1
|
Chen W, Wang D, Yu L, Zhong W, Yuan Y, Yang G. Comparative analysis of locomotor behavior and head diurnal transcriptome regulation by PERIOD and CRY2 in the diamondback moth. INSECT SCIENCE 2024; 31:1697-1720. [PMID: 38414323 DOI: 10.1111/1744-7917.13344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Earth's rotation shapes a 24-h cycle, governing circadian rhythms in organisms. In mammals, the core clock genes, CLOCK and BMAL1, are regulated by PERIODs (PERs) and CRYPTOCHROMEs (CRYs), but their roles remain unclear in the diamondback moth, Plutella xylostella. To explore this, we studied P. xylostella, which possesses a simplified circadian system compared to mammals. In P. xylostella, we observed rhythmic expressions of the Pxper and Pxcry2 genes in their heads, with differing phases. In vitro experiments revealed that PxCRY2 repressed monarch butterfly CLK:BMAL1 transcriptional activation, while PxPER and other CRY-like proteins did not. However, PxPER showed an inhibitory effect on PxCLK/PxCYCLE. Using CRISPR/Cas9, we individually and in combination knocked out Pxper and Pxcry2, then conducted gene function studies and circadian transcriptome sequencing. Loss of either Pxper or Pxcry2 eliminated the activity peak after lights-off in light-dark cycles, and Pxcry2 loss reduced overall activity. Pxcry2 was crucial for maintaining endogenous rhythms in constant darkness. Under light-dark conditions, 1 098 genes exhibited rhythmic expression in wild-type P. xylostella heads, with 749 relying on Pxper and Pxcry2 for their rhythms. Most core clock genes lost their rhythmicity in Pxper and Pxcry2 mutants, while Pxcry2 sustained rhythmic expression, albeit with reduced amplitude and altered phase. Additionally, rhythmic genes were linked to biological processes like the spliceosome and Toll signaling pathway, with these rhythms depending on Pxper or Pxcry2 function. In summary, our study unveils differences in circadian rhythm regulation by Pxper and Pxcry2 in P. xylostella. This provides a valuable model for understanding circadian clock regulation in nocturnal animals.
Collapse
Affiliation(s)
- Wenfeng Chen
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Danfeng Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lingqi Yu
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Wenmiao Zhong
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Yao Yuan
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
2
|
Garcia M, Holota H, De Haze A, Saru JP, Sanchez P, Battistelli E, Thirouard L, Monrose M, Benoit G, Volle DH, Beaudoin C. Alternative splicing is an FXRα loss-of-function mechanism and impacts energy metabolism in hepatocarcinoma cells. J Biol Chem 2024:108022. [PMID: 39608717 DOI: 10.1016/j.jbc.2024.108022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024] Open
Abstract
Farnesoid X receptor α (FXRα, NR1H4) is a bile acid-activated nuclear receptor that regulates the expression of glycolytic and lipogenic target genes by interacting with the 9-cis-retinoic acid receptor α (RXRα, NR2B1). Along with cofactors, the FXRα proteins reported thus far in humans and rodents have been observed to regulate both isoform (α1-4)- and tissue-specific gene expression profiles to integrate energy balance and metabolism. Here, we studied the biological functions of an FXRα naturally occurring spliced exon 5 isoform (FXRαse5) lacking the second zinc-binding module of the DNA binding domain (DBD). We demonstrate FXRαse5 expression in all FXRα-expressing human and mouse tissues and cells, and that it is unable to bind to its response element or activate FXRα dependent transcription. In parallel, this spliced variant displays differential interaction capacities with its obligate heterodimer partner RXRα that may account for silencing of this permissive dimer for signal transduction. Finally, deletion of exon 5 by gene edition in HepG2 cells leads to FXRα loss-of-function, increased expression of LRH1 metabolic sensor and CD36 fatty acid transporter in conjunction with changes in glucose and triglycerides homeostasis. Together, these findings highlight a novel mechanism by which alternative splicing may regulate FXRα gene function to fine-tune adaptive and/or metabolic responses. This finding deepens our understanding on the role of splicing events in hindering FXRα activity to regulate specific transcriptional programs and their contribution in modifying energy metabolism in normal tissues and metabolic diseases.
Collapse
Affiliation(s)
- Manon Garcia
- Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, iGReD team-Volle, F-63000 Clermont-Ferrand, France
| | - Hélène Holota
- Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, iGReD team-Volle, F-63000 Clermont-Ferrand, France
| | - Angélique De Haze
- Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, iGReD team-Volle, F-63000 Clermont-Ferrand, France
| | - Jean-Paul Saru
- Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, iGReD team-Volle, F-63000 Clermont-Ferrand, France
| | - Philipe Sanchez
- Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, iGReD team-Volle, F-63000 Clermont-Ferrand, France
| | - Edwige Battistelli
- Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, iGReD team-Volle, F-63000 Clermont-Ferrand, France
| | - Laura Thirouard
- Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, iGReD team-Volle, F-63000 Clermont-Ferrand, France
| | - Mélusine Monrose
- Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, iGReD team-Volle, F-63000 Clermont-Ferrand, France
| | - Gérard Benoit
- Université de Rennes 1, CNRS UMR6290, INSERM U1305, IGDR, F-35042 Rennes Cedex, France
| | - David H Volle
- Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, iGReD team-Volle, F-63000 Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63009 Clermont-Ferrand, France.
| | - Claude Beaudoin
- Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, iGReD team-Volle, F-63000 Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63009 Clermont-Ferrand, France.
| |
Collapse
|
3
|
Han Z, Liu H, Zhao X, Liu S, Zhang J, Guo S, Wang B, Zhao L, Jin Y, Guo Y, Tian L. Functional characterization of maize phytochrome-interacting factor 3 (ZmPIF3) in enhancing salt tolerance in arabidopsis. Sci Rep 2024; 14:19955. [PMID: 39198476 PMCID: PMC11358270 DOI: 10.1038/s41598-024-70427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Soil salinization, a prevalent form of environmental stress, leads to significant soil desertification and impacts agricultural productivity by altering the internal soil environment, slowing cellular metabolism, and modifying cellular architecture. This results in a marked reduction in both the yield and diversity of crops. Maize, which is particularly susceptible to salt stress, serves as a critical model for studying these effects, making the elucidation of its molecular responses essential for crop improvement strategies. This study focuses on the phytochrome-interacting factor 3 (PIF3), previously known for its role in freezing tolerance, to assess its function in salt stress tolerance. Utilizing two transcript variants of maize ZmPIF3 (ZmPIF3.1 and ZmPIF3.2), we engineered Arabidopsis transgenic lines to overexpress these variants and analyzed their phenotypic, physiological, biochemical, and transcriptomic responses to salt stress. Our findings reveal that these transgenic lines displayed not only enhanced salt tolerance but also improved peroxide decomposition and reduced cellular membrane damage. Transcriptome analysis indicated significant roles of hormonal and Ca2+ signaling pathways, along with key transcription factors, in mediating the enhanced salt stress response. This research underscores a novel role for ZmPIF3 in plant salt stress tolerance, offering potential avenues for breeding salt-resistant crop varieties.
Collapse
Affiliation(s)
- Zanping Han
- College of Agronomy, Henan University of Science and Technology, Luoyang, China.
| | - Haohao Liu
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xiyong Zhao
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Shanshan Liu
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Jun Zhang
- Cereal Institute, Henan Provincial Key Laboratory of Maize Biology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shulei Guo
- Cereal Institute, Henan Provincial Key Laboratory of Maize Biology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Bin Wang
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
| | - Linxi Zhao
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
| | - Yunqian Jin
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
| | - Yiyang Guo
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
| | - Lei Tian
- College of Agronomy, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
4
|
Tan X, Zhang J, Dong J, Huang M, Zhou Z, Wang D. Novel Insights into the Circadian Rhythms Based on Long Noncoding and Circular RNA Profiling. Int J Mol Sci 2024; 25:1161. [PMID: 38256234 PMCID: PMC10816401 DOI: 10.3390/ijms25021161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Circadian rhythm disorders pose major risks to human health and animal production activity, and the hypothalamus is the center of circadian rhythm regulation. However, the epigenetic regulation of circadian rhythm based on farm animal models has been poorly investigated. We collected chicken hypothalamus samples at seven time points in one light/dark cycle and performed long noncoding RNA (lncRNA), circular RNA (circRNA), and mRNA sequencing to detect biomarkers associated with circadian rhythm. We enhanced the comprehensive expression profiling of ncRNAs and mRNAs in the hypothalamus and found two gene sets (circadian rhythm and retinal metabolism) associated with the light/dark cycle. Noncoding RNA networks with circadian expression patterns were identified by differential expression and circadian analysis was provided that included 38 lncRNAs, 15 circRNAs, and 200 candidate genes. Three lncRNAs (ENSGALT00000098661, ENSGALT00000100816, and MSTRG.16980.1) and one circRNA (novel_circ_010168) in the ncRNA-mRNA regulatory network were identified as key molecules influencing circadian rhythm by regulating AOX1 in retinal metabolism. These ncRNAs were predicted to be related to pernicious anemia, gonadal, eye disease and other disorders in humans. Together, the findings of this study provide insights into the epigenetic mechanisms of circadian rhythm and reveal AOX1 as a promising target of circadian rhythm regulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Deqian Wang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.T.)
| |
Collapse
|
5
|
Jobbins AM, Yu S, Paterson HAB, Maude H, Kefala-Stavridi A, Speck C, Cebola I, Vernia S. Pre-RNA splicing in metabolic homeostasis and liver disease. Trends Endocrinol Metab 2023; 34:823-837. [PMID: 37673766 DOI: 10.1016/j.tem.2023.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
The liver plays a key role in sensing nutritional and hormonal inputs to maintain metabolic homeostasis. Recent studies into pre-mRNA splicing and alternative splicing (AS) and their effects on gene expression have revealed considerable transcriptional complexity in the liver, both in health and disease. While the contribution of these mechanisms to cell and tissue identity is widely accepted, their role in physiological and pathological contexts within tissues is just beginning to be appreciated. In this review, we showcase recent studies on the splicing and AS of key genes in metabolic pathways in the liver, the effect of metabolic signals on the spliceosome, and therapeutic intervention points based on RNA splicing.
