sensitivity and specificity of detection of individuals with asymptomatic leprosy.
Collapse
|
28
|
Busby B, Kristensen DM, Koonin EV. Contribution of phage-derived genomic islands to the virulence of facultative bacterial pathogens. Environ Microbiol 2012; 15:307-12. [PMID: 23035931 DOI: 10.1111/j.1462-2920.2012.02886.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Facultative pathogens have extremely dynamic pan-genomes, to a large extent derived from bacteriophages and other mobile elements. We developed a simple approach to identify phage-derived genomic islands and apply it to show that pathogens from diverse bacterial genera are significantly enriched in clustered phage-derived genes compared with related benign strains. These findings show that genome expansion by integration of prophages containing virulence factors is a major route of evolution of facultative bacterial pathogens.
Collapse
Affiliation(s)
- Ben Busby
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | |
Collapse
|
29
|
Zegeye ED, Balasingham SV, Laerdahl JK, Homberset H, Tønjum T. Mycobacterium tuberculosis RecG binds and unwinds model DNA substrates with a preference for Holliday junctions. MICROBIOLOGY-SGM 2012; 158:1982-1993. [PMID: 22628485 PMCID: PMC3542137 DOI: 10.1099/mic.0.058693-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The RecG enzyme, a superfamily 2 helicase, is present in nearly all bacteria. Here we report for the first time that the recG gene is also present in the genomes of most vascular plants as well as in green algae, but is not found in other eukaryotes or archaea. The precise function of RecG is poorly understood, although ample evidence shows that it plays critical roles in DNA repair, recombination and replication. We further demonstrate that Mycobacterium tuberculosis RecG (RecGMtb) DNA binding activity had a broad substrate specificity, whereas it only unwound branched-DNA substrates such as Holliday junctions (HJs), replication forks, D-loops and R-loops, with a strong preference for the HJ as a helicase substrate. In addition, RecGMtb preferentially bound relatively long (≥40 nt) ssDNA, exhibiting a higher affinity for the homopolymeric nucleotides poly(dT), poly(dG) and poly(dC) than for poly(dA). RecGMtb helicase activity was supported by hydrolysis of ATP or dATP in the presence of Mg2+, Mn2+, Cu2+ or Fe2+. Like its Escherichia coli orthologue, RecGMtb is also a strictly DNA-dependent ATPase.
Collapse
Affiliation(s)
- Ephrem Debebe Zegeye
- Centre for Molecular Biology and Neuroscience and Department of Microbiology, University of Oslo, Oslo, Norway
| | - Seetha V Balasingham
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway.,Centre for Molecular Biology and Neuroscience and Department of Microbiology, University of Oslo, Oslo, Norway
| | - Jon K Laerdahl
- Bioinformatics Core Facility, Department of Informatics, University of Oslo, Oslo, Norway.,Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway.,Centre for Molecular Biology and Neuroscience and Department of Microbiology, University of Oslo, Oslo, Norway
| | - Håvard Homberset
- Centre for Molecular Biology and Neuroscience and Department of Microbiology, University of Oslo, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway.,Centre for Molecular Biology and Neuroscience and Department of Microbiology, University of Oslo, Oslo, Norway
| |
Collapse
|
30
|
Hughes AL. Evolution of adaptive phenotypic traits without positive Darwinian selection. Heredity (Edinb) 2012; 108:347-53. [PMID: 22045380 PMCID: PMC3313059 DOI: 10.1038/hdy.2011.97] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/14/2011] [Accepted: 07/19/2011] [Indexed: 12/29/2022] Open
Abstract
Recent evidence suggests the frequent occurrence of a simple non-Darwinian (but non-Lamarckian) model for the evolution of adaptive phenotypic traits, here entitled the plasticity-relaxation-mutation (PRM) mechanism. This mechanism involves ancestral phenotypic plasticity followed by specialization in one alternative environment and thus the permanent expression of one alternative phenotype. Once this specialization occurs, purifying selection on the molecular basis of other phenotypes is relaxed. Finally, mutations that permanently eliminate the pathways leading to alternative phenotypes can be fixed by genetic drift. Although the generality of the PRM mechanism is at present unknown, I discuss evidence for its widespread occurrence, including the prevalence of exaptations in evolution, evidence that phenotypic plasticity has preceded adaptation in a number of taxa and evidence that adaptive traits have resulted from loss of alternative developmental pathways. The PRM mechanism can easily explain cases of explosive adaptive radiation, as well as recently reported cases of apparent adaptive evolution over ecological time.
