1
|
Zhao J, Wang ZW, Shen G, Hu D, Zhong Y, Ye C, Wang JJ. Regulation of melanization in aphids by parasitoid wasp venom proteins enhances mummification. PEST MANAGEMENT SCIENCE 2025; 81:1017-1025. [PMID: 39494788 DOI: 10.1002/ps.8503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/14/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Interactions between parasitic insects and their hosts demonstrate the complexity of evolutionary processes. Specifically, the parasitoid wasp Aphidius ervi manipulates its host, the pea aphid Acyrthosiphon pisum, through strategic venom injection to enhance mummification. This study explores how this venom affects the aphid's immune system, particularly targeting the activity of the phenoloxidase (PO) enzyme. RESULTS Following the injection of venom from A. ervi, significant changes were observed in the expression of immune-related genes in A. pisum, especially notable expression changes of ApPPOs and a reduction of PO activity. Multi-omics sequencing identified 74 potential venom proteins in the venom gland of A. ervi, including serine protease homolog 1 (AeSPH1) and serine protease inhibitor (AeSPN1), hypothesized to regulate PO activity. The injection of recombinant protein AeSPH1 and AeSPN1 into the A. pisum hemocoel selectively reduced the expression of ApPPO1, without affecting ApPPO2, and effectively suppressed melanization. Moreover, RNAi targeting AeSPH1 significantly reduced the mummification rate in A. pisum population parasitized by A. ervi. CONCLUSION Our findings clarify the complex biochemical mechanisms underlying host-wasp interactions and highlight potential avenues for developing targeted biological control strategies. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jin Zhao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, College of Plant Protection, Southwest University, Chongqing, China
| | - Zheng-Wu Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, College of Plant Protection, Southwest University, Chongqing, China
| | - Guangmao Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, College of Plant Protection, Southwest University, Chongqing, China
| | - Die Hu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, College of Plant Protection, Southwest University, Chongqing, China
| | - Yi Zhong
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, College of Plant Protection, Southwest University, Chongqing, China
| | - Chao Ye
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, College of Plant Protection, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Reingold V, Faigenboim A, Matveev S, Haviv S, Belausov E, Vilcinskas A, Ment D. Transcriptional reprogramming in the entomopathogenic fungus Metarhizium brunneum and its aphid host Myzus persicae during the switch between saprophytic and parasitic lifestyles. BMC Genomics 2024; 25:917. [PMID: 39358701 PMCID: PMC11446092 DOI: 10.1186/s12864-024-10824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The fungus Metarhizium brunneum has evolved a remarkable ability to switch between different lifestyles. It develops as a saprophyte, an endophyte establishing mutualistic relationships with plants, or a parasite, enabling its use for the control of insect pests such as the aphid Myzus persicae. We tested our hypothesis that switches between lifestyles must be accompanied by fundamental transcriptional reprogramming, reflecting adaptations to different environmental settings. RESULTS We combined high throughput RNA sequencing of M. brunneum in vitro and at different stages of pathogenesis to validate the modulation of genes in the fungus and its host during the course of infection. In agreement with our hypothesis, we observed transcriptional reprogramming in M. brunneum following conidial attachment, germination on the cuticle, and early-stage growth within the host. This involved the upregulation of genes encoding degrading enzymes and gene clusters involved in synthesis of secondary metabolites that act as virulence factors. The transcriptional response of the aphid host included the upregulation of genes potentially involved in antifungal activity, but antifungal peptides were not induced. We also observed the induction of a host flightin gene, which may be involved in wing formation and flight muscle development. CONCLUSIONS The switch from saprophytic to parasitic development in M. brunneum is accompanied by fundamental transcriptional reprogramming during the course of the infection. The aphid host responds to fungal infection with its own transcriptional reprogramming, reflecting its inability to express antifungal peptides but featuring the induction of genes involved in winged morphs that may enable offspring to avoid the contaminated environment.
Collapse
Affiliation(s)
- Victoria Reingold
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- The Robert H. Smith Faculty of Agriculture, The Hebrew University of Jerusalem, Food & Environment, Rehovot, Israel
| | - Adi Faigenboim
- Institute of Plant Science, ARO, The Volcani Institute, Rishon Le Zion, Israel
| | - Sabina Matveev
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- The Robert H. Smith Faculty of Agriculture, The Hebrew University of Jerusalem, Food & Environment, Rehovot, Israel
| | - Sabrina Haviv
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Eduard Belausov
- Institute of Plant Science, ARO, The Volcani Institute, Rishon Le Zion, Israel
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig Universität Giessen, Giessen, 35392, Germany
- Branch Bioresources of the Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, 35392, Germany
| | - Dana Ment
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel.
| |
Collapse
|
3
|
Juefeng Z, Fang L, Haiying Z, Liwei L, Jianming C. Integrated microbiome and metabolomic analysis of Spodoptera litura under Metarhizium flavoviride qc1401 stress. Int Microbiol 2024:10.1007/s10123-024-00574-y. [PMID: 39145832 DOI: 10.1007/s10123-024-00574-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
Metarhizium spp. have emerged as an alternative to chemical pesticides for protecting crops from insect pest. Here, we investigated midgut microbial community and metabolites of Spodoptera litura at three different timepoints after infection with Metarhizium flavoviride. The innate immune system of S. litura was activated with levels of polyphenol oxidase, carboxylesterase, multifunctional oxidase, and glutathione S-transferase activity significantly increasing. Exposure to the fungal pathogen also altered bacterial abundance and diversity in host's midgut, and these changes varied depending on the time elapsed since exposure. We identified more operational taxonomic units in the treated samples as compared to the control samples at all tested time points. A total of 372 metabolites were identified, and 88, 149, and 142 differentially accumulated metabolites (DAMs) were identified between the treatment and control groups at 3 timepoints after treatment, respectively. Based on the changes of DAMs in response to M. flavoviride infection at different timepoints and significantly enriched KEGG pathways, we speculated that "tyrosine metabolism," "galactose metabolism," "ATP-binding cassette transporters," "neuroactive ligand-receptor interaction," "purine metabolism," "arginine and proline metabolism," "beta-alanine metabolism," "lysosome," and "carbon metabolism" may participate in the metabolic-level defense response. An integrated pathway-level analysis of the 16S-rDNA and metabolomic data illustrated the connections and interdependencies between the metabolic responses of S. litura and the midgut microorganisms to M. flavoviride infection. This work emphasizes the value of integrated analyses of insect-pathogen interactions, provides a framework for future studies of critical microorganisms and metabolic determinants of these interactions, establishes a theoretical basis for the sustainable use of M. flavoviride.
Collapse
Affiliation(s)
- Zhang Juefeng
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.
| | - Li Fang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Zhong Haiying
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Liu Liwei
- Zhejiang Natural Museum, Hangzhou, Zhejiang, China
| | - Chen Jianming
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Fan J, Jiang S, Zhang T, Gao H, Chang BH, Qiao X, Han P. Sgabd-2 plays specific role in immune response against biopesticide Metarhizium anisopliae in Aphis citricola. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106003. [PMID: 39084799 DOI: 10.1016/j.pestbp.2024.106003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024]
Abstract
Metarhizium anisopliae is an effective biopesticide for controlling Aphis citricola, which has developed resistance to many chemical pesticides. However, the powerful immune system of A. citricola has limited the insecticidal efficacy of M. anisopliae. The co-evolution between insects and entomogenous fungi has led to emergence of new antifungal immune genes, which remain incompletely understood. In this study, an important immune gene Sgabd-2 was identified from A. citricola through transcriptome analysis. Sgabd-2 gene showed high expression in the 4th instar nymph and adult stages, and was mainly distributed in the abdominal region of A. citricola. The recombinant protein (rSgabd-2) exhibited no antifungal activity but demonstrated clear agglutination activity towards the conidia of M. anisopliae. RNA interference of Sgabd-2 by dsRNA feeding resulted in decreased phenoloxidase (PO) activity and weakened defense for A. citricola against M. anisopliae. Simultaneous silence of GNBP-1 and Sgabd-2 effectively reduced the immunity of A. citricola against M. anisopliae more than the individual RNAi of GNBP-1 or Sgabd-2. Furthermore, a genetically engineered M. anisopliae expressing double-stranded RNA (dsSgabd-2) targeting Sgabd-2 in A. citricola successfully suppressed the expression of Sgabd-2 and demonstrated increased virulence against A. citricola. Our findings elucidated Sgabd-2 as a critical new antifungal immune gene and proposed a genetic engineering strategy to enhance the insecticidal virulence of entomogenous fungi through RNAi-mediated inhibition of pest immune genes.
Collapse
Affiliation(s)
- Jiqiao Fan
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, China; Shanxi Key Laboratory of Nucleic Acid Biopesticide, 030006, China
| | - Shirong Jiang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticide, 030006, China
| | - Tao Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticide, 030006, China
| | - Huiyan Gao
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticide, 030006, China
| | - Babar Hussain Chang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticide, 030006, China
| | - Xiongwu Qiao
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, China.
| | - Pengfei Han
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticide, 030006, China.
| |
Collapse
|
5
|
Liu Z, Zheng J, Li H, Fang K, Wang S, He J, Zhou D, Weng S, Chi M, Gu Z, He J, Li F, Wang M. Genome assembly of redclaw crayfish (Cherax quadricarinatus) provides insights into its immune adaptation and hypoxia tolerance. BMC Genomics 2024; 25:746. [PMID: 39080519 PMCID: PMC11290268 DOI: 10.1186/s12864-024-10673-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND The introduction of non-native species is a primary driver of biodiversity loss in freshwater ecosystems. The redclaw crayfish (Cherax quadricarinatus) is a freshwater species that exhibits tolerance to hypoxic stresses, fluctuating temperatures, high ammonia concentration. These hardy physiological characteristics make C. quadricarinatus a popular aquaculture species and a potential invasive species that can negatively impact tropical and subtropical ecosystems. Investigating the genomic basis of environmental tolerances and immune adaptation in C. quadricarinatus will facilitate the development of management strategies of this potential invasive species. RESULTS We constructed a chromosome-level genome of C. quadricarinatus by integrating Nanopore and PacBio techniques. Comparative genomic analysis suggested that transposable elements and tandem repeats drove genome size evolution in decapod crustaceans. The expansion of nine immune-related gene families contributed to the disease resistance of C. quadricarinatus. Three hypoxia-related genes (KDM3A, KDM5A, HMOX2) were identified as being subjected to positive selection in C. quadricarinatus. Additionally, in vivo analysis revealed that upregulating KDM5A was crucial for hypoxic response in C. quadricarinatus. Knockdown of KDM5A impaired hypoxia tolerance in this species. CONCLUSIONS Our results provide the genomic basis for hypoxic tolerance and immune adaptation in C. quadricarinatus, facilitating the management of this potential invasive species. Additionally, in vivo analysis in C. quadricarinatus suggests that the role of KDM5A in the hypoxic response of animals is complex.
Collapse
Affiliation(s)
- Ziwei Liu
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Jianbo Zheng
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Haoyang Li
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Ke Fang
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Sheng Wang
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jian He
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Dandan Zhou
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Shaoping Weng
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Meili Chi
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Zhimin Gu
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China.
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Fei Li
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China.
| | - Muhua Wang
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China.
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
6
|
Zhao YJ, Li YM, Yang T, Lu Z. The Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway contributes to the defense against bacterial infection in the pea aphid. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 202:105915. [PMID: 38879296 DOI: 10.1016/j.pestbp.2024.105915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/03/2024] [Accepted: 04/14/2024] [Indexed: 06/29/2024]
Abstract
The Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling is activated by infections of bacteria, fungi, viruses and parasites and mediated cellular and humoral immune responses. In the pea aphid Acyrthosiphon pisum little is known about the function of JAK/STAT signaling in its immune system. In this study, we first showed that expression of genes in the JAK/STAT signaling, including the receptors Domeless1/2, Janus kinase (JAK) and transcriptional factor Stat92E, is up-regulated upon bacteria Escherichia coli and Staphylococcus aureus and fungus Beauveria bassiana infections. After knockdown of expression of these genes by means of dsRNA injection, the aphids harbored more bacteria and suffered more death after infected with E. coli and S. aureus, but showed no significant change after B. bassiana infection. Our study suggests the JAK/STAT signaling contributes to the defense against bacterial infection in the pea aphid.
