1
|
Chen S, Collart MA. Membrane-associated mRNAs: A Post-transcriptional Pathway for Fine-turning Gene Expression. J Mol Biol 2024; 436:168579. [PMID: 38648968 DOI: 10.1016/j.jmb.2024.168579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Gene expression is a fundamental and highly regulated process involving a series of tightly coordinated steps, including transcription, post-transcriptional processing, translation, and post-translational modifications. A growing number of studies have revealed an additional layer of complexity in gene expression through the phenomenon of mRNA subcellular localization. mRNAs can be organized into membraneless subcellular structures within both the cytoplasm and the nucleus, but they can also targeted to membranes. In this review, we will summarize in particular our knowledge on localization of mRNAs to organelles, focusing on important regulators and available techniques for studying organellar localization, and significance of this localization in the broader context of gene expression regulation.
Collapse
Affiliation(s)
- Siyu Chen
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Institute of Genetics and Genomics of Geneva, Geneva, Switzerland.
| | - Martine A Collart
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Institute of Genetics and Genomics of Geneva, Geneva, Switzerland.
| |
Collapse
|
2
|
Hayashi S, Iwamoto K, Yoshihisa T. A non-canonical Puf3p-binding sequence regulates CAT5/COQ7 mRNA under both fermentable and respiratory conditions in budding yeast. PLoS One 2023; 18:e0295659. [PMID: 38100455 PMCID: PMC10723686 DOI: 10.1371/journal.pone.0295659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
The Saccharomyces cerevisiae uses a highly glycolytic metabolism, if glucose is available, through appropriately suppressing mitochondrial functions except for some of them such as Fe/S cluster biogenesis. Puf3p, a Pumillio family protein, plays a pivotal role in modulating mitochondrial activity, especially during fermentation, by destabilizing its target mRNAs and/or by repressing their translation. Puf3p preferentially binds to 8-nt conserved binding sequences in the 3'-UTR of nuclear-encoded mitochondrial (nc-mitochondrial) mRNAs, leading to broad effects on gene expression under fermentable conditions. To further explore how Puf3p post-transcriptionally regulates nc-mitochondrial mRNAs in response to cell growth conditions, we initially focused on nc-mitochondrial mRNAs known to be enriched in monosomes in a glucose-rich environment. We unexpectedly found that one of the monosome-enriched mRNAs, CAT5/COQ7 mRNA, directly interacts with Puf3p through its non-canonical Puf3p binding sequence, which is generally less considered as a Puf3p binding site. Western blot analysis showed that Puf3p represses translation of Cat5p, regardless of culture in fermentable or respiratory medium. In vitro binding assay confirmed Puf3p's direct interaction with CAT5 mRNA via this non-canonical Puf3p-binding site. Although cat5 mutants of the non-canonical Puf3p-binding site grow normally, Cat5p expression is altered, indicating that CAT5 mRNA is a bona fide Puf3p target with additional regulatory factors acting through this sequence. Unlike other yeast PUF proteins, Puf3p uniquely regulates Cat5p by destabilizing mRNA and repressing translation, shedding new light on an unknown part of the Puf3p regulatory network. Given that pathological variants of human COQ7 lead to CoQ10 deficiency and yeast cat5Δ can be complemented by hCOQ7, our findings may also offer some insights into clinical aspects of COQ7-related disorders.
Collapse
Affiliation(s)
- Sachiko Hayashi
- Graduate School of Science, University of Hyogo, Ako-gun, Hyogo, Japan
| | - Kazumi Iwamoto
- Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo, Japan
| | - Tohru Yoshihisa
- Graduate School of Science, University of Hyogo, Ako-gun, Hyogo, Japan
| |
Collapse
|
3
|
Arceo XG, Koslover EF, Zid BM, Brown AI. Mitochondrial mRNA localization is governed by translation kinetics and spatial transport. PLoS Comput Biol 2022; 18:e1010413. [PMID: 35984860 PMCID: PMC9432724 DOI: 10.1371/journal.pcbi.1010413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/31/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
For many nuclear-encoded mitochondrial genes, mRNA localizes to the mitochondrial surface co-translationally, aided by the association of a mitochondrial targeting sequence (MTS) on the nascent peptide with the mitochondrial import complex. For a subset of these co-translationally localized mRNAs, their localization is dependent on the metabolic state of the cell, while others are constitutively localized. To explore the differences between these two mRNA types we developed a stochastic, quantitative model for MTS-mediated mRNA localization to mitochondria in yeast cells. This model includes translation, applying gene-specific kinetics derived from experimental data; and diffusion in the cytosol. Even though both mRNA types are co-translationally localized we found that the steady state number, or density, of ribosomes along an mRNA was insufficient to differentiate the two mRNA types. Instead, conditionally-localized mRNAs have faster translation kinetics which modulate localization in combination with changes to diffusive search kinetics across metabolic states. Our model also suggests that the MTS requires a maturation time to become competent to bind mitochondria. Our work indicates that yeast cells can regulate mRNA localization to mitochondria by controlling mitochondrial volume fraction (influencing diffusive search times) and gene translation kinetics (adjusting mRNA binding competence) without the need for mRNA-specific binding proteins. These results shed light on both global and gene-specific mechanisms that enable cells to alter mRNA localization in response to changing metabolic conditions.
Collapse
Affiliation(s)
- Ximena G. Arceo
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Elena F. Koslover
- Department of Physics, University of California, San Diego, La Jolla, California, United States of America
| | - Brian M. Zid
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Aidan I. Brown
- Department of Physics, Ryerson University, Toronto, Canada
| |
Collapse
|
4
|
Avendaño-Monsalve MC, Mendoza-Martínez AE, Ponce-Rojas JC, Poot-Hernández AC, Rincón-Heredia R, Funes S. Positively charged amino acids at the N terminus of select mitochondrial proteins mediate early recognition by import proteins αβ'-NAC and Sam37. J Biol Chem 2022; 298:101984. [PMID: 35487246 PMCID: PMC9136113 DOI: 10.1016/j.jbc.2022.101984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/04/2022] Open
Abstract
A major challenge in eukaryotic cells is the proper distribution of nuclear-encoded proteins to the correct organelles. For a subset of mitochondrial proteins, a signal sequence at the N terminus (matrix-targeting sequence [MTS]) is recognized by protein complexes to ensure their proper translocation into the organelle. However, the early steps of mitochondrial protein targeting remain undeciphered. The cytosolic chaperone nascent polypeptide–associated complex (NAC), which in yeast is represented as the two different heterodimers αβ-NAC and αβ′-NAC, has been proposed to be involved during the early steps of mitochondrial protein targeting. We have previously described that the mitochondrial outer membrane protein Sam37 interacts with αβ′-NAC and together promote the import of specific mitochondrial precursor proteins. In this work, we aimed to detect the region in the MTS of mitochondrial precursors relevant for their recognition by αβ′-NAC during their sorting to the mitochondria. We used targeting signals of different mitochondrial proteins (αβ′-NAC-dependent Oxa1 and αβ′-NAC-independent Mdm38) and fused them to GFP to study their intracellular localization by biochemical and microscopy methods, and in addition followed their import kinetics in vivo. Our results reveal the presence of a positively charged amino acid cluster in the MTS of select mitochondrial precursors, such as Oxa1 and Fum1, which are crucial for their recognition by αβ′-NAC. Furthermore, we explored the presence of this cluster at the N terminus of the mitochondrial proteome and propose a set of precursors whose proper localization depends on both αβ′-NAC and Sam37.
Collapse
Affiliation(s)
- Maria Clara Avendaño-Monsalve
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Cd.Mx., Mexico
| | - Ariann E Mendoza-Martínez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Cd.Mx., Mexico
| | - José Carlos Ponce-Rojas
- Department of Molecular, Cellular, and Developmental Biology, University of California at Santa Barbara, Santa Barbara, California, USA
| | - Augusto César Poot-Hernández
- Unidad de Bioinformática y Manejo de la Información, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Cd.Mx., Mexico
| | - Ruth Rincón-Heredia
- Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Cd.Mx., Mexico
| | - Soledad Funes
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Cd.Mx., Mexico.
| |
Collapse
|
5
|
Chen X, Mayr C. A working model for condensate RNA-binding proteins as matchmakers for protein complex assembly. RNA (NEW YORK, N.Y.) 2022; 28:76-87. [PMID: 34706978 PMCID: PMC8675283 DOI: 10.1261/rna.078995.121] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Most cellular processes are carried out by protein complexes, but it is still largely unknown how the subunits of lowly expressed complexes find each other in the crowded cellular environment. Here, we will describe a working model where RNA-binding proteins in cytoplasmic condensates act as matchmakers between their bound proteins (called protein targets) and newly translated proteins of their RNA targets to promote their assembly into complexes. Different RNA-binding proteins act as scaffolds for various cytoplasmic condensates with several of them supporting translation. mRNAs and proteins are recruited into the cytoplasmic condensates through binding to specific domains in the RNA-binding proteins. Scaffold RNA-binding proteins have a high valency. In our model, they use homotypic interactions to assemble condensates and they use heterotypic interactions to recruit protein targets into the condensates. We propose that unoccupied binding sites in the scaffold RNA-binding proteins transiently retain recruited and newly translated proteins in the condensates, thus promoting their assembly into complexes. Taken together, we propose that lowly expressed subunits of protein complexes combine information in their mRNAs and proteins to colocalize in the cytoplasm. The efficiency of protein complex assembly is increased by transient entrapment accomplished by multivalent RNA-binding proteins within cytoplasmic condensates.