Collapse
Affiliation(s)
- A L Hughes
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
31
|
Bohlin J, van Passel MWJ, Snipen L, Kristoffersen AB, Ussery D, Hardy SP. Relative entropy differences in bacterial chromosomes, plasmids, phages and genomic islands. BMC Genomics 2012; 13:66. [PMID: 22325062 PMCID: PMC3305612 DOI: 10.1186/1471-2164-13-66] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 02/10/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We sought to assess whether the concept of relative entropy (information capacity), could aid our understanding of the process of horizontal gene transfer in microbes. We analyzed the differences in information capacity between prokaryotic chromosomes, genomic islands (GI), phages, and plasmids. Relative entropy was estimated using the Kullback-Leibler measure. RESULTS Relative entropy was highest in bacterial chromosomes and had the sequence chromosomes > GI > phage > plasmid. There was an association between relative entropy and AT content in chromosomes, phages, plasmids and GIs with the strongest association being in phages. Relative entropy was also found to be lower in the obligate intracellular Mycobacterium leprae than in the related M. tuberculosis when measured on a shared set of highly conserved genes. CONCLUSIONS We argue that relative entropy differences reflect how plasmids, phages and GIs interact with microbial host chromosomes and that all these biological entities are, or have been, subjected to different selective pressures. The rate at which amelioration of horizontally acquired DNA occurs within the chromosome is likely to account for the small differences between chromosomes and stably incorporated GIs compared to the transient or independent replicons such as phages and plasmids.
Collapse
Affiliation(s)
- Jon Bohlin
- Norwegian School of Veterinary Science, EpiCentre, Department of Food Safety and Infection biology, Ullevålsveien 72, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
32
|
Manca C, Peixoto B, Malaga W, Guilhot C, Kaplan G. Modulation of the cytokine response in human monocytes by mycobacterium leprae phenolic glycolipid-1. J Interferon Cytokine Res 2011; 32:27-33. [PMID: 21981546 DOI: 10.1089/jir.2011.0044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Leprosy is a chronic but treatable infectious disease caused by the intracellular pathogen Mycobacterium leprae. M. leprae cell wall is characterized by a unique phenolic glycolipid-1 (PGL-1) reported to have several immune functions. We have examined the role of PGL-1 in the modulation of monocyte cytokine/chemokine production in naive human monocytes. PGL-1 in its purified form or expressed in a recombinant Mycobacterium bovis Bacillus Colmette-Guérin (BCG) background (rBCG-PGL-1) was tested. We found that PGL-1 selectively modulated the induction of specific monocyte cytokines and chemokines and, when used as prestimulus, exerted priming and/or inhibitory effects on the induction of selected cytokines/chemokines in response to a second stimulus. Taken together, the results of this study support a modulatory role for PGL-1 in the innate immune response to M. leprae. Thus, PGL-1 may play an important role in the development of the anergic clinical forms of disease and in tissue damage seen in lepromatous patients and during the reactional states of leprosy.
Collapse
Affiliation(s)
- Claudia Manca
- Laboratory of Mycobacterial Immunity and Pathogenesis, Public Health Research Institute at the International Center for Public Health, Newark, New Jersey 07103-3535, USA
| | | | | | | | | |
Collapse
|
33
|
Suzuki K, Akama T, Kawashima A, Yoshihara A, Yotsu RR, Ishii N. Current status of leprosy: epidemiology, basic science and clinical perspectives. J Dermatol 2011; 39:121-9. [PMID: 21973237 DOI: 10.1111/j.1346-8138.2011.01370.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Leprosy has affected humans for millennia and remains an important health problem worldwide, as evidenced by nearly 250 000 new cases detected every year. It is a chronic infectious disorder, caused by Mycobacterium leprae, that primarily affects the skin and peripheral nerves. Recent advances in basic science have improved our knowledge of the disease. Variation in the cellular immune response is the basis of a range of clinical manifestations. The introduction of multidrug therapy has significantly contributed to a decrease in the prevalence of the disease. However, leprosy control activities, including monitoring and prevention programs, must be maintained.
Collapse
Affiliation(s)
- Koichi Suzuki
- Leprosy Research Center, National Institute of Infectious Diseases Department of Dermatology, National Center for Global Health and Medicine, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Luo H, Friedman R, Tang J, Hughes AL. Genome reduction by deletion of paralogs in the marine cyanobacterium Prochlorococcus. Mol Biol Evol 2011; 28:2751-60. [PMID: 21531921 PMCID: PMC3203624 DOI: 10.1093/molbev/msr081] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Several isolates of the marine cyanobacterial genus Prochlorococcus have smaller genome sizes than those of the closely related genus Synechococcus. In order to test whether loss of protein-coding genes has contributed to genome size reduction in Prochlorococcus, we reconstructed events of gene family evolution over a strongly supported phylogeny of 12 Prochlorococcus genomes and 9 Synechococcus genomes. Significantly, more events both of loss of paralogs within gene families and of loss of entire gene families occurred in Prochlorococcus than in Synechococcus. The number of nonancestral gene families in genomes of both genera was positively correlated with the extent of genomic islands (GIs), consistent with the hypothesis that horizontal gene transfer (HGT) is associated with GIs. However, even when only isolates with comparable extents of GIs were compared, significantly more events of gene family loss and of paralog loss were seen in Prochlorococcus than in Synechococcus, implying that HGT is not the primary reason for the genome size difference between the two genera.
