1
|
Hu H, Peng Q, Tai J, Lu W, Liu J, Dan T. Unveiling the genetic basis and metabolic rewiring behind the galactose-positive phenotype in a Streptococcus thermophilus mutant. Microbiol Res 2024; 289:127894. [PMID: 39305781 DOI: 10.1016/j.micres.2024.127894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/01/2024] [Indexed: 11/02/2024]
Abstract
Streptococcus thermophilus (S. thermophilus) is a widely used starter culture in dairy fermentation, but most strains are galactose-negative and only metabolize glucose from lactose hydrolysis. In this study, we aimed to uncover the mechanisms underlying the acquisition of a stable galactose-positive (Gal+) phenotype in a mutant strain of S. thermophilus IMAU10636. By treating the wild-type strain with the mutagenic agent N-methyl-N-nitro-N-nitrosoguanidine, we successfully isolated a Gal+ mutant, S. thermophilus IMAU10636Y. Comparative enzyme activity assays revealed that the mutant exhibited higher β-galactosidase and galactokinase activities, but lower glucokinase and pyruvate kinase activities compared to the wild-type. High-performance liquid chromatography analysis confirmed the mutant's enhanced ability to utilize lactose and galactose, leading to increased glucose secretion. Integrated genome and transcriptomics analyses provided deeper insights into the underlying genetic and metabolic mechanisms. We found that the metabolism regulatory network of the glycolysis / Leloir pathway was altered in the mutant, possibly due to the upregulation of the gene expression in the galR-galK intergenic region. This likely led to increased RNA polymerase binding and transcription of the gal operon, ultimately promoting the Gal+ phenotype. Additionally, we identified a mutation in the scrR gene, encoding a LacI family transcriptional repressor, which also contributed to the Gal+ phenotype. These findings offer new perspectives on the metabolic rewiring and regulatory mechanisms that enable S. thermophilus to acquire the ability to metabolize galactose. This knowledge can inform strategies for engineering and selecting Gal+ strains with desirable fermentation characteristics for dairy applications.
Collapse
Affiliation(s)
- Haimin Hu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Qingting Peng
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Jiahui Tai
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Wenhui Lu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Jinhui Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Tong Dan
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
2
|
Nikhil S, Mohideen HS, Sella RN. Unveiling the Genomic Symphony: Identification Cultivar-Specific Genes and Enhanced Insights on Sweet Sorghum Genomes Through Comprehensive superTranscriptomic Analysis. J Mol Evol 2024:10.1007/s00239-024-10198-5. [PMID: 39261311 DOI: 10.1007/s00239-024-10198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
Sorghum (Sorghum bicolor (L.) Moench) is a multipurpose crop grown for food, fodder, and bioenergy production. Its cultivated varieties, along with their wild counterparts, contribute to the core genetic pool. Despite the availability of several re-sequenced sorghum genomes, a variable portion of sorghum genomes is not reported during reference genome assembly and annotation. The present analysis used 223 publicly available RNA-seq datasets from seven sweet sorghum cultivars to construct superTranscriptome. This approach yielded 45,864 Representative Transcript Assemblies (RTAs) that showcased intriguing Presence/Absence Variation (PAV) across 15 published sorghum genomes. We found 301 superTranscripts were exclusive to sweet sorghum, including 58 de novo genes encoded core and linker histones, zinc finger domains, glucosyl transferases, cellulose synthase, etc. The superTranscriptome added 2,802 new protein-coding genes to the Sweet Sorghum Reference Genome (SSRG), of which 559 code for different transcription factors (TFs). Our analysis revealed that MULE-like transposases were abundant in the sweet sorghum genome and could play a hidden role in the evolution of sweet sorghum. We observed large deletions in the D locus and terminal deletions in four other NAC encoding loci in the SSRG compared to its wild progenitor (353) suggesting non-functional NAC genes contributed to trait development in sweet sorghum. Moreover, superTranscript-based methods for Differential Exon Usage (DEU) and Differential Gene Expression (DGE) analyses were more accurate than those based on the SSRG. This study demonstrates that the superTranscriptome can enhance our understanding of fundamental sorghum mechanisms, improve genome annotations, and potentially even replace the reference genome.
Collapse
Affiliation(s)
- Shinde Nikhil
- Membrane Protein Interaction Lab, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India
| | - Habeeb Shaikh Mohideen
- Entomoinformatics Lab, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India
| | - Raja Natesan Sella
- Membrane Protein Interaction Lab, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
3
|
Wimalarathna NA, Wickramasuriya AM, Metschina D, Cauz-Santos LA, Bandupriya D, Ariyawansa KGSU, Gopallawa B, Chase MW, Samuel R, Silva TD. Genetic diversity and population structure of Piper nigrum (black pepper) accessions based on next-generation SNP markers. PLoS One 2024; 19:e0305990. [PMID: 38924027 PMCID: PMC11207170 DOI: 10.1371/journal.pone.0305990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Despite the economic importance of Piper nigrum (black pepper), a highly valued crop worldwide, development and utilization of genomic resources have remained limited, with diversity assessments often relying on only a few samples or DNA markers. Here we employed restriction-site associated DNA sequencing to analyze 175 P. nigrum accessions from eight main black pepper growing regions in Sri Lanka. The sequencing effort resulted in 1,976 million raw reads, averaging 11.3 million reads per accession, revealing 150,356 high-quality single nucleotide polymorphisms (SNPs) distributed across 26 chromosomes. Population structure analysis revealed two subpopulations (K = 2): a dominant group consisting of 152 accessions sourced from both home gardens and large-scale cultivations, and a smaller group comprising 23 accessions exclusively from native collections in home gardens. This clustering was further supported by principal component analysis, with the first two principal components explaining 35.2 and 12.1% of the total variation. Genetic diversity analysis indicated substantial gene flow (Nm = 342.21) and a low fixation index (FST = 0.00073) between the two subpopulations, with no clear genetic differentiation among accessions from different agro-climatic regions. These findings demonstrate that most current black pepper genotypes grown in Sri Lanka share a common genetic background, emphasizing the necessity to broaden the genetic base to enhance resilience to biotic and abiotic stresses. This study represents the first attempt at analyzing black pepper genetic diversity using high-resolution SNP markers, laying the foundation for future genome-wide association studies for SNP-based gene discovery and breeding.
Collapse
Affiliation(s)
- Nilni A. Wimalarathna
- Department of Plant Sciences, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | | | - Dominik Metschina
- Department of Botany and Biodiversity of Research, University of Vienna, Vienna, Austria
| | - Luiz A. Cauz-Santos
- Department of Botany and Biodiversity of Research, University of Vienna, Vienna, Austria
| | - Dharshani Bandupriya
- Department of Plant Sciences, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | | | - Bhathiya Gopallawa
- Department of Botany, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Mark W. Chase
- Department of Botany and Biodiversity of Research, University of Vienna, Vienna, Austria
- Royal Botanic Gardens, Kew, United Kingdom
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
| | - Rosabelle Samuel
- Department of Botany and Biodiversity of Research, University of Vienna, Vienna, Austria
| | - Tara D. Silva
- Department of Plant Sciences, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
4
|
Zhou X, Qiang C, Chen L, Qing D, Huang J, Li J, Pan Y. The Landscape of Presence/Absence Variations during the Improvement of Rice. Genes (Basel) 2024; 15:645. [PMID: 38790274 PMCID: PMC11120952 DOI: 10.3390/genes15050645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Rice is one of the most important staple crops in the world; therefore, the improvement of rice holds great significance for enhancing agricultural production and addressing food security challenges. Although there have been numerous studies on the role of single-nucleotide polymorphisms (SNPs) in rice improvement with the development of next-generation sequencing technologies, research on the role of presence/absence variations (PAVs) in the improvement of rice is limited. In particular, there is a scarcity of studies exploring the traits and genes that may be affected by PAVs in rice. Here, we extracted PAVs utilizing resequencing data from 148 improved rice varieties distributed in Asia. We detected a total of 33,220 PAVs and found that the number of variations decreased gradually as the length of the PAVs increased. The number of PAVs was the highest on chromosome 1. Furthermore, we identified a 6 Mb hotspot region on chromosome 11 containing 1091 PAVs in which there were 29 genes related to defense responses. By conducting a genome-wide association study (GWAS) using PAV variation data and phenotypic data for five traits (flowering time, plant height, flag leaf length, flag leaf width, and panicle number) across all materials, we identified 186 significantly associated PAVs involving 20 cloned genes. A haplotype analysis and expression analysis of candidate genes revealed that important genes might be affected by PAVs, such as the flowering time gene OsSFL1 and the flag leaf width gene NAL1. Our work investigated the pattern in PAVs and explored important PAV key functional genes associated with agronomic traits. Consequently, these results provide potential and exploitable genetic resources for rice breeding.
Collapse
Affiliation(s)
- Xia Zhou
- Urban Construction School, Beijing City University, Beijing 101300, China;
| | - Chenggen Qiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
| | - Lei Chen
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.C.); (D.Q.); (J.H.)
| | - Dongjin Qing
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.C.); (D.Q.); (J.H.)
| | - Juan Huang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.C.); (D.Q.); (J.H.)
| | - Jilong Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
| | - Yinghua Pan
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.C.); (D.Q.); (J.H.)
| |
Collapse
|
5
|
Khasin M, Bernhardson LF, O'Neill PM, Palmer NA, Scully ED, Sattler SE, Sarath G, Funnell-Harris DL. Phenylpropanoids Following Wounding and Infection of Sweet Sorghum Lines Differing in Responses to Stalk Pathogens. PHYTOPATHOLOGY 2024; 114:177-192. [PMID: 37486162 DOI: 10.1094/phyto-12-22-0459-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Sweet sorghum (Sorghum bicolor) lines M81-E and Colman were previously shown to differ in responses to Fusarium thapsinum and Macrophomina phaseolina, stalk rot pathogens that can reduce the yields and quality of biomass and extracted sugars. Inoculated tissues were compared for transcriptomic, phenolic metabolite, and enzymatic activity during disease development 3 and 13 days after inoculation (DAI). At 13 DAI, M81-E had shorter mean lesion lengths than Colman when inoculated with either pathogen. Transcripts encoding monolignol biosynthetic and modification enzymes were associated with transcriptional wound (control) responses of both lines at 3 DAI. Monolignol biosynthetic genes were differentially coexpressed with transcriptional activator SbMyb76 in all Colman inoculations, but only following M. phaseolina inoculation in M81-E, suggesting that SbMyb76 is associated with lignin biosynthesis during pathogen responses. In control inoculations, defense-related genes were expressed at higher levels in M81-E than Colman. Line, treatment, and timepoint differences observed in phenolic metabolite and enzyme activities did not account for observed differences in lesions. However, generalized additive models were able to relate metabolites, but not enzyme activities, to lesion length for quantitatively modeling disease progression: in M81-E, but not Colman, sinapic acid levels positively predicted lesion length at 3 DAI when cell wall-bound syringic acid was low, soluble caffeic acid was high, and lactic acid was high, suggesting that sinapic acid may contribute to responses at 3 DAI. These results provide potential gene targets for development of sweet sorghum varieties with increased stalk rot resistance to ensure biomass and sugar quality.
Collapse
Affiliation(s)
- Maya Khasin
- Wheat, Sorghum, and Forage Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Lincoln, NE 68583
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583
| | - Lois F Bernhardson
- Wheat, Sorghum, and Forage Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Lincoln, NE 68583
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583
| | - Patrick M O'Neill
- Wheat, Sorghum, and Forage Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Lincoln, NE 68583
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583
| | - Nathan A Palmer
- Wheat, Sorghum, and Forage Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Lincoln, NE 68583
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583
| | - Erin D Scully
- Stored Product Insect and Engineering Research Unit, U.S. Department of Agriculture-Agricultural Research Service Center for Grain and Animal Health Research, Manhattan, KS 66502
| | - Scott E Sattler
- Wheat, Sorghum, and Forage Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Lincoln, NE 68583
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583
| | - Gautam Sarath
- Wheat, Sorghum, and Forage Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Lincoln, NE 68583
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583
| | - Deanna L Funnell-Harris
- Wheat, Sorghum, and Forage Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Lincoln, NE 68583
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583
| |
Collapse
|
6
|
Cuevas HE, Knoll JE, Prom LK, Stutts LR, Vermerris W. Genetic diversity, population structure and anthracnose resistance response in a novel sweet sorghum diversity panel. FRONTIERS IN PLANT SCIENCE 2023; 14:1249555. [PMID: 37929175 PMCID: PMC10623324 DOI: 10.3389/fpls.2023.1249555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023]
Abstract
Sweet sorghum is an attractive feedstock for the production of renewable chemicals and fuels due to the readily available fermentable sugars that can be extracted from the juice, and the additional stream of fermentable sugars that can be obtained from the cell wall polysaccharides in the bagasse. An important selection criterion for new sweet sorghum germplasm is resistance to anthracnose, a disease caused by the fungal pathogen Colletotrichum sublineolum. The identification of novel anthracnose-resistance sources present in sweet sorghum germplasm offers a fast track towards the development of new resistant sweet sorghum germplasm. We established a sweet sorghum diversity panel (SWDP) of 272 accessions from the USDA-ARS National Plant Germplasm (NPGS) collection that includes landraces from 22 countries and advanced breeding material, and that represents ~15% of the NPGS sweet sorghum collection. Genomic characterization of the SWDP identified 171,954 single nucleotide polymorphisms (SNPs) with an average of one SNP per 4,071 kb. Population structure analysis revealed that the SWDP could be stratified into four populations and one admixed group, and that this population structure could be aligned to sorghum's racial classification. Results from a two-year replicated trial of the SWDP for anthracnose resistance response in Texas, Georgia, Florida, and Puerto Rico showed 27 accessions to be resistant across locations, while 145 accessions showed variable resistance response against local pathotypes. A genome-wide association study identified 16 novel genomic regions associated with anthracnose resistance. Four resistance loci on chromosomes 3, 6, 8 and 9 were identified against pathotypes from Puerto Rico, and two resistance loci on chromosomes 3 and 8 against pathotypes from Texas. In Georgia and Florida, three resistance loci were detected on chromosomes 4, 5, 6 and four on chromosomes 4, 5 (two loci) and 7, respectively. One resistance locus on chromosome 2 was effective against pathotypes from Texas and Puerto Rico and a genomic region of 41.6 kb at the tip of chromosome 8 was associated with resistance response observed in Georgia, Texas, and Puerto Rico. This publicly available SWDP and the extensive evaluation of anthracnose resistance represent a valuable genomic resource for the improvement of sorghum.