Collapse
Affiliation(s)
- Andrew M Jobbins
- MRC (Medical Research Council) London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Sijia Yu
- MRC (Medical Research Council) London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Helen A B Paterson
- MRC (Medical Research Council) London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Hannah Maude
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Antonia Kefala-Stavridi
- MRC (Medical Research Council) London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Christian Speck
- MRC (Medical Research Council) London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Inês Cebola
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Santiago Vernia
- MRC (Medical Research Council) London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
6
|
Zhang Y, Xu P, Xue W, Zhu W, Yu X. Diurnal gene oscillations modulated by RNA metabolism in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:728-743. [PMID: 37492018 DOI: 10.1111/tpj.16400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/16/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
Diurnal rhythms are known to regulate the expression of a large number of genes, coordinating plant growth and development with diel changes in light and temperature. However, the impact of RNA metabolism on rhythmic gene oscillations in plant is not yet fully understood. To address this question, we performed transcriptome and degradome profiling on tomato leaves at 6 time points during one 24 h cycle, using RNA-seq and genome-wide mapping of uncapped and cleavage transcripts (GMUCT). Time-series profiling of RNA-seq revealed 9342 diurnal-oscillated genes, which were enriched in various metabolic processes. To quantify the general level of RNA degradation for each gene, we utilized the Proportion Uncapped (PU) metric, which represents the GMUCT/RNA-seq ratio. Oscillated PU analysis revealed that 3885 genes were regulated by rhythmic RNA degradation. The RNA decay of these diurnal genes was highly coordinated with mRNA downregulation during oscillation, highlighting the critical role of internal transcription-degradation balance in rhythmic gene oscillation. Furthermore, we identified 2190 genes undergoing co-translational RNA decay (CTRD) with 5' phosphate read ends enriched at the boundary of ribosomes stalling at translational termination sites. Interestingly, diurnal-changed mRNAs with large amplitudes tended to be co-translationally decay, suggesting that CTRD contributed to the rapid turnover of diurnal mRNAs. Finally, we also identified several genes, whose miRNA cleavage efficiency oscillated in a diurnal manner. Taken together, these findings uncovered the vital functions of RNA metabolism, including rhythmic RNA degradation, CTRD, and miRNA cleavage, in modulating the diurnal mRNA oscillations during diel change at post-transcriptional level in tomato.
Collapse
Affiliation(s)
- Yingying Zhang
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Pengfei Xu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wanxin Xue
- Shanghai Yuanyi Seedling Co. Ltd, Shanghai, 201318, China
| | - Weimin Zhu
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Xiang Yu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
7
|
Lyons LC, Vanrobaeys Y, Abel T. Sleep and memory: The impact of sleep deprivation on transcription, translational control, and protein synthesis in the brain. J Neurochem 2023; 166:24-46. [PMID: 36802068 PMCID: PMC10919414 DOI: 10.1111/jnc.15787] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/20/2023]
Abstract
In countries around the world, sleep deprivation represents a widespread problem affecting school-age children, teenagers, and adults. Acute sleep deprivation and more chronic sleep restriction adversely affect individual health, impairing memory and cognitive performance as well as increasing the risk and progression of numerous diseases. In mammals, the hippocampus and hippocampus-dependent memory are vulnerable to the effects of acute sleep deprivation. Sleep deprivation induces changes in molecular signaling, gene expression and may cause changes in dendritic structure in neurons. Genome wide studies have shown that acute sleep deprivation alters gene transcription, although the pool of genes affected varies between brain regions. More recently, advances in research have drawn attention to differences in gene regulation between the level of the transcriptome compared with the pool of mRNA associated with ribosomes for protein translation following sleep deprivation. Thus, in addition to transcriptional changes, sleep deprivation also affects downstream processes to alter protein translation. In this review, we focus on the multiple levels through which acute sleep deprivation impacts gene regulation, highlighting potential post-transcriptional and translational processes that may be affected by sleep deprivation. Understanding the multiple levels of gene regulation impacted by sleep deprivation is essential for future development of therapeutics that may mitigate the effects of sleep loss.
Collapse
Affiliation(s)
- Lisa C Lyons
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Yann Vanrobaeys
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Iowa Neuroscience Institute, Iowa City, Iowa, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Iowa Neuroscience Institute, Iowa City, Iowa, USA
| |
Collapse
|
8
|
Obodo D, Outland EH, Hughey JJ. LimoRhyde2: genomic analysis of biological rhythms based on effect sizes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526897. [PMID: 36778295 PMCID: PMC9915588 DOI: 10.1101/2023.02.02.526897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genome-scale data have revealed daily rhythms in various species and tissues. However, current methods to assess rhythmicity largely restrict their focus to quantifying statistical significance, which may not reflect biological relevance. To address this limitation, we developed a method called LimoRhyde2 (the successor to our method LimoRhyde), which focuses instead on rhythm-related effect sizes and their uncertainty. For each genomic feature, LimoRhyde2 fits a curve using a series of linear models based on periodic splines, moderates the fits using an Empirical Bayes approach called multivariate adaptive shrinkage (Mash), then uses the moderated fits to calculate rhythm statistics such as peak-to-trough amplitude. The periodic splines capture non-sinusoidal rhythmicity, while Mash uses patterns in the data to account for different fits having different levels of noise. To demonstrate LimoRhyde2's utility, we applied it to multiple circadian transcriptome datasets. Overall, LimoRhyde2 prioritized genes having high-amplitude rhythms in expression, whereas a prior method (BooteJTK) prioritized "statistically significant" genes whose amplitudes could be relatively small. Thus, quantifying effect sizes using approaches such as LimoRhyde2 has the potential to transform interpretation of genomic data related to biological rhythms.
Collapse
Affiliation(s)
- Dora Obodo
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Elliot H. Outland
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jacob J. Hughey
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
9
|
Tortonese DJ. Hypophysial angiogenesis decodes annual time and underlies physiological adaptation to seasonal changes in the environment. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:939-951. [PMID: 35844178 PMCID: PMC9796326 DOI: 10.1002/jez.2639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 01/01/2023]
Abstract
Adaptation to annual changes in the environment is controlled by hypophysial hormones. In temperate zones, photoperiod is the primary external cue that regulates annual biological cycles and is translated by the pattern of melatonin secretion acting primarily in the hypophysial pars tuberalis. Angiogenic mechanisms within this tissue contribute to decode the melatonin signal through alternative splicing of the vascular endothelial growth factor A (VEGF-A) gene in both the pars tuberalis and the capillary loops of the infundibulum. The resulting melatonin-evoked differential productions of VEGF-A isoforms will induce seasonal remodeling of the vascular connection between the hypothalamus and hypophysis, and act as paracrine messengers in the pars distalis to generate the required seasonal endocrine response. Specifically, the long melatonin signal in winter upregulates antiangiogenic VEGF-A isoforms, which will reduce the number of vascular loops and the density of VEGF receptors in endocrine and folliculo-stellate (FS) cells, inhibit prolactin secretion, and stimulate FSH. In contrast, the short melatonin signal in summer upregulates proangiogenic VEGF-A isoforms that will increase the number of vascular loops and the density of VEGF receptors in endocrine and FS cells, stimulate prolactin secretion, and suppress FSH. A similar system has been identified in long day seasonal breeders, revealing that this is a conserved mechanism of adaptation across species. Thus, an angiogenesis-based, intrahypophysial system for annual time measurement controls local microvascular plasticity and conveys the photoperiodic signal readout from the melatonin sensitive pars tuberalis to the endocrine cells of the pars distalis to regulate seasonal adaptation to the environment.
Collapse
Affiliation(s)
- Domingo J. Tortonese
- Laboratories for Integrative Neuroscience and Endocrinology, Faculty of Health SciencesUniversity of BristolBristolUK
| |
Collapse
|
10
|
Analyses of circRNA Expression throughout the Light-Dark Cycle Reveal a Strong Regulation of Cdr1as, Associated with Light Entrainment in the SCN. Int J Mol Sci 2022; 23:ijms232012347. [PMID: 36293208 PMCID: PMC9604060 DOI: 10.3390/ijms232012347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Circular RNAs (circRNAs) are a large class of relatively stable RNA molecules that are highly expressed in animal brains. Many circRNAs have been associated with CNS disorders accompanied by an aberrant wake-sleep cycle. However, the regulation of circRNAs in brain homeostasis over daily light-dark (LD) cycles has not been characterized. Here, we aim to quantify the daily expression changes of circRNAs in physiological conditions in healthy adult animals. Using newly generated and public RNA-Seq data, we monitored circRNA expression throughout the 12:12 h LD cycle in various mouse brain regions. We identified that Cdr1as, a conserved circRNA that regulates synaptic transmission, is highly expressed in the suprachiasmatic nucleus (SCN), the master circadian pacemaker. Despite its high stability, Cdr1as has a very dynamic expression in the SCN throughout the LD cycle, as well as a significant regulation in the hippocampus following the entry into the dark phase. Computational integration of different public datasets predicted that Cdr1as is important for regulating light entrainment in the SCN. We hypothesize that the expression changes of Cdr1as in the SCN, particularly during the dark phase, are associated with light-induced phase shifts. Importantly, our work revises the current beliefs about natural circRNA stability and suggests that the time component must be considered when studying circRNA regulation.
Collapse
|
11
|
Fan T, Aslam MM, Zhou JL, Chen MX, Zhang J, Du S, Zhang KL, Chen YS. A crosstalk of circadian clock and alternative splicing under abiotic stresses in the plants. FRONTIERS IN PLANT SCIENCE 2022; 13:976807. [PMID: 36275558 PMCID: PMC9583901 DOI: 10.3389/fpls.2022.976807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
The circadian clock is an internal time-keeping mechanism that synchronizes the physiological adaptation of an organism to its surroundings based on day and night transition in a period of 24 h, suggesting the circadian clock provides fitness by adjusting environmental constrains. The circadian clock is driven by positive and negative elements that regulate transcriptionally and post-transcriptionally. Alternative splicing (AS) is a crucial transcriptional regulator capable of generating large numbers of mRNA transcripts from limited numbers of genes, leading to proteome diversity, which is involved in circadian to deal with abiotic stresses. Over the past decade, AS and circadian control have been suggested to coordinately regulate plant performance under fluctuating environmental conditions. However, only a few reports have reported the regulatory mechanism of this complex crosstalk. Based on the emerging evidence, this review elaborates on the existing links between circadian and AS in response to abiotic stresses, suggesting an uncovered regulatory network among circadian, AS, and abiotic stresses. Therefore, the rhythmically expressed splicing factors and core clock oscillators fill the role of temporal regulators participating in improving plant growth, development, and increasing plant tolerance against abiotic stresses.