Collapse
Affiliation(s)
- Xiuzhen Chen
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Christine Mayr
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
6
|
Murakhovskaya YK, Sheremet NL, Shmelkova MS, Krylova TD, Tsygankova PG. [Autosomal recessive optic neuropathies: genetic variants, clinical manifestations]. Vestn Oftalmol 2022; 138:116-122. [PMID: 36573955 DOI: 10.17116/oftalma2022138061116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hereditary optic neuropathies (HON) - a group of neurodegenerative diseases characterized by primary loss of structure and function of the retinal ganglion cells and subsequent death of their axons, development of partial optic nerve atrophy. Autosomal dominant optic neuropathy and Leber`s hereditary optic neuropathy until recently were considered the most common genetic hereditary optic neuropathies, while autosomal recessive optic neuropathies (ARON) were described as rare types of HON, usually accompanying severe syndromic pathologies. In the 2000s it has become clear that ARON occur significantly more often, are underestimated, and their clinical variability is poorly studied. Despite the fact that non-syndromic ARON are less common than syndromic optic neuropathies, their contribution to the development of isolated hereditary optic neuropathies should be considered. This article presents a literature review on non-syndromic ARON developing as a result of mutations in the ACO2, MCAT, WFS1, RTN4IP1, TMEM126A, NDUFS2, DNAJC30 genes.
Collapse
Affiliation(s)
- Yu K Murakhovskaya
- Krasnov Research Institute of Eye Diseases, Moscow, Russia.,I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - N L Sheremet
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - M S Shmelkova
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - T D Krylova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | |
Collapse
|
7
|
Cytosolic Quality Control of Mitochondrial Protein Precursors-The Early Stages of the Organelle Biogenesis. Int J Mol Sci 2021; 23:ijms23010007. [PMID: 35008433 PMCID: PMC8745001 DOI: 10.3390/ijms23010007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
With few exceptions, proteins that constitute the proteome of mitochondria originate outside of this organelle in precursor forms. Such protein precursors follow dedicated transportation paths to reach specific parts of mitochondria, where they complete their maturation and perform their functions. Mitochondrial precursor targeting and import pathways are essential to maintain proper mitochondrial function and cell survival, thus are tightly controlled at each stage. Mechanisms that sustain protein homeostasis of the cytosol play a vital role in the quality control of proteins targeted to the organelle. Starting from their synthesis, precursors are constantly chaperoned and guided to reduce the risk of premature folding, erroneous interactions, or protein damage. The ubiquitin-proteasome system provides proteolytic control that is not restricted to defective proteins but also regulates the supply of precursors to the organelle. Recent discoveries provide evidence that stress caused by the mislocalization of mitochondrial proteins may contribute to disease development. Precursors are not only subject to regulation but also modulate cytosolic machinery. Here we provide an overview of the cellular pathways that are involved in precursor maintenance and guidance at the early cytosolic stages of mitochondrial biogenesis. Moreover, we follow the circumstances in which mitochondrial protein import deregulation disturbs the cellular balance, carefully looking for rescue paths that can restore proteostasis.
Collapse
|
8
|
Sahel JA, Newman NJ, Yu-Wai-Man P, Vignal-Clermont C, Carelli V, Biousse V, Moster ML, Sergott R, Klopstock T, Sadun AA, Blouin L, Katz B, Taiel M. Gene Therapies for the Treatment of Leber Hereditary Optic Neuropathy. Int Ophthalmol Clin 2021; 61:195-208. [PMID: 34584057 PMCID: PMC8478322 DOI: 10.1097/iio.0000000000000364] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Bruni F, Giancaspero TA, Oreb M, Tolomeo M, Leone P, Boles E, Roberti M, Caselle M, Barile M. Subcellular Localization of Fad1p in Saccharomyces cerevisiae: A Choice at Post-Transcriptional Level? Life (Basel) 2021; 11:967. [PMID: 34575116 PMCID: PMC8470081 DOI: 10.3390/life11090967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022] Open
Abstract
FAD synthase is the last enzyme in the pathway that converts riboflavin into FAD. In Saccharomyces cerevisiae, the gene encoding for FAD synthase is FAD1, from which a sole protein product (Fad1p) is expected to be generated. In this work, we showed that a natural Fad1p exists in yeast mitochondria and that, in its recombinant form, the protein is able, per se, to both enter mitochondria and to be destined to cytosol. Thus, we propose that FAD1 generates two echoforms-that is, two identical proteins addressed to different subcellular compartments. To shed light on the mechanism underlying the subcellular destination of Fad1p, the 3' region of FAD1 mRNA was analyzed by 3'RACE experiments, which revealed the existence of (at least) two FAD1 transcripts with different 3'UTRs, the short one being 128 bp and the long one being 759 bp. Bioinformatic analysis on these 3'UTRs allowed us to predict the existence of a cis-acting mitochondrial localization motif, present in both the transcripts and, presumably, involved in protein targeting based on the 3'UTR context. Here, we propose that the long FAD1 transcript might be responsible for the generation of mitochondrial Fad1p echoform.
Collapse
Affiliation(s)
- Francesco Bruni
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (F.B.); (T.A.G.); (M.T.); (P.L.); (M.R.)
| | - Teresa Anna Giancaspero
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (F.B.); (T.A.G.); (M.T.); (P.L.); (M.R.)
| | - Mislav Oreb
- Institute of Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; (M.O.); (E.B.)
| | - Maria Tolomeo
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (F.B.); (T.A.G.); (M.T.); (P.L.); (M.R.)
| | - Piero Leone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (F.B.); (T.A.G.); (M.T.); (P.L.); (M.R.)
| | - Eckhard Boles
- Institute of Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; (M.O.); (E.B.)
| | - Marina Roberti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (F.B.); (T.A.G.); (M.T.); (P.L.); (M.R.)
| | - Michele Caselle
- Physics Department, University of Turin and INFN, Via P. Giuria 1, 10125 Turin, Italy;
| | - Maria Barile
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (F.B.); (T.A.G.); (M.T.); (P.L.); (M.R.)
| |
Collapse
|
10
|
Seeking a Role for Translational Control by Alternative Polyadenylation in Saccharomyces cerevisiae. Microorganisms 2021; 9:microorganisms9091885. [PMID: 34576779 PMCID: PMC8464734 DOI: 10.3390/microorganisms9091885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Alternative polyadenylation (APA) represents an important mechanism for regulating isoform-specific translation efficiency, stability, and localisation. Though some progress has been made in understanding its consequences in metazoans, the role of APA in the model organism Saccharomyces cerevisiae remains a relative mystery because, despite abundant studies on the translational state of mRNA, none differentiate mRNA isoforms’ alternative 3′-end. This review discusses the implications of alternative polyadenylation in S. cerevisiae using other organisms to draw inferences. Given the foundational role that research in this yeast has played in the discovery of the mechanisms of cleavage and polyadenylation and in the drivers of APA, it is surprising that such an inference is required. However, because advances in ribosome profiling are insensitive to APA, how it impacts translation is still unclear. To bridge the gap between widespread observed APA and the discovery of any functional consequence, we also provide a review of the experimental techniques used to uncover the functional importance of 3′ UTR isoforms on translation.
Collapse
|
11
|
Lashkevich KA, Dmitriev SE. mRNA Targeting, Transport and Local Translation in Eukaryotic Cells: From the Classical View to a Diversity of New Concepts. Mol Biol 2021; 55:507-537. [PMID: 34092811 PMCID: PMC8164833 DOI: 10.1134/s0026893321030080] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 02/26/2021] [Accepted: 03/12/2021] [Indexed: 12/28/2022]
Abstract
Spatial organization of protein biosynthesis in the eukaryotic cell has been studied for more than fifty years, thus many facts have already been included in textbooks. According to the classical view, mRNA transcripts encoding secreted and transmembrane proteins are translated by ribosomes associated with endoplasmic reticulum membranes, while soluble cytoplasmic proteins are synthesized on free polysomes. However, in the last few years, new data has emerged, revealing selective translation of mRNA on mitochondria and plastids, in proximity to peroxisomes and endosomes, in various granules and at the cytoskeleton (actin network, vimentin intermediate filaments, microtubules and centrosomes). There are also long-standing debates about the possibility of protein synthesis in the nucleus. Localized translation can be determined by targeting signals in the synthesized protein, nucleotide sequences in the mRNA itself, or both. With RNA-binding proteins, many transcripts can be assembled into specific RNA condensates and form RNP particles, which may be transported by molecular motors to the sites of active translation, form granules and provoke liquid-liquid phase separation in the cytoplasm, both under normal conditions and during cell stress. The translation of some mRNAs occurs in specialized "translation factories," assemblysomes, transperons and other structures necessary for the correct folding of proteins, interaction with functional partners and formation of oligomeric complexes. Intracellular localization of mRNA has a significant impact on the efficiency of its translation and presumably determines its response to cellular stress. Compartmentalization of mRNAs and the translation machinery also plays an important role in viral infections. Many viruses provoke the formation of specific intracellular structures, virus factories, for the production of their proteins. Here we review the current concepts of the molecular mechanisms of transport, selective localization and local translation of cellular and viral mRNAs, their effects on protein targeting and topogenesis, and on the regulation of protein biosynthesis in different compartments of the eukaryotic cell. Special attention is paid to new systems biology approaches, providing new cues to the study of localized translation.