Collapse
Affiliation(s)
- Hugo E. Cuevas
- USDA-ARS, Tropical Agriculture Research Station, Mayagüez, Puerto Rico
| | - Joseph E. Knoll
- USDA-ARS, Crop Genetics and Breeding Research, Tifton, GA, United States
| | - Louis K. Prom
- USDA-ARS, Southern Plains Agriculture Research Center, College Station, TX, United States
| | - Lauren R. Stutts
- Graduate Program in Plant Molecular & Cellular Biology, University of Florida, Gainesville, FL, United States
| | - Wilfred Vermerris
- Department of Microbiology & Cell Science and UF Genetics Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
7
|
Guo H, Nie CY, Li Z, Kang J, Wang XL, Cui YN. Physiological and Transcriptional Analyses Provide Insight into Maintaining Ion Homeostasis of Sweet Sorghum under Salt Stress. Int J Mol Sci 2023; 24:11045. [PMID: 37446223 DOI: 10.3390/ijms241311045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Sweet sorghum is an important bioenergy grass and valuable forage with a strong adaptability to saline environments. However, little is known about the mechanisms of sweet sorghum coping with ion toxicity under salt stresses. Here, we first evaluated the salt tolerance of a sweet sorghum cultivar "Lvjuren" and determined its ion accumulation traits under NaCl treatments; then, we explored key genes involved in Na+, Cl-, K+ and NO3- transport using transcriptome profiling and the qRT-PCR method. The results showed that growth and photosynthesis of sweet sorghum were unaffected by 50 and 100 mM NaCl treatments, indicative of a strong salt tolerance of this species. Under NaCl treatments, sweet sorghum could efficiently exclude Na+ from shoots and accumulate Cl- in leaf sheaths to avoid their overaccumulation in leaf blades; meanwhile, it possessed a prominent ability to sustain NO3- homeostasis in leaf blades. Transcriptome profiling identified several differentially expressed genes associated with Na+, Cl-, K+ and NO3- transport in roots, leaf sheaths and leaf blades after 200 mM NaCl treatment for 6 and 48 h. Moreover, transcriptome data and qRT-PCR results indicated that HKT1;5, CLCc and NPF7.3-1 should be key genes involved in Na+ retention in roots, Cl- accumulation in leaf sheaths and maintenance of NO3- homeostasis in leaf blades, respectively. Many TFs were also identified after NaCl treatment, which should play important regulatory roles in salt tolerance of sweet sorghum. In addition, GO analysis identified candidate genes involved in maintaining membrane stability and photosynthetic capacity under salt stresses. This work lays a preliminary foundation for clarifying the molecular basis underlying the adaptation of sweet sorghum to adverse environments.
Collapse
Affiliation(s)
- Huan Guo
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Chun-Ya Nie
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Zhen Li
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Jie Kang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Xiao-Long Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Yan-Nong Cui
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
8
|
Xu S, Li XQ, Guo H, Wu XY, Wang N, Liu ZQ, Hao HQ, Jing HC. Mucilage secretion by aerial roots in sorghum (Sorghum bicolor): sugar profile, genetic diversity, GWAS and transcriptomic analysis. PLANT MOLECULAR BIOLOGY 2023:10.1007/s11103-023-01365-1. [PMID: 37378835 DOI: 10.1007/s11103-023-01365-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023]
Abstract
Aerial root mucilage can enhance nitrogen fixation by providing sugar and low oxygen environment to the rhizosphere microbiome in Sierra Mixe maize. Aerial root mucilage has long been documented in sorghum (Sorghum bicolor), but little is known about the biological significance, genotypic variation, and genetic regulation of this biological process. In the present study, we found that a large variation of mucilage secretion capacity existed in a sorghum panel consisting of 146 accessions. Mucilage secretion occurred primarily in young aerial roots under adequately humid conditions but decreased or stopped in mature long aerial roots or under dry conditions. The main components of the mucilage-soluble were glucose and fructose, as revealed by sugar profiling of cultivated and wild sorghum. The mucilage secretion capacity of landrace grain sorghum was significantly higher than that of wild sorghum. Transcriptome analysis revealed that 1844 genes were upregulated and 2617 genes were downregulated in mucilage secreting roots. Amongst these 4461 differentially expressed genes, 82 genes belonged to glycosyltransferases and glucuronidation pathways. Sobic.010G120200, encoding a UDP-glycosyltransferase, was identified by both GWAS and transcriptome analysis as a candidate gene, which may be involved in the regulation of mucilage secretion in sorghum through a negative regulatory mechanism.
Collapse
Affiliation(s)
- Si Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiu-Qing Li
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, E3B 4Z7, Canada
- Canada Forage International Inc., Fredericton, NB, Canada
| | - Hong Guo
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Yuan Wu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China
| | - Ning Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China
| | - Zhi-Quan Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China
- Engineering Laboratory for Grass-Based Livestock Husbandry, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Huai-Qing Hao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hai-Chun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Engineering Laboratory for Grass-Based Livestock Husbandry, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
9
|
Baloch FS, Altaf MT, Liaqat W, Bedir M, Nadeem MA, Cömertpay G, Çoban N, Habyarimana E, Barutçular C, Cerit I, Ludidi N, Karaköy T, Aasim M, Chung YS, Nawaz MA, Hatipoğlu R, Kökten K, Sun HJ. Recent advancements in the breeding of sorghum crop: current status and future strategies for marker-assisted breeding. Front Genet 2023; 14:1150616. [PMID: 37252661 PMCID: PMC10213934 DOI: 10.3389/fgene.2023.1150616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Sorghum is emerging as a model crop for functional genetics and genomics of tropical grasses with abundant uses, including food, feed, and fuel, among others. It is currently the fifth most significant primary cereal crop. Crops are subjected to various biotic and abiotic stresses, which negatively impact on agricultural production. Developing high-yielding, disease-resistant, and climate-resilient cultivars can be achieved through marker-assisted breeding. Such selection has considerably reduced the time to market new crop varieties adapted to challenging conditions. In the recent years, extensive knowledge was gained about genetic markers. We are providing an overview of current advances in sorghum breeding initiatives, with a special focus on early breeders who may not be familiar with DNA markers. Advancements in molecular plant breeding, genetics, genomics selection, and genome editing have contributed to a thorough understanding of DNA markers, provided various proofs of the genetic variety accessible in crop plants, and have substantially enhanced plant breeding technologies. Marker-assisted selection has accelerated and precised the plant breeding process, empowering plant breeders all around the world.
Collapse
Affiliation(s)
- Faheem Shehzad Baloch
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Muhammad Tanveer Altaf
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Waqas Liaqat
- Department of Field Crops, Faculty of Agriculture, Çukurova University, Adana, Türkiye
| | - Mehmet Bedir
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Gönül Cömertpay
- Eastern Mediterranean Agricultural Research Institute, Adana, Türkiye
| | - Nergiz Çoban
- Eastern Mediterranean Agricultural Research Institute, Adana, Türkiye
| | - Ephrem Habyarimana
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India
| | - Celaleddin Barutçular
- Department of Field Crops, Faculty of Agriculture, Çukurova University, Adana, Türkiye
| | - Ibrahim Cerit
- Eastern Mediterranean Agricultural Research Institute, Adana, Türkiye
| | - Ndomelele Ludidi
- Plant Stress Tolerance Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
- DSI-NRF Centre of Excellence in Food Security, University of the Western Cape, Bellville, South Africa
| | - Tolga Karaköy
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Muhammad Aasim
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea
| | | | - Rüştü Hatipoğlu
- Kırşehir Ahi Evran Universitesi Ziraat Fakultesi Tarla Bitkileri Bolumu, Kırşehir, Türkiye
| | - Kağan Kökten
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Hyeon-Jin Sun
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
10
|
Zhao J, Li X, Qiao L, Zheng X, Wu B, Guo M, Feng M, Qi Z, Yang W, Zheng J. Identification of structural variations related to drought tolerance in wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:37. [PMID: 36897407 DOI: 10.1007/s00122-023-04283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/07/2022] [Indexed: 06/18/2023]
Abstract
Structural variations are common in plant genomes, affecting meiotic recombination and distorted segregation in wheat. And presence/absence variations can significantly affect drought tolerance in wheat. Drought is a major abiotic stress limiting wheat production. Common wheat has a complex genome with three sub-genomes, which host large numbers of structural variations (SVs). SVs play critical roles in understanding the genetic contributions of plant domestication and phenotypic plasticity, but little is known about their genomic characteristics and their effects on drought tolerance. In the present study, high-resolution karyotypes of 180 doubled haploids (DHs) were developed. Signal polymorphisms between the parents involved with 8 presence-absence variations (PAVs) of tandem repeats (TR) distributed on the 7 (2A, 4A, 5A, 7A, 3B, 7B, and 2D) of 21 chromosomes. Among them, PAV on chromosome 2D showed distorted segregation, others transmit normal conforming to a 1:1 segregation ration in the population; and a PAVs recombination occurred on chromosome 2A. Association analysis of PAV and phenotypic traits under different water regimes, we found PAVs on chromosomes 4A, 5A, and 7B showed negative effect on grain length (GL) and grain width (GW); PAV.7A had opposite effect on grain thickness (GT) and spike length (SL), with the effect on traits differing under different water regimes. PAVs on linkage group 2A, 4A, 7A, 2D, and 7B associated with the drought tolerance coefficients (DTCs), and significant negative effect on drought resistance values (D values) were detected in PAV.7B. Additionally, quantitative trait loci (QTL) associated with phenotypic traits using the 90 K SNP array showed QTL for DTCs and grain-related traits in chromosomes 4A, and 5A, 3B were co-localized in differential regions of PAVs. These PAVs can cause the differentiation of the target region of SNP and could be used for genetic improvement of agronomic traits under drought stress via marker-assisted selection (MAS) breeding.
Collapse
Affiliation(s)
- Jiajia Zhao
- College of Agriculture, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taigu, China
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xiaohua Li
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Ling Qiao
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Xingwei Zheng
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Bangbang Wu
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Meijun Guo
- College of Agriculture, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taigu, China
- Jinzhong University, Jinzhong, China
| | - Meichen Feng
- College of Agriculture, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taigu, China
| | - Zengjun Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Wude Yang
- College of Agriculture, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taigu, China.
| | - Jun Zheng
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China.
| |
Collapse
|
11
|
Mewa DB, Lee S, Liao C, Adeyanju A, Helm M, Lisch D, Mengiste T. ANTHRACNOSE RESISTANCE GENE2 confers fungal resistance in sorghum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:308-326. [PMID: 36441009 PMCID: PMC10108161 DOI: 10.1111/tpj.16048] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Sorghum is an important food and feed crop globally; its production is hampered by anthracnose disease caused by the fungal pathogen Colletotrichum sublineola (Cs). Here, we report identification and characterization of ANTHRACNOSE RESISTANCE GENE 2 (ARG2) encoding a nucleotide-binding leucine-rich repeat (NLR) protein that confers race-specific resistance to Cs strains. ARG2 is one of a cluster of several NLR genes initially identified in the sorghum differential line SC328C that is resistant to some Cs strains. This cluster shows structural and copy number variations in different sorghum genotypes. Different sorghum lines carrying independent ARG2 alleles provided the genetic validation for the identity of the ARG2 gene. ARG2 expression is induced by Cs, and chitin induces ARG2 expression in resistant but not in susceptible lines. ARG2-mediated resistance is accompanied by higher expression of defense and secondary metabolite genes at early stages of infection, and anthocyanin and zeatin metabolisms are upregulated in resistant plants. Interestingly, ARG2 localizes to the plasma membrane when transiently expressed in Nicotiana benthamiana. Importantly, ARG2 plants produced higher shoot dry matter than near-isogenic lines carrying the susceptible allele suggesting an absence of an ARG2 associated growth trade-off. Furthermore, ARG2-mediated resistance is stable at a wide range of temperatures. Our observations open avenues for resistance breeding and for dissecting mechanisms of resistance.
Collapse
Affiliation(s)
- Demeke B. Mewa
- Department of Botany and Plant Pathology, Purdue University915 W. State St.West LafayetteIN47907USA
| | - Sanghun Lee
- Department of Botany and Plant Pathology, Purdue University915 W. State St.West LafayetteIN47907USA
| | - Chao‐Jan Liao
- Department of Botany and Plant Pathology, Purdue University915 W. State St.West LafayetteIN47907USA
| | - Adedayo Adeyanju
- Department of Agronomy, Purdue University915 W. State St.West LafayetteIN47907USA
| | - Matthew Helm
- United States Department of Agriculture, Agricultural Research Service, Crop Production and Pest Control Research UnitWest LafayetteIN47907USA
| | - Damon Lisch
- Department of Botany and Plant Pathology, Purdue University915 W. State St.West LafayetteIN47907USA
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University915 W. State St.West LafayetteIN47907USA
| |
Collapse
|
12
|
Gangurde SS, Xavier A, Naik YD, Jha UC, Rangari SK, Kumar R, Reddy MSS, Channale S, Elango D, Mir RR, Zwart R, Laxuman C, Sudini HK, Pandey MK, Punnuri S, Mendu V, Reddy UK, Guo B, Gangarao NVPR, Sharma VK, Wang X, Zhao C, Thudi M. Two decades of association mapping: Insights on disease resistance in major crops. FRONTIERS IN PLANT SCIENCE 2022; 13:1064059. [PMID: 37082513 PMCID: PMC10112529 DOI: 10.3389/fpls.2022.1064059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 05/03/2023]
Abstract
Climate change across the globe has an impact on the occurrence, prevalence, and severity of plant diseases. About 30% of yield losses in major crops are due to plant diseases; emerging diseases are likely to worsen the sustainable production in the coming years. Plant diseases have led to increased hunger and mass migration of human populations in the past, thus a serious threat to global food security. Equipping the modern varieties/hybrids with enhanced genetic resistance is the most economic, sustainable and environmentally friendly solution. Plant geneticists have done tremendous work in identifying stable resistance in primary genepools and many times other than primary genepools to breed resistant varieties in different major crops. Over the last two decades, the availability of crop and pathogen genomes due to advances in next generation sequencing technologies improved our understanding of trait genetics using different approaches. Genome-wide association studies have been effectively used to identify candidate genes and map loci associated with different diseases in crop plants. In this review, we highlight successful examples for the discovery of resistance genes to many important diseases. In addition, major developments in association studies, statistical models and bioinformatic tools that improve the power, resolution and the efficiency of identifying marker-trait associations. Overall this review provides comprehensive insights into the two decades of advances in GWAS studies and discusses the challenges and opportunities this research area provides for breeding resistant varieties.