Collapse
Affiliation(s)
- Yu-Jie Zhao
- College of Plant Protection, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yue-Ming Li
- College of Plant Protection, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Yang
- College of Plant Protection, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiqiang Lu
- College of Plant Protection, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Zhu J, Fu Y, Zhang L, Yang T, Zhou X. Transcriptomic Profiling of Bean Aphid Megoura crassicauda upon Exposure to the Aphid-Obligate Entomopathogen Conidiobolus obscurus (Entomophthoromycotina) and Screening of CytCo-Binding Aphid Proteins through a Pull-Down Assay. INSECTS 2024; 15:388. [PMID: 38921103 PMCID: PMC11203964 DOI: 10.3390/insects15060388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/27/2024]
Abstract
Prolonged periods of host-lethal infection by entomopathogenic fungi pose challenges to the development of biological control agents. The obligate entomopathogen C. obscurus, however, rapidly kills aphid hosts, warranting investigation. This study investigated the interaction between C. obscurus and a bean aphid Megoura crassicauda during the incubation period of infection, using transcriptome analysis to map host gene expression profiles. Results indicate C. obscurus-inoculated aphid activation of the wound healing immune responses, alongside suppression of the key molecules involved in Toll signaling, melanization, and metabolism. Furthermore, neuromotor system-related genes were upregulated, paralleling the intoxication observed in a nematode pest treated with C. obscurus-derived CytCo protein. To deepen interaction insights, a His-tag pull-down assay coupled with mass spectrometry analysis was conducted using CytCo as a bait to screen for potential aphid protein interactors. The proteins were identified based on the assembled transcriptome, and eleven transmembrane proteins were predicted to bind to CytCo. Notably, a protein of putatively calcium-transporting ATPase stood out with the highest confidence. This suggests that CytCo plays a vital role in C. obscurus killing aphid hosts, implicating calcium imbalance. In conclusion, C. obscurus effectively inhibits aphid immunity and exhibits neurotoxic potential, expediting the infection process. This finding facilitates our understanding of the complex host-pathogen interactions and opens new avenues for exploring biological pest management strategies in agroforestry.
Collapse
Affiliation(s)
- Jiaqin Zhu
- Jixian Honors College, Zhejiang A&F University, Hangzhou 311300, China;
| | - Yaqi Fu
- National Joint Local Engineering Laboratory of Biopesticide High-Efficient Preparation, College of Forestry & Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (Y.F.); (L.Z.); (T.Y.)
| | - Lvhao Zhang
- National Joint Local Engineering Laboratory of Biopesticide High-Efficient Preparation, College of Forestry & Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (Y.F.); (L.Z.); (T.Y.)
| | - Tian Yang
- National Joint Local Engineering Laboratory of Biopesticide High-Efficient Preparation, College of Forestry & Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (Y.F.); (L.Z.); (T.Y.)
| | - Xiang Zhou
- National Joint Local Engineering Laboratory of Biopesticide High-Efficient Preparation, College of Forestry & Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (Y.F.); (L.Z.); (T.Y.)
| |
Collapse
|
8
|
Becchimanzi A, Nicoletti R, Di Lelio I, Russo E. Immune Gene Repertoire of Soft Scale Insects (Hemiptera: Coccidae). Int J Mol Sci 2024; 25:4922. [PMID: 38732132 PMCID: PMC11084805 DOI: 10.3390/ijms25094922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Insects possess an effective immune system, which has been extensively characterized in several model species, revealing a plethora of conserved genes involved in recognition, signaling, and responses to pathogens and parasites. However, some taxonomic groups, characterized by peculiar trophic niches, such as plant-sap feeders, which are often important pests of crops and forestry ecosystems, have been largely overlooked regarding their immune gene repertoire. Here we annotated the immune genes of soft scale insects (Hemiptera: Coccidae) for which omics data are publicly available. By using immune genes of aphids and Drosophila to query the genome of Ericerus pela, as well as the transcriptomes of Ceroplastes cirripediformis and Coccus sp., we highlight the lack of peptidoglycan recognition proteins, galectins, thaumatins, and antimicrobial peptides in Coccidae. This work contributes to expanding our knowledge about the evolutionary trajectories of immune genes and offers a list of promising candidates for developing new control strategies based on the suppression of pests' immunity through RNAi technologies.
Collapse
Affiliation(s)
- Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.B.); (I.D.L.); (E.R.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80126 Naples, Italy
| | - Rosario Nicoletti
- Department of Agricultural Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.B.); (I.D.L.); (E.R.)
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics, 81100 Caserta, Italy
| | - Ilaria Di Lelio
- Department of Agricultural Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.B.); (I.D.L.); (E.R.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80126 Naples, Italy
| | - Elia Russo
- Department of Agricultural Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.B.); (I.D.L.); (E.R.)
| |
Collapse
|
9
|
Shamjana U, Vasu DA, Hembrom PS, Nayak K, Grace T. The role of insect gut microbiota in host fitness, detoxification and nutrient supplementation. Antonie Van Leeuwenhoek 2024; 117:71. [PMID: 38668783 DOI: 10.1007/s10482-024-01970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Insects are incredibly diverse, ubiquitous and have successfully flourished out of the dynamic and often unpredictable nature of evolutionary processes. The resident microbiome has accompanied the physical and biological adaptations that enable their continued survival and proliferation in a wide array of environments. The host insect and microbiome's bidirectional relationship exhibits their capability to influence each other's physiology, behavior and characteristics. Insects are reported to rely directly on the microbial community to break down complex food, adapt to nutrient-deficit environments, protect themselves from natural adversaries and control the expression of social behavior. High-throughput metagenomic approaches have enhanced the potential for determining the abundance, composition, diversity and functional activities of microbial fauna associated with insect hosts, enabling in-depth investigation into insect-microbe interactions. We undertook a review of some of the major advances in the field of metagenomics, focusing on insect-microbe interaction, diversity and composition of resident microbiota, the functional capability of endosymbionts and discussions on different symbiotic relationships. The review aims to be a valuable resource on insect gut symbiotic microbiota by providing a comprehensive understanding of how insect gut symbionts systematically perform a range of functions, viz., insecticide degradation, nutritional support and immune fitness. A thorough understanding of manipulating specific gut symbionts may aid in developing advanced insect-associated research to attain health and design strategies for pest management.
Collapse
Affiliation(s)
- U Shamjana
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Deepa Azhchath Vasu
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Preety Sweta Hembrom
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Karunakar Nayak
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Tony Grace
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India.
| |
Collapse
|
10
|
Ravenscraft A, Hunter MS. Bugs promote immune priming via gut-breaching bacteria. Proc Natl Acad Sci U S A 2024; 121:e2402869121. [PMID: 38513077 PMCID: PMC10998599 DOI: 10.1073/pnas.2402869121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Affiliation(s)
- Alison Ravenscraft
- Department of Biology, University of Texas at Arlington, Arlington, TX76019
| | - Martha S. Hunter
- Department of Entomology, The University of Arizona, Tucson, AZ85721
| |
Collapse
|
11
|
Paliwal D, Rabiey M, Mauchline TH, Hassani-Pak K, Nauen R, Wagstaff C, Andrews S, Bass C, Jackson RW. Multiple toxins and a protease contribute to the aphid-killing ability of Pseudomonas fluorescens PpR24. Environ Microbiol 2024; 26:e16604. [PMID: 38561900 DOI: 10.1111/1462-2920.16604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
Aphids are globally important pests causing damage to a broad range of crops. Due to insecticide resistance, there is an urgent need to develop alternative control strategies. In our previous work, we found Pseudomonas fluorescens PpR24 can orally infect and kill the insecticide-resistant green-peach aphid (Myzus persicae). However, the genetic basis of the insecticidal capability of PpR24 remains unclear. Genome sequencing of PpR24 confirmed the presence of various insecticidal toxins such as Tc (toxin complexes), Rhs (rearrangement hotspot) elements, and other insect-killing proteases. Upon aphids infection with PpR24, RNA-Seq analysis revealed 193 aphid genes were differentially expressed with down-regulation of 16 detoxification genes. In addition, 1325 PpR24 genes (542 were upregulated and 783 downregulated) were subject to differential expression, including genes responsible for secondary metabolite biosynthesis, the iron-restriction response, oxidative stress resistance, and virulence factors. Single and double deletion of candidate virulence genes encoding a secreted protease (AprX) and four toxin components (two TcA-like; one TcB-like; one TcC-like insecticidal toxins) showed that all five genes contribute significantly to aphid killing, particularly AprX. This comprehensive host-pathogen transcriptomic analysis provides novel insight into the molecular basis of bacteria-mediated aphid mortality and the potential of PpR24 as an effective biocontrol agent.
Collapse
Affiliation(s)
- Deepa Paliwal
- School of Biological Sciences, University of Reading, Reading, UK
| | - Mojgan Rabiey
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Tim H Mauchline
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, UK
| | | | | | - Carol Wagstaff
- School of Chemistry, Food and Pharmacy, University of Reading, Reading, UK
| | - Simon Andrews
- School of Biological Sciences, University of Reading, Reading, UK
| | | | - Robert W Jackson
- School of Biological Sciences, University of Reading, Reading, UK
- School of Biosciences and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
12
|
Zhou L, Meng G, Zhu L, Ma L, Chen K. Insect Antimicrobial Peptides as Guardians of Immunity and Beyond: A Review. Int J Mol Sci 2024; 25:3835. [PMID: 38612644 PMCID: PMC11011964 DOI: 10.3390/ijms25073835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/29/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Antimicrobial peptides (AMPs), as immune effectors synthesized by a variety of organisms, not only constitute a robust defense mechanism against a broad spectrum of pathogens in the host but also show promising applications as effective antimicrobial agents. Notably, insects are significant reservoirs of natural AMPs. However, the complex array of variations in types, quantities, antimicrobial activities, and production pathways of AMPs, as well as evolution of AMPs across insect species, presents a significant challenge for immunity system understanding and AMP applications. This review covers insect AMP discoveries, classification, common properties, and mechanisms of action. Additionally, the types, quantities, and activities of immune-related AMPs in each model insect are also summarized. We conducted the first comprehensive investigation into the diversity, distribution, and evolution of 20 types of AMPs in model insects, employing phylogenetic analysis to describe their evolutionary relationships and shed light on conserved and distinctive AMP families. Furthermore, we summarize the regulatory pathways of AMP production through classical signaling pathways and additional pathways associated with Nitric Oxide, insulin-like signaling, and hormones. This review advances our understanding of AMPs as guardians in insect immunity systems and unlocks a gateway to insect AMP resources, facilitating the use of AMPs to address food safety concerns.
Collapse
Affiliation(s)
- Lizhen Zhou
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou 225009, China;
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Guanliang Meng
- Zoological Research Museum Alexander Koenig, Leibniz Institute for the Analysis of Biodiversity Change, 53113 Bonn, Germany;
| | - Ling Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Li Ma
- College of Plant Protection, Shanxi Agricultural University, Taigu 030810, China
| | - Kangkang Chen
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|
13
|
Jang S, Ishigami K, Mergaert P, Kikuchi Y. Ingested soil bacteria breach gut epithelia and prime systemic immunity in an insect. Proc Natl Acad Sci U S A 2024; 121:e2315540121. [PMID: 38437561 PMCID: PMC10945853 DOI: 10.1073/pnas.2315540121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/11/2024] [Indexed: 03/06/2024] Open
Abstract
Insects lack acquired immunity and were thought to have no immune memory, but recent studies reported a phenomenon called immune priming, wherein sublethal dose of pathogens or nonpathogenic microbes stimulates immunity and prevents subsequential pathogen infection. Although the evidence for insect immune priming is accumulating, the underlying mechanisms are still unclear. The bean bug Riptortus pedestris acquires its gut microbiota from ambient soil and spatially structures them into a multispecies and variable community in the anterior midgut and a specific, monospecies Caballeronia symbiont population in the posterior region. We demonstrate that a particular Burkholderia strain colonizing the anterior midgut stimulates systemic immunity by penetrating gut epithelia and migrating into the hemolymph. The activated immunity, consisting of a humoral and a cellular response, had no negative effect on the host fitness, but on the contrary protected the insect from subsequent infection by pathogenic bacteria. Interruption of contact between the Burkholderia strain and epithelia of the gut weakened the host immunity back to preinfection levels and made the insects more vulnerable to microbial infection, demonstrating that persistent acquisition of environmental bacteria is important to maintain an efficient immunity.