Collapse
Affiliation(s)
- Kseniya A Lashkevich
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119234 Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Moscow State University, 119234 Moscow, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119234 Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Moscow State University, 119234 Moscow, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
12
|
Zaghlool A, Niazi A, Björklund ÅK, Westholm JO, Ameur A, Feuk L. Characterization of the nuclear and cytosolic transcriptomes in human brain tissue reveals new insights into the subcellular distribution of RNA transcripts. Sci Rep 2021; 11:4076. [PMID: 33603054 PMCID: PMC7893067 DOI: 10.1038/s41598-021-83541-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 01/20/2021] [Indexed: 12/23/2022] Open
Abstract
Transcriptome analysis has mainly relied on analyzing RNA sequencing data from whole cells, overlooking the impact of subcellular RNA localization and its influence on our understanding of gene function, and interpretation of gene expression signatures in cells. Here, we separated cytosolic and nuclear RNA from human fetal and adult brain samples and performed a comprehensive analysis of cytosolic and nuclear transcriptomes. There are significant differences in RNA expression for protein-coding and lncRNA genes between cytosol and nucleus. We show that transcripts encoding the nuclear-encoded mitochondrial proteins are significantly enriched in the cytosol compared to the rest of protein-coding genes. Differential expression analysis between fetal and adult frontal cortex show that results obtained from the cytosolic RNA differ from results using nuclear RNA both at the level of transcript types and the number of differentially expressed genes. Our data provide a resource for the subcellular localization of thousands of RNA transcripts in the human brain and highlight differences in using the cytosolic or the nuclear transcriptomes for expression analysis.
Collapse
Affiliation(s)
- Ammar Zaghlool
- Department of Immunology, Genetics and Pathology, Uppsala University, BMC B11:4, Box 815, 751 08, Uppsala, Sweden. .,Science for Life Laboratory in Uppsala, Uppsala University, Uppsala, Sweden.
| | - Adnan Niazi
- Department of Immunology, Genetics and Pathology, Uppsala University, BMC B11:4, Box 815, 751 08, Uppsala, Sweden.,Science for Life Laboratory in Uppsala, Uppsala University, Uppsala, Sweden
| | - Åsa K Björklund
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Jakub Orzechowski Westholm
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Box 1031, 17121, Solna, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Uppsala University, BMC B11:4, Box 815, 751 08, Uppsala, Sweden.,Science for Life Laboratory in Uppsala, Uppsala University, Uppsala, Sweden
| | - Lars Feuk
- Department of Immunology, Genetics and Pathology, Uppsala University, BMC B11:4, Box 815, 751 08, Uppsala, Sweden. .,Science for Life Laboratory in Uppsala, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
13
|
Tsuboi T, Leff J, Zid BM. Post-transcriptional control of mitochondrial protein composition in changing environmental conditions. Biochem Soc Trans 2020; 48:2565-2578. [PMID: 33245320 PMCID: PMC8108647 DOI: 10.1042/bst20200250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
In fluctuating environmental conditions, organisms must modulate their bioenergetic production in order to maintain cellular homeostasis for optimal fitness. Mitochondria are hubs for metabolite and energy generation. Mitochondria are also highly dynamic in their function: modulating their composition, size, density, and the network-like architecture in relation to the metabolic demands of the cell. Here, we review the recent research on the post-transcriptional regulation of mitochondrial composition focusing on mRNA localization, mRNA translation, protein import, and the role that dynamic mitochondrial structure may have on these gene expression processes. As mitochondrial structure and function has been shown to be very important for age-related processes, including cancer, metabolic disorders, and neurodegeneration, understanding how mitochondrial composition can be affected in fluctuating conditions can lead to new therapeutic directions to pursue.
Collapse
Affiliation(s)
- Tatsuhisa Tsuboi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92023-0358, USA
| | - Jordan Leff
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92023-0358, USA
| | - Brian M. Zid
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92023-0358, USA
| |
Collapse
|
14
|
Mitochondrial biogenesis in organismal senescence and neurodegeneration. Mech Ageing Dev 2020; 191:111345. [DOI: 10.1016/j.mad.2020.111345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/19/2022]
|
15
|
Chaudhuri A, Das S, Das B. Localization elements and zip codes in the intracellular transport and localization of messenger RNAs in Saccharomyces cerevisiae. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1591. [PMID: 32101377 DOI: 10.1002/wrna.1591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/13/2022]
Abstract
Intracellular trafficking and localization of mRNAs provide a mechanism of regulation of expression of genes with excellent spatial control. mRNA localization followed by localized translation appears to be a mechanism of targeted protein sorting to a specific cell-compartment, which is linked to the establishment of cell polarity, cell asymmetry, embryonic axis determination, and neuronal plasticity in metazoans. However, the complexity of the mechanism and the components of mRNA localization in higher organisms prompted the use of the unicellular organism Saccharomyces cerevisiae as a simplified model organism to study this vital process. Current knowledge indicates that a variety of mRNAs are asymmetrically and selectively localized to the tip of the bud of the daughter cells, to the vicinity of endoplasmic reticulum, mitochondria, and nucleus in this organism, which are connected to diverse cellular processes. Interestingly, specific cis-acting RNA localization elements (LEs) or RNA zip codes play a crucial role in the localization and trafficking of these localized mRNAs by providing critical binding sites for the specific RNA-binding proteins (RBPs). In this review, we present a comprehensive account of mRNA localization in S. cerevisiae, various types of localization elements influencing the mRNA localization, and the RBPs, which bind to these LEs to implement a number of vital physiological processes. Finally, we emphasize the significance of this process by highlighting their connection to several neuropathological disorders and cancers. This article is categorized under: RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
- Anusha Chaudhuri
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Subhadeep Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| |
Collapse
|
16
|
Cogliati S, Lorenzi I, Rigoni G, Caicci F, Soriano ME. Regulation of Mitochondrial Electron Transport Chain Assembly. J Mol Biol 2018; 430:4849-4873. [DOI: 10.1016/j.jmb.2018.09.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022]
|
17
|
Schatton D, Rugarli EI. Post-transcriptional regulation of mitochondrial function. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2017.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Kaewsapsak P, Shechner DM, Mallard W, Rinn JL, Ting AY. Live-cell mapping of organelle-associated RNAs via proximity biotinylation combined with protein-RNA crosslinking. eLife 2017; 6:e29224. [PMID: 29239719 PMCID: PMC5730372 DOI: 10.7554/elife.29224] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/06/2017] [Indexed: 12/18/2022] Open
Abstract
The spatial organization of RNA within cells is a crucial factor influencing a wide range of biological functions throughout all kingdoms of life. However, a general understanding of RNA localization has been hindered by a lack of simple, high-throughput methods for mapping the transcriptomes of subcellular compartments. Here, we develop such a method, termed APEX-RIP, which combines peroxidase-catalyzed, spatially restricted in situ protein biotinylation with RNA-protein chemical crosslinking. We demonstrate that, using a single protocol, APEX-RIP can isolate RNAs from a variety of subcellular compartments, including the mitochondrial matrix, nucleus, cytosol, and endoplasmic reticulum (ER), with specificity and sensitivity that rival or exceed those of conventional approaches. We further identify candidate RNAs localized to mitochondria-ER junctions and nuclear lamina, two compartments that are recalcitrant to classical biochemical purification. Since APEX-RIP is simple, versatile, and does not require special instrumentation, we envision its broad application in a variety of biological contexts.