Collapse
Affiliation(s)
- Sunil S. Gangurde
- Crop Genetics and Breeding Research, United States Department of Agriculture (USDA) - Agriculture Research Service (ARS), Tifton, GA, United States
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States
| | - Alencar Xavier
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | | | - Uday Chand Jha
- Indian Council of Agricultural Research (ICAR), Indian Institute of Pulses Research (IIPR), Kanpur, Uttar Pradesh, India
| | | | - Raj Kumar
- Dr. Rajendra Prasad Central Agricultural University (RPCAU), Bihar, India
| | - M. S. Sai Reddy
- Dr. Rajendra Prasad Central Agricultural University (RPCAU), Bihar, India
| | - Sonal Channale
- Crop Health Center, University of Southern Queensland (USQ), Toowoomba, QLD, Australia
| | - Dinakaran Elango
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Reyazul Rouf Mir
- Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST), Sopore, India
| | - Rebecca Zwart
- Crop Health Center, University of Southern Queensland (USQ), Toowoomba, QLD, Australia
| | - C. Laxuman
- Zonal Agricultural Research Station (ZARS), Kalaburagi, University of Agricultural Sciences, Raichur, Karnataka, India
| | - Hari Kishan Sudini
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Manish K. Pandey
- Crop Health Center, University of Southern Queensland (USQ), Toowoomba, QLD, Australia
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Somashekhar Punnuri
- College of Agriculture, Family Sciences and Technology, Dr. Fort Valley State University, Fort Valley, GA, United States
| | - Venugopal Mendu
- Department of Plant Science and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Umesh K. Reddy
- Department of Biology, West Virginia State University, West Virginia, WV, United States
| | - Baozhu Guo
- Crop Genetics and Breeding Research, United States Department of Agriculture (USDA) - Agriculture Research Service (ARS), Tifton, GA, United States
| | | | - Vinay K. Sharma
- Dr. Rajendra Prasad Central Agricultural University (RPCAU), Bihar, India
| | - Xingjun Wang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences (SAAS), Jinan, China
| | - Chuanzhi Zhao
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences (SAAS), Jinan, China
| | - Mahendar Thudi
- Dr. Rajendra Prasad Central Agricultural University (RPCAU), Bihar, India
- Crop Health Center, University of Southern Queensland (USQ), Toowoomba, QLD, Australia
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences (SAAS), Jinan, China
| |
Collapse
|
13
|
Zhao J, Zheng X, Qiao L, Yang C, Wu B, He Z, Tang Y, Li G, Yang Z, Zheng J, Qi Z. Genome-wide association study reveals structural chromosome variations with phenotypic effects in wheat (Triticum aestivum L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1447-1461. [PMID: 36345647 DOI: 10.1111/tpj.16023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Structural chromosome variations (SCVs) are large-scale genomic variations that can be detected by fluorescence in situ hybridization (FISH). SCVs have played important roles in the genome evolution of wheat (Triticum aestivum L.), but little is known about their genetic effects. In this study, a total of 543 wheat accessions from the Chinese wheat mini-core collection and the Shanxi Province wheat collection were used for chromosome analysis using oligonucleotide probe multiplex FISH. A total of 139 SCVs including translocations, pericentric inversions, presence/absence variations (PAVs), and copy number variations (CNVs) in heterochromatin were identified at 230 loci. The distribution frequency of SCVs varied between ecological regions and between landraces and modern cultivars. Structural analysis using SCVs as markers clearly divided the landraces and modern cultivars into different groups. There are very clear instances illustrating alien introgression and wide application of foreign germplasms improved the chromosome diversity of Chinese modern wheat cultivars. A genome-wide association study (GWAS) identified 29 SCVs associated with 12 phenotypic traits, and five (RT4AS•4AL-1DS/1DL•1DS-4AL, Mg2A-3, Mr3B-10, Mr7B-13, and Mr4A-7) of them were further validated using a doubled haploid population and advanced sib-lines, implying the potential value of these SCVs. Importantly, the number of favored SCVs that were associated with agronomic trait improvement was significantly higher in modern cultivars compared to landraces, indicating positive selection in wheat breeding. This study demonstrates the significant effects of SCVs during wheat breeding and provides an efficient method of mining favored SCVs in wheat and other crops.
Collapse
Affiliation(s)
- Jiajia Zhao
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xingwei Zheng
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000, China
| | - Ling Qiao
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000, China
| | - Chenkang Yang
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000, China
| | - Bangbang Wu
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000, China
| | - Ziming He
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuqing Tang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangrong Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu, 611731, China
| | - Zujun Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu, 611731, China
| | - Jun Zheng
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000, China
| | - Zengjun Qi
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
14
|
Zhang Y, Shi J, Shen C, To VT, Shi Q, Ye L, Shi J, Zhang D, Chen W. Discovery of DNA polymorphisms via genome-resequencing and development of molecular markers between two barley cultivars. PLANT CELL REPORTS 2022; 41:2279-2292. [PMID: 36209436 DOI: 10.1007/s00299-022-02920-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Genome resequencing uncovers genome-wide DNA polymorphisms that are useful for the development of high-density InDel markers between two barley cultivars. Discovering genomic variations and developing genetic markers are crucial for genetics studies and molecular breeding in cereal crops. Although InDels (insertions and deletions) have become popular because of their abundance and ease of detection, discovery of genome-wide DNA polymorphisms and development of InDel markers in barley have lagged behind other cereal crops such as rice, maize and wheat. In this study, we re-sequenced two barley cultivars, Golden Promise (GP, a classic British spring barley variety) and Hua30 (a Chinese spring barley variety), and mapped clean reads to the reference Morex genome, and identified in total 13,933,145 single nucleotide polymorphisms (SNPs) and 1,240,456 InDels for GP with Morex, 11,297,100 SNPs and 781,687 InDels for Hua30 with Morex, and 13,742,399 SNPs and 1,191,597 InDels for GP with Hua30. We further characterized distinct types, chromosomal distribution patterns, genome location, functional effect, and other features of these DNA polymorphisms. Additionally, we revealed the functional relevance of these identified SNPs/InDels regarding different flowering times between Hua30 and GP within 17 flowering time genes. Furthermore, we developed a series of InDel markers and validated them experimentally in 43 barley core accessions, respectively. Finally, we rebuilt population structure and phylogenetic tree of these 43 barley core accessions. Collectively, all of these genetic resources will facilitate not only the basic research but also applied research in barley.
Collapse
Affiliation(s)
- Yueya Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chaoqun Shen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Vinh-Trieu To
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qi Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lingzhen Ye
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- School of Agriculture, Food, and Wine, University of Adelaide, Adelaide, South Australia, 5064, Australia.
| | - Weiwei Chen
- School of Agriculture, Food, and Wine, University of Adelaide, Adelaide, South Australia, 5064, Australia.
| |
Collapse
|
15
|
Zhang F, Lu F, Wang Y, Zhang Z, Wang J, Zhang K, Wu H, Zou J, Duan Y, Ke F, Zhu K. Combined transcriptomic and physiological metabolomic analyses elucidate key biological pathways in the response of two sorghum genotypes to salinity stress. FRONTIERS IN PLANT SCIENCE 2022; 13:880373. [PMID: 36311110 PMCID: PMC9608512 DOI: 10.3389/fpls.2022.880373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Sorghum is an important food crop with high salt tolerance. Therefore, studying the salt tolerance mechanism of sorghum has great significance for understanding the salt tolerance mechanism of C4 plants. In this study, two sorghum species, LRNK1 (salt-tolerant (ST)) and LR2381 (salt-sensitive (SS)), were treated with 180 mM NaCl salt solution, and their physiological indicators were measured. Transcriptomic and metabolomic analyses were performed by Illumina sequencing and liquid chromatography-mass spectrometry (LC-MS) technology, respectively. The results demonstrated that the plant height, leaf area, and chlorophyll contents in LRNK1 were significantly higher than in LR2381. Functional analysis of differently expressed genes (DEGs) demonstrated that plant hormone signal transduction (GO:0015473), carbohydrate catabolic processes (GO:0016052), and photosynthesis (GO:0015979) were the main pathways to respond to salt stress in sorghum. The genes of the two varieties showed different expression patterns under salt stress conditions. The metabolomic data revealed different profiles of salicylic acid and betaine between LRNK1 and LR2381, which mediated the salt tolerance of sorghum. In conclusion, LRNK1 sorghum responds to salt stress via a variety of biological processes, including energy reserve, the accumulation of salicylic acid and betaine, and improving the activity of salt stress-related pathways. These discoveries provide new insights into the salt tolerance mechanism of sorghum and will contribute to sorghum breeding.
Collapse
Affiliation(s)
| | | | - Yanqiu Wang
- Sorghum Breeding and Cultivation Physiology Laboratory, Sorghum Institute, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | | | | | | | | | | | | | | | - Kai Zhu
- Sorghum Breeding and Cultivation Physiology Laboratory, Sorghum Institute, Liaoning Academy of Agricultural Sciences, Shenyang, China
| |
Collapse
|
16
|
Wang Y, Wang X, Sun S, Jin C, Su J, Wei J, Luo X, Wen J, Wei T, Sahu SK, Zou H, Chen H, Mu Z, Zhang G, Liu X, Xu X, Gram L, Yang H, Wang E, Liu H. GWAS, MWAS and mGWAS provide insights into precision agriculture based on genotype-dependent microbial effects in foxtail millet. Nat Commun 2022; 13:5913. [PMID: 36207301 PMCID: PMC9546826 DOI: 10.1038/s41467-022-33238-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 09/09/2022] [Indexed: 11/09/2022] Open
Abstract
Genetic and environmental factors collectively determine plant growth and yield. In the past 20 years, genome-wide association studies (GWAS) have been conducted on crops to decipher genetic loci that contribute to growth and yield, however, plant genotype appears to be insufficient to explain the trait variations. Here, we unravel the associations between genotypic, phenotypic, and rhizoplane microbiota variables of 827 foxtail millet cultivars by an integrated GWAS, microbiome-wide association studies (MWAS) and microbiome genome-wide association studies (mGWAS) method. We identify 257 rhizoplane microbial biomarkers associated with six key agronomic traits and validated the microbial-mediated growth effects on foxtail millet using marker strains isolated from the field. The rhizoplane microbiota composition is mainly driven by variations in plant genes related to immunity, metabolites, hormone signaling and nutrient uptake. Among these, the host immune gene FLS2 and transcription factor bHLH35 are widely associated with the microbial taxa of the rhizoplane. We further uncover a plant genotype-microbiota interaction network that contributes to phenotype plasticity. The microbial-mediated growth effects on foxtail millet are dependent on the host genotype, suggesting that precision microbiome management could be used to engineer high-yielding cultivars in agriculture systems.
Collapse
Grants
- Statens Naturvidenskabelige Forskningsrad (Danish National Science Foundation)
- This research was supported by the Funding of Joint Research on Agricultural Variety Improvement of Henan Province (No. 2022010401, H. Z.), the Major Science and Technology Projects of Yunnan Province (Digitalization, development and application of biotic resource, No. 860 202002AA100007, H. L.), the National Science Foundation (32088102, 31730103, 31825003, E. W.), the Specialty Industry for Key Research and Development Program in Shanxi Academy of Agricultural Sciences (No. YCX2019T01, Z. M.) and Key R&D Program of ShanXi Province (No. 201903D211003, Z. M.). This work was also supported by China National GeneBank (CNGB), Key Laboratory of Genomics, Ministry of Agriculture, BGI-Shenzhen.
Collapse
Affiliation(s)
- Yayu Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xiaolin Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shuai Sun
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- BGI-Qingdao, Qingdao, 266555, China
| | - Canzhi Jin
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianmu Su
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Jinpu Wei
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xinyue Luo
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiawen Wen
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Wei
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Hongfeng Zou
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Hongyun Chen
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Zhixin Mu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Gengyun Zhang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xin Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, 518083, China
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs, Lyngby, Denmark
| | - Huanming Yang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
17
|
Osman MEFM, Dirar AI, Konozy EHE. Genome-wide screening of lectin putative genes from Sorghum bicolor L., distribution in QTLs and a probable implications of lectins in abiotic stress tolerance. BMC PLANT BIOLOGY 2022; 22:397. [PMID: 35963996 PMCID: PMC9375933 DOI: 10.1186/s12870-022-03792-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/08/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Sorghum bicolor is one of the most important crops worldwide with the potential to provide resilience when other economic staples might fail against the continuous environmental changes. Many physiological, developmental and tolerance traits in plants are either controlled or influenced by lectins; carbohydrate binding proteins. Hence, we aimed at providing a comprehensive in silico account on sorghum's lectins and study their possible implication on various desired agronomical traits. RESULTS We have searched sorghum's genome from grain and sweet types for lectins putative genes that encode proteins with domains capable of differentially binding carbohydrate moieties and trigger various physiological responses. Of the 12 known plant lectin families, 8 were identified regarding their domain architectures, evolutionary relationships, physiochemical characteristics, and gene expansion mechanisms, and they were thoroughly addressed. Variations between grain and sweet sorghum lectin homologs in term of the presence/absence of certain other joint domains like dirigent and nucleotide-binding adaptor shared by APAF-1, R-proteins, and CED-4 (NB-ARC) indicate a possible neofunctionalization. Lectin sequences were found to be preferentially overrepresented in certain quantitative trait loci (QTLs) related to various traits under several subcategories such as cold, drought, salinity, panicle/grain composition, and leaf morphology. The co-localization and distribution of lectins among multiple QTLs provide insights into the pleiotropic effects that could be played by one lectin gene in numerous traits. CONCLUSION Our study offers a first-time inclusive details on sorghum lectins and their possible role in conferring tolerance against abiotic stresses and other economically important traits that can be informative for future functional analysis and breeding studies.