Collapse
Affiliation(s)
- Seonghan Jang
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, 062-8517Sapporo, Japan
| | - Kota Ishigami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, 062-8517Sapporo, Japan
| | - Peter Mergaert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, 91198Gif-sur-Yvette, France
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, 062-8517Sapporo, Japan
- Unit of Applied Biological Chemistry, Graduate School of Agriculture, Hokkaido University, 060-8589Sapporo, Japan
| |
Collapse
|
14
|
Tanga CM, Ekesi S. Dietary and Therapeutic Benefits of Edible Insects: A Global Perspective. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:303-331. [PMID: 37758222 DOI: 10.1146/annurev-ento-020123-013621] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Edible insects are gaining traction worldwide for research and development. This review synthesizes a large and well-established body of research literature on the high nutritional value and variety of pharmacological properties of edible insects. Positive benefits of insect-derived products include immune enhancement; gastrointestinal protection; antitumor, antioxidant, and anti-inflammatory capacities; antibacterial activities; blood lipid and glucose regulation; lowering of blood pressure; and decreased risk of cardiovascular diseases. However, the pharmacological mechanisms of these active components of edible insects in humans have received limited research attention. In addition, we discuss health risks (safety); application prospects; regulations and policies governing their production and consumption with a view to promote innovations, intraglobal trade, and economic development; and suggestions for future directions for further pharmacological functional studies. The aim is to review the current state of knowledge and research trends on edible insects as functional ingredients beneficial to the nutrition and health of humans and animals (livestock, aquatic species, and pets).
Collapse
Affiliation(s)
- Chrysantus Mbi Tanga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya; ,
| | - Sunday Ekesi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya; ,
| |
Collapse
|
15
|
Nakabachi A, Suzaki T. Ultrastructure of the bacteriome and bacterial symbionts in the Asian citrus psyllid, Diaphorina citri. Microbiol Spectr 2024; 12:e0224923. [PMID: 38047691 PMCID: PMC10783097 DOI: 10.1128/spectrum.02249-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/04/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE Omics analyses suggested a mutually indispensable tripartite association among the host D. citri and organelle-like bacteriome associates, Carsonella and Profftella, which are vertically transmitted through host generations. This relationship is based on the metabolic complementarity among these organisms, which is partly enabled by horizontal gene transfer between partners. However, little was known about the fine morphology of the symbionts and the bacteriome, the interface among these organisms. As a first step to address this issue, the present study performed transmission electron microscopy, which revealed previously unrecognized ultrastructures, including aggregations of ribosomes in Carsonella, numerous tubes and occasional protrusions of Profftella, apparently degrading Profftella, and host organelles with different abundance and morphology in distinct cell types. These findings provide insights into the behaviors of the symbionts and host cells to maintain the symbiotic relationship in D. citri.
Collapse
Affiliation(s)
- Atsushi Nakabachi
- Research Center for Agrotechnology and Biotechnology, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | | |
Collapse
|
16
|
Xu Y, Ma L, Liu S, Liang Y, Liu Q, He Z, Tian L, Duan Y, Cai W, Li H, Song F. Chromosome-level genome of the poultry shaft louse Menopon gallinae provides insight into the host-switching and adaptive evolution of parasitic lice. Gigascience 2024; 13:giae004. [PMID: 38372702 PMCID: PMC10904027 DOI: 10.1093/gigascience/giae004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/09/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Lice (Psocodea: Phthiraptera) are one important group of parasites that infects birds and mammals. It is believed that the ancestor of parasitic lice originated on the ancient avian host, and ancient mammals acquired these parasites via host-switching from birds. Here we present the first chromosome-level genome of Menopon gallinae in Amblycera (earliest diverging lineage of parasitic lice). We explore the transition of louse host-switching from birds to mammals at the genomic level by identifying numerous idiosyncratic genomic variations. RESULTS The assembled genome is 155 Mb in length, with a contig N50 of 27.42 Mb. Hi-C scaffolding assigned 97% of the bases to 5 chromosomes. The genome of M. gallinae retains a basal insect repertoire of 11,950 protein-coding genes. By comparing the genomes of lice to those of multiple representative insects in other orders, we discovered that gene families of digestion, detoxification, and immunity-related are generally conserved between bird lice and mammal lice, while mammal lice have undergone a significant reduction in genes related to chemosensory systems and temperature. This suggests that mammal lice have lost some of these genes through the adaption to environment and temperatures after host-switching. Furthermore, 7 genes related to hematophagy were positively selected in mammal lice, suggesting their involvement in the hematophagous behavior. CONCLUSIONS Our high-quality genome of M. gallinae provides a valuable resource for comparative genomic research in Phthiraptera and facilitates further studies on adaptive evolution of host-switching within parasitic lice.
Collapse
Affiliation(s)
- Ye Xu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ling Ma
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shanlin Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yanxin Liang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qiaoqiao Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhixin He
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Ferrarini MG, Vallier A, Vincent-Monégat C, Dell'Aglio E, Gillet B, Hughes S, Hurtado O, Condemine G, Zaidman-Rémy A, Rebollo R, Parisot N, Heddi A. Coordination of host and endosymbiont gene expression governs endosymbiont growth and elimination in the cereal weevil Sitophilus spp. MICROBIOME 2023; 11:274. [PMID: 38087390 PMCID: PMC10717185 DOI: 10.1186/s40168-023-01714-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Insects living in nutritionally poor environments often establish long-term relationships with intracellular bacteria that supplement their diets and improve their adaptive and invasive powers. Even though these symbiotic associations have been extensively studied on physiological, ecological, and evolutionary levels, few studies have focused on the molecular dialogue between host and endosymbionts to identify genes and pathways involved in endosymbiosis control and dynamics throughout host development. RESULTS We simultaneously analyzed host and endosymbiont gene expression during the life cycle of the cereal weevil Sitophilus oryzae, from larval stages to adults, with a particular emphasis on emerging adults where the endosymbiont Sodalis pierantonius experiences a contrasted growth-climax-elimination dynamics. We unraveled a constant arms race in which different biological functions are intertwined and coregulated across both partners. These include immunity, metabolism, metal control, apoptosis, and bacterial stress response. CONCLUSIONS The study of these tightly regulated functions, which are at the center of symbiotic regulations, provides evidence on how hosts and bacteria finely tune their gene expression and respond to different physiological challenges constrained by insect development in a nutritionally limited ecological niche. Video Abstract.
Collapse
Affiliation(s)
- Mariana Galvão Ferrarini
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622, Villeurbanne, France
| | - Agnès Vallier
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR 203, 69621, Villeurbanne, France
| | | | - Elisa Dell'Aglio
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon (IGFL), CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Sandrine Hughes
- Institut de Génomique Fonctionnelle de Lyon (IGFL), CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Ophélie Hurtado
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - Guy Condemine
- Univ Lyon, Université Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et Pathogénie, Villeurbanne, France
| | - Anna Zaidman-Rémy
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
- Institut universitaire de France (IUF), Paris, France
| | - Rita Rebollo
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR 203, 69621, Villeurbanne, France
| | - Nicolas Parisot
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France.
| | - Abdelaziz Heddi
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France.
| |
Collapse
|
18
|
Gafarova E, Kuracji D, Sogomonyan K, Gorokhov I, Polev D, Zubova E, Golikova E, Granovitch A, Maltseva A. Gut Bacteriomes and Ecological Niche Divergence: An Example of Two Cryptic Gastropod Species. BIOLOGY 2023; 12:1521. [PMID: 38132347 PMCID: PMC10740740 DOI: 10.3390/biology12121521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Symbiotic microorganisms may provide their hosts with abilities critical to their occupation of microhabitats. Gut (intestinal) bacterial communities aid animals to digest substrates that are either innutritious or toxic, as well as support their development and physiology. The role of microbial communities associated with sibling species in the hosts' adaptation remains largely unexplored. In this study, we examined the composition and plasticity of the bacteriomes in two sibling intertidal gastropod species, Littorina fabalis and L. obtusata, which are sympatric but differ in microhabitats. We applied 16S rRNA gene metabarcoding and shotgun sequencing to describe associated microbial communities and their spatial and temporal variation. A significant drop in the intestinal bacteriome diversity was revealed during the cold season, which may reflect temperature-related metabolic shifts and changes in snail behavior. Importantly, there were significant interspecies differences in the gut bacteriome composition in summer but not in autumn. The genera Vibrio, Aliivibrio, Moritella and Planktotalea were found to be predominantly associated with L. fabalis, while Granulosicoccus, Octadecabacter, Colwellia, Pseudomonas, Pseudoalteromonas and Maribacter were found to be mostly associated with L. obtusata. Based on these preferential associations, we analyzed the metabolic pathways' enrichment. We hypothesized that the L. obtusata gut bacteriome contributes to decomposing algae and detoxifying polyphenols produced by fucoids. Thus, differences in the sets of associated bacteria may equip their closely phylogenetically related hosts with a unique ability to occupy specific micro-niches.
Collapse
Affiliation(s)
- Elizaveta Gafarova
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Dmitrii Kuracji
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Karina Sogomonyan
- Center for Bioinformatics and Algorithmic Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Ivan Gorokhov
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Dmitrii Polev
- Department of Epidemiology, St. Petersburg Pasteur Institute, Mira Street 14, 197101 St. Petersburg, Russia;
| | - Ekaterina Zubova
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Elena Golikova
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Andrey Granovitch
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Arina Maltseva
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| |
Collapse
|
19
|
Qin M, Jiang L, Qiao G, Chen J. Phylosymbiosis: The Eco-Evolutionary Pattern of Insect-Symbiont Interactions. Int J Mol Sci 2023; 24:15836. [PMID: 37958817 PMCID: PMC10650905 DOI: 10.3390/ijms242115836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Insects harbor diverse assemblages of bacterial and fungal symbionts, which play crucial roles in host life history. Insects and their various symbionts represent a good model for studying host-microbe interactions. Phylosymbiosis is used to describe an eco-evolutionary pattern, providing a new cross-system trend in the research of host-associated microbiota. The phylosymbiosis pattern is characterized by a significant positive correlation between the host phylogeny and microbial community dissimilarities. Although host-symbiont interactions have been demonstrated in many insect groups, our knowledge of the prevalence and mechanisms of phylosymbiosis in insects is still limited. Here, we provide an order-by-order summary of the phylosymbiosis patterns in insects, including Blattodea, Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera. Then, we highlight the potential contributions of stochastic effects, evolutionary processes, and ecological filtering in shaping phylosymbiotic microbiota. Phylosymbiosis in insects can arise from a combination of stochastic and deterministic mechanisms, such as the dispersal limitations of microbes, codiversification between symbionts and hosts, and the filtering of phylogenetically conserved host traits (incl., host immune system, diet, and physiological characteristics).