Collapse
Affiliation(s)
- Pornchai Kaewsapsak
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeUnited States
- Department of GeneticsStanford UniversityStanfordUnited States
- Department of BiologyStanford UniversityStanfordUnited States
- Department of ChemistryStanford UniversityStanfordUnited States
| | - David Michael Shechner
- Department of Stem Cell and Regenerative BiologyHarvard UniversityCambridgeUnited States
- Department of Molecular and Cellular BiologyHarvard UniversityCambridgeUnited States
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeUnited States
| | - William Mallard
- Department of Stem Cell and Regenerative BiologyHarvard UniversityCambridgeUnited States
- Department of Molecular and Cellular BiologyHarvard UniversityCambridgeUnited States
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeUnited States
| | - John L Rinn
- Department of Stem Cell and Regenerative BiologyHarvard UniversityCambridgeUnited States
- Department of Molecular and Cellular BiologyHarvard UniversityCambridgeUnited States
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeUnited States
| | - Alice Y Ting
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeUnited States
- Department of GeneticsStanford UniversityStanfordUnited States
- Department of BiologyStanford UniversityStanfordUnited States
- Department of ChemistryStanford UniversityStanfordUnited States
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeUnited States
| |
Collapse
|
19
|
Gold VA, Chroscicki P, Bragoszewski P, Chacinska A. Visualization of cytosolic ribosomes on the surface of mitochondria by electron cryo-tomography. EMBO Rep 2017; 18:1786-1800. [PMID: 28827470 PMCID: PMC5623831 DOI: 10.15252/embr.201744261] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 12/31/2022] Open
Abstract
We employed electron cryo‐tomography to visualize cytosolic ribosomes on the surface of mitochondria. Translation‐arrested ribosomes reveal the clustered organization of the TOM complex, corroborating earlier reports of localized translation. Ribosomes are shown to interact specifically with the TOM complex, and nascent chain binding is crucial for ribosome recruitment and stabilization. Ribosomes are bound to the membrane in discrete clusters, often in the vicinity of the crista junctions. This interaction highlights how protein synthesis may be coupled with transport. Our work provides unique insights into the spatial organization of cytosolic ribosomes on mitochondria.
Collapse
Affiliation(s)
- Vicki Am Gold
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany .,Living Systems Institute, University of Exeter, Exeter, UK.,College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Exeter, UK
| | - Piotr Chroscicki
- The International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Piotr Bragoszewski
- The International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Agnieszka Chacinska
- The International Institute of Molecular and Cell Biology, Warsaw, Poland .,Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
20
|
Abstract
Cells are highly organized entities that rely on intricate addressing mechanisms to sort their constituent molecules to precise subcellular locations. These processes are crucial for cells to maintain their proper organization and carry out specialized functions in the body, consequently genetic perturbations that clog up these addressing systems can contribute to disease aetiology. The trafficking of RNA molecules represents an important layer in the control of cellular organization, a process that is both highly prevalent and for which features of the regulatory machineries have been deeply conserved evolutionarily. RNA localization is commonly driven by trans-regulatory factors, including RNA binding proteins at the core, which recognize specific cis-acting zipcode elements within the RNA transcripts. Here, we first review the functions and biological benefits of intracellular RNA trafficking, from the perspective of both coding and non-coding RNAs. Next, we discuss the molecular mechanisms that modulate this localization, emphasizing the diverse features of the cis- and trans-regulators involved, while also highlighting emerging technologies and resources that will prove instrumental in deciphering RNA targeting pathways. We then discuss recent findings that reveal how co-transcriptional regulatory mechanisms operating in the nucleus can dictate the downstream cytoplasmic localization of RNAs. Finally, we survey the growing number of human diseases in which RNA trafficking pathways are impacted, including spinal muscular atrophy, Alzheimer's disease, fragile X syndrome and myotonic dystrophy. Such examples highlight the need to further dissect RNA localization mechanisms, which could ultimately pave the way for the development of RNA-oriented diagnostic and therapeutic strategies. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Ashley Chin
- Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, Canada
| | - Eric Lécuyer
- Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, 2900 Boulevard Edouard-Montpetit, Montreal, Quebec, Canada.
| |
Collapse
|
21
|
Cenik C, Chua HN, Singh G, Akef A, Snyder MP, Palazzo AF, Moore MJ, Roth FP. A common class of transcripts with 5'-intron depletion, distinct early coding sequence features, and N1-methyladenosine modification. RNA (NEW YORK, N.Y.) 2017; 23:270-283. [PMID: 27994090 PMCID: PMC5311483 DOI: 10.1261/rna.059105.116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/14/2016] [Indexed: 06/01/2023]
Abstract
Introns are found in 5' untranslated regions (5'UTRs) for 35% of all human transcripts. These 5'UTR introns are not randomly distributed: Genes that encode secreted, membrane-bound and mitochondrial proteins are less likely to have them. Curiously, transcripts lacking 5'UTR introns tend to harbor specific RNA sequence elements in their early coding regions. To model and understand the connection between coding-region sequence and 5'UTR intron status, we developed a classifier that can predict 5'UTR intron status with >80% accuracy using only sequence features in the early coding region. Thus, the classifier identifies transcripts with 5' proximal-intron-minus-like-coding regions ("5IM" transcripts). Unexpectedly, we found that the early coding sequence features defining 5IM transcripts are widespread, appearing in 21% of all human RefSeq transcripts. The 5IM class of transcripts is enriched for non-AUG start codons, more extensive secondary structure both preceding the start codon and near the 5' cap, greater dependence on eIF4E for translation, and association with ER-proximal ribosomes. 5IM transcripts are bound by the exon junction complex (EJC) at noncanonical 5' proximal positions. Finally, N1-methyladenosines are specifically enriched in the early coding regions of 5IM transcripts. Taken together, our analyses point to the existence of a distinct 5IM class comprising ∼20% of human transcripts. This class is defined by depletion of 5' proximal introns, presence of specific RNA sequence features associated with low translation efficiency, N1-methyladenosines in the early coding region, and enrichment for noncanonical binding by the EJC.
Collapse
Affiliation(s)
- Can Cenik
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Hon Nian Chua
- Donnelly Centre, Department of Molecular Genetics, and Department of Computer Science, University of Toronto, Toronto M5S 3E1, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto M5G 1X5, Ontario, Canada
- DataRobot, Inc., Boston, Massachusetts 02109, USA
| | - Guramrit Singh
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Abdalla Akef
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Alexander F Palazzo
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Melissa J Moore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Frederick P Roth
- Donnelly Centre, Department of Molecular Genetics, and Department of Computer Science, University of Toronto, Toronto M5S 3E1, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto M5G 1X5, Ontario, Canada
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston 02215, Massachusetts, USA
- The Canadian Institute for Advanced Research, Toronto M5G 1Z8, Ontario, Canada
| |
Collapse
|
22
|
Golani-Armon A, Arava Y. Localization of Nuclear-Encoded mRNAs to Mitochondria Outer Surface. BIOCHEMISTRY (MOSCOW) 2017; 81:1038-1043. [PMID: 27908229 DOI: 10.1134/s0006297916100023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The diverse functions of mitochondria depend on hundreds of different proteins. The vast majority of these proteins is encoded in the nucleus, translated in the cytosol, and must be imported into the organelle. Import was shown to occur after complete synthesis of the protein, with the assistance of cytosolic chaperones that maintain it in an unfolded state and target it to the mitochondrial translocase of the outer membrane (TOM complex). Recent studies, however, identified many mRNAs encoding mitochondrial proteins near the outer membrane of mitochondria. Translation studies suggest that many of these mRNAs are translated locally, presumably allowing cotranslational import into mitochondria. Herein we review these data and discuss its relevance for local protein synthesis. We also suggest alternative roles for mRNA localization to mitochondria. Finally, we suggest future research directions, including revealing the significance of localization to mitochondria physiology and the molecular players that regulate it.
Collapse
Affiliation(s)
- A Golani-Armon
- Technion - Israel Institute of Technology, Faculty of Biology, Haifa, 32000, Israel.
| | | |
Collapse
|
23
|
Abstract
The report in 1988 that Leber Hereditary Optic Neuropathy (LHON) was the product of mitochondrial DNA (mtDNA) mutations provided the first demonstration of the clinical relevance of inherited mtDNA variation. From LHON studies, the medical importance was demonstrated for the mtDNA showing its coding for the most important energy genes, its maternal inheritance, its high mutation rate, its presence in hundreds to thousands of copies per cell, its quantitatively segregation of biallelic genotypes during both mitosis and meiosis, its preferential effect on the most energetic tissues including the eye and brain, its wide range of functional polymorphisms that predispose to common diseases, and its accumulation of mutations within somatic tissues providing the aging clock. These features of mtDNA genetics, in combination with the genetics of the 1-2000 nuclear DNA (nDNA) coded mitochondrial genes, is not only explaining the genetics of LHON but also providing a model for understanding the complexity of many common diseases. With the maturation of LHON biology and genetics, novel animal models for complex disease have been developed and new therapeutic targets and strategies envisioned, both pharmacological and genetic. Multiple somatic gene therapy approaches are being developed for LHON which are applicable to other mtDNA diseases. Moreover, the unique cytoplasmic genetics of the mtDNA has permitted the first successful human germline gene therapy via spindle nDNA transfer from mtDNA mutant oocytes to enucleated normal mtDNA oocytes. Such LHON lessons are actively being applied to common ophthalmological diseases like glaucoma and neurological diseases like Parkinsonism.
Collapse
|
24
|
Abstract
Local synthesis of proteins near their activity site has been demonstrated in many biological systems, and has diverse contributions to cellular functions. Studies in recent years have revealed that hundreds of mitochondria-destined proteins are synthesized by cytosolic ribosomes near the mitochondrial outer membrane, indicating that localized translation also occurs at this cellular locus. Furthermore, in the last year central factors that are involved in this process were identified in yeast, Drosophila, and human cells. Herein we review the experimental evidence for localized translation on the cytosolic side of the mitochondrial outer membrane; in addition, we describe the factors that are involved in this process and discuss the conservation of this mechanism among various species. We also describe the relationship between localized translation and import into the mitochondria and suggest avenues of study that look beyond cotranslational import. Finally we discuss future challenges in characterizing the mechanisms for localized translation and its physiological significance.