Collapse
Affiliation(s)
- Haiwei Luo
- Department of Biological Sciences, University of South Carolina
| | - Robert Friedman
- Department of Biological Sciences, University of South Carolina
| | - Jijun Tang
- Department of Computer Science and Engineering, University of South Carolina
| | | |
Collapse
|
35
|
Rangannan V, Bansal M. PromBase: a web resource for various genomic features and predicted promoters in prokaryotic genomes. BMC Res Notes 2011; 4:257. [PMID: 21781326 PMCID: PMC3160392 DOI: 10.1186/1756-0500-4-257] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 07/22/2011] [Indexed: 12/19/2022] Open
Abstract
Background As more and more genomes are being sequenced, an overview of their genomic features and annotation of their functional elements, which control the expression of each gene or transcription unit of the genome, is a fundamental challenge in genomics and bioinformatics. Findings Relative stability of DNA sequence has been used to predict promoter regions in 913 microbial genomic sequences with GC-content ranging from 16.6% to 74.9%. Irrespective of the genome GC-content the relative stability based promoter prediction method has already been proven to be robust in terms of recall and precision. The predicted promoter regions for the 913 microbial genomes have been accumulated in a database called PromBase. Promoter search can be carried out in PromBase either by specifying the gene name or the genomic position. Each predicted promoter region has been assigned to a reliability class (low, medium, high, very high and highest) based on the difference between its average free energy and the downstream region. The recall and precision values for each class are shown graphically in PromBase. In addition, PromBase provides detailed information about base composition, CDS and CG/TA skews for each genome and various DNA sequence dependent structural properties (average free energy, curvature and bendability) in the vicinity of all annotated translation start sites (TLS). Conclusion PromBase is a database, which contains predicted promoter regions and detailed analysis of various genomic features for 913 microbial genomes. PromBase can serve as a valuable resource for comparative genomics study and help the experimentalist to rapidly access detailed information on various genomic features and putative promoter regions in any given genome. This database is freely accessible for academic and non- academic users via the worldwide web http://nucleix.mbu.iisc.ernet.in/prombase/.
Collapse
Affiliation(s)
- Vetriselvi Rangannan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560 012, India.
| | | |
Collapse
|
36
|
Mészáros B, Tóth J, Vértessy BG, Dosztányi Z, Simon I. Proteins with complex architecture as potential targets for drug design: a case study of Mycobacterium tuberculosis. PLoS Comput Biol 2011; 7:e1002118. [PMID: 21814507 PMCID: PMC3140968 DOI: 10.1371/journal.pcbi.1002118] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 05/24/2011] [Indexed: 02/04/2023] Open
Abstract
Lengthy co-evolution of Homo sapiens and Mycobacterium tuberculosis, the main causative agent of tuberculosis, resulted in a dramatically successful pathogen species that presents considerable challenge for modern medicine. The continuous and ever increasing appearance of multi-drug resistant mycobacteria necessitates the identification of novel drug targets and drugs with new mechanisms of action. However, further insights are needed to establish automated protocols for target selection based on the available complete genome sequences. In the present study, we perform complete proteome level comparisons between M. tuberculosis, mycobacteria, other prokaryotes and available eukaryotes based on protein domains, local sequence similarities and protein disorder. We show that the enrichment of certain domains in the genome can indicate an important function specific to M. tuberculosis. We identified two families, termed pkn and PE/PPE that stand out in this respect. The common property of these two protein families is a complex domain organization that combines species-specific regions, commonly occurring domains and disordered segments. Besides highlighting promising novel drug target candidates in M. tuberculosis, the presented analysis can also be viewed as a general protocol to identify proteins involved in species-specific functions in a given organism. We conclude that target selection protocols should be extended to include proteins with complex domain architectures instead of focusing on sequentially unique and essential proteins only.