Collapse
Affiliation(s)
- Man Qin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| |
Collapse
|
20
|
Ye C, An X, Xie BQ, Ding BY, Niu J, Wang JJ. The involvement of systemic RNA interference deficient-1-like (SIL1) in cellular dsRNA uptake in Acyrthosiphon pisum. INSECT SCIENCE 2023; 30:1393-1404. [PMID: 36576078 DOI: 10.1111/1744-7917.13167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Systemic RNA interference deficient-1-like (SIL1) is considered a core component in dsRNA uptake in some insect species. Investigation related to the potential function of SIL1 in dsRNA uptake can contribute to a further understanding of RNA interference (RNAi) mechanisms in insects and agricultural pest control. However, the role of SIL1 in dsRNA uptake in insects such as aphids remains controversial. We have thoroughly analyzed the role of SIL1 from the model aphid Acyrthosiphon pisum (ApSIL1) in cellular dsRNA to clarify its function. First, the induced expression of ApSIL1 upon dsRNA oral exposure provided a vital clue for the possible involvement of ApSIL1 in cellular dsRNA uptake. Subsequent in vivo experiments using the RNAi-of-RNAi approach for ApSIL1 supported our hypothesis that the silencing efficiencies of reporter genes were reduced after inhibition of ApSIL1 expression. The impaired biological phenotypes of aphids, including cumulative average offspring, deformities of the nymph, and mortality upon pathogen infection, were then observed in the treatment group. Thereafter, in vitro dual-luciferase reporter assay showed compelling evidence that the luciferin signal was significantly attenuated when dsluciferase or dsGFP was transferred into ApSIL1-transfected Drosophila S2 cells. These observations further confirmed that the signal of Cy3-labeled dsRNA was rapidly attenuated with time in ApSIL1-transfected Drosophila S2 cells. Overall, these findings conclusively establish that ApSIL1 is involved in dsRNA uptake in A. pisum.
Collapse
Affiliation(s)
- Chao Ye
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xin An
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Bing-Qin Xie
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Bi-Yue Ding
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
21
|
Guo L, Tang M, Luo S, Zhou X. Screening and Functional Analyses of Novel Cecropins from Insect Transcriptome. INSECTS 2023; 14:794. [PMID: 37887806 PMCID: PMC10607850 DOI: 10.3390/insects14100794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
Antibiotic resistance is a significant and growing threat to global public health. However, antimicrobial peptides (AMPs) have shown promise as they exhibit a broad spectrum of antibacterial activities with low potential for resistance development. Insects, which inhabit a wide range of environments and are incredibly diverse, remain largely unexplored as a source of novel AMPs. To address this, we conducted a screening of the representative transcriptomes from the 1000 Insect Transcriptome Evolution (1KITE) dataset, focusing on the homologous reference genes of Cecropins, the first identified AMPs in insects known for its high efficiency. Our analysis identified 108 Cecropin genes from 105 insect transcriptomes, covering all major hexapod lineages. We validated the gene sequences and synthesized mature peptides for three identified Cecropin genes. Through minimal inhibition concentration and agar diffusion assays, we confirmed that these peptides exhibited antimicrobial activities against Gram-negative bacteria. Similar to the known Cecropin, the three Cecropins adopted an alpha-helical conformation in membrane-like environments, efficiently disrupting bacterial membranes through permeabilization. Importantly, none of the three Cecropins demonstrated cytotoxicity in erythrocyte hemolysis tests, suggesting their safety in real-world applications. Overall, this newly developed methodology provides a high-throughput bioinformatic pipeline for the discovery of AMP, taking advantage of the expanding genomic resources available for diverse organisms.
Collapse
Affiliation(s)
- Lizhen Guo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (L.G.); (M.T.)
- Sanya Institute of China Agricultural University, Sanya 572000, China
| | - Min Tang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (L.G.); (M.T.)
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Shiqi Luo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (L.G.); (M.T.)
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (L.G.); (M.T.)
- Sanya Institute of China Agricultural University, Sanya 572000, China
| |
Collapse
|
22
|
Mahanta DK, Bhoi TK, Komal J, Samal I, Nikhil RM, Paschapur AU, Singh G, Kumar PVD, Desai HR, Ahmad MA, Singh PP, Majhi PK, Mukherjee U, Singh P, Saini V, Shahanaz, Srinivasa N, Yele Y. Insect-pathogen crosstalk and the cellular-molecular mechanisms of insect immunity: uncovering the underlying signaling pathways and immune regulatory function of non-coding RNAs. Front Immunol 2023; 14:1169152. [PMID: 37691928 PMCID: PMC10491481 DOI: 10.3389/fimmu.2023.1169152] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Multicellular organisms are constantly subjected to pathogens that might be harmful. Although insects lack an adaptive immune system, they possess highly effective anti-infective mechanisms. Bacterial phagocytosis and parasite encapsulation are some forms of cellular responses. Insects often defend themselves against infections through a humoral response. This phenomenon includes the secretion of antimicrobial peptides into the hemolymph. Specific receptors for detecting infection are required for the recognition of foreign pathogens such as the proteins that recognize glucans and peptidoglycans, together referred to as PGRPs and βGRPs. Activation of these receptors leads to the stimulation of signaling pathways which further activates the genes encoding for antimicrobial peptides. Some instances of such pathways are the JAK-STAT, Imd, and Toll. The host immune response that frequently accompanies infections has, however, been circumvented by diseases, which may have assisted insects evolve their own complicated immune systems. The role of ncRNAs in insect immunology has been discussed in several notable studies and reviews. This paper examines the most recent research on the immune regulatory function of ncRNAs during insect-pathogen crosstalk, including insect- and pathogen-encoded miRNAs and lncRNAs, and provides an overview of the important insect signaling pathways and effector mechanisms activated by diverse pathogen invaders.
Collapse
Affiliation(s)
- Deepak Kumar Mahanta
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Tanmaya Kumar Bhoi
- Forest Protection Division, Indian Council of Forestry Research and Education (ICFRE) - Arid Forest Research Institute (ICFRE-AFRI), Jodhpur, Rajasthan, India
| | - J. Komal
- Department of Entomology, Navsari Agricultural University, Navsari, Gujarat, India
| | - Ipsita Samal
- ICAR-National Research Centre on Litchi, Mushahari, Ramna, Muzaffarpur, Bihar, India
| | - R. M. Nikhil
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, India
| | - Amit Umesh Paschapur
- Crop Protection Division, Indian Council of Agricultural Research (ICAR)-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | - Gaurav Singh
- The Directorate of Research, Maharana Pratap Horticultural University, Karnal, Haryana, India
| | - P. V. Dinesh Kumar
- Department of Plant Pathology University of Agricultural Sciences, Bengaluru, Karnataka, India
| | - H. R. Desai
- Department of Entomology, Main Cotton Research Station, Navsari Agricultural University, Gujarat, India
| | - Mohammad Abbas Ahmad
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - P. P. Singh
- Department of Entomology, Tirhut College of Agriculture, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Prasanta Kumar Majhi
- Department of Plant Breeding and Genetics, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - U. Mukherjee
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Pushpa Singh
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Varun Saini
- Department of Entomology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Shahanaz
- Department of Entomology, College of Horticulture Mojerla, Sri Konda Laxman Telengana State Horticultural University, Wanaparthy, Telengana, India
| | - N. Srinivasa
- Department of Entomology and Agricultural Zoology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Yogesh Yele
- School of Crop Health Management Research, Council of Agricultural Research-National Institute of Biotic Stress Management (ICAR)- National Institute of Biotic Stress Management, Raipur, India
| |
Collapse
|
23
|
Rutkowski NAJ, McNamara KB, Jones TM, Foo YZ. Trans-generational immune priming is not mediated by the sex of the parent primed: a meta-analysis of invertebrate data. Biol Rev Camb Philos Soc 2023; 98:1100-1117. [PMID: 36879482 DOI: 10.1111/brv.12946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
Traditionally, only vertebrates were thought capable of acquired immune responses, such as the ability to transfer immunological experience vertically to their offspring (known as trans-generational immune priming, TGIP). Increasing evidence challenges this belief and it is now clear that invertebrates also have the ability to exhibit functionally equivalent TGIP. This has led to a surge in papers exploring invertebrate TGIP, with most focusing on the costs, benefits or factors that affect the evolution of this trait. Whilst many studies have found support for the phenomenon, not all studies do, and there is considerable variation in the strength of positive results. To address this, we conducted a meta-analysis to answer the question: what is the overall effect of TGIP in invertebrates? Then, to understand the specific factors that affect its presence and intensity, we conducted a moderator analysis. Our results corroborate that TGIP occurs in invertebrates (demonstrated by a large, positive effect size). The strength of the positive effect was related to if and how offspring were immune challenged (i.e. whether they were challenged with the same or different insult as their parents or not challenged at all). Interestingly, there was no effect of the ecology or life history of the species or the sex of the parent or the offspring primed, and responses were comparable across different immune elicitors. Our publication bias testing suggests that the literature may suffer from some level of positive-result bias. However, even after accounting for potential bias, our effect size remains positive. Publication bias testing can be influenced by diversity in the data set, which was considerable in our data, even after moderator analysis. It is therefore conceivable that differences among studies could be caused by other moderators that were unable to be included in our meta-analysis. Nonetheless, our results suggest that TGIP does occur in invertebrates, whilst providing some potential avenues to examine the factors that account for variation in effect sizes.
Collapse
Affiliation(s)
- Nicola-Anne J Rutkowski
- School of BioSciences, University of Melbourne, Biosciences 4, Royal Parade, Parkville, VIC, 3052, Australia
| | - Kathryn B McNamara
- School of BioSciences, University of Melbourne, Biosciences 4, Royal Parade, Parkville, VIC, 3052, Australia
| | - Therésa M Jones
- School of BioSciences, University of Melbourne, Biosciences 4, Royal Parade, Parkville, VIC, 3052, Australia
| | - Yong Zhi Foo
- Centre for Evolutionary Biology & School of Biological Sciences, University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| |
Collapse
|
24
|
Hanson MA, Grollmus L, Lemaitre B. Ecology-relevant bacteria drive the evolution of host antimicrobial peptides in Drosophila. Science 2023; 381:eadg5725. [PMID: 37471548 DOI: 10.1126/science.adg5725] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023]
Abstract
Antimicrobial peptides are host-encoded immune effectors that combat pathogens and shape the microbiome in plants and animals. However, little is known about how the host antimicrobial peptide repertoire is adapted to its microbiome. Here, we characterized the function and evolution of the Diptericin antimicrobial peptide family of Diptera. Using mutations affecting the two Diptericins (Dpt) of Drosophila melanogaster, we reveal the specific role of DptA for the pathogen Providencia rettgeri and DptB for the gut mutualist Acetobacter. The presence of DptA- or DptB-like genes across Diptera correlates with the presence of Providencia and Acetobacter in their environment. Moreover, DptA- and DptB-like sequences predict host resistance against infection by these bacteria across the genus Drosophila. Our study explains the evolutionary logic behind the bursts of rapid evolution of an antimicrobial peptide family and reveals how the host immune repertoire adapts to changing microbial environments.
Collapse
Affiliation(s)
- M A Hanson
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Disease Ecology and Evolution, Biosciences, University of Exeter, Penryn, United Kingdom
| | - L Grollmus
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - B Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
25
|
Shi XZ, Yang MC, Kang XL, Li YX, Hong PP, Zhao XF, Vasta G, Wang JX. Scavenger receptor B2, a type III membrane pattern recognition receptor, senses LPS and activates the IMD pathway in crustaceans. Proc Natl Acad Sci U S A 2023; 120:e2216574120. [PMID: 37276415 PMCID: PMC10268257 DOI: 10.1073/pnas.2216574120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/24/2023] [Indexed: 06/07/2023] Open
Abstract
The immune deficiency (IMD) pathway is critical for elevating host immunity in both insects and crustaceans. The IMD pathway activation in insects is mediated by peptidoglycan recognition proteins, which do not exist in crustaceans, suggesting a previously unidentified mechanism involved in crustacean IMD pathway activation. In this study, we identified a Marsupenaeus japonicus B class type III scavenger receptor, SRB2, as a receptor for activation of the IMD pathway. SRB2 is up-regulated upon bacterial challenge, while its depletion exacerbates bacterial proliferation and shrimp mortality via abolishing the expression of antimicrobial peptides. The extracellular domain of SRB2 recognizes bacterial lipopolysaccharide (LPS), while its C-terminal intracellular region containing a cryptic RHIM-like motif interacts with IMD, and activates the pathway by promoting nuclear translocation of RELISH. Overexpressing shrimp SRB2 in Drosophila melanogaster S2 cells potentiates LPS-induced IMD pathway activation and diptericin expression. These results unveil a previously unrecognized SRB2-IMD axis responsible for antimicrobial peptide induction and restriction of bacterial infection in crustaceans and provide evidence of biological diversity of IMD signaling in animals. A better understanding of the innate immunity of crustaceans will permit the optimization of prevention and treatment strategies against the arising shrimp diseases.