Collapse
Affiliation(s)
- Tao Fan
- Clinical Laboratory, Shenzhen Children’s Hospital, Shenzhen, China
- Co-Innovation Center for Sustainable Forestry in Southern China & Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Mehtab Muhammad Aslam
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jian-Li Zhou
- Clinical Laboratory, Shenzhen Children’s Hospital, Shenzhen, China
| | - Mo-Xian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China & Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Shenxiu Du
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Kai-Lu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China & Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Yun-Sheng Chen
- Clinical Laboratory, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
12
|
Comprehensive analysis of the circadian nuclear and cytoplasmic transcriptome in mouse liver. PLoS Genet 2022; 18:e1009903. [PMID: 35921362 PMCID: PMC9377612 DOI: 10.1371/journal.pgen.1009903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 08/15/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
In eukaryotes, RNA is synthesised in the nucleus, spliced, and exported to the cytoplasm where it is translated and finally degraded. Any of these steps could be subject to temporal regulation during the circadian cycle, resulting in daily fluctuations of RNA accumulation and affecting the distribution of transcripts in different subcellular compartments. Our study analysed the nuclear and cytoplasmic, poly(A) and total transcriptomes of mouse livers collected over the course of a day. These data provide a genome-wide temporal inventory of enrichment in subcellular RNA, and revealed specific signatures of splicing, nuclear export and cytoplasmic mRNA stability related to transcript and gene lengths. Combined with a mathematical model describing rhythmic RNA profiles, we could test the rhythmicity of export rates and cytoplasmic degradation rates of approximately 1400 genes. With nuclear export times usually much shorter than cytoplasmic half-lives, we found that nuclear export contributes to the modulation and generation of rhythmic profiles of 10% of the cycling nuclear mRNAs. This study contributes to a better understanding of the dynamic regulation of the transcriptome during the day-night cycle.
Collapse
|
13
|
Jobbins AM, Haberman N, Artigas N, Amourda C, Paterson HAB, Yu S, Blackford SJI, Montoya A, Dore M, Wang YF, Sardini A, Cebola I, Zuber J, Rashid ST, Lenhard B, Vernia S. Dysregulated RNA polyadenylation contributes to metabolic impairment in non-alcoholic fatty liver disease. Nucleic Acids Res 2022; 50:3379-3393. [PMID: 35293570 PMCID: PMC8989518 DOI: 10.1093/nar/gkac165] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/16/2022] [Accepted: 03/09/2022] [Indexed: 11/19/2022] Open
Abstract
Pre-mRNA processing is an essential mechanism for the generation of mature mRNA and the regulation of gene expression in eukaryotic cells. While defects in pre-mRNA processing have been implicated in a number of diseases their involvement in metabolic pathologies is still unclear. Here, we show that both alternative splicing and alternative polyadenylation, two major steps in pre-mRNA processing, are significantly altered in non-alcoholic fatty liver disease (NAFLD). Moreover, we find that Serine and Arginine Rich Splicing Factor 10 (SRSF10) binding is enriched adjacent to consensus polyadenylation motifs and its expression is significantly decreased in NAFLD, suggesting a role mediating pre-mRNA dysregulation in this condition. Consistently, inactivation of SRSF10 in mouse and human hepatocytes in vitro, and in mouse liver in vivo, was found to dysregulate polyadenylation of key metabolic genes such as peroxisome proliferator-activated receptor alpha (PPARA) and exacerbate diet-induced metabolic dysfunction. Collectively our work implicates dysregulated pre-mRNA polyadenylation in obesity-induced liver disease and uncovers a novel role for SRSF10 in this process.
Collapse
Affiliation(s)
- Andrew M Jobbins
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Nejc Haberman
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Natalia Artigas
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Christopher Amourda
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Helen A B Paterson
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Sijia Yu
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Samuel J I Blackford
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London W12 0NN, UK
| | - Alex Montoya
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Marian Dore
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Yi-Fang Wang
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Alessandro Sardini
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Inês Cebola
- Section of Genetics and Genomics, Department of Metabolism, Digestion & Reproduction, Imperial College London, London W12 0NN, UK
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Sheikh Tamir Rashid
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London W12 0NN, UK
| | - Boris Lenhard
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Santiago Vernia
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
14
|
Ruta V, Pagliarini V, Sette C. Coordination of RNA Processing Regulation by Signal Transduction Pathways. Biomolecules 2021; 11:biom11101475. [PMID: 34680108 PMCID: PMC8533259 DOI: 10.3390/biom11101475] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Signal transduction pathways transmit the information received from external and internal cues and generate a response that allows the cell to adapt to changes in the surrounding environment. Signaling pathways trigger rapid responses by changing the activity or localization of existing molecules, as well as long-term responses that require the activation of gene expression programs. All steps involved in the regulation of gene expression, from transcription to processing and utilization of new transcripts, are modulated by multiple signal transduction pathways. This review provides a broad overview of the post-translational regulation of factors involved in RNA processing events by signal transduction pathways, with particular focus on the regulation of pre-mRNA splicing, cleavage and polyadenylation. The effects of several post-translational modifications (i.e., sumoylation, ubiquitination, methylation, acetylation and phosphorylation) on the expression, subcellular localization, stability and affinity for RNA and protein partners of many RNA-binding proteins are highlighted. Moreover, examples of how some of the most common signal transduction pathways can modulate biological processes through changes in RNA processing regulation are illustrated. Lastly, we discuss challenges and opportunities of therapeutic approaches that correct RNA processing defects and target signaling molecules.
Collapse
Affiliation(s)
- Veronica Ruta
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Correspondence:
| |
Collapse
|
15
|
Wang H, Chan TW, Vashisht AA, Drew BG, Calkin AC, Harris TE, Wohlschlegel JA, Xiao X, Reue K. Lipin 1 modulates mRNA splicing during fasting adaptation in liver. JCI Insight 2021; 6:e150114. [PMID: 34494556 PMCID: PMC8492312 DOI: 10.1172/jci.insight.150114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/23/2021] [Indexed: 01/03/2023] Open
Abstract
Lipin 1 regulates cellular lipid homeostasis through roles in glycerolipid synthesis (through phosphatidic acid phosphatase activity) and transcriptional coactivation. Lipin 1-deficient individuals exhibit episodic disease symptoms that are triggered by metabolic stress, such as stress caused by prolonged fasting. We sought to identify critical lipin 1 activities during fasting. We determined that lipin 1 deficiency induces widespread alternative mRNA splicing in liver during fasting, much of which is normalized by refeeding. The role of lipin 1 in mRNA splicing was largely independent of its enzymatic function. We identified interactions between lipin 1 and spliceosome proteins, as well as a requirement for lipin 1 to maintain homeostatic levels of spliceosome small nuclear RNAs and specific RNA splicing factors. In fasted Lpin1-/- liver, we identified a correspondence between alternative splicing of phospholipid biosynthetic enzymes and dysregulated phospholipid levels; splicing patterns and phospholipid levels were partly normalized by feeding. Thus, lipin 1 influences hepatic lipid metabolism through mRNA splicing, as well as through enzymatic and transcriptional activities, and fasting exacerbates the deleterious effects of lipin 1 deficiency on metabolic homeostasis.
Collapse
Affiliation(s)
- Huan Wang
- Human Genetics, David Geffen School of Medicine at UCLA
| | | | - Ajay A Vashisht
- Biological Chemistry, University of California, Los Angeles, California, USA
| | - Brian G Drew
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Anna C Calkin
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia
| | - Thurl E Harris
- Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - James A Wohlschlegel
- Biological Chemistry, University of California, Los Angeles, California, USA.,Molecular Biology Institute and
| | - Xinshu Xiao
- Bioinformatics Interdepartmental Program and.,Molecular Biology Institute and.,Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Karen Reue
- Human Genetics, David Geffen School of Medicine at UCLA,,Molecular Biology Institute and
| |
Collapse
|
16
|
Parnell AA, De Nobrega AK, Lyons LC. Translating around the clock: Multi-level regulation of post-transcriptional processes by the circadian clock. Cell Signal 2021; 80:109904. [PMID: 33370580 PMCID: PMC8054296 DOI: 10.1016/j.cellsig.2020.109904] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022]
Abstract
The endogenous circadian clock functions to maintain optimal physiological health through the tissue specific coordination of gene expression and synchronization between tissues of metabolic processes throughout the 24 hour day. Individuals face numerous challenges to circadian function on a daily basis resulting in significant incidences of circadian disorders in the United States and worldwide. Dysfunction of the circadian clock has been implicated in numerous diseases including cancer, diabetes, obesity, cardiovascular and hepatic abnormalities, mood disorders and neurodegenerative diseases. The circadian clock regulates molecular, metabolic and physiological processes through rhythmic gene expression via transcriptional and post-transcriptional processes. Mounting evidence indicates that post-transcriptional regulation by the circadian clock plays a crucial role in maintaining tissue specific biological rhythms. Circadian regulation affecting RNA stability and localization through RNA processing, mRNA degradation, and RNA availability for translation can result in rhythmic protein synthesis, even when the mRNA transcripts themselves do not exhibit rhythms in abundance. The circadian clock also targets the initiation and elongation steps of translation through multiple pathways. In this review, the influence of the circadian clock across the levels of post-transcriptional, translation, and post-translational modifications are examined using examples from humans to cyanobacteria demonstrating the phylogenetic conservation of circadian regulation. Lastly, we briefly discuss chronotherapies and pharmacological treatments that target circadian function. Understanding the complexity and levels through which the circadian clock regulates molecular and physiological processes is important for future advancement of therapeutic outcomes.
Collapse
Affiliation(s)
- Amber A Parnell
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Aliza K De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
17
|
Wang XL, Wang DQ, Jiao FC, Ding KM, Ji YB, Lu L, Yuan K, Gao GF, Li SX. Diurnal rhythm disruptions induced by chronic unpredictable stress relate to depression-like behaviors in rats. Pharmacol Biochem Behav 2021; 204:173156. [PMID: 33675839 DOI: 10.1016/j.pbb.2021.173156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 11/15/2022]
Abstract
The relationship between circadian rhythms and mood disorders has been established. Circadian dysregulations are believed to exacerbate the severity of mood disorders and vice versa. Although many studies on diurnal changes of clock genes in animal model of depression have been performed from the RNA level, only a few studies have been carried out from the protein level. In this study, we investigated the diurnal changes induced by chronic unpredictable stress (CUS) using free-running wheel test and Western Blotting (WB). Besides, we examined the depression-like behaviors of rats by sucrose preference test (SPT) and forced swim test (FST). We found that CUS induced significant reductions in the quantity of free-running wheel activity and rhythmic disruptions of clock proteins in hippocampus. Furthermore, we found that the amplitude of PER1 in CA1 was positively related to the severity of depression-like behaviors. These results suggest that CUS results in both changes in diurnal rhythms and in depression-like behaviors and that it is suggested that these changes are related.