Collapse
Affiliation(s)
- Bálint Mészáros
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Judit Tóth
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Beáta G. Vértessy
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Applied Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Zsuzsanna Dosztányi
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail: (ZD); (IS)
| | - István Simon
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail: (ZD); (IS)
| |
Collapse
|
37
|
Singh P, Cole ST. Mycobacterium leprae: genes, pseudogenes and genetic diversity. Future Microbiol 2011; 6:57-71. [PMID: 21162636 DOI: 10.2217/fmb.10.153] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Leprosy, which has afflicted human populations for millenia, results from infection with Mycobacterium leprae, an unculturable pathogen with an exceptionally long generation time. Considerable insight into the biology and drug resistance of the leprosy bacillus has been obtained from genomics. M. leprae has undergone reductive evolution and pseudogenes now occupy half of its genome. Comparative genomics of four different strains revealed remarkable conservation of the genome (99.995% identity) yet uncovered 215 polymorphic sites, mainly single nucleotide polymorphisms, and a handful of new pseudogenes. Mapping these polymorphisms in a large panel of strains defined 16 single nucleotide polymorphism-subtypes that showed strong geographical associations and helped retrace the evolution of M. leprae.
Collapse
Affiliation(s)
- Pushpendra Singh
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Station 19, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
38
|
Banerjee R, Vats P, Dahale S, Kasibhatla SM, Joshi R. Comparative genomics of cell envelope components in mycobacteria. PLoS One 2011; 6:e19280. [PMID: 21573108 PMCID: PMC3089613 DOI: 10.1371/journal.pone.0019280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 03/25/2011] [Indexed: 12/26/2022] Open
Abstract
Mycobacterial cell envelope components have been a major focus of research due to their unique features that confer intrinsic resistance to antibiotics and chemicals apart from serving as a low-permeability barrier. The complex lipids secreted by Mycobacteria are known to evoke/repress host-immune response and thus contribute to its pathogenicity. This study focuses on the comparative genomics of the biosynthetic machinery of cell wall components across 21-mycobacterial genomes available in GenBank release 179.0. An insight into survival in varied environments could be attributed to its variation in the biosynthetic machinery. Gene-specific motifs like 'DLLAQPTPAW' of ufaA1 gene, novel functional linkages such as involvement of Rv0227c in mycolate biosynthesis; Rv2613c in LAM biosynthesis and Rv1209 in arabinogalactan peptidoglycan biosynthesis were detected in this study. These predictions correlate well with the available mutant and coexpression data from TBDB. It also helped to arrive at a minimal functional gene set for these biosynthetic pathways that complements findings using TraSH.
Collapse
Affiliation(s)
- Ruma Banerjee
- Bioinformatics Group, Centre for Development of Advanced Computing, Pune University Campus, Pune, Maharashtra, India
| | - Pankaj Vats
- Bioinformatics Group, Centre for Development of Advanced Computing, Pune University Campus, Pune, Maharashtra, India
| | - Sonal Dahale
- Bioinformatics Group, Centre for Development of Advanced Computing, Pune University Campus, Pune, Maharashtra, India
| | - Sunitha Manjari Kasibhatla
- Bioinformatics Group, Centre for Development of Advanced Computing, Pune University Campus, Pune, Maharashtra, India
| | - Rajendra Joshi
- Bioinformatics Group, Centre for Development of Advanced Computing, Pune University Campus, Pune, Maharashtra, India
- * E-mail:
| |
Collapse
|
39
|
Wiker HG, Tomazella GG, de Souza GA. A quantitative view on Mycobacterium leprae antigens by proteomics. J Proteomics 2011; 74:1711-9. [PMID: 21278007 DOI: 10.1016/j.jprot.2011.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/09/2010] [Accepted: 01/10/2011] [Indexed: 11/29/2022]
Abstract
Leprosy is an ancient disease and the focus of the researchers' scrutiny for more than a century. However, many of the molecular aspects related to transmission, virulence, antigens and immune responses are far from known. Initially, the implementation of recombinant DNA library screens raised interesting antigen candidates. Finally, the availability of Mycobacterium leprae genomic information showed an intriguing genome reduction which is now largely used in comparative genomics. While predictive in silico tools are commonly used to identify possible antigens, proteomic approaches have not yet been explored fully to study M. leprae biology. Quantitative information obtained at the protein level, and its analysis as part of a complex system, would be a key feature to be used to help researchers to validate and understand many of such in silico predictions. Through a re-analysis of data from a previous publication of our group, we could easily tackle many questions regarding antigen prediction and pseudogene expression. Several well known antigens are among the quantitatively dominant proteins, while several major proteins have not been explored as antigens. We argue that combining proteomic approaches together with bioinformatic workflows is a required step in the characterization of important pathogens.