Collapse
Affiliation(s)
- Chen Lesnik
- a Department of Biology ; Technion - Israel Institute of Technology ; Haifa , Israel
| | | | | |
Collapse
|
25
|
Zhang Y, Chen Y, Gucek M, Xu H. The mitochondrial outer membrane protein MDI promotes local protein synthesis and mtDNA replication. EMBO J 2016; 35:1045-57. [PMID: 27053724 DOI: 10.15252/embj.201592994] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 03/01/2016] [Indexed: 12/21/2022] Open
Abstract
Early embryonic development features rapid nuclear DNA replication cycles, but lacks mtDNA replication. To meet the high-energy demands of embryogenesis, mature oocytes are furnished with vast amounts of mitochondria and mtDNA However, the cellular machinery driving massive mtDNA replication in ovaries remains unknown. Here, we describe a Drosophila AKAP protein, MDI that recruits a translation stimulator, La-related protein (Larp), to the mitochondrial outer membrane in ovaries. The MDI-Larp complex promotes the synthesis of a subset of nuclear-encoded mitochondrial proteins by cytosolic ribosomes on the mitochondrial surface. MDI-Larp's targets include mtDNA replication factors, mitochondrial ribosomal proteins, and electron-transport chain subunits. Lack of MDI abolishes mtDNA replication in ovaries, which leads to mtDNA deficiency in mature eggs. Targeting Larp to the mitochondrial outer membrane independently of MDI restores local protein synthesis and rescues the phenotypes of mdi mutant flies. Our work suggests that a selective translational boost by the MDI-Larp complex on the outer mitochondrial membrane might be essential for mtDNA replication and mitochondrial biogenesis during oogenesis.
Collapse
Affiliation(s)
- Yi Zhang
- Laboratory of Molecular Genetics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yong Chen
- Proteomics Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marjan Gucek
- Proteomics Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hong Xu
- Laboratory of Molecular Genetics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
26
|
Kang K, Takahara M, Sakaue H, Sakaguchi M. Capsid protease domain as a tool for assessing protein-domain folding during organelle import of nascent polypeptides in living cells. J Biochem 2015; 159:497-508. [DOI: 10.1093/jb/mvv129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/03/2015] [Indexed: 01/16/2023] Open
|
27
|
Schulz C, Schendzielorz A, Rehling P. Unlocking the presequence import pathway. Trends Cell Biol 2015; 25:265-75. [DOI: 10.1016/j.tcb.2014.12.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
|
28
|
Differential targeting of VDAC3 mRNA isoforms influences mitochondria morphology. Proc Natl Acad Sci U S A 2014; 111:8991-6. [PMID: 24889622 DOI: 10.1073/pnas.1402588111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Intracellular targeting of mRNAs has recently emerged as a prevalent mechanism to control protein localization. For mitochondria, a cotranslational model of protein import is now proposed in parallel to the conventional posttranslational model, and mitochondrial targeting of mRNAs has been demonstrated in various organisms. Voltage-dependent anion channels (VDACs) are the most abundant proteins in the outer mitochondrial membrane and the major transport pathway for numerous metabolites. Four nucleus-encoded VDACs have been identified in Arabidopsis thaliana. Alternative cleavage and polyadenylation generate two VDAC3 mRNA isoforms differing by their 3' UTR. By using quantitative RT-PCR and in vivo mRNA visualization approaches, the two mRNA variants were shown differentially associated with mitochondria. The longest mRNA presents a 3' extension named alternative UTR (aUTR) that is necessary and sufficient to target VDAC3 mRNA to the mitochondrial surface. Moreover, aUTR is sufficient for the mitochondrial targeting of a reporter transcript, and can be used as a tool to target an unrelated mRNA to the mitochondrial surface. Finally, VDAC3-aUTR mRNA variant impacts mitochondria morphology and size, demonstrating the role of mRNA targeting in mitochondria biogenesis.
Collapse
|
29
|
Wang G, Yang E, Mandhan I, Brinkmeyer-Langford CL, Cai JJ. Population-level expression variability of mitochondrial DNA-encoded genes in humans. Eur J Hum Genet 2014; 22:1093-9. [PMID: 24398800 DOI: 10.1038/ejhg.2013.293] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 10/22/2013] [Accepted: 11/09/2013] [Indexed: 12/28/2022] Open
Abstract
Human mitochondria contain multiple copies of a circular genome made up of double-stranded DNA (mtDNA) that encodes proteins involved in cellular respiration. Transcript abundance of mtDNA-encoded genes varies between human individuals, yet the level of variation in the general population has not been systematically assessed. In the present study, we revisited large-scale RNA sequencing data generated from lymphoblastoid cell lines of HapMap samples of European and African ancestry to estimate transcript abundance and quantify expression variation for mtDNA-encoded genes. In both populations, we detected up to over 100-fold difference in mtDNA gene expression between individuals. The marked variation was not due to differences in mtDNA copy number between individuals, but was shaped by the transcription of hundreds of nuclear genes. Many of these nuclear genes were co-expressed with one another, resulting in a module-enriched co-expression network. Significant correlations in expression between genes of the mtDNA and nuclear genomes were used to identify factors involved with the regulation of mitochondrial functions. In conclusion, we determined the baseline amount of variability in mtDNA gene expression in general human populations and cataloged a complete set of nuclear genes whose expression levels are correlated with those of mtDNA-encoded genes. Our findings will enable the integration of information from both mtDNA and nuclear genetic systems, and facilitate the discovery of novel regulatory pathways involving mitochondrial functions.
Collapse
Affiliation(s)
- Gang Wang
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Ence Yang
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Ishita Mandhan
- Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | | | - James J Cai
- 1] Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA [2] Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA
| |
Collapse
|
30
|
Deglincerti A, Jaffrey SR. Insights into the roles of local translation from the axonal transcriptome. Open Biol 2013; 2:120079. [PMID: 22773949 PMCID: PMC3390793 DOI: 10.1098/rsob.120079] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/22/2012] [Indexed: 11/12/2022] Open
Abstract
Much of our knowledge on the roles of intra-axonal translation derives from the characterization of a small number of individual mRNAs that were found to be localized in axons. However, two recent studies, using large-scale approaches to provide a more comprehensive characterization of the axonal transcriptome, have led to the discovery of thousands of axonal mRNAs. The apparent abundance of mRNAs in axons raises the possibility that local translation has many more functions than previously thought. Here, we review the recent studies that have profiled axonal mRNAs and discuss how the identification of axonal transcripts might point to unappreciated roles for local translation in axons.
Collapse
Affiliation(s)
- Alessia Deglincerti
- Graduate Program in Neuroscience, Weill Cornell Graduate School of Medical Sciences of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
31
|
TMEM126A is a mitochondrial located mRNA (MLR) protein of the mitochondrial inner membrane. Biochim Biophys Acta Gen Subj 2013; 1830:3719-33. [DOI: 10.1016/j.bbagen.2013.02.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/13/2013] [Accepted: 02/26/2013] [Indexed: 12/22/2022]
|
32
|
Wan Y, Qu K, Ouyang Z, Kertesz M, Li J, Tibshirani R, Makino DL, Nutter RC, Segal E, Chang HY. Genome-wide measurement of RNA folding energies. Mol Cell 2012; 48:169-81. [PMID: 22981864 DOI: 10.1016/j.molcel.2012.08.008] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/19/2012] [Accepted: 08/02/2012] [Indexed: 12/31/2022]
Abstract
RNA structural transitions are important in the function and regulation of RNAs. Here, we reveal a layer of transcriptome organization in the form of RNA folding energies. By probing yeast RNA structures at different temperatures, we obtained relative melting temperatures (Tm) for RNA structures in over 4000 transcripts. Specific signatures of RNA Tm demarcated the polarity of mRNA open reading frames and highlighted numerous candidate regulatory RNA motifs in 3' untranslated regions. RNA Tm distinguished noncoding versus coding RNAs and identified mRNAs with distinct cellular functions. We identified thousands of putative RNA thermometers, and their presence is predictive of the pattern of RNA decay in vivo during heat shock. The exosome complex recognizes unpaired bases during heat shock to degrade these RNAs, coupling intrinsic structural stabilities to gene regulation. Thus, genome-wide structural dynamics of RNA can parse functional elements of the transcriptome and reveal diverse biological insights.