Collapse
Affiliation(s)
| | - Amina Ibrahim Dirar
- Medicinal, Aromatic Plants and Traditional Medicine Research Institute (MAPTRI), National Center for Research, Mek Nimr Street, Khartoum, Sudan
| | | |
Collapse
|
18
|
Lee MB, Shekasteband R, Hutton SF, Lee TG. A mutant allele of the flowering promoting factor 1 gene at the tomato BRACHYTIC locus reduces plant height with high quality fruit. PLANT DIRECT 2022; 6:e422. [PMID: 35949955 PMCID: PMC9352537 DOI: 10.1002/pld3.422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 05/07/2023]
Abstract
Reduced plant height due to shortened stems is beneficial for improving crop yield potential, better resilience to biotic/abiotic stresses, and rapid crop producer adoption of the agronomic and management practices. Breeding tomato plants with a reduced height, however, poses a particular challenge because this trait is often associated with a significant fruit size (weight) reduction. The tomato BRACHYTIC (BR) locus controls plant height. Genetic mapping and genome assembly revealed three flowering promoting factor 1 (FPF1) genes located within the BR mapping interval, and a complete coding sequence deletion of the telomere proximal FPF1 (Solyc01g066980) was found in the br allele but not in BR. The knock-out of Solyc01g066980 in BR large-fruited fresh-market tomato reduced the height and fruit yield, but the ability to produce large size fruits was retained. However, concurrent yield evaluation of a pair of sister lines with or without the br allele revealed that artificial selection contributes to commercially acceptable yield potential in br tomatoes. A network analysis of gene-expression patterns across genotypes, tissues, and the gibberellic acid (GA) treatment revealed that member(s) of the FPF1 family may play a role in the suppression of the GA biosynthesis in roots and provided a framework for identifying the responsible molecular signaling pathways in br-mediated phenotypic changes. Lastly, mutations of br homologs also resulted in reduced height. These results shed light on the genetic and physiological mechanisms by which the br allele alters tomato architecture.
Collapse
Affiliation(s)
- Man Bo Lee
- Gulf Coast Research and Education CenterUniversity of FloridaWimaumaFloridaUSA
| | - Reza Shekasteband
- Department of Horticultural ScienceNorth Carolina State University, Mountain Horticultural Crops Research & Extension CenterMills RiverNorth CarolinaUSA
| | - Samuel F. Hutton
- Gulf Coast Research and Education CenterUniversity of FloridaWimaumaFloridaUSA
- Horticultural Sciences DepartmentUniversity of FloridaGainesvilleFloridaUSA
- Plant Breeders Working GroupUniversity of FloridaGainesvilleFloridaUSA
| | - Tong Geon Lee
- Gulf Coast Research and Education CenterUniversity of FloridaWimaumaFloridaUSA
- Horticultural Sciences DepartmentUniversity of FloridaGainesvilleFloridaUSA
- Plant Breeders Working GroupUniversity of FloridaGainesvilleFloridaUSA
- Plant Molecular and Cellular Biology Graduate ProgramUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
19
|
Boatwright JL, Sapkota S, Jin H, Schnable JC, Brenton Z, Boyles R, Kresovich S. Sorghum Association Panel whole-genome sequencing establishes cornerstone resource for dissecting genomic diversity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:888-904. [PMID: 35653240 PMCID: PMC9544330 DOI: 10.1111/tpj.15853] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 05/26/2023]
Abstract
Association mapping panels represent foundational resources for understanding the genetic basis of phenotypic diversity and serve to advance plant breeding by exploring genetic variation across diverse accessions. We report the whole-genome sequencing (WGS) of 400 sorghum (Sorghum bicolor (L.) Moench) accessions from the Sorghum Association Panel (SAP) at an average coverage of 38× (25-72×), enabling the development of a high-density genomic marker set of 43 983 694 variants including single-nucleotide polymorphisms (approximately 38 million), insertions/deletions (indels) (approximately 5 million), and copy number variants (CNVs) (approximately 170 000). We observe slightly more deletions among indels and a much higher prevalence of deletions among CNVs compared to insertions. This new marker set enabled the identification of several novel putative genomic associations for plant height and tannin content, which were not identified when using previous lower-density marker sets. WGS identified and scored variants in 5-kb bins where available genotyping-by-sequencing (GBS) data captured no variants, with half of all bins in the genome falling into this category. The predictive ability of genomic best unbiased linear predictor (GBLUP) models was increased by an average of 30% by using WGS markers rather than GBS markers. We identified 18 selection peaks across subpopulations that formed due to evolutionary divergence during domestication, and we found six Fst peaks resulting from comparisons between converted lines and breeding lines within the SAP that were distinct from the peaks associated with historic selection. This population has served and continues to serve as a significant public resource for sorghum research and demonstrates the value of improving upon existing genomic resources.
Collapse
Affiliation(s)
- J. Lucas Boatwright
- Department of Plant and Environmental SciencesClemson UniversityClemsonSouth Carolina29634USA
- Advanced Plant TechnologyClemson UniversityClemsonSouth Carolina29634USA
| | - Sirjan Sapkota
- Advanced Plant TechnologyClemson UniversityClemsonSouth Carolina29634USA
| | - Hongyu Jin
- Center for Plant Science Innovation and Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNebraska68588USA
| | - James C. Schnable
- Center for Plant Science Innovation and Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNebraska68588USA
| | | | - Richard Boyles
- Department of Plant and Environmental SciencesClemson UniversityClemsonSouth Carolina29634USA
- Pee Dee Research and Education CenterClemson UniversityFlorenceSouth Carolina29506USA
| | - Stephen Kresovich
- Department of Plant and Environmental SciencesClemson UniversityClemsonSouth Carolina29634USA
- Advanced Plant TechnologyClemson UniversityClemsonSouth Carolina29634USA
- Feed the Future Innovation Lab for Crop ImprovementCornell UniversityIthacaNew York14850USA
| |
Collapse
|
20
|
Ge H, Xu J, Hua M, An W, Wu J, Wang B, Li P, Fang H. Genome-wide identification and analysis of ACP gene family in Sorghum bicolor (L.) Moench. BMC Genomics 2022; 23:538. [PMID: 35879672 PMCID: PMC9310384 DOI: 10.1186/s12864-022-08776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acyl carrier proteins (ACP) constitute a very conserved carrier protein family. Previous studies have found that ACP not only takes part in the fatty acid synthesis process of almost all organisms, but also participates in the regulation of plant growth, development, and metabolism, and makes plants adaptable to stresses. However, this gene family has not been systematically studied in sorghum. RESULTS Nine ACP family members were identified in the sorghum genome, which were located on chromosomes 1, 2, 5, 7, 8 and 9, respectively. Evolutionary analysis among different species divided the ACP family into four subfamilies, showing that the SbACPs were more closely related to maize. The prediction results of subcellular localization showed that SbACPs were mainly distributed in chloroplasts and mitochondria, while fluorescence localization showed that SbACPs were mainly localized in chloroplasts in tobacco leaf. The analysis of gene structure revealed a relatively simple genetic structure, that there were 1-3 introns in the sorghum ACP family, and the gene structure within the same subfamily had high similarity. The amplification method of SbACPs was mainly large fragment replication, and SbACPs were more closely related to ACPs in maize and rice. In addition, three-dimensional structure analysis showed that all ACP genes in sorghum contained four α helices, and the second helix structure was more conserved, implying a key role in function. Cis-acting element analysis indicated that the SbACPs might be involved in light response, plant growth and development regulation, biotic and abiotic stress response, plant hormone regulation, and other physiological processes. What's more, qRT-PCR analysis uncovered that some of SbACPs might be involved in the adaptive regulation of drought and salt stresses, indicating the close relationship between fatty acids and the resistance to abiotic stresses in sorghum. CONCLUSIONS In summary, these results showed a comprehensive overview of the SbACPs and provided a theoretical basis for further studies on the biological functions of SbACPs in sorghum growth, development and abiotic stress responses.
Collapse
Affiliation(s)
- Hanqiu Ge
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Jingjing Xu
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Mingzhu Hua
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Wenwen An
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Junping Wu
- Nantong Changjiang Seed Co., Ltd, Nantong, 226368, Jiangsu, People's Republic of China
| | - Baohua Wang
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China.
| | - Ping Li
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China.
| | - Hui Fang
- Ministry of Agricultural Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China.
| |
Collapse
|
21
|
Simons JM, Herbert TC, Kauffman C, Batete MY, Simpson AT, Katsuki Y, Le D, Amundson D, Buescher EM, Weil C, Tuinstra M, Addo‐Quaye C. Systematic prediction of EMS-induced mutations in a sorghum mutant population. PLANT DIRECT 2022; 6:e404. [PMID: 35647479 PMCID: PMC9132608 DOI: 10.1002/pld3.404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 05/14/2023]
Abstract
The precise detection of causal DNA mutations (deoxyribonucleic acid) is very crucial for forward genetic studies. Several sources of errors contribute to false-positive detections by current variant-calling algorithms, which impact associating phenotypes with genotypes. To improve the accuracy of mutation detection, we implemented a binning method for the accurate detection of likely ethyl methanesulfonate (EMS)-induced mutations in a sequenced mutant population. We also implemented a clustering algorithm for detecting likely false negatives with high accuracy. Sorghum bicolor is a very valuable crop species with tremendous potential for uncovering novel gene functions associated with highly desirable agronomical traits. We demonstrate the precision of the described approach in the detection of likely EMS-induced mutations from the publicly available low-cost sequencing of the M3 generation from 600 sorghum BTx623 mutants. The approach detected 3,274,606 single nucleotide polymorphisms (SNPs), of which 96% (3,141,908) were G/C to A/T DNA substitutions, as expected by EMS-mutagenesis mode of action. We demonstrated the general applicability of the described method and showed a high concordance, 94% (3,074,759) SNPs overlap between SAMtools-based and GATK-based variant-calling algorithms. Our clustering algorithm uncovered evidence for an additional 223,048 likely false-negative shared EMS-induced mutations. The final 3,497,654 SNPs represent an 87% increase in SNPs detected from the previous analysis of the mutant population, with an average of one SNP per 125 kb in the sorghum genome. Annotation of the final SNPs revealed 10,263 high-impact and 136,639 moderate-impact SNPs, including 7217 stop-gained mutations, which averages 12 stop-gained mutations per mutant, and four high- or medium-impact SNPs per sorghum gene. We have implemented a public search database for this new genetic resource of 30,285 distinct sorghum genes containing medium- or high-impact EMS-induced mutations. Seedstock for a select 486 of the 600 described mutants are publicly available in the Germplasm Resources Information Network (GRIN) database.
Collapse
Affiliation(s)
- Jared M. Simons
- Division of Natural Sciences and MathematicsLewis‐Clark State CollegeLewistonIdahoUSA
| | - Tim C. Herbert
- Division of Natural Sciences and MathematicsLewis‐Clark State CollegeLewistonIdahoUSA
| | - Coleby Kauffman
- Division of Natural Sciences and MathematicsLewis‐Clark State CollegeLewistonIdahoUSA
| | - Marc Y. Batete
- Division of Natural Sciences and MathematicsLewis‐Clark State CollegeLewistonIdahoUSA
| | - Andrew T. Simpson
- Division of Natural Sciences and MathematicsLewis‐Clark State CollegeLewistonIdahoUSA
- Present address:
Department of Biological SciencesUniversity of IdahoMoscowIdahoUSA
| | - Yuka Katsuki
- Division of Natural Sciences and MathematicsLewis‐Clark State CollegeLewistonIdahoUSA
| | - Dong Le
- Division of Natural Sciences and MathematicsLewis‐Clark State CollegeLewistonIdahoUSA
| | - Danielle Amundson
- Division of Natural Sciences and MathematicsLewis‐Clark State CollegeLewistonIdahoUSA
| | | | - Clifford Weil
- Department of AgronomyPurdue UniversityWest LafayetteIndianaUSA
| | - Mitch Tuinstra
- Department of AgronomyPurdue UniversityWest LafayetteIndianaUSA
| | - Charles Addo‐Quaye
- Division of Natural Sciences and MathematicsLewis‐Clark State CollegeLewistonIdahoUSA
| |
Collapse
|
22
|
Ge H, Li G, Wan S, Zhao A, Huang Y, Ma R, Zhang R, Song Y, Sha G. Whole genome re-sequencing and transcriptome reveal an alteration in hormone signal transduction in a more-branching mutant of apple. Gene 2022; 818:146214. [PMID: 35066064 DOI: 10.1016/j.gene.2022.146214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 12/07/2021] [Accepted: 01/13/2022] [Indexed: 11/15/2022]
Abstract
Branch number is an important trait in grafted apple breeding and cultivation. To provide new information on molecular mechanisms of apple branching, whole reduced-representation genomes and transcriptome of a wild-type (WT) apple (Malus spectabilis) and its more-branching (MB) mutant at the branching stage were examined in this study. Comparison of WT and MB genomes against the Malus domestica reference genome identified 14,908,939 single nucleotide polymorphisms (SNPs) and 173,315 insertions and deletions (InDels) in WT and 1,483,221 SNPs and 1,725,977 InDels in MB. Analysis of the genetic variation between MB and WT revealed 1,048,575 SNPs and 37,327 InDels. Among them, 24,303 SNPs and 891 InDels mapped to coding regions of 5,072 and 596 genes, respectively. GO and KEGG functional annotation of 3,846 and 944 genes, respectively, identified 32 variant genes related to plant hormone signal transduction that were involved in auxin, cytokinin, gibberellin, abscisic acid, ethylene, and brassinosteroid pathways. The transcriptome pathways of plant hormone signal transduction and zeatin biosynthesis were also significantly enriched during MB branching. Furthermore, transcriptome data suggested the regulatory roles of auxin signaling, increase of cytokinin and genes of cytokinin synthesis and signaling, and the suppressed abscisic acid signaling. Our findings suggest that branching development in apple is regulated by plant hormone signal transduction.
Collapse
Affiliation(s)
- Hongjuan Ge
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China.
| | - Guofang Li
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China.
| | - Shuwei Wan
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China.
| | - Aihong Zhao
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China.
| | - Yue Huang
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China.
| | - Rongqun Ma
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China.
| | - Ruifen Zhang
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China.
| | - Yongjun Song
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China.
| | - Guangli Sha
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China.
| |
Collapse
|
23
|
Whole-genome resequencing of Sorghum bicolor and S. bicolor × S. halepense lines provides new insights for improving plant agroecological characteristics. Sci Rep 2022; 12:5556. [PMID: 35365708 PMCID: PMC8976056 DOI: 10.1038/s41598-022-09433-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Sorghum (Sorghum bicolor L. (Moench)) is the world's fifth economically most important cereal and is a staple particularly in the semi-arid tropics of Africa and Asia. Genetic gains in this crop can benefit from wild relatives such as Sorghum halepense. Genome sequences including those from this wild species can boost the study of genome-wide and intraspecific variation for dissecting the genetic basis and improving important traits in sorghum. The whole-genome resequencing carried out in this work on a panel of 172 populations of S. bicolor and S. bicolor × S. halepense (SbxSh) advanced lines generated a total of 567,046,841 SNPs, 91,825,474 indels, 1,532,171 SVs, and 4,973,961 CNVs. Clearly, SbxSh accumulated more variants and mutations with powerful effects on genetic differentiation. A total of 5,548 genes private to SbxSh mapped to biological process GO enrichment terms; 34 of these genes mapped to root system development (GO: 0022622). Two of the root specific genes i.e., ROOT PRIMORDIUM DEFECTIVE 1 (RPD1; GeneID: 8054879) and RETARDED ROOT GROWTH (RRG, GeneID: 8072111), were found to exert direct effect on root growth and development. This is the first report on whole-genome resequencing of a sorghum panel that includes S. halepense genome. Mining the private variants and genes of this wild species can provide insights capable of boosting sorghum genetic improvement, particularly the perenniality trait that is compliant with agroecological practices, sustainable agriculture, and climate change resilience.