Collapse
Affiliation(s)
- Xin-Ling Wang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China; National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing 100191, China
| | - De-Quan Wang
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing 100191, China
| | - Fu-Chao Jiao
- Qingdao Agricultural University, Qingdao 266109, China
| | - Kai-Mo Ding
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing 100191, China; Zhenjiang Mental Health Center, Zhenjiang, Jiangsu Province, China
| | - Yan-Bin Ji
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing 100191, China; Center of Psychiatry, Anhui Medical University, Mental Health Center of Anhui Province, Hefei 230032, China
| | - Lin Lu
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China; National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing 100191, China; Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Kai Yuan
- Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - George Fu Gao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China; Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Su-Xia Li
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing 100191, China.
| |
Collapse
|
18
|
The methyltransferase SETD2 couples transcription and splicing by engaging mRNA processing factors through its SHI domain. Nat Commun 2021; 12:1443. [PMID: 33664260 PMCID: PMC7933334 DOI: 10.1038/s41467-021-21663-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Heterogeneous ribonucleoproteins (hnRNPs) are RNA binding molecules that are involved in key processes such as RNA splicing and transcription. One such hnRNP protein, hnRNP L, regulates alternative splicing (AS) by binding to pre-mRNA transcripts. However, it is unclear what factors contribute to hnRNP L-regulated AS events. Using proteomic approaches, we identified several key factors that co-purify with hnRNP L. We demonstrate that one such factor, the histone methyltransferase SETD2, specifically interacts with hnRNP L in vitro and in vivo. This interaction occurs through a previously uncharacterized domain in SETD2, the SETD2-hnRNP Interaction (SHI) domain, the deletion of which, leads to a reduced H3K36me3 deposition. Functionally, SETD2 regulates a subset of hnRNP L-targeted AS events. Our findings demonstrate that SETD2, by interacting with Pol II as well as hnRNP L, can mediate the crosstalk between the transcription and the splicing machinery. The methylation of Histone 3 at Lysine 36 (H3K36) has been implicated in the regulation of transcription and coupled processes such as mRNA splicing. Here the authors show that the histone methyltransferase SETD2 interacts with hnRNP L to mediate the crosstalk between the transcription and splicing machineries.
Collapse
|
19
|
Morris H, Gonçalves CF, Dudek M, Hoyland J, Meng QJ. Tissue physiology revolving around the clock: circadian rhythms as exemplified by the intervertebral disc. Ann Rheum Dis 2021; 80:828-839. [PMID: 33397731 DOI: 10.1136/annrheumdis-2020-219515] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/07/2023]
Abstract
Circadian clocks in the brain and peripheral tissues temporally coordinate local physiology to align with the 24 hours rhythmic environment through light/darkness, rest/activity and feeding/fasting cycles. Circadian disruptions (during ageing, shift work and jet-lag) have been proposed as a risk factor for degeneration and disease of tissues, including the musculoskeletal system. The intervertebral disc (IVD) in the spine separates the bony vertebrae and permits movement of the spinal column. IVD degeneration is highly prevalent among the ageing population and is a leading cause of lower back pain. The IVD is known to experience diurnal changes in loading patterns driven by the circadian rhythm in rest/activity cycles. In recent years, emerging evidence indicates the existence of molecular circadian clocks within the IVD, disruption to which accelerates tissue ageing and predispose animals to IVD degeneration. The cell-intrinsic circadian clocks in the IVD control key aspects of physiology and pathophysiology by rhythmically regulating the expression of ~3.5% of the IVD transcriptome, allowing cells to cope with the drastic biomechanical and chemical changes that occur throughout the day. Indeed, epidemiological studies on long-term shift workers have shown an increased incidence of lower back pain. In this review, we summarise recent findings of circadian rhythms in health and disease, with the IVD as an exemplar tissue system. We focus on rhythmic IVD functions and discuss implications of utilising biological timing mechanisms to improve tissue health and mitigate degeneration. These findings may have broader implications in chronic rheumatic conditions, given the recent findings of musculoskeletal circadian clocks.
Collapse
Affiliation(s)
- Honor Morris
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK.,Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Cátia F Gonçalves
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK.,Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Michal Dudek
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK.,Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Judith Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK .,NIHR Manchester Musculoskeletal Biomedical Research Centre, Manchester University, NHS Foundation Trust, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Qing-Jun Meng
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK .,Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
20
|
Crosby P, Partch CL. New insights into non-transcriptional regulation of mammalian core clock proteins. J Cell Sci 2020; 133:133/18/jcs241174. [PMID: 32934011 DOI: 10.1242/jcs.241174] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mammalian circadian rhythms drive ∼24 h periodicity in a wide range of cellular processes, temporally coordinating physiology and behaviour within an organism, and synchronising this with the external day-night cycle. The canonical model for this timekeeping consists of a delayed negative-feedback loop, containing transcriptional activator complex CLOCK-BMAL1 (BMAL1 is also known as ARNTL) and repressors period 1, 2 and 3 (PER1, PER2 and PER3) and cryptochrome 1 and 2 (CRY1 and CRY2), along with a number of accessory factors. Although the broad strokes of this system are defined, the exact molecular mechanisms by which these proteins generate a self-sustained rhythm with such periodicity and fidelity remains a topic of much research. Recent studies have identified prominent roles for a number of crucial post-transcriptional, translational and, particularly, post-translational events within the mammalian circadian oscillator, providing an increasingly complex understanding of the activities and interactions of the core clock proteins. In this Review, we highlight such contemporary work on non-transcriptional events and set it within our current understanding of cellular circadian timekeeping.
Collapse
Affiliation(s)
- Priya Crosby
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| |
Collapse
|
21
|
Marcheva B, Perelis M, Weidemann BJ, Taguchi A, Lin H, Omura C, Kobayashi Y, Newman MV, Wyatt EJ, McNally EM, Fox JEM, Hong H, Shankar A, Wheeler EC, Ramsey KM, MacDonald PE, Yeo GW, Bass J. A role for alternative splicing in circadian control of exocytosis and glucose homeostasis. Genes Dev 2020; 34:1089-1105. [PMID: 32616519 PMCID: PMC7397853 DOI: 10.1101/gad.338178.120] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/10/2020] [Indexed: 11/24/2022]
Abstract
The circadian clock is encoded by a negative transcriptional feedback loop that coordinates physiology and behavior through molecular programs that remain incompletely understood. Here, we reveal rhythmic genome-wide alternative splicing (AS) of pre-mRNAs encoding regulators of peptidergic secretion within pancreatic β cells that are perturbed in Clock-/- and Bmal1-/- β-cell lines. We show that the RNA-binding protein THRAP3 (thyroid hormone receptor-associated protein 3) regulates circadian clock-dependent AS by binding to exons at coding sequences flanking exons that are more frequently skipped in clock mutant β cells, including transcripts encoding Cask (calcium/calmodulin-dependent serine protein kinase) and Madd (MAP kinase-activating death domain). Depletion of THRAP3 restores expression of the long isoforms of Cask and Madd, and mimicking exon skipping in these transcripts through antisense oligonucleotide delivery in wild-type islets reduces glucose-stimulated insulin secretion. Finally, we identify shared networks of alternatively spliced exocytic genes from islets of rodent models of diet-induced obesity that significantly overlap with clock mutants. Our results establish a role for pre-mRNA alternative splicing in β-cell function across the sleep/wake cycle.
Collapse
Affiliation(s)
- Biliana Marcheva
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Mark Perelis
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Benjamin J Weidemann
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Akihiko Taguchi
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Haopeng Lin
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Chiaki Omura
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Yumiko Kobayashi
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Marsha V Newman
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Eugene J Wyatt
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Jocelyn E Manning Fox
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Heekyung Hong
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Archana Shankar
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Emily C Wheeler
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Kathryn Moynihan Ramsey
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Patrick E MacDonald
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
22
|
Režen T, Zmrzljak UP, Bensa T, Tomaš TC, Cirnski K, Stojan J, Rozman D. Novel insights into biological roles of inducible cAMP early repressor ICER. Biochem Biophys Res Commun 2020; 530:396-401. [PMID: 32534736 DOI: 10.1016/j.bbrc.2020.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/03/2020] [Indexed: 11/16/2022]
Abstract
ICER corresponds to a group of alternatively spliced Inducible cAMP Early Repressors with high similarity, but multiple roles, including in circadian rhythm, and are involved in attenuation of cAMP-dependent gene expression. We present experimental and in silico data revealing biological differences between the isoforms with exon gamma (ICER) or without it (ICERγ). Both isoforms are expressed in the liver and the adrenal glands and can derive from differential splicing. In adrenals the expression is circadian, with maximum at ZT12 and higher amplitude of Icerγ. In the liver, the expression of Icerγ is lower than Icer in the 24 h time frame. Icer mRNA has a delayed early response to forskolin. The longer ICER protein binds to three DNA grooves of the Per1 promoter, while ICERγ only to two, as deduced by molecular modelling. This is in line with gel shift competition assays showing stronger binding of ICER to Per1 promotor. Only Icerγ siRNA provoked an increase of Per1 expression. In conclusion, we show that ICER and ICERγ have distinct biochemical properties in tissue expression, DNA binding, and response to forskolin. Data are in favour of ICERγ as the physiologically important form in hepatic cells where weaker binding of repressor might be preferred in guiding the cAMP-dependent response.
Collapse
Affiliation(s)
- Tadeja Režen
- Centre for Functional Genomics and Bio-Chip, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia; Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Uršula Prosenc Zmrzljak
- Centre for Functional Genomics and Bio-Chip, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia; Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Tjaša Bensa
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Tanja Cvitanović Tomaš
- Centre for Functional Genomics and Bio-Chip, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia; Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Katarina Cirnski
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Jure Stojan
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chip, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia; Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia.
| |
Collapse
|
23
|
Malaria parasites regulate intra-erythrocytic development duration via serpentine receptor 10 to coordinate with host rhythms. Nat Commun 2020; 11:2763. [PMID: 32488076 PMCID: PMC7265539 DOI: 10.1038/s41467-020-16593-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 05/04/2020] [Indexed: 01/23/2023] Open
Abstract
Malaria parasites complete their intra-erythrocytic developmental cycle (IDC) in multiples of 24 h suggesting a circadian basis, but the mechanism controlling this periodicity is unknown. Combining in vivo and in vitro approaches utilizing rodent and human malaria parasites, we reveal that: (i) 57% of Plasmodium chabaudi genes exhibit daily rhythms in transcription; (ii) 58% of these genes lose transcriptional rhythmicity when the IDC is out-of-synchrony with host rhythms; (iii) 6% of Plasmodium falciparum genes show 24 h rhythms in expression under free-running conditions; (iv) Serpentine receptor 10 (SR10) has a 24 h transcriptional rhythm and disrupting it in rodent malaria parasites shortens the IDC by 2-3 h; (v) Multiple processes including DNA replication, and the ubiquitin and proteasome pathways, are affected by loss of coordination with host rhythms and by disruption of SR10. Our results reveal malaria parasites are at least partly responsible for scheduling the IDC and coordinating their development with host daily rhythms. The mechanism underlying periodicity of Plasmodium’s intra-erythrocytic developmental cycle (IDC) is unclear. Here, Subudhi et al. show that serpentine receptor 10 (SR10) plays a role in regulating the schedule of the IDC in line with the timing of host daily rhythms.