Collapse
Affiliation(s)
- Yue Wan
- Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Localization of mRNAs encoding human mitochondrial oxidative phosphorylation proteins. Mitochondrion 2012; 12:391-8. [DOI: 10.1016/j.mito.2012.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 02/01/2012] [Accepted: 02/20/2012] [Indexed: 11/21/2022]
|
34
|
Ding D, Enriquez-Algeciras M, Dave KR, Perez-Pinzon M, Bhattacharya SK. The role of deimination in ATP5b mRNA transport in a transgenic mouse model of multiple sclerosis. EMBO Rep 2012; 13:230-6. [PMID: 22261716 DOI: 10.1038/embor.2011.264] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 11/09/2022] Open
Abstract
Deimination refers to conversion of protein-bound arginine into citrulline. An mRNA carrier, RNA binding export factor (REF), present on mitochondria undergoes loss of deimination with impaired ATP5b mRNA transport in ND4 mice (model of multiple sclerosis) compared with the controls. We present evidence of (1) reduced ATP5b mRNA binding strength of non-deiminated REF compared with deiminated REF, (2) impaired ATP5b mRNA transport in ND4 mice and (3) reduced mitochondrial ATP synthase activity on inhibition of deimination in PC12 cells. Impaired deimination of REF and defect in mitochondrial mRNA transport are critical factors in mitochondrial dysfunction in ND4 mice.
Collapse
Affiliation(s)
- Di Ding
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
35
|
Arribere JA, Doudna JA, Gilbert WV. Reconsidering movement of eukaryotic mRNAs between polysomes and P bodies. Mol Cell 2012; 44:745-58. [PMID: 22152478 DOI: 10.1016/j.molcel.2011.09.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 06/21/2011] [Accepted: 09/14/2011] [Indexed: 11/19/2022]
Abstract
Cell survival in changing environments requires appropriate regulation of gene expression, including posttranscriptional regulatory mechanisms. From reporter gene studies in glucose-starved yeast, it was proposed that translationally silenced eukaryotic mRNAs accumulate in P bodies and can return to active translation. We present evidence contradicting the notion that reversible storage of nontranslating mRNAs is a widespread and general phenomenon. First, genome-wide measurements of mRNA abundance, translation, and ribosome occupancy after glucose withdrawal show that most mRNAs are depleted from the cell coincident with their depletion from polysomes. Second, only a limited subpopulation of translationally repressed transcripts, comprising fewer than 400 genes, can be reactivated for translation upon glucose readdition in the absence of new transcription. This highly selective posttranscriptional regulation could be a mechanism for cells to minimize the energetic costs of reversing gene-regulatory decisions in rapidly changing environments by transiently preserving a pool of transcripts whose translation is rate-limiting for growth.
Collapse
Affiliation(s)
- Joshua A Arribere
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
36
|
Mercer TR, Neph S, Dinger ME, Crawford J, Smith MA, Shearwood AMJ, Haugen E, Bracken CP, Rackham O, Stamatoyannopoulos JA, Filipovska A, Mattick JS. The human mitochondrial transcriptome. Cell 2011; 146:645-58. [PMID: 21854988 DOI: 10.1016/j.cell.2011.06.051] [Citation(s) in RCA: 629] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 06/15/2011] [Accepted: 06/27/2011] [Indexed: 11/27/2022]
Abstract
The human mitochondrial genome comprises a distinct genetic system transcribed as precursor polycistronic transcripts that are subsequently cleaved to generate individual mRNAs, tRNAs, and rRNAs. Here, we provide a comprehensive analysis of the human mitochondrial transcriptome across multiple cell lines and tissues. Using directional deep sequencing and parallel analysis of RNA ends, we demonstrate wide variation in mitochondrial transcript abundance and precisely resolve transcript processing and maturation events. We identify previously undescribed transcripts, including small RNAs, and observe the enrichment of several nuclear RNAs in mitochondria. Using high-throughput in vivo DNaseI footprinting, we establish the global profile of DNA-binding protein occupancy across the mitochondrial genome at single-nucleotide resolution, revealing regulatory features at mitochondrial transcription initiation sites and functional insights into disease-associated variants. This integrated analysis of the mitochondrial transcriptome reveals unexpected complexity in the regulation, expression, and processing of mitochondrial RNA and provides a resource for future studies of mitochondrial function (accessed at http://mitochondria.matticklab.com).
Collapse
Affiliation(s)
- Tim R Mercer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Genome analysis reveals interplay between 5'UTR introns and nuclear mRNA export for secretory and mitochondrial genes. PLoS Genet 2011; 7:e1001366. [PMID: 21533221 PMCID: PMC3077370 DOI: 10.1371/journal.pgen.1001366] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 03/07/2011] [Indexed: 11/19/2022] Open
Abstract
In higher eukaryotes, messenger RNAs (mRNAs) are exported from the nucleus to the cytoplasm via factors deposited near the 5′ end of the transcript during splicing. The signal sequence coding region (SSCR) can support an alternative mRNA export (ALREX) pathway that does not require splicing. However, most SSCR–containing genes also have introns, so the interplay between these export mechanisms remains unclear. Here we support a model in which the furthest upstream element in a given transcript, be it an intron or an ALREX–promoting SSCR, dictates the mRNA export pathway used. We also experimentally demonstrate that nuclear-encoded mitochondrial genes can use the ALREX pathway. Thus, ALREX can also be supported by nucleotide signals within mitochondrial-targeting sequence coding regions (MSCRs). Finally, we identified and experimentally verified novel motifs associated with the ALREX pathway that are shared by both SSCRs and MSCRs. Our results show strong correlation between 5′ untranslated region (5′UTR) intron presence/absence and sequence features at the beginning of the coding region. They also suggest that genes encoding secretory and mitochondrial proteins share a common regulatory mechanism at the level of mRNA export. The function and evolution of introns have been topics of great interest since introns were discovered in the 1970s. Introns that interrupt protein-coding regions have the most obvious potential to affect coding sequences and their evolution, and they have therefore been studied most intensively. However, about one third of human genes contain introns within 5′ untranslated regions (UTR). Here we observe that certain classes of genes, including those targeted to the endoplasmic reticulum and nuclear-encoded mitochondrial genes, are surprisingly depleted of 5′UTR introns. We offer and support a model that explains this observation and points to a surprising connection between 5′UTR introns and how mRNAs are exported from the nucleus.
Collapse
|
38
|
Cwerman-Thibault H, Sahel JA, Corral-Debrinski M. Mitochondrial medicine: to a new era of gene therapy for mitochondrial DNA mutations. J Inherit Metab Dis 2011; 34:327-44. [PMID: 20571866 DOI: 10.1007/s10545-010-9131-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/12/2010] [Accepted: 05/17/2010] [Indexed: 01/01/2023]
Abstract
Mitochondrial disorders can no longer be ignored in most medical disciplines. Such disorders include specific and widespread organ involvement, with tissue degeneration or tumor formation. Primary or secondary actors, mitochondrial dysfunctions also play a role in the aging process. Despite progresses made in identification of their molecular bases, nearly everything remains to be done as regards therapy. Research dealing with mitochondrial physiology and pathology has >20 years of history around the world. We are involved, as are many other laboratories, in the challenge of finding ways to fight these diseases. However, our main limitation is the scarcety of animal models required for both understanding the molecular mechanisms underlying the diseases and evaluating therapeutic strategies. This is especially true for diseases due to mutations in mitochondrial DNA (mtDNA), since an authentic genetic model of mtDNA mutations is technically a very difficult task due to both the inability of manipulating the mitochondrial genome of living mammalian cells and to its multicopy nature. This has led researchers in the field to consider the prospect of gene therapy approaches that can roughly be divided into three groups: (1) import of wild-type copies or relevant sections of DNA or RNA into mitochondria, (2) manipulation of mitochondrial genetic content, and (3) rescue of a defect by expression of an engineered gene product from the nucleus (allotopic or xenotropic expression). We briefly introduce these concepts and indicate where promising progress has been made in the last decade.
Collapse
|
39
|
Zipor G, Brocard C, Gerst JE. Isolation of mRNAs encoding peroxisomal proteins from yeast using a combined cell fractionation and affinity purification procedure. Methods Mol Biol 2011; 714:323-33. [PMID: 21431750 DOI: 10.1007/978-1-61779-005-8_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Targeted mRNA localization to distinct subcellular sites occurs throughout the eukaryotes and presumably allows for the localized translation of proteins near their site of function. Specific mRNAs have been localized in cells using a variety of reliable methods, such as fluorescence in situ hybridization with labeled RNA probes, mRNA tagging using RNA aptamers and fluorescent proteins that recognize these aptamers, and quenched fluorescent RNA probes that become activated upon binding to mRNAs. However, fluorescence-based RNA localization studies can be strengthened when coupled with cell fractionation and membrane isolation techniques in order to identify mRNAs associated with specific organelles or other subcellular structures. Here we describe a novel method to isolate mRNAs associated with peroxisomes in the yeast, Saccharomyces cerevisiae. This method employs a combination of density gradient centrifugation and affinity purification to yield a highly enriched peroxisome fraction suitable for RNA isolation and reverse transcription-polymerase chain reaction detection of mRNAs bound to peroxisome membranes. The method is presented for the analysis of peroxisome-associated mRNAs; however it is applicable to studies on other subcellular compartments.