Collapse
Affiliation(s)
- Harald G Wiker
- The Gade Institute, Section for Microbiology and Immunology, University of Bergen, Norway.
| | | | | |
Collapse
|
40
|
Vishnoi A, Roy R, Prasad HK, Bhattacharya A. Anchor-based whole genome phylogeny (ABWGP): a tool for inferring evolutionary relationship among closely related microorganisms [corrected]. PLoS One 2010; 5:e14159. [PMID: 21152403 PMCID: PMC2994773 DOI: 10.1371/journal.pone.0014159] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 10/21/2010] [Indexed: 12/03/2022] Open
Abstract
Phenotypic behavior of a group of organisms can be studied using a range of molecular evolutionary tools that help to determine evolutionary relationships. Traditionally a gene or a set of gene sequences was used for generating phylogenetic trees. Incomplete evolutionary information in few selected genes causes problems in phylogenetic tree construction. Whole genomes are used as remedy. Now, the task is to identify the suitable parameters to extract the hidden information from whole genome sequences that truly represent evolutionary information. In this study we explored a random anchor (a stretch of 100 nucleotides) based approach (ABWGP) for finding distance between any two genomes, and used the distance estimates to compute evolutionary trees. A number of strains and species of Mycobacteria were used for this study. Anchor-derived parameters, such as cumulative normalized score, anchor order and indels were computed in a pair-wise manner, and the scores were used to compute distance/phylogenetic trees. The strength of branching was determined by bootstrap analysis. The terminal branches are clearly discernable using the distance estimates described here. In general, different measures gave similar trees except the trees based on indels. Overall the tree topology reflected the known biology of the organisms. This was also true for different strains of Escherichia coli. A new whole genome-based approach has been described here for studying evolutionary relationships among bacterial strains and species.
Collapse
Affiliation(s)
- Anchal Vishnoi
- School of Information Technology, Center for Computational Biology and Bioinformatics, Jawaharlal Nehru University, New Delhi, India
| | - Rahul Roy
- Indian Statistical Institute, New Delhi, India
| | - Hanumanthappa K. Prasad
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Alok Bhattacharya
- School of Information Technology, Center for Computational Biology and Bioinformatics, Jawaharlal Nehru University, New Delhi, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
41
|
Shenoy AR, Sivakumar K, Krupa A, Srinivasan N, Visweswariah SS. A survey of nucleotide cyclases in actinobacteria: unique domain organization and expansion of the class III cyclase family in Mycobacterium tuberculosis. Comp Funct Genomics 2010; 5:17-38. [PMID: 18629044 PMCID: PMC2447327 DOI: 10.1002/cfg.349] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Revised: 10/13/2003] [Accepted: 10/21/2003] [Indexed: 11/14/2022] Open
Abstract
Cyclic nucleotides are well-known second messengers involved in the regulation of
important metabolic pathways or virulence factors. There are six different classes
of nucleotide cyclases that can accomplish the task of generating cAMP, and four
of these are restricted to the prokaryotes. The role of cAMP has been implicated in
the virulence and regulation of secondary metabolites in the phylum Actinobacteria, which contains
important pathogens, such as Mycobacterium tuberculosis, M. leprae, M. bovis
and Corynebacterium, and industrial organisms from the genus Streptomyces.
We have analysed the actinobacterial genome sequences found in current databases
for the presence of different classes of nucleotide cyclases, and find that only class
III cyclases are present in these organisms. Importantly, prominent members such as
M. tuberculosis and M. leprae have 17 and 4 class III cyclases, respectively, encoded
in their genomes, some of which display interesting domain fusions seen for the
first time. In addition, a pseudogene corresponding to a cyclase from M. avium has
been identified as the only cyclase pseudogene in M. tuberculosis and M. bovis. The
Corynebacterium and Streptomyces genomes encode only a single adenylyl cyclase
each, both of which have corresponding orthologues in M. tuberculosis. A clustering
of the cyclase domains in Actinobacteria reveals the presence of typical eukaryote-like,
fungi-like and other bacteria-like class III cyclase sequences within this phylum,
suggesting that these proteins may have significant roles to play in this important
group of organisms.
Collapse
Affiliation(s)
- Avinash R Shenoy
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
| | | | | | | | | |
Collapse
|
42
|
Shanmugam A, Natarajan J. Computational genome analyses of metabolic enzymes in Mycobacterium leprae for drug target identification. Bioinformation 2010; 4:392-5. [PMID: 20975887 PMCID: PMC2951640 DOI: 10.6026/97320630004392] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 03/06/2010] [Indexed: 11/23/2022] Open
Abstract
Leprosy is an infectious disease caused by Mycobacterium leprae. M. leprae has undergone a major reductive evolution leaving a minimal set of functional genes for survival. It remains non-cultivable. As M. leprae develops resistance against most of the drugs, novel drug targets are required in order to design new drugs. As most of the essential genes mediate several biosynthetic and metabolic pathways, the pathway predictions can predict essential genes. We used comparative genome analysis of metabolic enzymes in M. leprae and H. sapiens using KEGG pathway database and identified 179 non-homologues enzymes. On further comparison of these 179 non-homologous enzymes to the list of minimal set of 48 essential genes required for cell-wall biosynthesis of M. leprae reveals eight common enzymes. Interestingly, six of these eight common enzymes map to that of peptidoglycan biosynthesis and they all belong to Mur enzymes. The machinery for peptidoglycan biosynthesis is a rich source of crucial targets for antibacterial chemotherapy and thus targeting these enzymes is a step towards facilitating the search for new antibiotics.