Collapse
|
24
|
Wang XL, Wang DQ, Jiao FC, Ding KM, Ji YB, Lu L, Yuan K, Gao GF, Li SX. Diurnal rhythm disruptions induced by chronic unpredictable stress relate to depression-like behaviors in rats. Pharmacol Biochem Behav 2020; 194:172939. [PMID: 32437704 DOI: 10.1016/j.pbb.2020.172939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 11/27/2022]
Abstract
The relationship between circadian rhythms and mood disorders has been established, circadian dysregulations are believed to exacerbate the severity of mood disorders and vice versa. Although many studies on diurnal changes of clock genes in animal model of depression have been performed from the RNA level, only a few studies have been carried out from the protein level. In this study, we investigated the diurnal changes induced by chronic unpredictable stress (CUS) using various methods, including free-running wheel test, enzyme-linked immunosorbent assay (ELISA) and Western Blotting (WB). Besides, we examined the depression-like behaviors of rats by sucrose preference test (SPT) and forced swim test (FST). We found that CUS induced significant reductions in the quantity of free-running wheel activity and the amplitude of melatonin secretion rhythm. We also found that CUS induced rhythmic disruptions of clock proteins in hippocampus. Furthermore, we found that the amplitude of PER1 in CA1 was positively related to the severity of depression-like behaviors. These results suggest that stress results in both changes in circadian rhythms and in depression-like behaviors and that it is suggested that these changes are related.
Collapse
Affiliation(s)
- Xin-Ling Wang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing101408, China; National Institute on Drug Dependence, Peking University, Beijing100191, China; Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing100191, China
| | - De-Quan Wang
- National Institute on Drug Dependence, Peking University, Beijing100191, China; Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing100191, China
| | - Fu-Chao Jiao
- Qingdao Agricultural University, Qingdao266109, China
| | - Kai-Mo Ding
- National Institute on Drug Dependence, Peking University, Beijing100191, China; Zhenjiang Mental Health Center, Zhenjiang, Jiangsu Province, China; Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing100191, China
| | - Yan-Bin Ji
- National Institute on Drug Dependence, Peking University, Beijing100191, China; Center of Psychiatry, Anhui Medical University, Mental Health Center of Anhui Province, Hefei230032, China; Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing100191, China
| | - Lin Lu
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing101408, China; National Institute on Drug Dependence, Peking University, Beijing100191, China; Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health, Peking University, Beijing100191, China; Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing100191, China; Peking University Sixth Hospital, Peking University, Beijing100191, China
| | - Kai Yuan
- Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health, Peking University, Beijing100191, China; Peking University Sixth Hospital, Peking University, Beijing100191, China
| | - George Fu Gao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing101408, China; Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing100101, China; Chinese Center for Disease Control and Prevention, Beijing102206, China.
| | - Su-Xia Li
- National Institute on Drug Dependence, Peking University, Beijing100191, China; Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing100191, China.
| |
Collapse
|
25
|
Yang Y, Li Y, Sancar A, Oztas O. The circadian clock shapes the Arabidopsis transcriptome by regulating alternative splicing and alternative polyadenylation. J Biol Chem 2020; 295:7608-7619. [PMID: 32303634 DOI: 10.1074/jbc.ra120.013513] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/10/2020] [Indexed: 01/24/2023] Open
Abstract
The circadian clock in plants temporally coordinates biological processes throughout the day, synchronizing gene expression with diurnal environmental changes. Circadian oscillator proteins are known to regulate the expression of clock-controlled plant genes by controlling their transcription. Here, using a high-throughput RNA-Seq approach, we examined genome-wide circadian and diurnal control of the Arabidopsis transcriptome, finding that the oscillation patterns of different transcripts of multitranscript genes can exhibit substantial differences and demonstrating that the circadian clock affects posttranscriptional regulation. In parallel, we found that two major posttranscriptional mechanisms, alternative splicing (AS; especially intron retention) and alternative polyadenylation (APA), display circadian rhythmicity resulting from oscillation in the genes involved in AS and APA. Moreover, AS-related genes exhibited rhythmic AS and APA regulation, adding another layer of complexity to circadian regulation of gene expression. We conclude that the Arabidopsis circadian clock not only controls transcription of genes but also affects their posttranscriptional regulation by influencing alternative splicing and alternative polyadenylation.
Collapse
Affiliation(s)
- Yuchen Yang
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina.,Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina.,Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| | - Onur Oztas
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
26
|
hnRNP K Supports High-Amplitude D Site-Binding Protein mRNA ( Dbp mRNA) Oscillation To Sustain Circadian Rhythms. Mol Cell Biol 2020; 40:MCB.00537-19. [PMID: 31907279 DOI: 10.1128/mcb.00537-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/20/2019] [Indexed: 01/24/2023] Open
Abstract
Circadian gene expression is defined by the gene-specific phase and amplitude of daily oscillations in mRNA and protein levels. D site-binding protein mRNA (Dbp mRNA) shows high-amplitude oscillation; however, the underlying mechanism remains elusive. Here, we demonstrate that heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a key regulator that activates Dbp transcription via the poly(C) motif within its proximal promoter. Biochemical analyses identified hnRNP K as a specific protein that directly associates with the poly(C) motif in vitro Interestingly, we further confirmed the rhythmic binding of endogenous hnRNP K within the Dbp promoter through chromatin immunoprecipitation as well as the cycling expression of hnRNP K. Finally, knockdown of hnRNP K decreased mRNA oscillation in both Dbp and Dbp-dependent clock genes. Taken together, our results show rhythmic protein expression of hnRNP K and provide new insights into its function as a transcriptional amplifier of Dbp.
Collapse
|
27
|
Tatullo M, Codispoti B, Spagnuolo G, Zavan B. Human Periapical Cyst-Derived Stem Cells Can Be A Smart "Lab-on-A-Cell" to Investigate Neurodegenerative Diseases and the Related Alteration of the Exosomes' Content. Brain Sci 2019; 9:E358. [PMID: 31817546 PMCID: PMC6955839 DOI: 10.3390/brainsci9120358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Promising researches have demonstrated that the alteration of biological rhythms may be consistently linked to neurodegenerative pathologies. Parkinson's disease (PD) has a multifactorial pathogenesis, involving both genetic and environmental and/or molecular co-factors. Generally, heterogeneous alterations in circadian rhythm (CR) are a typical finding in degenerative processes, such as cell aging and death. Although numerous genetic phenotypes have been discovered in the most common forms of PD, it seems that severe deficiencies in synaptic transmission and high vesicular recycling are frequently found in PD patients. Neuron-to-neuron interactions are often ensured by exosomes, a specific type of extracellular vesicle (EV). Neuron-derived exosomes may carry several active compounds, including miRNAs: Several studies have found that circulating miRNAs are closely associated with an atypical oscillation of circadian rhythm genes, and they are also involved in the regulation of clock genes, in animal models. In this context, a careful analysis of neural-differentiated Mesenchymal Stem Cells (MSCs) and the molecular and genetic characterization of their exosome content, both in healthy cells and in PD-induced cells, could be a strategic field of investigation for early diagnosis and better treatment of PD and similar neurodegenerative pathologies. A novel MSC population, called human periapical cyst-mesenchymal stem cells (hPCy-MSCs), has demonstrated that it naively expresswa the main neuronal markers, and may differentiate towards functional neurons. Therefore, hPCy-MSCs can be considered of particular interest for testing of in vitro strategies to treat neurological diseases. On the other hand, the limitations of using stem cells is an issue that leads researchers to perform experimental studies on the exosomes released by MCSs. Human periapical cyst-derived mesenkymal stem cells can be a smart "lab-on-a-cell" to investigate neurodegenerative diseases and the related exosomes' content alteration.
Collapse
Affiliation(s)
- Marco Tatullo
- Marelli Health, Tecnologica Research Institute, Stem Cell Unit, 88900 Crotone, Italy;
- Department of Therapeutic Dentistry, Sechenov University Russia, 19c1 Moscow, Russia
| | - Bruna Codispoti
- Marelli Health, Tecnologica Research Institute, Stem Cell Unit, 88900 Crotone, Italy;
| | - Gianrico Spagnuolo
- Department of Therapeutic Dentistry, Sechenov University Russia, 19c1 Moscow, Russia
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples, 80138 Napoli, Italy
| | - Barbara Zavan
- Department of Medical Sciences, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
| |
Collapse
|
28
|
Kinouchi K, Magnan C, Ceglia N, Liu Y, Cervantes M, Pastore N, Huynh T, Ballabio A, Baldi P, Masri S, Sassone-Corsi P. Fasting Imparts a Switch to Alternative Daily Pathways in Liver and Muscle. Cell Rep 2019; 25:3299-3314.e6. [PMID: 30566858 DOI: 10.1016/j.celrep.2018.11.077] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 09/08/2018] [Accepted: 11/19/2018] [Indexed: 01/09/2023] Open
Abstract
The circadian clock operates as intrinsic time-keeping machinery to preserve homeostasis in response to the changing environment. While food is a known zeitgeber for clocks in peripheral tissues, it remains unclear how lack of food influences clock function. We demonstrate that the transcriptional response to fasting operates through molecular mechanisms that are distinct from time-restricted feeding regimens. First, fasting affects core clock genes and proteins, resulting in blunted rhythmicity of BMAL1 and REV-ERBα both in liver and skeletal muscle. Second, fasting induces a switch in temporal gene expression through dedicated fasting-sensitive transcription factors such as GR, CREB, FOXO, TFEB, and PPARs. Third, the rhythmic genomic response to fasting is sustainable by prolonged fasting and reversible by refeeding. Thus, fasting imposes specialized dynamics of transcriptional coordination between the clock and nutrient-sensitive pathways, thereby achieving a switch to fasting-specific temporal gene regulation.