Collapse
Affiliation(s)
- Gadi Zipor
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
40
|
Slobodin B, Gerst JE. RaPID: an aptamer-based mRNA affinity purification technique for the identification of RNA and protein factors present in ribonucleoprotein complexes. Methods Mol Biol 2011; 714:387-406. [PMID: 21431754 DOI: 10.1007/978-1-61779-005-8_24] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
RNA metabolism involves regulatory processes, such as transcription, splicing, nuclear export, transport and localization, association with sites of RNA modification, silencing and decay, and necessitates a wide variety of diverse RNA-interacting proteins. These interactions can be direct via RNA-binding proteins (RBPs) or indirect via other proteins and RNAs that form ribonucleoprotein complexes that together control RNA fate. While pull-down methods for the isolation of known RBPs are commonly used, strategies have also been described for the direct isolation of messenger RNAs (mRNAs) and their associated factors. The latter techniques allow for the identification of interacting proteins and RNAs, but most suffer from problems of low sensitivity and high background. Here we describe a simple and highly effective method for RNA purification and identification (RaPID) that allows for the isolation of specific mRNAs of interest from yeast and mammalian cells, and subsequent analysis of the associated proteins and RNAs using mass spectrometry and reverse transcription-PCR, respectively. This method employs the MS2 coat RBP fused to both GFP and streptavidin-binding protein to precipitate MS2 aptamer-tagged RNAs using immobilized streptavidin.
Collapse
Affiliation(s)
- Boris Slobodin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
41
|
Michaud M, Maréchal-Drouard L, Duchêne AM. RNA trafficking in plant cells: targeting of cytosolic mRNAs to the mitochondrial surface. PLANT MOLECULAR BIOLOGY 2010; 73:697-704. [PMID: 20506035 DOI: 10.1007/s11103-010-9650-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 05/07/2010] [Indexed: 05/06/2023]
Abstract
Subcellular localization of mRNA is a widespread and efficient way for targeting proteins to specific regions of a cell. Messenger RNA sorting appears as a key mechanism for posttranscriptional gene regulation, and its involvement in organelle biogenesis has been described in different organisms. Here we demonstrate that mRNA targeting to the surface of mitochondria occurs in higher plants. Cytosolic mRNAs corresponding to mitochondrial proteins, but also to some particular cytosolic proteins, were found associated to mitochondria, offering new perspectives for mitochondria biogenesis in plant cells.
Collapse
Affiliation(s)
- Morgane Michaud
- Institut de Biologie Moléculaire des Plantes, UPR 2357 du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | | | | |
Collapse
|
42
|
Ortega AD, Willers IM, Sala S, Cuezva JM. Human G3BP1 interacts with beta-F1-ATPase mRNA and inhibits its translation. J Cell Sci 2010; 123:2685-96. [PMID: 20663914 DOI: 10.1242/jcs.065920] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The post-transcriptional regulation of nuclear mRNAs that encode core components of mitochondria has relevant implications in cell physiology. The mRNA that encodes the catalytic subunit of the mitochondrial H(+)-ATP synthase subunit beta (ATP5B, beta-F1-ATPase) is localized in a large ribonucleoprotein (RNP) complex (beta-F1-RNP), which is subjected to stringent translational control during development and the cell cycle, and in carcinogenesis. Because downregulation of beta-F1-ATPase is a conserved feature of most prevalent human carcinomas, we have investigated the molecular composition of the human beta-F1-RNP. By means of an improved affinity-chromatography procedure and protein sequencing we have identified nine RNA-binding proteins (RNABPs) of the beta-F1-RNP. Immunoprecipitation assays of Ras-GAP SH3 binding protein 1 (G3BP1) and fluorescent in-situ hybridization of mRNA indicate a direct interaction of the endogenous G3BP1 with mRNA of beta-F1-ATPase (beta-F1 mRNA). RNA-bridged trimolecular fluorescence complementation (TriFC) assays confirm the interaction of G3BP1 with the 3'-UTR of beta-F1 mRNA in cytoplasmic RNA-granules. Confocal and high-resolution immunoelectron-microscopy experiments suggest that the beta-F1-RNP is sorted to the periphery of mitochondria. Molecular and functional studies indicate that the interaction of G3BP1 with beta-F1 mRNA inhibits its translation at the initiation level, supporting a role for G3BP1 in the glycolytic switch that occurs in cancer.
Collapse
Affiliation(s)
- Alvaro D Ortega
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC-UAM, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
43
|
Tom20 mediates localization of mRNAs to mitochondria in a translation-dependent manner. Mol Cell Biol 2010; 30:284-94. [PMID: 19858288 DOI: 10.1128/mcb.00651-09] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
mRNAs encoding mitochondrial proteins are enriched in the vicinity of mitochondria, presumably to facilitate protein transport. A possible mechanism for enrichment may involve interaction of the translocase of the mitochondrial outer membrane (TOM) complex with the precursor protein while it is translated, thereby leading to association of polysomal mRNAs with mitochondria. To test this hypothesis, we isolated mitochondrial fractions from yeast cells lacking the major import receptor, Tom20, and compared their mRNA repertoire to that of wild-type cells by DNA microarrays. Most mRNAs encoding mitochondrial proteins were less associated with mitochondria, yet the extent of decrease varied among genes. Analysis of several mRNAs revealed that optimal association of Tom20 target mRNAs requires both translating ribosomes and features within the encoded mitochondrial targeting signal. Recently, Puf3p was implicated in the association of mRNAs with mitochondria through interaction with untranslated regions. We therefore constructed a tom20 Delta puf3 Delta double-knockout strain, which demonstrated growth defects under conditions where fully functional mitochondria are required. Mislocalization effects for few tested mRNAs appeared stronger in the double knockout than in the tom20 Delta strain. Taken together, our data reveal a large-scale mRNA association mode that involves interaction of Tom20p with the translated mitochondrial targeting sequence and may be assisted by Puf3p.
Collapse
|
44
|
Tea M, Fogarty R, Brereton HM, Michael MZ, Van der Hoek MB, Tsykin A, Coster DJ, Williams KA. Gene expression microarray analysis of early oxygen-induced retinopathy in the rat. J Ocul Biol Dis Infor 2009; 2:190-201. [PMID: 20157446 PMCID: PMC2821581 DOI: 10.1007/s12177-009-9041-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 11/06/2009] [Indexed: 12/27/2022] Open
Abstract
Different inbred strains of rat differ in their susceptibility to oxygen-induced retinopathy (OIR), an animal model of human retinopathy of prematurity. We examined gene expression in Sprague-Dawley (susceptible) and Fischer 344 (resistant) neonatal rats after 3 days exposure to cyclic hyperoxia or room air, using Affymetrix rat Genearrays. False discovery rate analysis was used to identify differentially regulated genes. Such genes were then ranked by fold change and submitted to the online database, DAVID. The Sprague-Dawley list returned the term "response to hypoxia," absent from the Fischer 344 output. Manual analysis indicated that many genes known to be upregulated by hypoxia-inducible factor-1alpha were downregulated by cyclic hyperoxia. Quantitative real-time RT-PCR analysis of Egln3, Bnip3, Slc16a3, and Hk2 confirmed the microarray results. We conclude that combined methodologies are required for adequate dissection of the pathophysiology of strain susceptibility to OIR in the rat. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12177-009-9041-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melinda Tea
- Department of Ophthalmology, Flinders University of South Australia, Adelaide, Australia
| | - Rhys Fogarty
- Department of Ophthalmology, Flinders University of South Australia, Adelaide, Australia
| | - Helen M. Brereton
- Department of Ophthalmology, Flinders University of South Australia, Adelaide, Australia
| | - Michael Z. Michael
- Department of Gastroenterology and Hepatology, Flinders University of South Australia, Adelaide, Australia
| | - Mark B. Van der Hoek
- Adelaide Microarray Centre, University of Adelaide & Hanson Institute, Adelaide, Australia
| | - Anna Tsykin
- Adelaide Microarray Centre, University of Adelaide & Hanson Institute, Adelaide, Australia
| | - Douglas J. Coster
- Department of Ophthalmology, Flinders University of South Australia, Adelaide, Australia
| | - Keryn A. Williams
- Department of Ophthalmology, Flinders University of South Australia, Adelaide, Australia
- Department of Ophthalmology, Flinders Medical Centre, Bedford Park, 5042 SA Australia
| |
Collapse
|
45
|
Hanein S, Perrault I, Roche O, Gerber S, Khadom N, Rio M, Boddaert N, Jean-Pierre M, Brahimi N, Serre V, Chretien D, Delphin N, Fares-Taie L, Lachheb S, Rotig A, Meire F, Munnich A, Dufier JL, Kaplan J, Rozet JM. TMEM126A, encoding a mitochondrial protein, is mutated in autosomal-recessive nonsyndromic optic atrophy. Am J Hum Genet 2009; 84:493-8. [PMID: 19327736 DOI: 10.1016/j.ajhg.2009.03.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 03/03/2009] [Accepted: 03/04/2009] [Indexed: 11/28/2022] Open
Abstract
Nonsyndromic autosomal-recessive optic neuropathies are rare conditions of unknown genetic and molecular origin. Using an approach of whole-genome homozygosity mapping and positional cloning, we have identified the first gene, to our knowledge, responsible for this condition, TMEM126A, in a large multiplex inbred Algerian family and subsequently in three other families originating from the Maghreb. TMEM126A is conserved in higher eukaryotes and encodes a transmembrane mitochondrial protein of unknown function, supporting the view that mitochondrial dysfunction may be a hallmark of inherited optic neuropathies including isolated autosomal-recessive forms.