Collapse
Affiliation(s)
- Anusuya Shanmugam
- Department of Bioinformatics, VMKV Engineering College, Vinayaka Missions University, Salem
| | | |
Collapse
|
43
|
The Rhodococcal Cell Envelope: Composition, Organisation and Biosynthesis. BIOLOGY OF RHODOCOCCUS 2010. [DOI: 10.1007/978-3-642-12937-7_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
44
|
Kingsley RA, Msefula CL, Thomson NR, Kariuki S, Holt KE, Gordon MA, Harris D, Clarke L, Whitehead S, Sangal V, Marsh K, Achtman M, Molyneux ME, Cormican M, Parkhill J, MacLennan CA, Heyderman RS, Dougan G. Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Res 2009; 19:2279-87. [PMID: 19901036 DOI: 10.1101/gr.091017.109] [Citation(s) in RCA: 427] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Whereas most nontyphoidal Salmonella (NTS) are associated with gastroenteritis, there has been a dramatic increase in reports of NTS-associated invasive disease in sub-Saharan Africa. Salmonella enterica serovar Typhimurium isolates are responsible for a significant proportion of the reported invasive NTS in this region. Multilocus sequence analysis of invasive S. Typhimurium from Malawi and Kenya identified a dominant type, designated ST313, which currently is rarely reported outside of Africa. Whole-genome sequencing of a multiple drug resistant (MDR) ST313 NTS isolate, D23580, identified a distinct prophage repertoire and a composite genetic element encoding MDR genes located on a virulence-associated plasmid. Further, there was evidence of genome degradation, including pseudogene formation and chromosomal deletions, when compared with other S. Typhimurium genome sequences. Some of this genome degradation involved genes previously implicated in virulence of S. Typhimurium or genes for which the orthologs in S. Typhi are either pseudogenes or are absent. Genome analysis of other epidemic ST313 isolates from Malawi and Kenya provided evidence for microevolution and clonal replacement in the field.
Collapse
Affiliation(s)
- Robert A Kingsley
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
The complete genome of Comamonas testosteroni reveals its genetic adaptations to changing environments. Appl Environ Microbiol 2009; 75:6812-9. [PMID: 19734336 DOI: 10.1128/aem.00933-09] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the gram-negative, strictly aerobic genus Comamonas occur in various environments. Here we report the complete genome of Comamonas testosteroni strain CNB-2. Strain CNB-2 has a circular chromosome that is 5,373,643 bp long and has a G+C content of 61.4%. A total of 4,803 open reading frames (ORFs) were identified; 3,514 of these ORFs are functionally assigned to energy production, cell growth, signal transduction, or transportation, while 866 ORFs encode hypothetical proteins and 423 ORFs encode purely hypothetical proteins. The CNB-2 genome has many genes for transportation (22%) and signal transduction (6%), which allows the cells to respond and adapt to changing environments. Strain CNB-2 does not assimilate carbohydrates due to the lack of genes encoding proteins involved in glycolysis and pentose phosphate pathways, and it contains many genes encoding proteins involved in degradation of aromatic compounds. We identified 66 Tct and nine TRAP-T systems and a complete tricarboxylic acid cycle, which may allow CNB-2 to take up and metabolize a range of carboxylic acids. This nutritional bias for carboxylic acids and aromatic compounds enables strain CNB-2 to occupy unique niches in environments. Four different sets of terminal oxidases for the respiratory system were identified, and they putatively functioned at different oxygen concentrations. This study conclusively revealed at the genomic level that the genetic versatility of C. testosteroni is vital for competition with other bacteria in its special niches.