Collapse
Affiliation(s)
- Kenichiro Kinouchi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, U1233 INSERM, University of California, Irvine, Irvine, CA 92697, USA
| | - Christophe Magnan
- Department of Computer Science, Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697, USA
| | - Nicholas Ceglia
- Department of Computer Science, Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697, USA
| | - Yu Liu
- Department of Computer Science, Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697, USA
| | - Marlene Cervantes
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, U1233 INSERM, University of California, Irvine, Irvine, CA 92697, USA
| | - Nunzia Pastore
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tuong Huynh
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrea Ballabio
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Naples, Italy
| | - Pierre Baldi
- Department of Computer Science, Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697, USA
| | - Selma Masri
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, U1233 INSERM, University of California, Irvine, Irvine, CA 92697, USA
| | - Paolo Sassone-Corsi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, U1233 INSERM, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
29
|
Abstract
Circadian clocks drive daily rhythms of physiology and behavior in multiple organisms and synchronize these rhythms to environmental cycles of light and temperature. The basic mechanism of the clock consists of a transcription-translation feedback loop, in which key clock proteins negatively regulate their own transcription. Although much of the focus with respect to clock mechanisms has been on the regulation of transcription and on the stability and activity of clock proteins, it is clear that other regulatory processes also have to be involved to explain aspects of clock function. Here, we review the role of alternative splicing in circadian clocks. Starting with a discussion of the Drosophila clock and then extending to other major circadian model systems, we describe how the control of alternative splicing enables organisms to maintain their circadian clocks as well as to respond to environmental inputs, in particular to temperature changes.
Collapse
Affiliation(s)
- Iryna Shakhmantsir
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amita Sehgal
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
30
|
Regulation of the Neurospora Circadian Clock by the Spliceosome Component PRP5. G3-GENES GENOMES GENETICS 2019; 9:3653-3661. [PMID: 31511298 PMCID: PMC6829141 DOI: 10.1534/g3.119.400500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Increasing evidence has pointed to the connection between pre-mRNA splicing and the circadian clock; however, the underlying mechanisms of this connection remain largely elusive. In the filamentous fungus Neurospora crassa, the core circadian clock elements comprise White Collar 1 (WC-1), WC-2 and FREQUENCY (FRQ), which form a negative feedback loop to control the circadian rhythms of gene expression and physiological processes. Previously, we have shown that in Neurospora, the pre-mRNA splicing factors Pre-mRNA-processing ATP-dependent RNA helicase 5 (PRP5), protein arginine methyl transferase 5 (PRMT5) and snRNA gene U4-2 are involved in the regulation of splicing of frq transcripts, which encode the negative component of the circadian clock system. In this work we further demonstrated that repression of spliceosomal component sRNA genes, U5, U4-1, and prp5, affected the circadian conidiation rhythms. In a prp5 knockdown strain, the molecular rhythmicity was dampened. The expression of a set of snRNP genes including prp5 was up-regulated in a mutant strain lacking the clock component wc-2, suggesting that the function of spliceosome might be under the circadian control. Among these snRNP genes, the levels of prp5 RNA and PRP5 protein oscillated. The distribution of PRP5 in cytosol was rhythmic, suggesting a dynamic assembly of PRP5 in the spliceosome complex in a circadian fashion. Silencing of prp5 caused changes in the transcription and splicing of NCU09649, a clock-controlled gene. Moreover, in the clock mutant frq9, the rhythmicity of frq I-6 splicing was abolished. These data shed new lights on the regulation of circadian clock by the pre-RNA splicing, and PRP5 may link the circadian clock and pre-RNA splicing events through mediating the assembly and function of the spliceosome complex.
Collapse
|
31
|
El-Athman R, Knezevic D, Fuhr L, Relógio A. A Computational Analysis of Alternative Splicing across Mammalian Tissues Reveals Circadian and Ultradian Rhythms in Splicing Events. Int J Mol Sci 2019; 20:E3977. [PMID: 31443305 PMCID: PMC6721216 DOI: 10.3390/ijms20163977] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/03/2019] [Accepted: 08/10/2019] [Indexed: 02/07/2023] Open
Abstract
Mounting evidence points to a role of the circadian clock in the temporal regulation of post-transcriptional processes in mammals, including alternative splicing (AS). In this study, we carried out a computational analysis of circadian and ultradian rhythms on the transcriptome level to characterise the landscape of rhythmic AS events in published datasets covering 76 tissues from mouse and olive baboon. Splicing-related genes with 24-h rhythmic expression patterns showed a bimodal distribution of peak phases across tissues and species, indicating that they might be controlled by the circadian clock. On the output level, we identified putative oscillating AS events in murine microarray data and pairs of differentially rhythmic splice isoforms of the same gene in baboon RNA-seq data that peaked at opposing times of the day and included oncogenes and tumour suppressors. We further explored these findings using a new circadian RNA-seq dataset of human colorectal cancer cell lines. Rhythmic isoform expression patterns differed between the primary tumour and the metastatic cell line and were associated with cancer-related biological processes, indicating a functional role of rhythmic AS that might be implicated in tumour progression. Our data shows that rhythmic AS events are widespread across mammalian tissues and might contribute to a temporal diversification of the proteome.
Collapse
Affiliation(s)
- Rukeia El-Athman
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
- Medical Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum (MKFZ), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Dora Knezevic
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
- Medical Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum (MKFZ), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Luise Fuhr
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
- Medical Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum (MKFZ), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany.
- Medical Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum (MKFZ), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
| |
Collapse
|
32
|
A bioinformatic analysis identifies circadian expression of splicing factors and time-dependent alternative splicing events in the HD-MY-Z cell line. Sci Rep 2019; 9:11062. [PMID: 31363108 PMCID: PMC6667479 DOI: 10.1038/s41598-019-47343-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022] Open
Abstract
The circadian clock regulates key cellular processes and its dysregulation is associated to several pathologies including cancer. Although the transcriptional regulation of gene expression by the clock machinery is well described, the role of the clock in the regulation of post-transcriptional processes, including splicing, remains poorly understood. In the present work, we investigated the putative interplay between the circadian clock and splicing in a cancer context. For this, we applied a computational pipeline to identify oscillating genes and alternatively spliced transcripts in time-course high-throughput data sets from normal cells and tissues, and cancer cell lines. We investigated the temporal phenotype of clock-controlled genes and splicing factors, and evaluated their impact in alternative splice patterns in the Hodgkin Lymphoma cell line HD-MY-Z. Our data points to a connection between clock-controlled genes and splicing factors, which correlates with temporal alternative splicing in several genes in the HD-MY-Z cell line. These include the genes DPYD, SS18, VIPR1 and IRF4, involved in metabolism, cell cycle, apoptosis and proliferation. Our results highlight a role for the clock as a temporal regulator of alternative splicing, which may impact malignancy in this cellular model.
Collapse
|
33
|
Cedernaes J, Huang W, Ramsey KM, Waldeck N, Cheng L, Marcheva B, Omura C, Kobayashi Y, Peek CB, Levine DC, Dhir R, Awatramani R, Bradfield CA, Wang XA, Takahashi JS, Mokadem M, Ahima RS, Bass J. Transcriptional Basis for Rhythmic Control of Hunger and Metabolism within the AgRP Neuron. Cell Metab 2019; 29:1078-1091.e5. [PMID: 30827863 PMCID: PMC6506361 DOI: 10.1016/j.cmet.2019.01.023] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 11/12/2018] [Accepted: 01/30/2019] [Indexed: 12/12/2022]
Abstract
The alignment of fasting and feeding with the sleep/wake cycle is coordinated by hypothalamic neurons, though the underlying molecular programs remain incompletely understood. Here, we demonstrate that the clock transcription pathway maximizes eating during wakefulness and glucose production during sleep through autonomous circadian regulation of NPY/AgRP neurons. Tandem profiling of whole-cell and ribosome-bound mRNAs in morning and evening under dynamic fasting and fed conditions identified temporal control of activity-dependent gene repertoires in AgRP neurons central to synaptogenesis, bioenergetics, and neurotransmitter and peptidergic signaling. Synaptic and circadian pathways were specific to whole-cell RNA analyses, while bioenergetic pathways were selectively enriched in the ribosome-bound transcriptome. Finally, we demonstrate that the AgRP clock mediates the transcriptional response to leptin. Our results reveal that time-of-day restriction in transcriptional control of energy-sensing neurons underlies the alignment of hunger and food acquisition with the sleep/wake state.
Collapse
Affiliation(s)
- Jonathan Cedernaes
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Medical Sciences, Uppsala University, Uppsala SE-75124, Sweden
| | - Wenyu Huang
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kathryn Moynihan Ramsey
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nathan Waldeck
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lei Cheng
- Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA
| | - Biliana Marcheva
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Chiaki Omura
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yumiko Kobayashi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Clara Bien Peek
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Daniel C Levine
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ravindra Dhir
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raj Awatramani
- Department of Neurology and Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Christopher A Bradfield
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison, WI 53706, USA
| | - Xiaozhong A Wang
- Department of Molecular Sciences, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA
| | - Joseph S Takahashi
- Department of Neuroscience and Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mohamad Mokadem
- Division of Gastroenterology and Hepatology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa, IA 52242, USA
| | - Rexford S Ahima
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joseph Bass
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
34
|
Hannou L, Bélanger-Nelson E, O'Callaghan EK, Dufort-Gervais J, Ballester Roig MN, Roy PG, Beaulieu JM, Cermakian N, Mongrain V. Regulation of the Neuroligin-1 Gene by Clock Transcription Factors. J Biol Rhythms 2019; 33:166-178. [PMID: 29671709 DOI: 10.1177/0748730418761236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
NEUROLIGIN-1 (NLGN1) is a postsynaptic adhesion molecule involved in the regulation of glutamatergic transmission. It has been associated with several features of sleep and psychiatric disorders. Our previous work suggested that transcription of the Nlgn1 gene could be regulated by the transcription factors CLOCK and BMAL1 because they bind to the Nlgn1 gene promoter in vivo. However, whether CLOCK/BMAL1 can directly activate Nlgn1 transcription is not yet known. We thus aimed to verify whether CLOCK/BMAL1, as well as their homologs NPAS2 and BMAL2, can activate transcription via the Nlgn1 promoter by using luciferase assays in COS-7 cells. We also investigated how Nlgn1 expression was affected in Clock mutant mice. Our results show transcriptional activation in vitro mediated by CLOCK/BMAL1 and by combinations with their homologs NPAS2 and BMAL2. Moreover, CLOCK/BMAL1 activation via the Nlgn1 gene fragment was repressed by GSK3β. In vivo, Nlgn1 mRNA expression was significantly modified in the forebrain of Clock mutant mice in a transcript variant-dependent manner. However, no significant change in NLGN1 protein level was observed in Clock mutant mice. These findings will increase knowledge about the transcriptional regulation of Nlgn1 and the relationship between circadian rhythms, mental health, and sleep.