Collapse
Affiliation(s)
- Xiu-Zhen Shi
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
| | - Ming-Chong Yang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Xin-Le Kang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
| | - Yan-Xue Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
| | - Pan-Pan Hong
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
| | - Gerardo R. Vasta
- Department of Microbiology and Immunology, School of Medicine, Institute of Marine and Environmental Technology, University of Maryland Baltimore, Baltimore, MD21202
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| |
Collapse
|
26
|
Ghosh S, Srinivasan R, Ghanim M. A C2H2 zinc finger transcription factor of the whitefly Bemisia tabaci interacts with the capsid proteins of begomoviruses and inhibits virus retention. INSECT MOLECULAR BIOLOGY 2023; 32:240-250. [PMID: 36571165 DOI: 10.1111/imb.12827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/19/2022] [Indexed: 05/15/2023]
Abstract
Begomoviruses are a group of ssDNA viruses exclusively transmitted by the whitefly Bemisia tabaci and constrain vegetable production in the old and new worlds. Although multiple molecular determinants governing the transmission of begomoviruses by whiteflies have been unravelled, factors critical for transmission majorly remain unknown. In this study, a whitefly C2H2 zinc finger (ZF) protein, 100% identical to the vascular endothelial ZF-like gene (vezf) protein was confirmed to interact with the CP of both old- and new-world begomoviruses. This was achieved by a yeast two-hybrid (Y2H) system screening of a whitefly cDNA library using capsid protein (CP) of TYLCV as a bait. In silico annotation of vezf protein revealed that it contains a N-terminal ZF-associated domain (ZAD) alongside multiple C2H2 ZF domains on the C-terminal end. ZAD-ZF proteins form the most abundant class of transcription factors within insects. Herein, we validated the interaction of vezf with four diverse begomoviruses and its functional role in begomovirus transmission. Silencing of the vezf gene of B. tabaci led to increased retention of three diverse begomoviruses tested. Vezf is the first insect transcription factor identified to interact with plant viruses and can be crucial to understand the possible mechanisms by which plant viruses modulate transcription of their insect vectors during transmission.
Collapse
Affiliation(s)
- Saptarshi Ghosh
- Department of Entomology, Volcani Center, Rishon Lezion, Israel
- Department of Entomology, University of Georgia, Griffin, Georgia, USA
| | | | - Murad Ghanim
- Department of Entomology, Volcani Center, Rishon Lezion, Israel
| |
Collapse
|
27
|
Ma L, Yan X, Zhou L, Wang W, Chen K, Hao C, Lu Z, Qie X. Nitric oxide synthase is required for the pea aphid's defence against bacterial infection. INSECT MOLECULAR BIOLOGY 2023; 32:187-199. [PMID: 36527288 DOI: 10.1111/imb.12823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Compared to other insects, the pea aphid Acyrthosiphon pisum has a reduced immune system with an absence of genes coding for a lot of immunity-related molecules. Notably, nitric oxide synthase (NOS), which catalyses the synthesis of nitric oxide (NO), is present in the pea aphid. However, the role of NO in the immune system of pea aphid remains unclear. In this study, we explored the role of NO in the defence of the pea aphid against bacterial infections and found that the NOS gene of the pea aphid responded to an immune challenge, with the expression of ApNOS observably upregulated after bacterial infections. Knockdown of ApNOS using RNA interference or inhibition of NOS activity increased the number of live bacterial cells in aphids and the mortality of aphids after bacterial infection. Conversely, the increase in NO level in aphids using NO donor inhibited the bacterial growth, increased the survival of bacteria-infected aphids, and upregulated immune genes, such as Toll pathway and phagocytosis related genes. Thus, NO promotes immune responses and plays an important role in the immune system of pea aphid.
Collapse
Affiliation(s)
- Li Ma
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Xizhong Yan
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Lin Zhou
- Department of Entomology, College of Plant Protection, Northwest A & F University, Yangling, China
| | - Wentao Wang
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Kangkang Chen
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Chi Hao
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A & F University, Yangling, China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess, Ministry of Agriculture, Northwest A & F University, Yangling, China
| | - Xingtao Qie
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
28
|
He L, Zhang C, Yang H, Ding B, Yang HZ, Zhang SW. Characterization and Functional Analysis of Toll Receptor Genes during Antibacterial Immunity in the Green Peach Aphid Myzus persicae (Sulzer). INSECTS 2023; 14:275. [PMID: 36975960 PMCID: PMC10059696 DOI: 10.3390/insects14030275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The insect Toll receptor is one of the key members of the Toll signaling pathway, which plays an indispensable role in insect resistance to pathogen infection. Herein, we cloned and characterized five Toll receptor genes from Myzus persicae (Sulzer), which were found to be highly expressed in the first-instar nymphs and adults (both wingless and winged) at different developmental stages. Expressions of MpToll genes were highest in the head, followed by the epidermis. High transcription levels were also found in embryos. Expressions of these genes showed different degrees of positive responses to infection by Escherichia coli and Staphylococcus aureus. The expression of MpToll6-1 and MpToll7 significantly increased after infection with E. coli, whereas the expression of MpToll, MpToll6, MpToll6-1, and MpTollo continuously increased after infection with S. aureus. RNA interference-mediated suppressed expression of these genes resulted in a significant increase in the mortality of M. persicae after infection with the two bacterial species compared with that in the control group. These results suggest that MpToll genes play vital roles in the defense response of M. persicae against bacteria.
Collapse
|
29
|
A New Perspective on the Co-Transmission of Plant Pathogens by Hemipterans. Microorganisms 2023; 11:microorganisms11010156. [PMID: 36677448 PMCID: PMC9865879 DOI: 10.3390/microorganisms11010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Co-infection of plants by pathogens is common in nature, and the interaction of the pathogens can affect the infection outcome. There are diverse ways in which viruses and bacteria are transmitted from infected to healthy plants, but insects are common vectors. The present review aims to highlight key findings of studies evaluating the co-transmission of plant pathogens by insects and identify challenges encountered in these studies. In this review, we evaluated whether similar pathogens might compete during co-transmission; whether the changes in the pathogen titer in the host, in particular associated with the co-infection, could influence its transmission; and finally, we discussed the pros and cons of the different approaches used to study co-transmission. At the end of the review, we highlighted areas of study that need to be addressed. This review shows that despite the recent development of techniques and methods to study the interactions between pathogens and their insect vectors, there are still gaps in the knowledge of pathogen transmission. Additional laboratory and field studies using different pathosystems will help elucidate the role of host co-infection and pathogen co-transmission in the ecology and evolution of infectious diseases.
Collapse
|
30
|
Makwana P, Hungund SP, Pradeep ANR. Dipteran endoparasitoid Exorista bombycis utilizes antihemocyte components against host defense of silkworm Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21976. [PMID: 36205611 DOI: 10.1002/arch.21976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/07/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Dipteran endoparasitoids avoid host immune response; however, antidefense components from the Dipterans are unknown. Infestation of commercial silkworm Bombyx mori Linnaeus (Lepidoptera: Bombycidae) by endoparasitoid Exorista bombycis Louis (Diptera: Tachinidae) induced immune reactions, cytotoxicity, granulation, degranulation, and augmented release of cytotoxic marker enzyme lactate dehydrogenase (LDH), and degranulation-mediator enzyme β-hexosaminidase in hemocytes. In this study, by reverse phase high-performance liquid chromatography, fractions of E. bombycis larval tissue protein with antihemocytic activity are separated. From the fraction, peptides of hemocyte aggregation inhibitor protein (HAIP) and pyridoxamine phosphate oxidase (PNPO) are identified by mass spectrometry. Interacting partners of HAIP and PNPO are retrieved that further enhance the virulence of the parasitoid. PNPO and HAIP genes showed a four- to seven fold increase in expression in the integument of the parasitoid larva. Together, the dipteran endoparasitoid E. bombycis exploit antihemocyte activity to inhibit host defense reactions in addition to defense evasion contemplated.
Collapse
Affiliation(s)
- Pooja Makwana
- Seribiotech Research Laboratory, CSB-Kodathi Campus, Bangalore, Karnataka, India
- Biotechnology Division, Central Sericultural Research & Training Institute, Berhampore, West Bengal, India
| | - Shambhavi P Hungund
- Seribiotech Research Laboratory, CSB-Kodathi Campus, Bangalore, Karnataka, India
| | - Appukuttan Nair R Pradeep
- Seribiotech Research Laboratory, CSB-Kodathi Campus, Bangalore, Karnataka, India
- Biotechnology Division, Central Sericultural Research & Training Institute, Berhampore, West Bengal, India
| |
Collapse
|
31
|
Maruyama J, Inoue H, Hirose Y, Nakabachi A. 16S rRNA Gene Sequencing of Six Psyllid Species of the Family Carsidaridae Identified Various Bacteria Including Symbiopectobacterium. Microbes Environ 2023; 38:ME23045. [PMID: 37612118 PMCID: PMC10522848 DOI: 10.1264/jsme2.me23045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/23/2023] [Indexed: 08/25/2023] Open
Abstract
Psyllids (Hemiptera: Sternorrhyncha: Psylloidea) are plant sap-sucking insects that are closely associated with various microbes. To obtain a more detailed understanding of the ecological and evolutionary behaviors of microbes in Psylloidea, the bacterial populations of six psyllid species, belonging to the family Carsidaridae, were analyzed using high-throughput amplicon sequencing of the 16S rRNA gene. The majority of the secondary symbionts identified in the present study were gammaproteobacteria, particularly those of the order Enterobacterales, including Arsenophonus and Sodalis, which are lineages found in a wide variety of insect hosts. Additionally, Symbiopectobacterium, another Enterobacterales lineage, which has recently been recognized and increasingly shown to be vertically transmitted and mutualistic in various invertebrates, was identified for the first time in Psylloidea. This lineage is closely related to Pectobacterium spp., which are plant pathogens, but forms a distinct clade exhibiting no pathogenicity to plants. Non-Enterobacterales gammaproteobacteria found in the present study were Acinetobacter, Pseudomonas (both Pseudomonadales), Delftia, Comamonas (both Burkholderiales), and Xanthomonas (Xanthomonadales), a putative plant pathogen. Regarding alphaproteobacteria, three Wolbachia (Rickettsiales) lineages belonging to supergroup B, the major group in insect lineages, were detected in four psyllid species. In addition, a Wolbachia lineage of supergroup O, a minor group recently found for the first time in Psylloidea, was detected in one psyllid species. These results suggest the pervasive transfer of bacterial symbionts among animals and plants, providing deeper insights into the evolution of the interactions among these organisms.
Collapse
Affiliation(s)
- Junnosuke Maruyama
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan
| | - Hiromitsu Inoue
- Institute for Plant Protection, National Agriculture and Food Research Organization, Higashihiroshima, Hiroshima 739–2494, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan
| | - Atsushi Nakabachi
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan
- Research Institute for Technological Science and Innovation, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan
| |
Collapse
|
32
|
Abbas MN, Kausar S, Asma B, Ran W, Li J, Lin Z, Li T, Cui H. MicroRNAs reshape the immunity of insects in response to bacterial infection. Front Immunol 2023; 14:1176966. [PMID: 37153604 PMCID: PMC10161253 DOI: 10.3389/fimmu.2023.1176966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
The interaction between bacteria and insects can significantly impact a wide range of different areas because bacteria and insects are widely distributed around the globe. The bacterial-insect interactions have the potential to directly affect human health since insects are vectors for disease transmission, and their interactions can also have economic consequences. In addition, they have been linked to high mortality rates in economically important insects, resulting in substantial economic losses. MicroRNAs (miRNAs) are types of non-coding RNAs involved in regulating gene expression post-transcriptionally. The length of miRNAs ranges from 19 to 22 nucleotides. MiRNAs, in addition to their ability to exhibit dynamic expression patterns, have a diverse range of targets. This enables them to govern various physiological activities in insects, like innate immune responses. Increasing evidence suggests that miRNAs have a crucial biological role in bacterial infection by influencing immune responses and other mechanisms for resistance. This review focuses on some of the most recent and exciting discoveries made in recent years, including the correlation between the dysregulation of miRNA expression in the context of bacterial infection and the progression of the infection. Furthermore, it describes how they profoundly impact the immune responses of the host by targeting the Toll, IMD, and JNK signaling pathways. It also emphasizes the biological function of miRNAs in regulating immune responses in insects. Finally, it also discusses current knowledge gaps about the function of miRNAs in insect immunity, in addition to areas that require more research in the future.