Collapse
|
24
|
Jobson E, Roberts R. Genomic structural variation in tomato and its role in plant immunity. MOLECULAR HORTICULTURE 2022; 2:7. [PMID: 37789472 PMCID: PMC10515242 DOI: 10.1186/s43897-022-00029-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/22/2022] [Indexed: 10/05/2023]
Abstract
It is well known that large genomic variations can greatly impact the phenotype of an organism. Structural Variants (SVs) encompass any genomic variation larger than 30 base pairs, and include changes caused by deletions, inversions, duplications, transversions, and other genome modifications. Due to their size and complex nature, until recently, it has been difficult to truly capture these variations. Recent advances in sequencing technology and computational analyses now permit more extensive studies of SVs in plant genomes. In tomato, advances in sequencing technology have allowed researchers to sequence hundreds of genomes from tomatoes, and tomato relatives. These studies have identified SVs related to fruit size and flavor, as well as plant disease response, resistance/susceptibility, and the ability of plants to detect pathogens (immunity). In this review, we discuss the implications for genomic structural variation in plants with a focus on its role in tomato immunity. We also discuss how advances in sequencing technology have led to new discoveries of SVs in more complex genomes, the current evidence for the role of SVs in biotic and abiotic stress responses, and the outlook for genetic modification of SVs to advance plant breeding objectives.
Collapse
Affiliation(s)
- Emma Jobson
- Montana State University Extension, Montana State University, Bozeman, MT, 59717, United States
| | - Robyn Roberts
- Agricultural Biology Department, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
25
|
Wu X, Liu Y, Luo H, Shang L, Leng C, Liu Z, Li Z, Lu X, Cai H, Hao H, Jing HC. Genomic footprints of sorghum domestication and breeding selection for multiple end uses. MOLECULAR PLANT 2022; 15:537-551. [PMID: 34999019 DOI: 10.1016/j.molp.2022.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/01/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Domestication and diversification have had profound effects on crop genomes. Originating in Africa and subsequently spreading to different continents, sorghum (Sorghum bicolor) has experienced multiple onsets of domestication and intensive breeding selection for various end uses. However, how these processes have shaped sorghum genomes is not fully understood. In the present study, population genomics analyses were performed on a worldwide collection of 445 sorghum accessions, covering wild sorghum and four end-use subpopulations with diverse agronomic traits. Frequent genetic exchanges were found among various subpopulations, and strong selective sweeps affected 14.68% (∼107.5 Mb) of the sorghum genome, including 3649, 4287, and 3888 genes during sorghum domestication, improvement of grain sorghum, and improvement of sweet sorghum, respectively. Eight different models of haplotype changes in domestication genes from wild sorghum to landraces and improved sorghum were observed, and Sh1- and SbTB1-type genes were representative of two prominent models, one of soft selection or multiple origins and one of hard selection or an early single domestication event. We also demonstrated that the Dry gene, which regulates stem juiciness, was unconsciously selected during the improvement of grain sorghum. Taken together, these findings provide new genomic insights into sorghum domestication and breeding selection, and will facilitate further dissection of the domestication and molecular breeding of sorghum.
Collapse
Affiliation(s)
- Xiaoyuan Wu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuanming Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Luo
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Li Shang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chuanyuan Leng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhiquan Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhigang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaochun Lu
- Institute of Sorghum Research, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Hongwei Cai
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Huaiqing Hao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Hai-Chun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; Engineering Laboratory for Grass-Based Livestock Husbandry, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
26
|
Song Y, Li S, Sui Y, Zheng H, Han G, Sun X, Yang W, Wang H, Zhuang K, Kong F, Meng Q, Sui N. SbbHLH85, a bHLH member, modulates resilience to salt stress by regulating root hair growth in sorghum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:201-216. [PMID: 34633473 DOI: 10.1007/s00122-021-03960-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/29/2021] [Indexed: 05/23/2023]
Abstract
bHLH family proteins play an important role in plant stress response. However, the molecular mechanism regulating the salt response of bHLH is largely unknown. This study aimed to investigate the function and regulating mechanism of the sweet sorghum SbbHLH85 during salt stress. The results showed that SbbHLH85 was different from its homologs in other species. Also, it was a new atypical bHLH transcription factor and a key gene for root development in sweet sorghum. The overexpression of SbbHLH85 resulted in significantly increased number and length of root hairs via ABA and auxin signaling pathways, increasing the absorption of Na+. Thus, SbbHLH85 plays a negative regulatory role in the salt tolerance of sorghum. We identified a potential interaction partner of SbbHLH85, which was phosphate transporter chaperone PHF1 and modulated the distribution of phosphate, through screening a yeast two-hybrid library. Both yeast two-hybrid and BiFC experiments confirmed the interaction between SbbHLH85 and PHF1. The overexpression of SbbHLH85 led to a decrease in the expression of PHF1 as well as the content of Pi. Based on these results, we suggested that the increase in the Na+ content and the decrease in the Pi content resulted in the salt sensitivity of transgenic sorghum.
Collapse
Affiliation(s)
- Yushuang Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Yi Sui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongxiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xi Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Wenjing Yang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Hailian Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Kunyang Zhuang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Fanying Kong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
27
|
Xin Z, Wang M, Cuevas HE, Chen J, Harrison M, Pugh NA, Morris G. Sorghum genetic, genomic, and breeding resources. PLANTA 2021; 254:114. [PMID: 34739592 PMCID: PMC8571242 DOI: 10.1007/s00425-021-03742-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/28/2021] [Indexed: 05/24/2023]
Abstract
Sorghum research has entered an exciting and fruitful era due to the genetic, genomic, and breeding resources that are now available to researchers and plant breeders. As the world faces the challenges of a rising population and a changing global climate, new agricultural solutions will need to be developed to address the food and fiber needs of the future. To that end, sorghum will be an invaluable crop species as it is a stress-resistant C4 plant that is well adapted for semi-arid and arid regions. Sorghum has already remained as a staple food crop in many parts of Africa and Asia and is critically important for animal feed and niche culinary applications in other regions, such as the United States. In addition, sorghum has begun to be developed into a promising feedstock for forage and bioenergy production. Due to this increasing demand for sorghum and its potential to address these needs, the continuous development of powerful community resources is required. These resources include vast collections of sorghum germplasm, high-quality reference genome sequences, sorghum association panels for genome-wide association studies of traits involved in food and bioenergy production, mutant populations for rapid discovery of causative genes for phenotypes relevant to sorghum improvement, gene expression atlas, and online databases that integrate all resources and provide the sorghum community with tools that can be used in breeding and genomic studies. Used in tandem, these valuable resources will ensure that the rate, quality, and collaborative potential of ongoing sorghum improvement efforts is able to rival that of other major crops.
Collapse
Affiliation(s)
- Zhanguo Xin
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, TX, 79424, USA.
| | - Mingli Wang
- Plant Genetic Resources Conservation Unit, USDA-ARS, Griffin, GA, 30223, USA
| | - Hugo E Cuevas
- Tropical Agriculture Research Station, USDA-ARS, Mayagüez, 00680, Puerto Rico
| | - Junping Chen
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, TX, 79424, USA
| | - Melanie Harrison
- Plant Genetic Resources Conservation Unit, USDA-ARS, Griffin, GA, 30223, USA
| | - N Ace Pugh
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, TX, 79424, USA
| | - Geoffrey Morris
- Crop Quantitative Genomics, Soil and Crop Sciences, Colorado State University, Plant Sciences Building, Fort Collins, CO, 80523, USA
| |
Collapse
|
28
|
Liu Y, Wang Z, Wu X, Zhu J, Luo H, Tian D, Li C, Luo J, Zhao W, Hao H, Jing HC. SorGSD: updating and expanding the sorghum genome science database with new contents and tools. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:165. [PMID: 34344425 PMCID: PMC8336335 DOI: 10.1186/s13068-021-02016-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/24/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND As the fifth major cereal crop originated from Africa, sorghum (Sorghum bicolor) has become a key C4 model organism for energy plant research. With the development of high-throughput detection technologies for various omics data, much multi-dimensional and multi-omics information has been accumulated for sorghum. Integrating this information may accelerate genetic research and improve molecular breeding for sorghum agronomic traits. RESULTS We updated the Sorghum Genome SNP Database (SorGSD) by adding new data, new features and renamed it to Sorghum Genome Science Database (SorGSD). In comparison with the original version SorGSD, which contains SNPs from 48 sorghum accessions mapped to the reference genome BTx623 (v2.1), the new version was expanded to 289 sorghum lines with both single nucleotide polymorphisms (SNPs) and small insertions/deletions (INDELs), which were aligned to the newly assembled and annotated sorghum genome BTx623 (v3.1). Moreover, phenotypic data and panicle pictures of critical accessions were provided in the new version. We implemented new tools including ID Conversion, Homologue Search and Genome Browser for analysis and updated the general information related to sorghum research, such as online sorghum resources and literature references. In addition, we deployed a new database infrastructure and redesigned a new user interface as one of the Genome Variation Map databases. The new version SorGSD is freely accessible online at http://ngdc.cncb.ac.cn/sorgsd/ . CONCLUSIONS SorGSD is a comprehensive integration with large-scale genomic variation, phenotypic information and incorporates online data analysis tools for data mining, genome navigation and analysis. We hope that SorGSD could provide a valuable resource for sorghum researchers to find variations they are interested in and generate customized high-throughput datasets for further analysis.
Collapse
Affiliation(s)
- Yuanming Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhonghuang Wang
- University of Chinese Academy of Sciences, Beijing, 100049 China
- China National Center for Bioinformation, Beijing, 100101 China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xiaoyuan Wu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Junwei Zhu
- China National Center for Bioinformation, Beijing, 100101 China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Hong Luo
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Dongmei Tian
- China National Center for Bioinformation, Beijing, 100101 China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Cuiping Li
- China National Center for Bioinformation, Beijing, 100101 China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jingchu Luo
- College of Life Sciences and Center for Bioinformatics, Peking University, Beijing, 100871 China
| | - Wenming Zhao
- University of Chinese Academy of Sciences, Beijing, 100049 China
- China National Center for Bioinformation, Beijing, 100101 China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Huaiqing Hao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Hai-Chun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- Engineering Laboratory for Grass-Based Livestock Husbandry, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
29
|
Mansour MMF, Emam MM, Salama KHA, Morsy AA. Sorghum under saline conditions: responses, tolerance mechanisms, and management strategies. PLANTA 2021; 254:24. [PMID: 34224010 DOI: 10.1007/s00425-021-03671-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
An overview is presented of recent advances in our knowledge of responses and mechanisms rendering adaptation to saline conditions in sorghum. Different strategies deployed to enhance salinity stress tolerance in sorghum are also pointed out. Salinity stress is a growing problem worldwide. Sorghum is the fifth key crop among cereals. Understanding responses and tolerance strategies in sorghum would be therefore helpful effort for providing biomarkers for designing greatest salinity-tolerant sorghum genotypes. When sorghum exposed to salinity, salinity-tolerant genotypes most probably reprogram their gene expression to activate adaptive biochemical and physiological responses for survival. The review thus discusses the possible physiological and biochemical responses that confer salinity tolerance to sorghum under saline conditions. Although it is not characterized in sorghum, salinity perceiving and transmitting signals to downstream responses via signaling transduction pathways most likely are essential strategy for sorghum adaptation to salinity stress. Sorghum has also shown to withstand moderate saline environments and retain the germination, growth, and photosynthetic activities. Salinity-tolerant sorghum genotypes show the ability to exclude excessive Na+ from reaching shoots and induce ion homeostasis. Osmotic homeostasis and ROS detoxification are also evident as salinity tolerance strategies in sorghum. These above mechanisms lead to re-establishment of cellular ionic, osmotic, and redox homeostasis as well as photosynthesis efficiency. It is noteworthy that these mechanisms act individually or co-operatively to minimize the salinity hazards and enhance acclimation in sorghum. We conclude, however, that although these responses contribute to sorghum tolerance to salinity stress, they seem to be not adequate at higher concentrations of salinity, which agrees with sorghum ranking as moderately salinity-tolerant crop. Also, some of these tolerance strategies reported in other crops are not well studied and documented in sorghum, but most probably have roles in sorghum. Further improvement in sorghum salinity tolerance using different approaches is definitely necessary to meet the requirements of its harsh production environments, and therefore, these approaches are addressed.
Collapse
Affiliation(s)
| | - Manal Mohamed Emam
- Department of Botany, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | | | - Amal Ahmed Morsy
- Department of Botany, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
30
|
Hao H, Li Z, Leng C, Lu C, Luo H, Liu Y, Wu X, Liu Z, Shang L, Jing HC. Sorghum breeding in the genomic era: opportunities and challenges. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1899-1924. [PMID: 33655424 PMCID: PMC7924314 DOI: 10.1007/s00122-021-03789-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/05/2021] [Indexed: 05/04/2023]
Abstract
The importance and potential of the multi-purpose crop sorghum in global food security have not yet been fully exploited, and the integration of the state-of-art genomics and high-throughput technologies into breeding practice is required. Sorghum, a historically vital staple food source and currently the fifth most important major cereal, is emerging as a crop with diverse end-uses as food, feed, fuel and forage and a model for functional genetics and genomics of tropical grasses. Rapid development in high-throughput experimental and data processing technologies has significantly speeded up sorghum genomic researches in the past few years. The genomes of three sorghum lines are available, thousands of genetic stocks accessible and various genetic populations, including NAM, MAGIC, and mutagenised populations released. Functional and comparative genomics have elucidated key genetic loci and genes controlling agronomical and adaptive traits. However, the knowledge gained has far away from being translated into real breeding practices. We argue that the way forward is to take a genome-based approach for tailored designing of sorghum as a multi-functional crop combining excellent agricultural traits for various end uses. In this review, we update the new concepts and innovation systems in crop breeding and summarise recent advances in sorghum genomic researches, especially the genome-wide dissection of variations in genes and alleles for agronomically important traits. Future directions and opportunities for sorghum breeding are highlighted to stimulate discussion amongst sorghum academic and industrial communities.