Collapse
Affiliation(s)
- Lydia Hannou
- Department of Psychiatry, Université de Montréal, Montreal, Quebec, Canada.,Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec, Canada
| | - Erika Bélanger-Nelson
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec, Canada
| | - Emma K O'Callaghan
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec, Canada.,Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
| | - Julien Dufort-Gervais
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec, Canada.,Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada
| | - Maria Neus Ballester Roig
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec, Canada.,Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
| | - Pierre-Gabriel Roy
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec, Canada.,Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Martin Beaulieu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Nicolas Cermakian
- Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Valérie Mongrain
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Cœur de Montréal, Montreal, Quebec, Canada.,Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
35
|
A-to-I RNA editing enzyme ADAR2 regulates light-induced circadian phase-shift. Sci Rep 2018; 8:14848. [PMID: 30287844 PMCID: PMC6172258 DOI: 10.1038/s41598-018-33114-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/20/2018] [Indexed: 12/02/2022] Open
Abstract
In mammals, the central circadian clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus and it orchestrates peripheral clocks in the whole body to organize physiological and behavioral rhythms. Light-induced phase-shift of the SCN clock enables synchronization of the circadian clock system with 24-h environmental light/dark cycle. We previously found that adenosine deaminase acting on RNA 2 (Adar2), an A-to-I RNA editing enzyme catalyzing rhythmic A-to-I RNA editing, governs a wide range of mRNA rhythms in the mouse liver and regulates the circadian behavior. In brain, ADAR2-mediated A-to-I RNA editing was reported to occur in various transcripts encoding ion channels and neurotransmitter receptors, which could influence neuronal function of the SCN. Here we show that ADAR2 plays a crucial role for light-induced phase-shift of the circadian clock. Intriguingly, exposure of Adar2-knockout mice to a light pulse at late night caused an aberrant phase-advance of the locomotor rhythms. By monitoring the bioluminescence rhythms of the mutant SCN slices, we found that a phase-advance induced by treatment with pituitary adenylyl cyclase-activating polypeptide (PACAP) was markedly attenuated. The present study suggests that A-to-I RNA editing in the SCN regulates a proper phase response to light in the mouse circadian system.
Collapse
|
36
|
El-Athman R, Fuhr L, Relógio A. A Systems-Level Analysis Reveals Circadian Regulation of Splicing in Colorectal Cancer. EBioMedicine 2018; 33:68-81. [PMID: 29936137 PMCID: PMC6085510 DOI: 10.1016/j.ebiom.2018.06.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/28/2018] [Accepted: 06/11/2018] [Indexed: 12/26/2022] Open
Abstract
Accumulating evidence points to a significant role of the circadian clock in the regulation of splicing in various organisms, including mammals. Both dysregulated circadian rhythms and aberrant pre-mRNA splicing are frequently implicated in human disease, in particular in cancer. To investigate the role of the circadian clock in the regulation of splicing in a cancer progression context at the systems-level, we conducted a genome-wide analysis and compared the rhythmic transcriptional profiles of colon carcinoma cell lines SW480 and SW620, derived from primary and metastatic sites of the same patient, respectively. We identified spliceosome components and splicing factors with cell-specific circadian expression patterns including SRSF1, HNRNPLL, ESRP1, and RBM 8A, as well as altered alternative splicing events and circadian alternative splicing patterns of output genes (e.g., VEGFA, NCAM1, FGFR2, CD44) in our cellular model. Our data reveals a remarkable interplay between the circadian clock and pre-mRNA splicing with putative consequences in tumor progression and metastasis.
Collapse
Affiliation(s)
- Rukeia El-Athman
- Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Germany; Medical Department of Hematology, Oncology, and Tumor Immunology, Molekulares Krebsforschungszentrum (MKFZ), Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Germany
| | - Luise Fuhr
- Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Germany; Medical Department of Hematology, Oncology, and Tumor Immunology, Molekulares Krebsforschungszentrum (MKFZ), Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Germany
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Germany; Medical Department of Hematology, Oncology, and Tumor Immunology, Molekulares Krebsforschungszentrum (MKFZ), Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Germany.
| |
Collapse
|
37
|
Wang Q, Abruzzi KC, Rosbash M, Rio DC. Striking circadian neuron diversity and cycling of Drosophila alternative splicing. eLife 2018; 7:35618. [PMID: 29863472 PMCID: PMC6025963 DOI: 10.7554/elife.35618] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/31/2018] [Indexed: 11/13/2022] Open
Abstract
Although alternative pre-mRNA splicing (AS) significantly diversifies the neuronal proteome, the extent of AS is still unknown due in part to the large number of diverse cell types in the brain. To address this complexity issue, we used an annotation-free computational method to analyze and compare the AS profiles between small specific groups of Drosophila circadian neurons. The method, the Junction Usage Model (JUM), allows the comprehensive profiling of both known and novel AS events from specific RNA-seq libraries. The results show that many diverse and novel pre-mRNA isoforms are preferentially expressed in one class of clock neuron and also absent from the more standard Drosophila head RNA preparation. These AS events are enriched in potassium channels important for neuronal firing, and there are also cycling isoforms with no detectable underlying transcriptional oscillations. The results suggest massive AS regulation in the brain that is also likely important for circadian regulation.
Collapse
Affiliation(s)
- Qingqing Wang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Center for RNA Systems Biology (CRSB), University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, United States
| | - Katharine C Abruzzi
- Department of Biology, Howard Hughes Medical Institute, Brandeis University, Waltham, United States.,National Center for Behavior Genomics, Brandeis University, Waltham, United States
| | - Michael Rosbash
- Department of Biology, Howard Hughes Medical Institute, Brandeis University, Waltham, United States.,National Center for Behavior Genomics, Brandeis University, Waltham, United States
| | - Donald C Rio
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Center for RNA Systems Biology (CRSB), University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, United States
| |
Collapse
|
38
|
Preußner M, Heyd F. Temperature‐controlled Rhythmic Gene Expression in Endothermic Mammals: All Diurnal Rhythms are Equal, but Some are Circadian. Bioessays 2018; 40:e1700216. [DOI: 10.1002/bies.201700216] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 05/03/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Marco Preußner
- Laboratory of RNA BiochemistryInstitute of Chemistry and BiochemistryFreie Universität Berlin Takustrasse 6Berlin14195Germany
| | - Florian Heyd
- Laboratory of RNA BiochemistryInstitute of Chemistry and BiochemistryFreie Universität Berlin Takustrasse 6Berlin14195Germany
| |
Collapse
|
39
|
Green CB. Circadian Posttranscriptional Regulatory Mechanisms in Mammals. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a030692. [PMID: 28778869 DOI: 10.1101/cshperspect.a030692] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The circadian clock drives rhythms in the levels of thousands of proteins in the mammalian cell, arising in part from rhythmic transcriptional regulation of the genes that encode them. However, recent evidence has shown that posttranscriptional processes also play a major role in generating the rhythmic protein makeup and ultimately the rhythmic physiology of the cell. Regulation of steps throughout the life of the messenger RNA (mRNA), ranging from initial mRNA processing and export from the nucleus to extensive control of translation and degradation in the cytosol have been shown to be important for producing the final rhythms in protein levels critical for proper circadian rhythmicity. These findings will be reviewed here.
Collapse
Affiliation(s)
- Carla B Green
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| |
Collapse
|
40
|
Epigenetics of Circadian Rhythms in Imprinted Neurodevelopmental Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:67-92. [PMID: 29933957 DOI: 10.1016/bs.pmbts.2017.11.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
DNA sequence information alone cannot account for the immense variability between chromosomal alleles within diverse cell types in the brain, whether these differences are observed across time, cell type, or parental origin. The complex control and maintenance of gene expression and modulation are regulated by a multitude of molecular and cellular mechanisms that layer on top of the genetic code. The integration of genetic and environmental signals required for regulating brain development and function is achieved in part by a dynamic epigenetic landscape that includes DNA methylation, histone modifications, and noncoding RNAs. These epigenetic mechanisms establish and maintain core biological processes, including genomic imprinting and entrainment of circadian rhythms. This chapter will focus on how the epigenetic layers of DNA methylation and long, noncoding RNAs interact with circadian rhythms at specific imprinted chromosomal loci associated with the human neurodevelopmental disorders Prader-Willi, Angelman, Kagami-Ogata, and Temple syndromes.
Collapse
|
41
|
Aitken S, Semple CA. The circadian dynamics of small nucleolar RNA in the mouse liver. J R Soc Interface 2018; 14:rsif.2017.0034. [PMID: 28468917 PMCID: PMC5454292 DOI: 10.1098/rsif.2017.0034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/12/2017] [Indexed: 12/30/2022] Open
Abstract
The circadian regulation of gene expression allows plants and animals to anticipate predictable environmental changes. While the influence of the circadian clock has recently been shown to extend to ribosome biogenesis, the dynamics and regulation of the many small nucleolar RNA that are required in pre-ribosomal RNA folding and modification are unknown. Using a novel computational method, we show that 18S and 28S pre-rRNA are subject to circadian regulation in a nuclear RNA sequencing time course. A population of snoRNA with circadian expression is identified that is functionally associated with rRNA modification. More generally, we find the abundance of snoRNA known to modify 18S and 28S to be inversely correlated with the abundance of their target. Cyclic patterns in the expression of a number of snoRNA indicate a coordination with rRNA maturation, potentially through an upregulation in their biogenesis, or their release from mature rRNA at the end of the previous cycle of rRNA maturation, in antiphase with the diurnal peak in pre-rRNA. Few cyclic snoRNA have cyclic host genes, indicating the action of regulatory mechanisms in addition to transcriptional activation of the host gene. For highly expressed independently transcribed snoRNA, we find a characteristic RNA polymerase II and H3K4me3 signature that correlates with mean snoRNA expression over the day.
Collapse
Affiliation(s)
- Stuart Aitken
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Colin A Semple
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
42
|
Torres M, Becquet D, Franc JL, François-Bellan AM. Circadian processes in the RNA life cycle. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1467. [PMID: 29424086 DOI: 10.1002/wrna.1467] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/24/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022]
Abstract
The circadian clock drives daily rhythms of multiple physiological processes, allowing organisms to anticipate and adjust to periodic changes in environmental conditions. These physiological rhythms are associated with robust oscillations in the expression of at least 30% of expressed genes. While the ability for the endogenous timekeeping system to generate a 24-hr cycle is a cell-autonomous mechanism based on negative autoregulatory feedback loops of transcription and translation involving core-clock genes and their protein products, it is now increasingly evident that additional mechanisms also govern the circadian oscillations of clock-controlled genes. Such mechanisms can take place post-transcriptionally during the course of the RNA life cycle. It has been shown that many steps during RNA processing are regulated in a circadian manner, thus contributing to circadian gene expression. These steps include mRNA capping, alternative splicing, changes in splicing efficiency, and changes in RNA stability controlled by the tail length of polyadenylation or the use of alternative polyadenylation sites. RNA transport can also follow a circadian pattern, with a circadian nuclear retention driven by rhythmic expression within the nucleus of particular bodies (the paraspeckles) and circadian export to the cytoplasm driven by rhythmic proteins acting like cargo. Finally, RNA degradation may also follow a circadian pattern through the rhythmic involvement of miRNAs. In this review, we summarize the current knowledge of the post-transcriptional circadian mechanisms known to play a prominent role in shaping circadian gene expression in mammals. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Processing > RNA Editing and Modification RNA Export and Localization > Nuclear Export/Import.