Collapse
Affiliation(s)
- Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Saima Kausar
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Bibi Asma
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Wenhao Ran
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Gastrointestinal Vascular Surgery, The Chongqing Ninth People’s Hospital, Chongqing, China
| | - Jingui Li
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Gastrointestinal Vascular Surgery, The Chongqing Ninth People’s Hospital, Chongqing, China
| | - Zini Lin
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Gastrointestinal Vascular Surgery, The Chongqing Ninth People’s Hospital, Chongqing, China
| | - Tiejun Li
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Gastrointestinal Vascular Surgery, The Chongqing Ninth People’s Hospital, Chongqing, China
- *Correspondence: Tiejun Li, ; Hongjuan Cui,
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
- *Correspondence: Tiejun Li, ; Hongjuan Cui,
| |
Collapse
|
33
|
Bechsgaard J, Jorgensen TH, Jønsson AK, Schou M, Bilde T. Impaired immune function accompanies social evolution in spiders. Biol Lett 2022; 18:20220331. [PMID: 36541093 PMCID: PMC9768628 DOI: 10.1098/rsbl.2022.0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
An efficient immune system is essential to the survival of many animals. Sociality increases risk of pathogen transmission, which should select for enhanced immune function. However, two hypotheses instead predict a weakened immune function: relaxed selection caused by social immunity/protection, and reduced efficacy of selection due to inbreeding, reproductive skew and female bias in social species that reduce effective population size and accelerate genetic drift. We assessed the effect of social evolution on immune function in a comparative study of two social spider species and their closely related subsocial sister species (genus Stegodyphus). The haemolymph of social species was less efficient in inhibiting bacterial growth of the potentially pathogenic bacteria Bacillus subtilis than that of subsocial species. Reduced efficacy of selection in social species was supported by comparative genomic analysis showing substantially elevated non-synonymous substitutions in immune genes in one of the social species. We propose that impaired immune function results from reduced efficacy of selection because the evolution of sociality in spiders is accompanied by demographic processes that elevate genetic drift. Positive feedback between pathogen-induced local extinctions and the resulting elevation of genetic drift may further weaken responses to selection by pathogens, and threaten species persistence.
Collapse
Affiliation(s)
| | | | | | - Mads Schou
- Department of Biology, Lund University, Lund, Sweden
| | - Trine Bilde
- Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
34
|
Möllmann JS, Colgan TJ. Genomic architecture and sexually dimorphic expression underlying immunity in the red mason bee, Osmia bicornis. INSECT MOLECULAR BIOLOGY 2022; 31:686-700. [PMID: 35716016 DOI: 10.1111/imb.12796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Insect pollinators provide crucial ecosystem services yet face increasing environmental pressures. The challenges posed by novel and reemerging pathogens on bee health means we need to improve our understanding of the immune system, an important barrier to infections and disease. Despite the importance of solitary bees, which are ecologically relevant, our understanding of the genomic basis and molecular mechanisms underlying their immune potential, and how intrinsic and extrinsic factors may influence it is limited. To improve our understanding of the genomic architecture underlying immunity of a key solitary bee pollinator, we characterized putative immune genes of the red mason bee, Osmia bicornis. In addition, we used publicly available RNA-seq datasets to determine how sexes differ in immune gene expression and splicing but also how pesticide exposure may affect immune gene expression in females. Through comparative genomics, we reveal an evolutionarily conserved set of more than 500 putative immune-related genes. We found genome-wide patterns of sex-biased gene expression, with greater enrichment of immune-related processes among genes with higher constitutive expression in males than females. Our results also suggest an up-regulation of immune-related genes in response to exposure to two common neonicotinoids, thiacloprid and imidacloprid. Collectively, our study provides important insights into the gene repertoire, regulation and expression differences in the sexes of O. bicornis, as well as providing additional support for how neonicotinoids can affect immune gene expression, which may affect the capacity of solitary bees to respond to pathogenic threats.
Collapse
Affiliation(s)
- Jannik S Möllmann
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas J Colgan
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
35
|
Zeng T, Jaffar S, Xu Y, Qi Y. The Intestinal Immune Defense System in Insects. Int J Mol Sci 2022; 23:ijms232315132. [PMID: 36499457 PMCID: PMC9740067 DOI: 10.3390/ijms232315132] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Over a long period of evolution, insects have developed unique intestinal defenses against invasion by foreign microorganisms, including physical defenses and immune responses. The physical defenses of the insect gut consist mainly of the peritrophic matrix (PM) and mucus layer, which are the first barriers to pathogens. Gut microbes also prevent the colonization of pathogens. Importantly, the immune-deficiency (Imd) pathways produce antimicrobial peptides to eliminate pathogens; mechanisms related to reactive oxygen species are another important pathway for insect intestinal immunity. The janus kinase/STAT signaling pathway is involved in intestinal immunity by producing bactericidal substances and regulating tissue repair. Melanization can produce many bactericidal active substances into the intestine; meanwhile, there are multiple responses in the intestine to fight against viral and parasitic infections. Furthermore, intestinal stem cells (ISCs) are also indispensable in intestinal immunity. Only the coordinated combination of the intestinal immune defense system and intestinal tissue renewal can effectively defend against pathogenic microorganisms.
Collapse
|
36
|
Yang T, Wang X, Zhou X. Microbiome Analysis of the Bamboo Aphid Melanaphis bambusae Infected with the Aphid Obligate Pathogen Conidiobolus obscurus (Entomophthoromycotina). INSECTS 2022; 13:insects13111040. [PMID: 36354864 PMCID: PMC9692958 DOI: 10.3390/insects13111040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 06/01/2023]
Abstract
Insect-associated microbes exert diverse effects on host fitness. This study provides insights into the microbiota of the bamboo aphid, Melanaphis bambusae, and their response to Conidiobolus obscurus infection. 16S rRNA and ITS sequencing data were used to analyze the bacterial and fungal samples associated with healthy, infected, and starved aphids. At ≥97% nucleotide similarity, the total reads were clustered into 79 bacteria and 97 fungi operational Taxonomic Units (OTUs). The phyla Proteobacteria and Ascomycota dominated the bacterial and fungal communities, respectively. The significant divergence in OTU distribution presented differential profiles of the microbiota in response to host conditions. Lower α-diversity indices were found in bacterial and fungal diversity when the aphids were experiencing fungal infection and starvation stresses, respectively. The β-diversity analyses of the communities showed significant differences among the three host conditions, demonstrating that aphid-associated microbiota could significantly shift in response to varying host conditions. Moreover, some OTUs increased under fungal infection, which potentially increased aphid susceptibility. Presumably, C. obscurus infection contributed to this increase by causing the disintegration of host tissues other than host starvation. In conclusion, understanding the differentiation of aphid microbiota caused by fungal entomopathogens helped facilitate the development of novel pest management strategies.
Collapse
|
37
|
Ma L, Liu S, Lu P, Yan X, Hao C, Wang H, Wei J, Qie X, Lu Z. The IMD pathway in Hemipteran: A comparative analysis and discussion. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104513. [PMID: 35977558 DOI: 10.1016/j.dci.2022.104513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The evolutionary patterns of the genes in the IMD pathway in hemipterans were characterized and compared. The hemipteran insects were clustered into two groups. One group that encompasses whitefly, plant lice, and scale insect partially lacks the IMD pathway and all antimicrobial peptide (AMP) genes, with the vast majority of IMD pathway and all AMP genes being absent in aphids. The reasons for the absence of the IMD pathway and AMP genes in hemipterans were analyzed based on aphids, in terms of fitness costs. In case of limited resources, aphids have to make a trade-off between the necessary costs such as clean food sources, the essential amino acids supplied by primary bacterial symbionts for survival, nutrients and/or protections against stress provided by secondary symbionts, and the high reproductive capacity, and the costs that do not increase the fitness. Obviously, aphids have to abandon the strong immune system, especially the AMPs and IMD pathway which is mainly against Gram-negative bacteria. The common ground shared with aphids may be the reason for the absence of the IMD pathway and AMP genes in other hemipteran insects.
Collapse
Affiliation(s)
- Li Ma
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi, 030801, China; Department of Entomology, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Shanlin Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100083, China
| | - Ping Lu
- Department of Entomology, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xizhong Yan
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Chi Hao
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Han Wang
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jiufeng Wei
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xingtao Qie
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
38
|
Beekman MM, Donner SH, Litjens JJH, Dicke M, Zwaan BJ, Verhulst EC, Pannebakker BA. Do aphids in Dutch sweet pepper greenhouses carry heritable elements that protect them against biocontrol parasitoids? Evol Appl 2022; 15:1580-1593. [PMID: 36330308 PMCID: PMC9624084 DOI: 10.1111/eva.13347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 11/28/2022] Open
Abstract
Biological control (biocontrol) of crop pests is a sustainable alternative to the use of biodiversity and organismal health-harming chemical pesticides. Aphids can be biologically controlled with parasitoid wasps; however, variable results of parasitoid-based aphid biocontrol in greenhouses are reported. Aphids may display genetically encoded (endogenous) defences that increase aphid resistance against parasitoids as under high parasitoid pressure there will be selection for parasitoid-resistant aphids, potentially affecting the success of parasitoid-based aphid biocontrol in greenhouses. Additionally, aphids may carry secondary bacterial endosymbionts that protect them against parasitoids. We studied whether there is variation in either of these heritable elements in aphids in greenhouses of sweet pepper, an agro-economically important crop in the Netherlands that is prone to aphid pests and where pest management heavily relies on biocontrol. We sampled aphid populations in organic (biocontrol only) and conventional (biocontrol and pesticides) sweet pepper greenhouses in the Netherlands during the 2019 crop growth season. We assessed the aphid microbiome through both diagnostic PCR and 16S rRNA sequencing and did not detect any secondary endosymbionts in the two most encountered aphid species, Myzus persicae and Aulacorthum solani. We also compared multiple aphid lines collected from different greenhouses for variation in levels of endogenous-based resistance against the parasitoids commonly used as biocontrol agents. We found no differences in the levels of endogenous-based resistance between different aphid lines. This study does not support the hypothesis that protective endosymbionts or the presence of endogenous resistant aphid lines affects the success of parasitoid-based biocontrol of aphids in Dutch greenhouses. Future investigations will need to address what is causing the variable successes of aphid biocontrol and what (biological and management-related) lessons can be learned for aphid control in other crops, and biocontrol in general.