Collapse
Affiliation(s)
- Huaiqing Hao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Zhigang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Chuanyuan Leng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Cheng Lu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Luo
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yuanming Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyuan Wu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhiquan Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Li Shang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hai-Chun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- Engineering Laboratory for Grass-based Livestock Husbandry, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
31
|
Roy NS, Ban YW, Yoo H, Ramekar RV, Cheong EJ, Park NI, Na JK, Park KC, Choi IY. Analysis of genome variants in dwarf soybean lines obtained in F6 derived from cross of normal parents (cultivated and wild soybean). Genomics Inform 2021; 19:e19. [PMID: 34261303 PMCID: PMC8261272 DOI: 10.5808/gi.21024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/21/2021] [Indexed: 11/20/2022] Open
Abstract
Plant height is an important component of plant architecture and significantly affects crop breeding practices and yield. We studied DNA variations derived from F5 recombinant inbred lines (RILs) with 96.8% homozygous genotypes. Here, we report DNA variations between the normal and dwarf members of four lines harvested from a single seed parent in an F6 RIL population derived from a cross between Glycine max var. Peking and Glycine soja IT182936. Whole genome sequencing was carried out, and the DNA variations in the whole genome were compared between the normal and dwarf samples. We found a large number of DNA variations in both the dwarf and semi-dwarf lines, with one single nucleotide polymorphism (SNP) per at least 3.68 kb in the dwarf lines and 1 SNP per 11.13 kb of the whole genome. This value is 2.18 times higher than the expected DNA variation in the F6 population. A total of 186 SNPs and 241 SNPs were discovered in the coding regions of the dwarf lines 1282 and 1303, respectively, and we discovered 33 homogeneous nonsynonymous SNPs that occurred at the same loci in each set of dwarf and normal soybean. Of them, five SNPs were in the same positions between lines 1282 and 1303. Our results provide important information for improving our understanding of the genetics of soybean plant height and crop breeding. These polymorphisms could be useful genetic resources for plant breeders, geneticists, and biologists for future molecular biology and breeding projects.
Collapse
Affiliation(s)
- Neha Samir Roy
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon 24341, Korea
| | - Yong-Wook Ban
- Department of Forest Environmental System, Kangwon National University, Chuncheon 24341, Korea
| | - Hana Yoo
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon 24341, Korea
| | - Rahul Vasudeo Ramekar
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon 24341, Korea
| | - Eun Ju Cheong
- Department of Forest Environmental System, Kangwon National University, Chuncheon 24341, Korea
| | - Nam-Il Park
- Department of Plant Science, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Jong Kuk Na
- Department of Controlled Agriculture, Kangwon National University, Chuncheon 24341, Korea
| | - Kyong-Cheul Park
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon 24341, Korea
| | - Ik-Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
32
|
Tao Y, Luo H, Xu J, Cruickshank A, Zhao X, Teng F, Hathorn A, Wu X, Liu Y, Shatte T, Jordan D, Jing H, Mace E. Extensive variation within the pan-genome of cultivated and wild sorghum. NATURE PLANTS 2021; 7:766-773. [PMID: 34017083 DOI: 10.1038/s41477-021-00925-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 04/21/2021] [Indexed: 05/18/2023]
Abstract
Sorghum is a drought-tolerant staple crop for half a billion people in Africa and Asia, an important source of animal feed throughout the world and a biofuel feedstock of growing importance. Cultivated sorghum and its inter-fertile wild relatives constitute the primary gene pool for sorghum. Understanding and characterizing the diversity within this valuable resource is fundamental for its effective utilization in crop improvement. Here, we report analysis of a sorghum pan-genome to explore genetic diversity within the sorghum primary gene pool. We assembled 13 genomes representing cultivated sorghum and its wild relatives, and integrated them with 3 other published genomes to generate a pan-genome of 44,079 gene families with 222.6 Mb of new sequence identified. The pan-genome displays substantial gene-content variation, with 64% of gene families showing presence/absence variation among genomes. Comparisons between core genes and dispensable genes suggest that dispensable genes are important for sorghum adaptation. Extensive genetic variation was uncovered within the pan-genome, and the distribution of these variations was influenced by variation of recombination rate and transposable element content across the genome. We identified presence/absence variants that were under selection during sorghum domestication and improvement, and demonstrated that such variation had important phenotypic outcomes that could contribute to crop improvement. The constructed sorghum pan-genome represents an important resource for sorghum improvement and gene discovery.
Collapse
Affiliation(s)
- Yongfu Tao
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Hermitage Research Facility, The University of Queensland, Warwick, Queensland, Australia
| | - Hong Luo
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jiabao Xu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Alan Cruickshank
- Hermitage Research Facility, Agri-Science Queensland, Department of Agriculture and Fisheries (DAF), Warwick, Queensland, Australia
| | - Xianrong Zhao
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Hermitage Research Facility, The University of Queensland, Warwick, Queensland, Australia
| | - Fei Teng
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Adrian Hathorn
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Hermitage Research Facility, The University of Queensland, Warwick, Queensland, Australia
| | - Xiaoyuan Wu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yuanming Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tracey Shatte
- Hermitage Research Facility, Agri-Science Queensland, Department of Agriculture and Fisheries (DAF), Warwick, Queensland, Australia
| | - David Jordan
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Hermitage Research Facility, The University of Queensland, Warwick, Queensland, Australia.
| | - Haichun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Emma Mace
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Hermitage Research Facility, The University of Queensland, Warwick, Queensland, Australia.
- Hermitage Research Facility, Agri-Science Queensland, Department of Agriculture and Fisheries (DAF), Warwick, Queensland, Australia.
| |
Collapse
|
33
|
Songsomboon K, Brenton Z, Heuser J, Kresovich S, Shakoor N, Mockler T, Cooper EA. Genomic patterns of structural variation among diverse genotypes of Sorghum bicolor and a potential role for deletions in local adaptation. G3-GENES GENOMES GENETICS 2021; 11:6265466. [PMID: 33950177 PMCID: PMC8495935 DOI: 10.1093/g3journal/jkab154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/23/2021] [Indexed: 12/04/2022]
Abstract
Genomic structural mutations, especially deletions, are an important source of variation in many species and can play key roles in phenotypic diversification and evolution. Previous work in many plant species has identified multiple instances of structural variations (SVs) occurring in or near genes related to stress response and disease resistance, suggesting a possible role for SVs in local adaptation. Sorghum [Sorghum bicolor (L.) Moench] is one of the most widely grown cereal crops in the world. It has been adapted to an array of different climates as well as bred for multiple purposes, resulting in a striking phenotypic diversity. In this study, we identified genome-wide SVs in the Biomass Association Panel, a collection of 347 diverse sorghum genotypes collected from multiple countries and continents. Using Illumina-based, short-read whole-genome resequencing data from every genotype, we found a total of 24,648 SVs, including 22,359 deletions. The global site frequency spectrum of deletions and other types of SVs fit a model of neutral evolution, suggesting that the majority of these mutations were not under any types of selection. Clustering results based on single nucleotide polymorphisms separated the genotypes into eight clusters which largely corresponded with geographic origins, with many of the large deletions we uncovered being unique to a single cluster. Even though most deletions appeared to be neutral, a handful of cluster-specific deletions were found in genes related to biotic and abiotic stress responses, supporting the possibility that at least some of these deletions contribute to local adaptation in sorghum.
Collapse
Affiliation(s)
- Kittikun Songsomboon
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223 USA.,North Carolina Research Campus, Kannapolis, NC 28081 USA
| | - Zachary Brenton
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634 USA
| | - James Heuser
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223 USA.,North Carolina Research Campus, Kannapolis, NC 28081 USA
| | - Stephen Kresovich
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634 USA
| | - Nadia Shakoor
- Donald Danforth Plant Science Center, St. Louis, MO, 63132 USA
| | - Todd Mockler
- Donald Danforth Plant Science Center, St. Louis, MO, 63132 USA
| | - Elizabeth A Cooper
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223 USA.,North Carolina Research Campus, Kannapolis, NC 28081 USA
| |
Collapse
|
34
|
Baggett JP, Tillett RL, Cooper EA, Yerka MK. De novo identification and targeted sequencing of SSRs efficiently fingerprints Sorghum bicolor sub-population identity. PLoS One 2021; 16:e0248213. [PMID: 33684158 PMCID: PMC7939377 DOI: 10.1371/journal.pone.0248213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 02/22/2021] [Indexed: 11/21/2022] Open
Abstract
Recent plant breeding studies of several species have demonstrated the utility of combining molecular assessments of genetic distance into trait-linked SNP genotyping during the development of parent lines to maximize yield gains due to heterosis. SSRs (Short Sequence Repeats) are the molecular marker of choice to determine genetic diversity, but the methods historically used to sequence them have been burdensome. The ability to analyze SSRs in a higher-throughput manner independent of laboratory conditions would increase their utility in molecular ecology, germplasm curation, and plant breeding programs worldwide. This project reports simple bioinformatics methods that can be used to generate genome-wide de novo SSRs in silico followed by targeted Next Generation Sequencing (NGS) validation of those that provide the most information about sub-population identity of a breeding line, which influences heterotic group selection. While these methods were optimized in sorghum [Sorghum bicolor (L.) Moench], they were developed to be applied to any species with a reference genome and high-coverage whole-genome sequencing data of individuals from the sub-populations to be characterized. An analysis of published sorghum genomes selected to represent its five main races (bicolor, caudatum, durra, kafir, and guinea; 75 accessions total) identified 130,120 SSR motifs. Average lengths were 23.8 bp and 95% were between 10 and 92 bp, making them suitable for NGS. Validation through targeted sequencing amplified 188 of 192 assayed SSR loci. Results highlighted the distinctness of accessions from the guinea sub-group margaritiferum from all other sorghum accessions, consistent with previous studies of nuclear and mitochondrial DNA. SSRs that efficiently fingerprinted margaritiferum individuals (Xgma1 -Xgma6) are presented. Developing similar fingerprints of other sub-populations (Xunr1 -Xunr182) was not possible due to the extensive admixture between them in the data set analyzed. In summary, these methods were able to fingerprint specific sub-populations when rates of admixture between them are low.
Collapse
Affiliation(s)
- John P. Baggett
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, United States of America
| | - Richard L. Tillett
- Nevada Center for Bioinformatics, University of Nevada, Reno, NV, United States of America
| | - Elizabeth A. Cooper
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Melinda K. Yerka
- Department of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, Reno, NV, United States of America
| |
Collapse
|
35
|
Tello-Ruiz MK, Naithani S, Gupta P, Olson A, Wei S, Preece J, Jiao Y, Wang B, Chougule K, Garg P, Elser J, Kumari S, Kumar V, Contreras-Moreira B, Naamati G, George N, Cook J, Bolser D, D'Eustachio P, Stein LD, Gupta A, Xu W, Regala J, Papatheodorou I, Kersey PJ, Flicek P, Taylor C, Jaiswal P, Ware D. Gramene 2021: harnessing the power of comparative genomics and pathways for plant research. Nucleic Acids Res 2021; 49:D1452-D1463. [PMID: 33170273 DOI: 10.1093/nar/gkaa979] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/09/2020] [Indexed: 01/27/2023] Open
Abstract
Gramene (http://www.gramene.org), a knowledgebase founded on comparative functional analyses of genomic and pathway data for model plants and major crops, supports agricultural researchers worldwide. The resource is committed to open access and reproducible science based on the FAIR data principles. Since the last NAR update, we made nine releases; doubled the genome portal's content; expanded curated genes, pathways and expression sets; and implemented the Domain Informational Vocabulary Extraction (DIVE) algorithm for extracting gene function information from publications. The current release, #63 (October 2020), hosts 93 reference genomes-over 3.9 million genes in 122 947 families with orthologous and paralogous classifications. Plant Reactome portrays pathway networks using a combination of manual biocuration in rice (320 reference pathways) and orthology-based projections to 106 species. The Reactome platform facilitates comparison between reference and projected pathways, gene expression analyses and overlays of gene-gene interactions. Gramene integrates ontology-based protein structure-function annotation; information on genetic, epigenetic, expression, and phenotypic diversity; and gene functional annotations extracted from plant-focused journals using DIVE. We train plant researchers in biocuration of genes and pathways; host curated maize gene structures as tracks in the maize genome browser; and integrate curated rice genes and pathways in the Plant Reactome.
Collapse
Affiliation(s)
| | - Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Parul Gupta
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Andrew Olson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sharon Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Justin Preece
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Yinping Jiao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Bo Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kapeel Chougule
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Priyanka Garg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Justin Elser
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Sunita Kumari
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Vivek Kumar
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Bruno Contreras-Moreira
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Guy Naamati
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Nancy George
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Justin Cook
- Informatics and Bio-computing Program, Ontario Institute of Cancer Research, Toronto M5G 1L7, Canada
| | - Daniel Bolser
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK.,Current affiliation: Geromics Inc., Cambridge CB1 3NF, UK
| | - Peter D'Eustachio
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Lincoln D Stein
- Adaptive Oncology Program, Ontario Institute for Cancer Research, Toronto M5G 0A3, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Amit Gupta
- Texas Advanced Computing Center, University of Texas at Austin, Austin, TX 78758, USA
| | - Weijia Xu
- Texas Advanced Computing Center, University of Texas at Austin, Austin, TX 78758, USA
| | - Jennifer Regala
- American Society of Plant Biologists, Rockville, MD 20855-2768, USA.,Current affiliation: American Urological Association, Linthicum, MD 21090, USA
| | - Irene Papatheodorou
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Paul J Kersey
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK.,Current affiliation: Royal Botanic Gardens, Kew Richmond, Surrey TW9 3AE, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Crispin Taylor
- American Society of Plant Biologists, Rockville, MD 20855-2768, USA
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,USDA ARS NAA Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| |
Collapse
|
36
|
Tello-Ruiz MK, Naithani S, Gupta P, Olson A, Wei S, Preece J, Jiao Y, Wang B, Chougule K, Garg P, Elser J, Kumari S, Kumar V, Contreras-Moreira B, Naamati G, George N, Cook J, Bolser D, D'Eustachio P, Stein LD, Gupta A, Xu W, Regala J, Papatheodorou I, Kersey PJ, Flicek P, Taylor C, Jaiswal P, Ware D. Gramene 2021: harnessing the power of comparative genomics and pathways for plant research. Nucleic Acids Res 2021; 49:D1452-D1463. [PMID: 33170273 DOI: 10.1093/nar/gkaa979/5973447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/09/2020] [Indexed: 05/20/2023] Open
Abstract
Gramene (http://www.gramene.org), a knowledgebase founded on comparative functional analyses of genomic and pathway data for model plants and major crops, supports agricultural researchers worldwide. The resource is committed to open access and reproducible science based on the FAIR data principles. Since the last NAR update, we made nine releases; doubled the genome portal's content; expanded curated genes, pathways and expression sets; and implemented the Domain Informational Vocabulary Extraction (DIVE) algorithm for extracting gene function information from publications. The current release, #63 (October 2020), hosts 93 reference genomes-over 3.9 million genes in 122 947 families with orthologous and paralogous classifications. Plant Reactome portrays pathway networks using a combination of manual biocuration in rice (320 reference pathways) and orthology-based projections to 106 species. The Reactome platform facilitates comparison between reference and projected pathways, gene expression analyses and overlays of gene-gene interactions. Gramene integrates ontology-based protein structure-function annotation; information on genetic, epigenetic, expression, and phenotypic diversity; and gene functional annotations extracted from plant-focused journals using DIVE. We train plant researchers in biocuration of genes and pathways; host curated maize gene structures as tracks in the maize genome browser; and integrate curated rice genes and pathways in the Plant Reactome.