Collapse
|
46
|
Rodrigues LS, da Silva Maeda E, Moreira MEC, Tempone AJ, Lobato LS, Ribeiro-Resende VT, Alves L, Rossle S, Lopes UG, Pessolani MCV. Mycobacterium leprae induces insulin-like growth factor and promotes survival of Schwann cells upon serum withdrawal. Cell Microbiol 2009; 12:42-54. [PMID: 19732058 DOI: 10.1111/j.1462-5822.2009.01377.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peripheral nerve lesions are considered the most relevant symptoms of leprosy, a chronic infectious disease caused by Mycobacterium leprae. The strategies employed by M. leprae to infect and multiply inside Schwann cells (SCs), however, remain poorly understood. In this study, it is shown that treatment of SCs with M. leprae significantly decreased cell death induced by serum deprivation. Not displayed by Mycobacterium smegmatis or Mycobacterium bovis BCG, the M. leprae survival effect was both dose dependent and specific. The conditioned medium (CM) of M. leprae-treated cultures was seen to mimic the protective effect of the bacteria, suggesting that soluble factors secreted by SCs in response to M. leprae were involved in cell survival. Indeed, by quantitative RT-PCR and dot blot/ELISA, it was demonstrated that M. leprae induced the expression and secretion of the SC survival factor insulin-like growth factor-I. Finally, the involvement of this hormone in M. leprae-induced SC survival was confirmed in experiments with neutralizing antibodies. Taken together, the results of this study delineate an important strategy for the successful colonization of M. leprae in the nerve based on the survival maintenance of the host cell through induction of IGF-I production.
Collapse
|
47
|
Neonakis IK, Gitti Z, Kontos F, Baritaki S, Zerva L, Krambovitis E, Spandidos DA. Report of 2 indigenous cases of leprosy from a European country: use of polymerase chain reaction–restriction fragment length polymorphism analysis of hsp65 gene for identification of Mycobacterium leprae directly from a clinical sample. Diagn Microbiol Infect Dis 2009; 64:331-3. [DOI: 10.1016/j.diagmicrobio.2009.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 02/13/2009] [Accepted: 03/01/2009] [Indexed: 11/15/2022]
|
48
|
Ortí L, Carbajo RJ, Pieper U, Eswar N, Maurer SM, Rai AK, Taylor G, Todd MH, Pineda-Lucena A, Sali A, Marti-Renom MA. A kernel for open source drug discovery in tropical diseases. PLoS Negl Trop Dis 2009; 3:e418. [PMID: 19381286 PMCID: PMC2667270 DOI: 10.1371/journal.pntd.0000418] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 03/23/2009] [Indexed: 01/28/2023] Open
Abstract
Background Conventional patent-based drug development incentives work badly for the developing world, where commercial markets are usually small to non-existent. For this reason, the past decade has seen extensive experimentation with alternative R&D institutions ranging from private–public partnerships to development prizes. Despite extensive discussion, however, one of the most promising avenues—open source drug discovery—has remained elusive. We argue that the stumbling block has been the absence of a critical mass of preexisting work that volunteers can improve through a series of granular contributions. Historically, open source software collaborations have almost never succeeded without such “kernels”. Methodology/Principal Findings Here, we use a computational pipeline for: (i) comparative structure modeling of target proteins, (ii) predicting the localization of ligand binding sites on their surfaces, and (iii) assessing the similarity of the predicted ligands to known drugs. Our kernel currently contains 143 and 297 protein targets from ten pathogen genomes that are predicted to bind a known drug or a molecule similar to a known drug, respectively. The kernel provides a source of potential drug targets and drug candidates around which an online open source community can nucleate. Using NMR spectroscopy, we have experimentally tested our predictions for two of these targets, confirming one and invalidating the other. Conclusions/Significance The TDI kernel, which is being offered under the Creative Commons attribution share-alike license for free and unrestricted use, can be accessed on the World Wide Web at http://www.tropicaldisease.org. We hope that the kernel will facilitate collaborative efforts towards the discovery of new drugs against parasites that cause tropical diseases. Open source drug discovery, a promising alternative avenue to conventional patent-based drug development, has so far remained elusive with few exceptions. A major stumbling block has been the absence of a critical mass of preexisting work that volunteers can improve through a series of granular contributions. This paper introduces the results from a newly assembled computational pipeline for identifying protein targets for drug discovery in ten organisms that cause tropical diseases. We have also experimentally tested two promising targets for their binding to commercially available drugs, validating one and invalidating the other. The resulting kernel provides a base of drug targets and lead candidates around which an open source community can nucleate. We invite readers to donate their judgment and in silico and in vitro experiments to develop these targets to the point where drug optimization can begin.