Collapse
Affiliation(s)
- Mariska M. Beekman
- Laboratory of GeneticsWageningen University & ResearchWageningenThe Netherlands
- Laboratory of EntomologyWageningen University & ResearchWageningenThe Netherlands
| | - Suzanne H. Donner
- Laboratory of GeneticsWageningen University & ResearchWageningenThe Netherlands
- Laboratory of EntomologyWageningen University & ResearchWageningenThe Netherlands
| | - Jordy J. H. Litjens
- Laboratory of GeneticsWageningen University & ResearchWageningenThe Netherlands
| | - Marcel Dicke
- Laboratory of EntomologyWageningen University & ResearchWageningenThe Netherlands
| | - Bas J. Zwaan
- Laboratory of GeneticsWageningen University & ResearchWageningenThe Netherlands
| | - Eveline C. Verhulst
- Laboratory of EntomologyWageningen University & ResearchWageningenThe Netherlands
| | - Bart A. Pannebakker
- Laboratory of GeneticsWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
39
|
Characterization of New Defensin Antimicrobial Peptides and Their Expression in Bed Bugs in Response to Bacterial Ingestion and Injection. Int J Mol Sci 2022; 23:ijms231911505. [PMID: 36232802 PMCID: PMC9570333 DOI: 10.3390/ijms231911505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Common bed bugs, Cimex lectularius, can carry, but do not transmit, pathogens to the vertebrate hosts on which they feed. Some components of the innate immune system of bed bugs, such as antimicrobial peptides (AMPs), eliminate the pathogens. Here, we determined the molecular characteristics, structural properties, and phylogenetic relatedness of two new defensins (CL-defensin1 (XP_024085718.1), CL-defensin2 (XP_014240919.1)), and two new defensin isoforms (CL-defensin3a (XP_014240918.1), CL-defensin3b (XP_024083729.1)). The complete amino acid sequences of CL-defensin1, CL-defensin2, CL-defensin3a, and CL-defensin3b are strongly conserved, with only minor differences in their signal and pro-peptide regions. We used a combination of comparative transcriptomics and real-time quantitative PCR to evaluate the expression of these defensins in the midguts and the rest of the body of insects that had been injected with bacteria or had ingested blood containing the Gram-positive (Gr+) bacterium Bacillus subtilis and the Gram-negative (Gr–) bacterium Escherichia coli. We demonstrate, for the first time, sex-specific and immunization mode-specific upregulation of bed bug defensins in response to injection or ingestion of Gr+ or Gr– bacteria. Understanding the components, such as these defensins, of the bed bugs’ innate immune systems in response to pathogens may help unravel why bed bugs do not transmit pathogens to vertebrates.
Collapse
|
40
|
Yan Y, Sigle LT, Rinker DC, Estévez-Lao TY, Capra JA, Hillyer JF. The immune deficiency and c-Jun N-terminal kinase pathways drive the functional integration of the immune and circulatory systems of mosquitoes. Open Biol 2022; 12:220111. [PMID: 36069078 PMCID: PMC9449813 DOI: 10.1098/rsob.220111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The immune and circulatory systems of animals are functionally integrated. In mammals, the spleen and lymph nodes filter and destroy microbes circulating in the blood and lymph, respectively. In insects, immune cells that surround the heart valves (ostia), called periostial haemocytes, destroy pathogens in the areas of the body that experience the swiftest haemolymph (blood) flow. An infection recruits additional periostial haemocytes, amplifying heart-associated immune responses. Although the structural mechanics of periostial haemocyte aggregation have been defined, the genetic factors that regulate this process remain less understood. Here, we conducted RNA sequencing in the African malaria mosquito, Anopheles gambiae, and discovered that an infection upregulates multiple components of the immune deficiency (IMD) and c-Jun N-terminal kinase (JNK) pathways in the heart with periostial haemocytes. This upregulation is greater in the heart with periostial haemocytes than in the circulating haemocytes or the entire abdomen. RNA interference-based knockdown then showed that the IMD and JNK pathways drive periostial haemocyte aggregation and alter phagocytosis and melanization on the heart, thereby demonstrating that these pathways regulate the functional integration between the immune and circulatory systems. Understanding how insects fight infection lays the foundation for novel strategies that could protect beneficial insects and harm detrimental ones.
Collapse
Affiliation(s)
- Yan Yan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Leah T. Sigle
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - David C. Rinker
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - John A. Capra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA,Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Julián F. Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
41
|
Rashidi M, Killiny N. In Silico Characterization and Gene Expression Analysis of Toll Signaling Pathway-Related Genes in Diaphorina citri. INSECTS 2022; 13:783. [PMID: 36135484 PMCID: PMC9500897 DOI: 10.3390/insects13090783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
The Asian citrus psyllid, Diaphorina citri is the main vector of citrus greening disease, also known as Huanglongbing (HLB). Currently, mitigating HLB depends on the control of D. citri using insecticides. To design innovative control strategies, we should investigate various biological aspects of D. citri at the molecular level. Herein we explored the Toll signaling system-related proteins in D. citri using in silico analyzes. Additionally, the transcripts of the identified genes were determined in all life stages from eggs to adults. Our findings reveal that D. citri genome possesses Toll signaling pathway-related genes similar to the insect model, Drosophila melanogaster, with slight differences. These genes include cact, TI, Myd88, Dif/DI, pll, tub, and spz encoding Cactus, Toll, Myeloid differentiation factor 88, Dorsal related immunity factor/Dorsal, Pelle, Tube, and Spaetzle, respectively. Unlike D. melanogaster, in D. citri Dorsal, immunity factor and Dorsal are the same protein. In addition, in D. citri, Pelle protein possesses a kinase domain, which is absent in Pelle of D. melanogaster. Gene expression analysis showed the transcript for cact, TI, Myd88, pll, tub, and spz are maximum in adults, suggesting the immunity increases with maturity. Instead, Dif/DI transcripts were maximal in eggs and adults and minimal in nymphal stages, indicating its role in embryonic development. The overall findings will help in designing pioneering control strategies of D. citri based on repressing its immunity by RNAi or CRISPR and combining that with biological control.
Collapse
|
42
|
An X, Zhang W, Ye C, Smagghe G, Wang JJ, Niu J. Discovery of a widespread presence bunyavirus that may have symbiont-like relationships with different species of aphids. INSECT SCIENCE 2022; 29:1120-1134. [PMID: 34874617 DOI: 10.1111/1744-7917.12989] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/01/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Aphids are important agricultural pests, vectors of many plant viruses and have sophisticated relationships with symbiotic microorganisms. Abundant asymptomatic RNA viruses have been reported in aphids due to the application of RNA-seq, but aphid-virus interactions remain unclear. Bunyavirales is the most abundant RNA virus order, which can infect mammals, arthropods, and plants. However, many bunyaviruses have specific hosts, such as insects. Here, we discovered 18 viruses from 10 aphid species by RNA-seq. Importantly, a widespread presence bunyavirus, Aphid bunyavirus 1 (ABV-1), was determined to have a wide host range, infecting and replicating in all 10 tested aphid species. ABV-1 may be transmitted horizontally during feeding on plant leaves and vertically through reproduction. In a comparison of the physiological parameters of ABV-1high and ABV-1low strains of pea aphid, higher ABV-1 titers reduced the total nymphal duration and induced the reproduction. Moreover, viral titer significantly affected the lipid and protein contents in pea aphids. In summary, we proposed that ABV-1 may have stable symbiont-like relationships with aphids, and these observations may provide a new direction for studying bunyaviruses in aphids and establishing a model for virus-aphid interactions.
Collapse
Affiliation(s)
- Xin An
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Chao Ye
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
43
|
Diaphorin, a Polyketide Produced by a Bacterial Symbiont of the Asian Citrus Psyllid, Inhibits the Growth and Cell Division of Bacillus subtilis but Promotes the Growth and Metabolic Activity of Escherichia coli. Microbiol Spectr 2022; 10:e0175722. [PMID: 35894614 PMCID: PMC9430481 DOI: 10.1128/spectrum.01757-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diaphorin is a polyketide produced by “Candidatus Profftella armatura” (Gammaproteobacteria: Burkholderiales), an obligate symbiont of a notorious agricultural pest, the Asian citrus psyllid Diaphorina citri (Hemiptera: Psyllidae). Diaphorin belongs to the pederin family of bioactive agents found in various host-symbiont systems, including beetles, lichens, and sponges, harboring phylogenetically diverse bacterial producers. Previous studies showed that diaphorin, which is present in D. citri at concentrations of 2 to 20 mM, has inhibitory effects on various eukaryotes, including the natural enemies of D. citri. However, little is known about its effects on prokaryotic organisms. To address this issue, the present study assessed the biological activities of diaphorin on two model prokaryotes, Escherichia coli (Gammaproteobacteria: Enterobacterales) and Bacillus subtilis (Firmicutes: Bacilli). Their growth and morphological features were analyzed using spectrophotometry, optical microscopy followed by image analysis, and transmission electron microscopy. The metabolic activity of E. coli was further assessed using the β-galactosidase assay. The results revealed that physiological concentrations of diaphorin inhibit the growth and cell division of B. subtilis but promote the growth and metabolic activity of E. coli. This finding implies that diaphorin functions as a defensive agent of the holobiont (host plus symbionts) against some bacterial lineages but is metabolically beneficial for others, which potentially include obligate symbionts of D. citri. IMPORTANCE Certain secondary metabolites, including antibiotics, evolve to mediate interactions among organisms. These molecules have distinct spectra for microorganisms and are often more effective against Gram-positive bacteria than Gram-negative ones. However, it is rare that a single molecule has completely opposite activities on distinct bacterial lineages. The present study revealed that a secondary metabolite synthesized by an organelle-like bacterial symbiont of psyllids inhibits the growth of Gram-positive Bacillus subtilis but promotes the growth of Gram-negative Escherichia coli. This finding not only provides insights into the evolution of microbiomes in animal hosts but also may potentially be exploited to promote the effectiveness of industrial material production by microorganisms.
Collapse
|
44
|
Li T, Li H, Wu Y, Li S, Yuan G, Xu P. Identification of a Novel Densovirus in Aphid, and Uncovering the Possible Antiviral Process During Its Infection. Front Immunol 2022; 13:905628. [PMID: 35757766 PMCID: PMC9218065 DOI: 10.3389/fimmu.2022.905628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Densoviruses (DVs) are single-stranded DNA viruses and exclusively happen in invertebrates. Most of DVs reported in insects are pathogenic to their native hosts, however, no pathogenic effect of them has been examined in vertebrates. Hence, DVs are the potential agents used in pest managements. Aphids are the primary vectors of plant viruses. In this study, we identified a novel DV in Chinese Sitobion miscanthi population, provisionally named “Sitobion miscanthi densovirus” (SmDV). Taxonomically, SmDV belongs to genus Hemiambidensovirus. In S. miscanthi, SmDV is hosted in diverse cells and can be horizontally transmitted via wheat feeding. Subject to SmDV, aphids activate their intrinsic antiviral autophagy pathway. Grouped with ascorbate and aldarate metabolism, chlorophyll metabolism, p450 related drug metabolism, and retinoid metabolism, aphids form a complex immune network response to the infection of SmDV. Obviously, it works as elder aphids still alive even they contain the highest examined concentration of SmDV. This study provides a foundation for the identifications of novel DVs, and further improves the understanding of the molecular interactions between insects and DVs.
Collapse
Affiliation(s)
- Tong Li
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Haichao Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yuqing Wu
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shaojian Li
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Guohui Yuan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Pengjun Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
45
|
Im Y, Park SE, Lee SY, Kim JC, Kim JS. Early-Stage Defense Mechanism of the Cotton Aphid Aphis gossypii Against Infection With the Insect-Killing Fungus Beauveria bassiana JEF-544. Front Immunol 2022; 13:907088. [PMID: 35720408 PMCID: PMC9201107 DOI: 10.3389/fimmu.2022.907088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/04/2022] [Indexed: 11/20/2022] Open
Abstract
Aphis gossypii, commonly known as the cotton aphid, is a widely distributed pest of agricultural crops and acts as a vector for many serious plant viruses. Cotton aphid shows high resistance to chemical insecticides due to rapid rates of genetic diversity as a result of its short life cycle, seasonal migration, and host alteration. As an alternative, entomopathogenic fungi can be used to control cotton aphids in an environmentally sound manner. However, little is known about how cotton aphids respond to fungal infection. In this work, a new Beauveria bassiana strain JEF-544 (Bb JEF-544) was selected and isolated through bioassays with high virulence against cotton aphid. Early response of cotton aphid to Bb JEF-544 infection was analyzed at the transcriptome level. Infected aphids were collected two days after treatment at 25% lethal time (LT25), and total RNA of non-infected and Bb JEF-544-infected aphids was independently subjected to sequencing. Infected aphids showed significant up-regulation of the insect hormone biosynthesis pathway. Bursicon (Burs) and crustacean cardioactive peptide (CCAP) receptors involved in molting along with ecdysone synthesis were also strongly up-regulated in the aphid response to the fungal infection. In the immune response, melanization in the hemocoel was significantly up-regulated, while phagocytosis was less actively transcribed. In conclusion, cotton aphids protect themselves from Bb JEF-544 infection by activating the immune response including melanization and insect molting hormones to shed infected cuticles. In addition to describing the initial stages of Bb JEF-544 infection at the transcriptome level, this work provides potential treatment targets and insight into how fungal isolates can effectively be used to control this serious aphid species.