Collapse
Affiliation(s)
| | - Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Parul Gupta
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Andrew Olson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sharon Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Justin Preece
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Yinping Jiao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Bo Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kapeel Chougule
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Priyanka Garg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Justin Elser
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Sunita Kumari
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Vivek Kumar
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Bruno Contreras-Moreira
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Guy Naamati
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Nancy George
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Justin Cook
- Informatics and Bio-computing Program, Ontario Institute of Cancer Research, Toronto M5G 1L7, Canada
| | - Daniel Bolser
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
- Current affiliation: Geromics Inc., Cambridge CB1 3NF, UK
| | - Peter D'Eustachio
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Lincoln D Stein
- Adaptive Oncology Program, Ontario Institute for Cancer Research, Toronto M5G 0A3, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Amit Gupta
- Texas Advanced Computing Center, University of Texas at Austin, Austin, TX 78758, USA
| | - Weijia Xu
- Texas Advanced Computing Center, University of Texas at Austin, Austin, TX 78758, USA
| | - Jennifer Regala
- American Society of Plant Biologists, Rockville, MD 20855-2768, USA
- Current affiliation: American Urological Association, Linthicum, MD 21090, USA
| | - Irene Papatheodorou
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Paul J Kersey
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
- Current affiliation: Royal Botanic Gardens, Kew Richmond, Surrey TW9 3AE, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Crispin Taylor
- American Society of Plant Biologists, Rockville, MD 20855-2768, USA
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- USDA ARS NAA Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| |
Collapse
|
37
|
Mishra D, Kumar S, Mishra BN. An Overview of Morpho-Physiological, Biochemical, and Molecular Responses of Sorghum Towards Heavy Metal Stress. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 256:155-177. [PMID: 33866418 DOI: 10.1007/398_2020_61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Heavy metal (HM) contamination is a serious global environmental crisis. Over the past decade, industrial effluents, modern agricultural practices, and other anthropogenic activities have significantly depleted the soil environment. In plants, metal toxicity leads to compromised growth, development, productivity, and yield. Also, HMs negatively affect human health due to food chain contamination. Thus, it is imperative to reduce metal accumulation and toxicity. In nature, certain plant species exhibit an inherent capacity of amassing large amounts of HMs with remarkable tolerance. These plants with unique characteristics can be employed for the remediation of contaminated soil and water. Among different plant species, Sorghum bicolor has the potential of accumulating huge amounts of HMs, thus could be regarded as a hyperaccumulator. This means that it is a metal tolerant, high biomass producing energy crop, and thus can be utilized for phytoremediation. However, high concentrations of HMs hamper plant height, root hair density, shoot biomass, number of leaves, chlorophyll, carotenoid, and carbohydrate content. Thus, understanding the response of Sorghum towards different HMs holds considerable importance. Considering this, we have uncovered the basic information about the metal uptake, translocation, and accumulation in Sorghum. Plants respond to different HMs via sensing, signaling, and modulations in physico-chemical processes. Therefore, in this review, a glimpse of HM toxicity and the response of Sorghum at the morphological, physiological, biochemical, and molecular levels has been provided. The review highlights the future research needs and emphasizes the extensive molecular dissection of Sorghum to explore its genetic adaptability towards different abiotic stresses that can be exploited to develop resilient crop varieties.
Collapse
Affiliation(s)
- Dewanshi Mishra
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Smita Kumar
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India.
| | - Bhartendu Nath Mishra
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
38
|
Ruperao P, Thirunavukkarasu N, Gandham P, Selvanayagam S, Govindaraj M, Nebie B, Manyasa E, Gupta R, Das RR, Odeny DA, Gandhi H, Edwards D, Deshpande SP, Rathore A. Sorghum Pan-Genome Explores the Functional Utility for Genomic-Assisted Breeding to Accelerate the Genetic Gain. FRONTIERS IN PLANT SCIENCE 2021; 12:666342. [PMID: 34140962 PMCID: PMC8204017 DOI: 10.3389/fpls.2021.666342] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/28/2021] [Indexed: 05/05/2023]
Abstract
Sorghum (Sorghum bicolor L.) is a staple food crops in the arid and rainfed production ecologies. Sorghum plays a critical role in resilient farming and is projected as a smart crop to overcome the food and nutritional insecurity in the developing world. The development and characterisation of the sorghum pan-genome will provide insight into genome diversity and functionality, supporting sorghum improvement. We built a sorghum pan-genome using reference genomes as well as 354 genetically diverse sorghum accessions belonging to different races. We explored the structural and functional characteristics of the pan-genome and explain its utility in supporting genetic gain. The newly-developed pan-genome has a total of 35,719 genes, a core genome of 16,821 genes and an average of 32,795 genes in each cultivar. The variable genes are enriched with environment responsive genes and classify the sorghum accessions according to their race. We show that 53% of genes display presence-absence variation, and some of these variable genes are predicted to be functionally associated with drought adaptation traits. Using more than two million SNPs from the pan-genome, association analysis identified 398 SNPs significantly associated with important agronomic traits, of which, 92 were in genes. Drought gene expression analysis identified 1,788 genes that are functionally linked to different conditions, of which 79 were absent from the reference genome assembly. This study provides comprehensive genomic diversity resources in sorghum which can be used in genome assisted crop improvement.
Collapse
Affiliation(s)
- Pradeep Ruperao
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| | | | - Prasad Gandham
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| | | | | | - Baloua Nebie
- Sorghum Breeding Program, International Crops Research Institute for the Semi-Arid Tropics, Bamako, Mali
| | - Eric Manyasa
- Sorghum Breeding Program, International Crops Research Institute for the Semi-Arid Tropics, Nairobi, Kenya
| | - Rajeev Gupta
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| | - Roma Rani Das
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| | - Damaris A. Odeny
- Sorghum Breeding Program, International Crops Research Institute for the Semi-Arid Tropics, Nairobi, Kenya
| | - Harish Gandhi
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Santosh P. Deshpande
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
- Santosh P. Deshpande
| | - Abhishek Rathore
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
- *Correspondence: Abhishek Rathore
| |
Collapse
|
39
|
Abreha KB, Ortiz R, Carlsson AS, Geleta M. Understanding the Sorghum- Colletotrichum sublineola Interactions for Enhanced Host Resistance. FRONTIERS IN PLANT SCIENCE 2021; 12:641969. [PMID: 33959139 PMCID: PMC8093437 DOI: 10.3389/fpls.2021.641969] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/22/2021] [Indexed: 05/09/2023]
Abstract
Improving sorghum resistance is a sustainable method to reduce yield losses due to anthracnose, a devastating disease caused by Colletotrichum sublineola. Elucidating the molecular mechanisms of sorghum-C. sublineola interactions would help identify biomarkers for rapid and efficient identification of novel sources for host-plant resistance improvement, understanding the pathogen virulence, and facilitating resistance breeding. Despite concerted efforts to identify resistance sources, the knowledge about sorghum-anthracnose interactions remains scanty. Hence, in this review, we presented an overview of the current knowledge on the mechanisms of sorghum-C. sublineola molecular interactions, sources of resistance for sorghum breeding, quantitative trait loci (QTL), and major (R-) resistance gene sequences as well as defense-related genes associated with anthracnose resistance. We summarized current knowledge about C. sublineola populations and its virulence. Illustration of the sorghum-C. sublineola interaction model based on the current understanding is also provided. We highlighted the importance of genomic resources of both organisms for integrated omics research to unravel the key molecular components underpinning compatible and incompatible sorghum-anthracnose interactions. Furthermore, sorghum-breeding strategy employing rapid sorghum germplasm screening, systems biology, and molecular tools is presented.
Collapse
|
40
|
Li L, Zhang C, Huang J, Liu Q, Wei H, Wang H, Liu G, Gu L, Yu S. Genomic analyses reveal the genetic basis of early maturity and identification of loci and candidate genes in upland cotton (Gossypium hirsutum L.). PLANT BIOTECHNOLOGY JOURNAL 2021; 19:109-123. [PMID: 32652678 PMCID: PMC7769233 DOI: 10.1111/pbi.13446] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 05/05/2023]
Abstract
Although upland cotton (Gossypium hirsutism L.) originated in the tropics, this early maturity cotton can be planted as far north as 46°N in China due to the accumulation of numerous phenotypic and physiological adaptations during domestication. However, how the genome of early maturity cotton has been altered by strong human selection remains largely unknown. Herein, we report a cotton genome variation map generated by the resequencing of 436 cotton accessions. Whole-genome scans for sweep regions identified 357 putative selection sweeps covering 4.94% (112 Mb) of the upland cotton genome, including 5184 genes. These genes were functionally related to flowering time control, hormone catabolism, ageing and defence response adaptations to environmental changes. A genome-wide association study (GWAS) for seven early maturity traits identified 307 significant loci, 22.48% (69) of which overlapped with putative selection sweeps that occurred during the artificial selection of early maturity cotton. Several previously undescribed candidate genes associated with early maturity were identified by GWAS. This study provides insights into the genetic basis of early maturity in upland cotton as well as breeding resources for cotton improvement.
Collapse
Affiliation(s)
- Libei Li
- State Key Laboratory of Subtropical SilvicultureZhejiang A & F UniversityLin'an, Hangzhou
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of CAASAnyangHenanChina
| | - Chi Zhang
- State Key Laboratory of Subtropical SilvicultureZhejiang A & F UniversityLin'an, Hangzhou
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of CAASAnyangHenanChina
| | - Jianqin Huang
- State Key Laboratory of Subtropical SilvicultureZhejiang A & F UniversityLin'an, Hangzhou
| | - Qibao Liu
- State Key Laboratory of Subtropical SilvicultureZhejiang A & F UniversityLin'an, Hangzhou
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of CAASAnyangHenanChina
| | - Hengling Wei
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of CAASAnyangHenanChina
| | - Hantao Wang
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of CAASAnyangHenanChina
| | - Guoyuan Liu
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of CAASAnyangHenanChina
| | - Lijiao Gu
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of CAASAnyangHenanChina
| | - Shuxun Yu
- State Key Laboratory of Subtropical SilvicultureZhejiang A & F UniversityLin'an, Hangzhou
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of CAASAnyangHenanChina
| |
Collapse
|
41
|
Lee CT, Huang KS, Shaw JF, Chen JR, Kuo WS, Shen G, Grumezescu AM, Holban AM, Wang YT, Wang JS, Hsiang YP, Lin YM, Hsu HH, Yang CH. Trends in the Immunomodulatory Effects of Cordyceps militaris: Total Extracts, Polysaccharides and Cordycepin. Front Pharmacol 2020; 11:575704. [PMID: 33328984 PMCID: PMC7735063 DOI: 10.3389/fphar.2020.575704] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
Cordyceps militaris (C. militaris) is a fungus with a long history of widespread use in folk medicine, and its biological and medicinal functions are well studied. A crucial pharmacological effect of C. militaris is immunomodulation. In this review, we catalog the immunomodulatory effects of different extracts of C. militaris, namely total extracts, polysaccharides and cordycepin. Total extracts obtained using water or 50% ethyl alcohol and polysaccharides from C. militaris were discovered to tend to promote type 1 immunity, whereas total extracts obtained using 70-80% ethyl alcohol and cordycepin from C. militaris were more likely to promote type 2 immunity. This article is the first to classify the immunomodulatory effects of different extracts of C. militaris. In addition, we discovered a relationship between different segments or extracts and differing types of immunity. This review can provide the readers a comprehensive understanding on the immunomodulatory effects of the precious folk medicine and guidance on its use for both health people and those with an immunodeficiency.
Collapse
Affiliation(s)
- Chun-Ting Lee
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Amulette Chinese Medicine Clinic, Tainan City, Taiwan
| | - Keng-Shiang Huang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Jei-Fu Shaw
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Jung-Ren Chen
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Wen-Shuo Kuo
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, China
| | - Gangxu Shen
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Polytechnic University of Bucharest, Bucharest, Romania
| | - Alina Maria Holban
- Department of Microbiology and Immunology, University of Bucharest, Bucharest, Romania
| | - Yi-Ting Wang
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Jun-Sheng Wang
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Taipei, Taiwan
| | - Yi-Ping Hsiang
- Pharmacy Department of E-Da Hospital, Kaohsiung City, Taiwan
| | - Yu-Mei Lin
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Hsiao-Han Hsu
- Amulette Chinese Medicine Clinic, Tainan City, Taiwan
| | - Chih-Hui Yang
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Taipei, Taiwan
- Pharmacy Department of E-Da Hospital, Kaohsiung City, Taiwan
| |
Collapse
|
42
|
Abstract
The giant sequoia (Sequoiadendron giganteum) of California are massive, long-lived trees that grow along the U.S. Sierra Nevada mountains. Genomic data are limited in giant sequoia and producing a reference genome sequence has been an important goal to allow marker development for restoration and management. Using deep-coverage Illumina and Oxford Nanopore sequencing, combined with Dovetail chromosome conformation capture libraries, the genome was assembled into eleven chromosome-scale scaffolds containing 8.125 Gbp of sequence. Iso-Seq transcripts, assembled from three distinct tissues, was used as evidence to annotate a total of 41,632 protein-coding genes. The genome was found to contain, distributed unevenly across all 11 chromosomes and in 63 orthogroups, over 900 complete or partial predicted NLR genes, of which 375 are supported by annotation derived from protein evidence and gene modeling. This giant sequoia reference genome sequence represents the first genome sequenced in the Cupressaceae family, and lays a foundation for using genomic tools to aid in giant sequoia conservation and management.