Collapse
Affiliation(s)
- Sylvain Hanein
- Département de Génétique, Université Paris Descartes, Unité INSERM U781, Hôpital Necker-Enfants Malades, 75015 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Fähling M. Cellular oxygen sensing, signalling and how to survive translational arrest in hypoxia. Acta Physiol (Oxf) 2009; 195:205-30. [PMID: 18764866 DOI: 10.1111/j.1748-1716.2008.01894.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hypoxia is a consequence of inadequate oxygen availability. At the cellular level, lowered oxygen concentration activates signal cascades including numerous receptors, ion channels, second messengers, as well as several protein kinases and phosphatases. This, in turn, activates trans-factors like transcription factors, RNA-binding proteins and miRNAs, mediating an alteration in gene expression control. Each cell type has its unique constellation of oxygen sensors, couplers and effectors that determine the activation and predominance of several independent hypoxia-sensitive pathways. Hence, altered gene expression patterns in hypoxia result from a complex regulatory network with multiple divergences and convergences. Although hundreds of genes are activated by transcriptional control in hypoxia, metabolic rate depression, as a consequence of reduced ATP level, causes inhibition of mRNA translation. In a multi-phase response to hypoxia, global protein synthesis is suppressed, mainly by phosphorylation of eIF2-alpha by PERK and inhibition of mTOR, causing suppression of 5'-cap-dependent mRNA translation. Growing evidence suggests that mRNAs undergo sorting at stress granules, which determines the fate of mRNA as to whether being translated, stored, or degraded. Data indicate that translation is suppressed only at 'free' polysomes, but is active at subsets of membrane-bound ribosomes. The recruitment of specific mRNAs into subcellular compartments seems to be crucial for local mRNA translation in prolonged hypoxia. Furthermore, ribosomes themselves may play a significant role in targeting mRNAs for translation. This review summarizes the multiple facets of the cellular adaptation to hypoxia observed in mammals.
Collapse
Affiliation(s)
- M Fähling
- Institut für Vegetative Physiologie, Charité, Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
47
|
Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol 2008; 6:e255. [PMID: 18959479 PMCID: PMC2573929 DOI: 10.1371/journal.pbio.0060255] [Citation(s) in RCA: 456] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 09/11/2008] [Indexed: 11/19/2022] Open
Abstract
RNA-binding proteins (RBPs) have roles in the regulation of many post-transcriptional steps in gene expression, but relatively few RBPs have been systematically studied. We searched for the RNA targets of 40 proteins in the yeast Saccharomyces cerevisiae: a selective sample of the approximately 600 annotated and predicted RBPs, as well as several proteins not annotated as RBPs. At least 33 of these 40 proteins, including three of the four proteins that were not previously known or predicted to be RBPs, were reproducibly associated with specific sets of a few to several hundred RNAs. Remarkably, many of the RBPs we studied bound mRNAs whose protein products share identifiable functional or cytotopic features. We identified specific sequences or predicted structures significantly enriched in target mRNAs of 16 RBPs. These potential RNA-recognition elements were diverse in sequence, structure, and location: some were found predominantly in 3′-untranslated regions, others in 5′-untranslated regions, some in coding sequences, and many in two or more of these features. Although this study only examined a small fraction of the universe of yeast RBPs, 70% of the mRNA transcriptome had significant associations with at least one of these RBPs, and on average, each distinct yeast mRNA interacted with three of the RBPs, suggesting the potential for a rich, multidimensional network of regulation. These results strongly suggest that combinatorial binding of RBPs to specific recognition elements in mRNAs is a pervasive mechanism for multi-dimensional regulation of their post-transcriptional fate. Regulation of gene transcription has been extensively studied, but much less is known about how the fates of the resulting mRNA transcripts are regulated. We were intrigued by the fact that while most eukaryotic genomes encode hundreds of RNA-binding proteins (RBPs), the targets and regulatory roles of only a small fraction of these proteins have been characterized. In this study, we systematically identified the RNAs associated with a select sample of 40 of the approximately 600 predicted RBPs in the budding yeast, Saccharomyces cerevisiae. We found that most of these RBPs bound specific sets of mRNAs whose protein products share physiological themes or similar locations within the cell. For 16 of the 40 RBPs, we identified sequence motifs significantly enriched in their RNA targets that presumably mediate recognition of the target by the RBP. The intricate, overlapping patterns of mRNAs associated with RBPs suggest an extensive combinatorial system for post-transcriptional regulation, involving dozens or even hundreds of RBPs. The organization and molecular mechanisms involved in this regulatory system, including how RBP–mRNA interactions are integrated with signal transduction systems and how they affect the fates of their RNA targets, provide abundant opportunities for investigation and discovery. A systematic study of the RNA targets of 40 known or predicted RNA-binding proteins in yeast suggests that an extensive system of dozens or hundreds of specific RNA-binding proteins may act to regulate the post-transcriptional fate of most or all RNAs in the yeast cell.
Collapse
|
48
|
Kucharczyk R, Zick M, Bietenhader M, Rak M, Couplan E, Blondel M, Caubet SD, di Rago JP. Mitochondrial ATP synthase disorders: molecular mechanisms and the quest for curative therapeutic approaches. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:186-99. [PMID: 18620007 DOI: 10.1016/j.bbamcr.2008.06.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 06/06/2008] [Accepted: 06/11/2008] [Indexed: 01/09/2023]
Abstract
In mammals, the majority of cellular ATP is produced by the mitochondrial F1F(O)-ATP synthase through an elaborate catalytic mechanism. While most subunits of this enzymatic complex are encoded by the nuclear genome, a few essential components are encoded in the mitochondrial genome. The biogenesis of this multi-subunit enzyme is a sophisticated multi-step process that is regulated on levels of transcription, translation and assembly. Defects that result in diminished abundance or functional impairment of the F1F(O)-ATP synthase can cause a variety of severe neuromuscular disorders. Underlying mutations have been identified in both the nuclear and the mitochondrial DNA. The pathogenic mechanisms are only partially understood. Currently, the therapeutic options are extremely limited. Alternative methods of treatment have however been proposed, but still encounter several technical difficulties. The application of novel scientific approaches promises to deepen our understanding of the molecular mechanisms of the ATP synthase, unravel novel therapeutic pathways and improve the unfortunate situation of the patients suffering from such diseases.
Collapse
Affiliation(s)
- Roza Kucharczyk
- Institut de Biochimie et Génétique Cellulaires, CNRS-Université Bordeaux2, Bordeaux 33077, France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Post-transcriptional regulation of gene expression plays important roles in diverse cellular processes such as development, metabolism and cancer progression. Whereas many classical studies explored the mechanistics and physiological impact on specific mRNA substrates, the recent development of genome-wide analysis tools enables the study of post-transcriptional gene regulation on a global scale. Importantly, these studies revealed distinct programs of RNA regulation, suggesting a complex and versatile post-transcriptional regulatory network. This network is controlled by specific RNA-binding proteins and/or non-coding RNAs, which bind to specific sequence or structural elements in the RNAs and thereby regulate subsets of mRNAs that partly encode functionally related proteins. It will be a future challenge to link the spectra of targets for RNA-binding proteins to post-transcriptional regulatory programs and to reveal its physiological implications.
Collapse
|
50
|
Zarnack K, Feldbrügge M. mRNA trafficking in fungi. Mol Genet Genomics 2007; 278:347-59. [PMID: 17768642 DOI: 10.1007/s00438-007-0271-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 06/21/2007] [Accepted: 06/25/2007] [Indexed: 12/19/2022]
Abstract
Fungal growth depends on active transport of macromolecules along the actin and/or microtubule cytoskeleton. Thereby, molecular cargo such as proteins, lipids, and mRNAs is targeted to defined subcellular regions. Active transport and localisation of mRNAs mediate localised translation so that protein synthesis occurs where protein function is required. In Saccharomyces cerevisiae, actomyosin-dependent mRNA trafficking participates in polar growth, asymmetric cell division, targeting of membrane proteins and import of mitochondrial proteins. The best-understood example is transport of ASH1 mRNA to the distal pole of the incipient daughter cell. cis-acting RNA sequences are recognised by the RNA-binding protein She2p that is connected via the adaptor She3p to the molecular motor Myo4p. Local translation at the poles of daughter cells causes Ash1p to accumulate predominantly in nuclei of daughter cells, where this transcription factor inhibits mating-type switching. Recently, it was also shown that actomyosin-dependent ASH1 mRNA transport directs tip cell-specific gene expression in filaments of the human pathogen Candida albicans. Furthermore, in the plant pathogen Ustilago maydis microtubule-dependent shuttling of the RNA-binding protein Rrm4 is essential to determine the axis of polarity in infectious filaments. Thus, mRNA trafficking appears to be universally required for polar growth of fungi.
Collapse
Affiliation(s)
- Kathi Zarnack
- Department for Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 35043, Marburg, Germany
| | | |
Collapse
|