Collapse
Affiliation(s)
- Yeram Im
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - So-Eun Park
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Sue Yeon Lee
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Jong-Cheol Kim
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Jae Su Kim
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, South Korea
| |
Collapse
|
46
|
Evolving and assembling to pierce through: Evolutionary and structural aspects of antimicrobial peptides. Comput Struct Biotechnol J 2022; 20:2247-2258. [PMID: 35615024 PMCID: PMC9117813 DOI: 10.1016/j.csbj.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 11/24/2022] Open
Abstract
The burgeoning menace of antimicrobial resistance across the globe has necessitated investigations into other chemotherapeutic strategies to combat infections. Antimicrobial peptides, or host defense peptides, are a set of promising therapeutic candidates in this regard. Most of them cause membrane permeabilization and are a key component of the innate immune response to pathogenic invasion. It has also been reported that peptide self-assembly is a driving factor governing the microbicidal activity of these peptide candidates. While efforts have been made to develop novel synthetic peptides against various microbes, many clinical trials of such peptides have failed due to toxicity and hemolytic activity to the host. A function-guided rational peptide engineering, based on evolutionary principles, physicochemical properties and activity determinants of AMP activity, is expected to help in targeting specific microbes. Furthermore, it is important to develop a unified understanding of the evolution of AMPs in order to fully appreciate their importance in host defense. This review seeks to explore the evolution of AMPs and the physicochemical determinants of AMP activity. The specific interactions driving AMP self-assembly have also been reviewed, emphasizing implications of this self-assembly on microbicidal and immunomodulatory activity.
Collapse
|
47
|
Zhou K, Qin Y, Song Y, Zhao K, Pan W, Nan X, Wang Y, Wang Q, Li W. A Novel Ig Domain-Containing C-Type Lectin Triggers the Intestine-Hemocyte Axis to Regulate Antibacterial Immunity in Crab. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2343-2362. [PMID: 35508356 DOI: 10.4049/jimmunol.2101027] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/06/2022] [Indexed: 12/22/2022]
Abstract
The C-type lectin family with the signature C-type lectin-like domain promotes antibacterial host defense within the animal kingdom. We examined the role of Chinese mitten crab, Eriocheir sinensis (H. Milne-Edwards) (Decapoda: Grapsidae) Ig domain-containing C-type lectin (EsIgLectin), a novel and poorly understood member of the C-type lectin family. EsIgLectin was expressed primarily by both hemocytes (E sinensis) and intestines, with significantly induced mRNA expression on intestinal or hemolymph bacterial infections. As a soluble protein, both its C-type lectin-like domain and the Ig domain were required for bacterial binding, bacterial agglutination, bacterial growth inhibition, and in vivo bacterial clearance. Polymeric EsIgLectin could be constructed via the disulfide bond in the Ig domain, significantly enhancing EsIgLectin antibacterial activity. EsIgLectin promoted bacterial phagocytosis in an Ig domain-dependent manner in hemocytes, while it controlled microbial homeostasis and protected against bacteria-induced inflammation in the intestine. Protein interaction studies revealed that the EsIgLectin Ig domain bound to the first Ig domain of the polymeric Ig receptor, which was essential for EsIgLectin-induced bacterial phagocytosis. The temporal sequence of cell interactions during intestinal inflammation is only beginning to be understood. In this article, we show that hemocyte-derived EsIgLectin entered the intestinal wall at the later phase of intestinal inflammation. Moreover, EsIgLectin protected the host against intestinal and hemolymph infections in a polymeric Ig receptor-dependent manner. Therefore, the EsIgLectin promoted bacterial clearance and protected against inflammatory disease through an independent or synergistic effect of hemocytes and intestines in invertebrates.
Collapse
Affiliation(s)
- Kaimin Zhou
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Yukai Qin
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Yu Song
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Ke Zhao
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Weijuan Pan
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Xingyu Nan
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Yue Wang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China; and
| |
Collapse
|
48
|
Smith TE, Li Y, Perreau J, Moran NA. Elucidation of host and symbiont contributions to peptidoglycan metabolism based on comparative genomics of eight aphid subfamilies and their Buchnera. PLoS Genet 2022; 18:e1010195. [PMID: 35522718 PMCID: PMC9116674 DOI: 10.1371/journal.pgen.1010195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 05/18/2022] [Accepted: 04/09/2022] [Indexed: 11/23/2022] Open
Abstract
Pea aphids (Acyrthosiphon pisum) are insects containing genes of bacterial origin with putative functions in peptidoglycan (PGN) metabolism. Of these, rlpA1-5, amiD, and ldcA are highly expressed in bacteriocytes, specialized aphid cells that harbor the obligate bacterial symbiont Buchnera aphidicola, required for amino acid supplementation of the host's nutrient-poor diet. Despite genome reduction associated with endosymbiosis, pea aphid Buchnera retains genes for the synthesis of PGN while Buchnera of many other aphid species partially or completely lack these genes. To explore the evolution of aphid horizontally-transferred genes (HTGs) and to elucidate how host and symbiont genes contribute to PGN production, we sequenced genomes from four deeply branching lineages, such that paired aphid and Buchnera genomes are now available for 17 species representing eight subfamilies. We identified all host and symbiont genes putatively involved in PGN metabolism. Phylogenetic analyses indicate that each HTG family was present in the aphid shared ancestor, but that each underwent a unique pattern of gene loss or duplication in descendant lineages. While four aphid rlpA gene subfamilies show no relation to symbiont PGN gene repertoire, the loss of aphid amiD and ldcA HTGs coincides with the loss of symbiont PGN metabolism genes. In particular, the coincident loss of host amiD and symbiont murCEF in tribe Aphidini, in contrast to tribe Macrosiphini, suggests either 1) functional linkage between these host and symbiont genes, or 2) Aphidini has lost functional PGN synthesis and other retained PGN pathway genes are non-functional. To test these hypotheses experimentally, we used cell-wall labeling methods involving a d-alanine probe and found that both Macrosiphini and Aphidini retain Buchnera PGN synthesis. Our results imply that compensatory adaptations can preserve PGN synthesis despite the loss of some genes considered essential for this pathway, highlighting the importance of the cell wall in these symbioses.
Collapse
Affiliation(s)
- Thomas E. Smith
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Yiyuan Li
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Julie Perreau
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Nancy A. Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
49
|
Han P, Gong Q, Fan J, Abbas M, Chen D, Zhang J. Destruxin A inhibits scavenger receptor B mediated melanization in Aphis citricola. PEST MANAGEMENT SCIENCE 2022; 78:1915-1924. [PMID: 35080798 DOI: 10.1002/ps.6809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Destruxin A (DA) is a mycotoxin secreted by entomogenous fungi, such as Metarhizium anisopliae, which has broad-spectrum insecticidal activity. Insect innate immunity provides resistance against the invasion of entomopathogenic fungi. Previous studies have shown that DA could inhibit the immune response, however, the suppressive mechanism of DA on prophenoloxidase system is still unknown. RESULTS Based on the transcriptome of Aphis citricola, we screened the scavenger receptor class B(AcSR-B)and identified that it significantly responds to DA. Spatio-temporal expression analysis showed that AcSR-B is highly expressed in adult stage and is mainly distributed in the abdominal region. We further revealed that both M. anisopliae and Escherichia coli could suppress the expression of AcSR-B at 24 h, and that the expressed recombinant protein rAcSR-B possessed agglutination activity to M. anisopliae and E. coli. DA could suppress the protein expression of AcSR-B. In addition, RNA interference of AcSR-B caused death of A. citricola in a dose-dependent manner, and RNA interference of AcSR-B increased mortality in A. citricola under the same lethal concentration of DA. The inhibiting effect of AcSR-B silencing was similar with the DA treatment upon phenol oxidase (PO) activity of A. citricola hemolymph. DA could not decrease PO activity further after AcSR-B silencing. CONCLUSION Destruxin A inhibits melanization by suppressing AcSR-B in A. citricola. Our findings are helpful in understanding the underlying molecular mechanism of the DA suppressing immune system, and uncover a potential molecular target for double-stranded RNA (dsRNA) insecticides.
Collapse
Affiliation(s)
- Pengfei Han
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
| | - Qitian Gong
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
| | - Jiqiao Fan
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| | - Mureed Abbas
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
| | - Duo Chen
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
| | - Jianzhen Zhang
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
| |
Collapse
|
50
|
Wang Z, Zhou W, Huang B, Gao M, Li Q, Tao Y, Wang Z. Molecular and Functional Characterization of Peptidoglycan Recognition Proteins OfPGRP-A and OfPGRP-B in Ostrinia furnacalis (Lepidoptera: Crambidae). INSECTS 2022; 13:insects13050417. [PMID: 35621753 PMCID: PMC9146462 DOI: 10.3390/insects13050417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022]
Abstract
Simple Summary The Asian corn borer, Ostrinia furnacalis (Guenée), is the most destructive lepidopteran insect pest of corn (Zea mays L.) in China. Pathogenic microorganisms play an important role in the population control of the Asian corn borer. Although microorganisms can cause the death of O. furnacalis, an immune response also occurs as an attempt to fight off and eliminate invading pathogens. If the molecular mechanism of interaction between O. furnacalis and pathogenic bacteria is clarified, the lethal effect of pathogenic microorganisms can be better exerted by inhibiting the natural immune response of O. furnacalis. As an important member of the pattern-recognition receptor family, peptidoglycan recognition protein (PGRP) plays a key role in the insect innate immune response. In this study, we cloned two PGRP genes from O. furnacalis and analyzed their spatiotemporal expression. In combination with bacterial induction experiments, we revealed the immune signal recognition pathway involved in the two proteins. The results of this study deepen the understanding of the natural immune response of O. furnacalis and provide new ideas for better utilization of pathogenic microorganisms in biological control of the Asian corn borer. Abstract Peptidoglycan recognition proteins (PGRPs) are important components of insect immune systems, in which they play key roles. We cloned and sequenced two full-length PGRP, named OfPGRP-A and OfPGRP-B, from the Asian corn borer, Ostrinia furnacalis. These two genes comprise open reading frames of 658 and 759 bp, encoding proteins of 192 and 218 amino acids, respectively. qPCR showed that OfPGRP-A and OfPGRP-B are prominently expressed in the midgut of O. furnacalis fourth instar larvae. After inoculation with Staphylococcus aureus and Bacillus thuringiensis, the expression of OfPGRP-A was significantly upregulated, whereas the expression of OfPGRP-B was enhanced after inoculation with Escherichia coli. This suggests that OfPGRP-A mainly recognizes Gram-positive bacteria and may participate in the Toll signaling pathways, while OfPGRP-B identifies Gram-negative bacteria and may participate in Imd signaling pathways. Our results provide insights into the roles of PGRPs in O. furnacalis immune function and a foundation for using pathogens for the biological control of O. furnacalis.
Collapse
Affiliation(s)
- Zengxia Wang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (B.H.); (M.G.); (Q.L.); (Y.T.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, MOA—CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
- Correspondence: (Z.W.); (Z.W.)
| | - Wan Zhou
- College of Resource and Environment, Anhui Science and Technology University, Fengyang 233100, China;
| | - Baohong Huang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (B.H.); (M.G.); (Q.L.); (Y.T.)
| | - Mengyuan Gao
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (B.H.); (M.G.); (Q.L.); (Y.T.)
| | - Qianqian Li
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (B.H.); (M.G.); (Q.L.); (Y.T.)
| | - Yidong Tao
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China; (B.H.); (M.G.); (Q.L.); (Y.T.)
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, MOA—CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
- Correspondence: (Z.W.); (Z.W.)
| |
Collapse
|