Collapse
|
43
|
Ma L, Li Y, Ma X, EER H. Genome-wide SNPs and indels characteristics of three chinese domestic sheep breeds from different ecoregions. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Gaffney J, Tibebu R, Bart R, Beyene G, Girma D, Kane NA, Mace ES, Mockler T, Nickson TE, Taylor N, Zastrow-Hayes G. Open access to genetic sequence data maximizes value to scientists, farmers, and society. GLOBAL FOOD SECURITY-AGRICULTURE POLICY ECONOMICS AND ENVIRONMENT 2020. [DOI: 10.1016/j.gfs.2020.100411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
45
|
Tao Y, George-Jaeggli B, Bouteillé-Pallas M, Tai S, Cruickshank A, Jordan D, Mace E. Genetic Diversity of C 4 Photosynthesis Pathway Genes in Sorghum bicolor (L.). Genes (Basel) 2020; 11:E806. [PMID: 32708598 PMCID: PMC7397294 DOI: 10.3390/genes11070806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 01/28/2023] Open
Abstract
C4 photosynthesis has evolved in over 60 different plant taxa and is an excellent example of convergent evolution. Plants using the C4 photosynthetic pathway have an efficiency advantage, particularly in hot and dry environments. They account for 23% of global primary production and include some of our most productive cereals. While previous genetic studies comparing phylogenetically related C3 and C4 species have elucidated the genetic diversity underpinning the C4 photosynthetic pathway, no previous studies have described the genetic diversity of the genes involved in this pathway within a C4 crop species. Enhanced understanding of the allelic diversity and selection signatures of genes in this pathway may present opportunities to improve photosynthetic efficiency, and ultimately yield, by exploiting natural variation. Here, we present the first genetic diversity survey of 8 known C4 gene families in an important C4 crop, Sorghum bicolor (L.) Moench, using sequence data of 48 genotypes covering wild and domesticated sorghum accessions. Average nucleotide diversity of C4 gene families varied more than 20-fold from the NADP-malate dehydrogenase (MDH) gene family (θπ = 0.2 × 10-3) to the pyruvate orthophosphate dikinase (PPDK) gene family (θπ = 5.21 × 10-3). Genetic diversity of C4 genes was reduced by 22.43% in cultivated sorghum compared to wild and weedy sorghum, indicating that the group of wild and weedy sorghum may constitute an untapped reservoir for alleles related to the C4 photosynthetic pathway. A SNP-level analysis identified purifying selection signals on C4 PPDK and carbonic anhydrase (CA) genes, and balancing selection signals on C4 PPDK-regulatory protein (RP) and phosphoenolpyruvate carboxylase (PEPC) genes. Allelic distribution of these C4 genes was consistent with selection signals detected. A better understanding of the genetic diversity of C4 pathway in sorghum paves the way for mining the natural allelic variation for the improvement of photosynthesis.
Collapse
Affiliation(s)
- Yongfu Tao
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Hermitage Research Facility, Warwick, QLD 4370, Australia; (Y.T.); (B.G.-J.); (M.B.-P.); (D.J.)
| | - Barbara George-Jaeggli
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Hermitage Research Facility, Warwick, QLD 4370, Australia; (Y.T.); (B.G.-J.); (M.B.-P.); (D.J.)
- Agri-Science Queensland, Department of Agriculture and Fisheries (DAF), Hermitage Research Facility, Warwick, QLD 4370, Australia;
| | - Marie Bouteillé-Pallas
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Hermitage Research Facility, Warwick, QLD 4370, Australia; (Y.T.); (B.G.-J.); (M.B.-P.); (D.J.)
| | | | - Alan Cruickshank
- Agri-Science Queensland, Department of Agriculture and Fisheries (DAF), Hermitage Research Facility, Warwick, QLD 4370, Australia;
| | - David Jordan
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Hermitage Research Facility, Warwick, QLD 4370, Australia; (Y.T.); (B.G.-J.); (M.B.-P.); (D.J.)
| | - Emma Mace
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Hermitage Research Facility, Warwick, QLD 4370, Australia; (Y.T.); (B.G.-J.); (M.B.-P.); (D.J.)
- Agri-Science Queensland, Department of Agriculture and Fisheries (DAF), Hermitage Research Facility, Warwick, QLD 4370, Australia;
| |
Collapse
|
46
|
Zhang L, Sun PY, Xie HK, Zhang YH, Zhang YY, Peng XM, Yang Z. Characterization of γ-Radiation-Induced DNA Polymorphisms in the M1 Population of the Japonica Rice Variety Gaogengnuo by Whole-Genome Resequencing. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420060149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Zmienko A, Marszalek-Zenczak M, Wojciechowski P, Samelak-Czajka A, Luczak M, Kozlowski P, Karlowski WM, Figlerowicz M. AthCNV: A Map of DNA Copy Number Variations in the Arabidopsis Genome. THE PLANT CELL 2020; 32:1797-1819. [PMID: 32265262 PMCID: PMC7268809 DOI: 10.1105/tpc.19.00640] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/09/2020] [Accepted: 03/30/2020] [Indexed: 05/13/2023]
Abstract
Copy number variations (CNVs) greatly contribute to intraspecies genetic polymorphism and phenotypic diversity. Recent analyses of sequencing data for >1000 Arabidopsis (Arabidopsis thaliana) accessions focused on small variations and did not include CNVs. Here, we performed genome-wide analysis and identified large indels (50 to 499 bp) and CNVs (500 bp and larger) in these accessions. The CNVs fully overlap with 18.3% of protein-coding genes, with enrichment for evolutionarily young genes and genes involved in stress and defense. By combining analysis of both genes and transposable elements (TEs) affected by CNVs, we revealed that the variation statuses of genes and TEs are tightly linked and jointly contribute to the unequal distribution of these elements in the genome. We also determined the gene copy numbers in a set of 1060 accessions and experimentally validated the accuracy of our predictions by multiplex ligation-dependent probe amplification assays. We then successfully used the CNVs as markers to analyze population structure and migration patterns. Finally, we examined the impact of gene dosage variation triggered by a CNV spanning the SEC10 gene on SEC10 expression at both the transcript and protein levels. The catalog of CNVs, CNV-overlapping genes, and their genotypes in a top model dicot will stimulate the exploration of the genetic basis of phenotypic variation.
Collapse
Affiliation(s)
- Agnieszka Zmienko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Faculty of Computing Science, Poznan University of Technology, Poznan, Poland
| | | | - Pawel Wojciechowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Faculty of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Anna Samelak-Czajka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Magdalena Luczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Piotr Kozlowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Wojciech M Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Faculty of Computing Science, Poznan University of Technology, Poznan, Poland
| |
Collapse
|
48
|
Zhou L, Wang C, Gao X, Ding Y, Cheng B, Zhang G, Cao N, Xu Y, Shao M, Zhang L. Genome-wide variations analysis of sorghum cultivar Hongyingzi for brewing Moutai liquor. Hereditas 2020; 157:19. [PMID: 32410666 PMCID: PMC7227080 DOI: 10.1186/s41065-020-00130-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/14/2020] [Indexed: 11/28/2022] Open
Abstract
Background Hongyingzi is a sorghum (Sorghum bicolor L. Moench) cultivar for brewing Moutai liquor. For an overall understanding of the whole genome of Hongyingzi, we performed whole-genome resequencing technology to reveal its comprehensive variations. Results Compared with the BTx623 reference genome, we uncovered 1,885,774 single nucleotide polymorphisms (SNPs), 309,381 small fragments insertions and deletions (Indels), 31,966 structural variations (SVs), and 217,273 copy number variations (CNVs). These alterations conferred 29,614 gene variations. It was also predicted that 35 gene variations were related to the multidrug and toxic efflux (MATE) transporter, chalcone synthase (CHS), ATPase isoform 10 (AHA10) transporter, dihydroflavonol-4-reductase (DFR), the laccase 15 (LAC15), flavonol 3′-hydroxylase (F3′H), flavanone 3-hydroxylase (F3H), O-methyltransferase (OMT), flavonoid 3′5′ hydroxylase (F3′5′H), UDP-glucose:sterol-glucosyltransferase (SGT), flavonol synthase (FLS), and chalcone isomerase (CHI) involved in the tannin synthesis. Conclusions These results would provide theoretical supports for the molecular markers developments and gene function studies related to the tannin synthesis, and the genetic improvement of liquor-making sorghum based on the genome editing technology.
Collapse
Affiliation(s)
- Lingbo Zhou
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Can Wang
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Xu Gao
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Yanqing Ding
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Bin Cheng
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Guobing Zhang
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Ning Cao
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Yan Xu
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Mingbo Shao
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Liyi Zhang
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China.
| |
Collapse
|
49
|
Xanthopoulou A, Manioudaki M, Bazakos C, Kissoudis C, Farsakoglou AM, Karagiannis E, Michailidis M, Polychroniadou C, Zambounis A, Kazantzis K, Tsaftaris A, Madesis P, Aravanopoulos F, Molassiotis A, Ganopoulos I. Whole genome re-sequencing of sweet cherry ( Prunus avium L.) yields insights into genomic diversity of a fruit species. HORTICULTURE RESEARCH 2020; 7:60. [PMID: 32377351 PMCID: PMC7193578 DOI: 10.1038/s41438-020-0281-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/17/2020] [Accepted: 02/18/2020] [Indexed: 05/30/2023]
Abstract
Sweet cherries, Prunus avium L. (Rosaceae), are gaining importance due to their perenniallity and nutritional attributes beneficial for human health. Interestingly, sweet cherry cultivars exhibit a wide range of phenotypic diversity in important agronomic traits, such as flowering time and defense reactions against pathogens. In this study, whole-genome resequencing (WGRS) was employed to characterize genetic variation, population structure and allelic variants in a panel of 20 sweet cherry and one wild cherry genotypes, embodying the majority of cultivated Greek germplasm and a representative of a local wild cherry elite phenotype. The 21 genotypes were sequenced in an average depth of coverage of 33.91×. and effective mapping depth, to the genomic reference sequence of 'Satonishiki' cultivar, between 22.21× to 36.62×. Discriminant analysis of principal components (DAPC) with SNPs revealed two clusters of genotypes. There was a rapid linkage disequilibrium decay, as the majority of SNP pairs with r2 in near complete disequilibrium (>0.8) were found at physical distances less than 10 kb. Functional analysis of the variants showed that the genomic ratio of non-synonymous/synonymous (dN/dS) changes was 1.78. The higher dN frequency in the Greek cohort of sweet cherry could be the result of artificial selection pressure imposed by breeding, in combination with the vegetative propagation of domesticated cultivars through grafting. The majority of SNPs with high impact (e.g., stop codon gaining, frameshift), were identified in genes involved in flowering time, dormancy and defense reactions against pathogens, providing promising resources for future breeding programs. Our study has established the foundation for further large scale characterization of sweet cherry germplasm, enabling breeders to incorporate diverse germplasm and allelic variants to fine tune flowering and maturity time and disease resistance in sweet cherry cultivars.
Collapse
Affiliation(s)
- Aliki Xanthopoulou
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Manioudaki
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christos Bazakos
- Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER. Thermi, Thessaloniki, 570001 Greece
| | | | - Anna-Maria Farsakoglou
- Laboratory of Forest Genetics & Tree Breeding, Faculty of Agriculture, Forestry & Environmental Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelos Karagiannis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Michail Michailidis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Chrysanthi Polychroniadou
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Antonios Zambounis
- Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER. Department of Deciduous Fruit Growing, Naoussa, 59035 Greece
| | - Konstantinos Kazantzis
- Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER. Department of Deciduous Fruit Growing, Naoussa, 59035 Greece
| | | | - Panagiotis Madesis
- Institute of Applied Biosciences, CERTH, Thermi, Thessaloniki, 570 01 Greece
| | - Filippos Aravanopoulos
- Laboratory of Forest Genetics & Tree Breeding, Faculty of Agriculture, Forestry & Environmental Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER. Thermi, Thessaloniki, 570001 Greece
| |
Collapse
|
50
|
Dolatabadian A, Bayer PE, Tirnaz S, Hurgobin B, Edwards D, Batley J. Characterization of disease resistance genes in the Brassica napus pangenome reveals significant structural variation. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:969-982. [PMID: 31553100 PMCID: PMC7061875 DOI: 10.1111/pbi.13262] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 08/30/2019] [Accepted: 09/13/2019] [Indexed: 05/18/2023]
Abstract
Methods based on single nucleotide polymorphism (SNP), copy number variation (CNV) and presence/absence variation (PAV) discovery provide a valuable resource to study gene structure and evolution. However, as a result of these structural variations, a single reference genome is unable to cover the entire gene content of a species. Therefore, pangenomics analysis is needed to ensure that the genomic diversity within a species is fully represented. Brassica napus is one of the most important oilseed crops in the world and exhibits variability in its resistance genes across different cultivars. Here, we characterized resistance gene distribution across 50 B. napus lines. We identified a total of 1749 resistance gene analogs (RGAs), of which 996 are core and 753 are variable, 368 of which are not present in the reference genome (cv. Darmor-bzh). In addition, a total of 15 318 SNPs were predicted within 1030 of the RGAs. The results showed that core R-genes harbour more SNPs than variable genes. More nucleotide binding site-leucine-rich repeat (NBS-LRR) genes were located in clusters than as singletons, with variable genes more likely to be found in clusters. We identified 106 RGA candidates linked to blackleg resistance quantitative trait locus (QTL). This study provides a better understanding of resistance genes to target for genomics-based improvement and improved disease resistance.
Collapse
Affiliation(s)
- Aria Dolatabadian
- UWA School of Biological Sciences and the UWA Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| | - Philipp E. Bayer
- UWA School of Biological Sciences and the UWA Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| | - Soodeh Tirnaz
- UWA School of Biological Sciences and the UWA Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| | - Bhavna Hurgobin
- UWA School of Biological Sciences and the UWA Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| | - David Edwards
- UWA School of Biological Sciences and the UWA Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| | - Jacqueline Batley
- UWA School of Biological Sciences and the UWA Institute of AgricultureFaculty of ScienceThe University of Western AustraliaCrawleyWAAustralia
| |
Collapse
|