Collapse
Affiliation(s)
- Leticia Ortí
- Structural Genomics Unit, Bioinformatics and Genomics Department, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Structural Biology Laboratory, Medicinal Chemistry Department, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Rodrigo J. Carbajo
- Structural Biology Laboratory, Medicinal Chemistry Department, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Ursula Pieper
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
| | - Narayanan Eswar
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
| | - Stephen M. Maurer
- Gould School of Law, University of Southern California, Los Angeles, California, United States of America
| | - Arti K. Rai
- School of Law, Duke University, Durham, North Carolina, United States of America
| | - Ginger Taylor
- The Synaptic Leap, San Ramon, California, United States of America
| | - Matthew H. Todd
- School of Chemistry, University of Sydney, Sydney, New South Wales, Australia
| | - Antonio Pineda-Lucena
- Structural Biology Laboratory, Medicinal Chemistry Department, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (AS); (MAM-R)
| | - Marc A. Marti-Renom
- Structural Genomics Unit, Bioinformatics and Genomics Department, Centro de Investigación Príncipe Felipe, Valencia, Spain
- * E-mail: (AS); (MAM-R)
| |
Collapse
|
49
|
Vissa VD, Sakamuri RM, Li W, Brennan PJ. Defining mycobacteria: Shared and specific genome features for different lifestyles. Indian J Microbiol 2009; 49:11-47. [PMID: 23100749 DOI: 10.1007/s12088-009-0006-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 08/16/2008] [Indexed: 11/28/2022] Open
Abstract
During the last decade, the combination of rapid whole genome sequencing capabilities, application of genetic and computational tools, and establishment of model systems for the study of a range of species for a spectrum of biological questions has enhanced our cumulative knowledge of mycobacteria in terms of their growth properties and requirements. The adaption of the corynebacterial surrogate system has simplified the study of cell wall biosynthetic machinery common to actinobacteria. Comparative genomics supported by experimentation reveals that superimposed on a common core of 'mycobacterial' gene set, pathogenic mycobacteria are endowed with multiple copies of several protein families that encode novel secretion and transport systems such as mce and esx; immunomodulators named PE/PPE proteins, and polyketide synthases for synthesis of complex lipids. The precise timing of expression, engagement and interactions involving one or more of these redundant proteins in their host environments likely play a role in the definition and differentiation of species and their disease phenotypes. Besides these, only a few species specific 'virulence' factors i.e., macromolecules have been discovered. Other subtleties may also arise from modifications of shared macromolecules. In contrast, to cope with the broad and changing growth conditions, their saprophytic relatives have larger genomes, in which the excess coding capacity is dedicated to transcriptional regulators, transporters for nutrients and toxic metabolites, biosynthesis of secondary metabolites and catabolic pathways. In this review, we present a sampling of the tools and techniques that are being implemented to tease apart aspects of physiology, phylogeny, ecology and pathology and illustrate the dominant genomic characteristics of representative species. The investigation of clinical isolates, natural disease states and discovery of new diagnostics, vaccines and drugs for existing and emerging mycobacterial diseases, particularly for multidrug resistant strains are the challenges in the coming decades.
Collapse
Affiliation(s)
- Varalakshmi D Vissa
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO-80523-1628 USA
| | | | | | | |
Collapse
|
50
|
Parker SK, Barkley RM, Rino JG, Vasil ML. Mycobacterium tuberculosis Rv3802c encodes a phospholipase/thioesterase and is inhibited by the antimycobacterial agent tetrahydrolipstatin. PLoS One 2009; 4:e4281. [PMID: 19169353 PMCID: PMC2625445 DOI: 10.1371/journal.pone.0004281] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 01/08/2009] [Indexed: 11/18/2022] Open
Abstract
The cell wall of M. tuberculosis is central to its success as a pathogen. Mycolic acids are key components of this cell wall. The genes involved in joining the alpha and mero mycolates are located in a cluster, beginning with Rv3799c and extending at least until Rv3804c. The role of each enzyme encoded by these five genes is fairly well understood, except for Rv3802c. Rv3802 is one of seven putative cutinases encoded by the genome of M. tuberculosis. In phytopathogens, cutinases hydrolyze the waxy layer of plants, cutin. In a strictly mammalian pathogen, such as M. tuberculosis, it is likely that these proteins perform a different function. Of the seven, we chose to focus on Rv3802c because of its location in a mycolic acid synthesis gene cluster, its putative essentiality, its ubiquitous presence in actinomycetes, and its conservation in the minimal genome of Mycobacterium leprae. We expressed Rv3802 in Escherichia coli and purified the enzymatically active form. We probed its activities and inhibitors characterizing those relevant to its possible role in mycolic acid biosynthesis. In addition to its reported phospholipase A activity, Rv3802 has significant thioesterase activity, and it is inhibited by tetrahydrolipstatin (THL). THL is a described anti-tuberculous compound with an unknown mechanism, but it reportedly targets cell wall synthesis. Taken together, these data circumstantially support a role for Rv3802 in mycolic acid synthesis and, as the cell wall is integral to M. tuberculosis pathogenesis, identification of a novel cell wall enzyme and its inhibition has therapeutic and diagnostic implications.
Collapse
Affiliation(s)
- Sarah K Parker
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, United States of America.
| | | | | | | |
Collapse
|