Collapse
Affiliation(s)
- Manon Torres
- CNRS, CRN2M-UMR7286, Faculté de Médecine Nord, Aix-Marseille Université, Marseille, France
| | - Denis Becquet
- CNRS, CRN2M-UMR7286, Faculté de Médecine Nord, Aix-Marseille Université, Marseille, France
| | - Jean-Louis Franc
- CNRS, CRN2M-UMR7286, Faculté de Médecine Nord, Aix-Marseille Université, Marseille, France
| | | |
Collapse
|
43
|
Abstract
In most organisms, gene expression over the course of the day is under the control of the circadian clock. The canonical clock operates as a gene expression circuit that is controlled at the level of transcription, and transcriptional control is also a major clock output. However, rhythmic transcription cannot explain all the observed rhythms in protein accumulation. Although it is clear that rhythmic gene expression also involves RNA processing and protein turnover, until two years ago little was known in any eukaryote about diel dynamics of mRNA translation into protein. A recent series of studies in animals and plants demonstrated that diel cycles of translation efficiency are widespread across the tree of life and its transcriptomes. There are surprising parallels between the patterns of diel translation in mammals and plants. For example, ribosomal proteins and mitochondrial proteins are under translational control in mouse liver, human tissue culture, and Arabidopsis seedlings. In contrast, the way in which the circadian clock, light-dark changes, and other environmental factors such as nutritional signals interact to drive the cycles of translation may differ between organisms. Further investigation is needed to identify the signaling pathways, biochemical mechanisms, RNA sequence features, and the physiological implications of diel translation.
Collapse
Affiliation(s)
- Sarah Catherine Mills
- a Department of Biochemistry and Cellular & Molecular Biology , The University of Tennessee , Knoxville , TN , USA
| | - Ramya Enganti
- a Department of Biochemistry and Cellular & Molecular Biology , The University of Tennessee , Knoxville , TN , USA
| | - Albrecht G von Arnim
- a Department of Biochemistry and Cellular & Molecular Biology , The University of Tennessee , Knoxville , TN , USA.,b UT-ORNL Graduate School of Genome Science and Technology , The University of Tennessee , Knoxville , TN , USA
| |
Collapse
|
44
|
Lai B, Zou J, Lin Z, Qu Z, Song A, Xu Y, Gao X. Haploinsufficiency of hnRNP U Changes Activity Pattern and Metabolic Rhythms. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:173-183. [PMID: 29128567 DOI: 10.1016/j.ajpath.2017.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/26/2017] [Accepted: 09/21/2017] [Indexed: 12/25/2022]
Abstract
The neuropeptides arginine vasopressin (Avp) and vasoactive intestinal polypeptide (Vip) are critical for the communication and coupling of suprachiasmatic nucleus neurons, which organize daily rhythms of physiology and behavior in mammals. However, how these peptides are regulated remains uncharacterized. We found that heterogeneous nuclear ribonucleoprotein U (hnRNP U) is essential for the expression of Avp and Vip. Loss of one copy of the Hnrnpu gene resulted in fragmented locomotor activities and disrupted metabolic rhythms. Hnrnpu+/- mice were more active than wild-type mice in the daytime but more inactive at night. These phenotypes were partially rescued by microinfusion of Avp and Vip into free-moving animals. In addition, hnRNP U modulated Avp and Vip via directly binding to their promoters together with brain and muscle Arnt-like protein-1/circadian locomotor output cycles kaput heterodimers. Our work identifies hnRNP U as a novel regulator of the circadian pacemaker and provides new insights into the mechanism of rhythm output.
Collapse
Affiliation(s)
- Beibei Lai
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Collaborative Innovation Center of Genetics and Development, Nanjing University, Nanjing, China
| | - Jianghuan Zou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Collaborative Innovation Center of Genetics and Development, Nanjing University, Nanjing, China
| | - Zhaoyu Lin
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Collaborative Innovation Center of Genetics and Development, Nanjing University, Nanjing, China
| | - Zhipeng Qu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Collaborative Innovation Center of Genetics and Development, Nanjing University, Nanjing, China
| | - Anying Song
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Collaborative Innovation Center of Genetics and Development, Nanjing University, Nanjing, China
| | - Ying Xu
- Medical College of Soochou University, Suzhou, China.
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Collaborative Innovation Center of Genetics and Development, Nanjing University, Nanjing, China.
| |
Collapse
|
45
|
Rhythmic Behavior Is Controlled by the SRm160 Splicing Factor in Drosophila melanogaster. Genetics 2017; 207:593-607. [PMID: 28801530 DOI: 10.1534/genetics.117.300139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 08/02/2017] [Indexed: 02/06/2023] Open
Abstract
Circadian clocks organize the metabolism, physiology, and behavior of organisms throughout the day-night cycle by controlling daily rhythms in gene expression at the transcriptional and post-transcriptional levels. While many transcription factors underlying circadian oscillations are known, the splicing factors that modulate these rhythms remain largely unexplored. A genome-wide assessment of the alterations of gene expression in a null mutant of the alternative splicing regulator SR-related matrix protein of 160 kDa (SRm160) revealed the extent to which alternative splicing impacts on behavior-related genes. We show that SRm160 affects gene expression in pacemaker neurons of the Drosophila brain to ensure proper oscillations of the molecular clock. A reduced level of SRm160 in adult pacemaker neurons impairs circadian rhythms in locomotor behavior, and this phenotype is caused, at least in part, by a marked reduction in period (per) levels. Moreover, rhythmic accumulation of the neuropeptide PIGMENT DISPERSING FACTOR in the dorsal projections of these neurons is abolished after SRm160 depletion. The lack of rhythmicity in SRm160-downregulated flies is reversed by a fully spliced per construct, but not by an extra copy of the endogenous locus, showing that SRm160 positively regulates per levels in a splicing-dependent manner. Our findings highlight the significant effect of alternative splicing on the nervous system and particularly on brain function in an in vivo model.
Collapse
|
46
|
Preußner M, Goldammer G, Neumann A, Haltenhof T, Rautenstrauch P, Müller-McNicoll M, Heyd F. Body Temperature Cycles Control Rhythmic Alternative Splicing in Mammals. Mol Cell 2017; 67:433-446.e4. [DOI: 10.1016/j.molcel.2017.06.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/27/2017] [Accepted: 06/07/2017] [Indexed: 12/12/2022]
|
47
|
Chaix A, Zarrinpar A, Panda S. The circadian coordination of cell biology. J Cell Biol 2017; 215:15-25. [PMID: 27738003 PMCID: PMC5057284 DOI: 10.1083/jcb.201603076] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 09/21/2016] [Indexed: 02/07/2023] Open
Abstract
Chaix et al. review how cells generate circadian oscillations and how circadian clocks control cell biology. Circadian clocks are cell-autonomous timing mechanisms that organize cell functions in a 24-h periodicity. In mammals, the main circadian oscillator consists of transcription–translation feedback loops composed of transcriptional regulators, enzymes, and scaffolds that generate and sustain daily oscillations of their own transcript and protein levels. The clock components and their targets impart rhythmic functions to many gene products through transcriptional, posttranscriptional, translational, and posttranslational mechanisms. This, in turn, temporally coordinates many signaling pathways, metabolic activity, organelles’ structure and functions, as well as the cell cycle and the tissue-specific functions of differentiated cells. When the functions of these circadian oscillators are disrupted by age, environment, or genetic mutation, the temporal coordination of cellular functions is lost, reducing organismal health and fitness.
Collapse
Affiliation(s)
- Amandine Chaix
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Amir Zarrinpar
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037 Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093
| | - Satchidananda Panda
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| |
Collapse
|
48
|
Abstract
Chronotherapeutics aim at treating illnesses according to the endogenous biologic rhythms, which moderate xenobiotic metabolism and cellular drug response. The molecular clocks present in individual cells involve approximately fifteen clock genes interconnected in regulatory feedback loops. They are coordinated by the suprachiasmatic nuclei, a hypothalamic pacemaker, which also adjusts the circadian rhythms to environmental cycles. As a result, many mechanisms of diseases and drug effects are controlled by the circadian timing system. Thus, the tolerability of nearly 500 medications varies by up to fivefold according to circadian scheduling, both in experimental models and/or patients. Moreover, treatment itself disrupted, maintained, or improved the circadian timing system as a function of drug timing. Improved patient outcomes on circadian-based treatments (chronotherapy) have been demonstrated in randomized clinical trials, especially for cancer and inflammatory diseases. However, recent technological advances have highlighted large interpatient differences in circadian functions resulting in significant variability in chronotherapy response. Such findings advocate for the advancement of personalized chronotherapeutics through interdisciplinary systems approaches. Thus, the combination of mathematical, statistical, technological, experimental, and clinical expertise is now shaping the development of dedicated devices and diagnostic and delivery algorithms enabling treatment individualization. In particular, multiscale systems chronopharmacology approaches currently combine mathematical modeling based on cellular and whole-body physiology to preclinical and clinical investigations toward the design of patient-tailored chronotherapies. We review recent systems research works aiming to the individualization of disease treatment, with emphasis on both cancer management and circadian timing system–resetting strategies for improving chronic disease control and patient outcomes.
Collapse
Affiliation(s)
- Annabelle Ballesta
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - Pasquale F Innominato
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - Robert Dallmann
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - David A Rand
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - Francis A Lévi
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| |
Collapse
|
49
|
Lim ASP, Klein HU, Yu L, Chibnik LB, Ali S, Xu J, Bennett DA, De Jager PL. Diurnal and seasonal molecular rhythms in human neocortex and their relation to Alzheimer's disease. Nat Commun 2017; 8:14931. [PMID: 28368004 PMCID: PMC5382268 DOI: 10.1038/ncomms14931] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/13/2017] [Indexed: 12/25/2022] Open
Abstract
Circadian and seasonal rhythms are seen in many species, modulate several aspects of human physiology, including brain functions such as mood and cognition, and influence many neurological and psychiatric illnesses. However, there are few data regarding the genome-scale molecular correlates underlying these rhythms, especially in the human brain. Here, we report widespread, site-specific and interrelated diurnal and seasonal rhythms of gene expression in the human brain, and show their relationship with parallel rhythms of epigenetic modification including histone acetylation, and DNA methylation. We also identify transcription factor-binding sites that may drive these effects. Further, we demonstrate that Alzheimer's disease pathology disrupts these rhythms. These data suggest that interrelated diurnal and seasonal epigenetic and transcriptional rhythms may be an important feature of human brain biology, and perhaps human biology more broadly, and that changes in such rhythms may be consequences of, or contributors to, diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Andrew S. P. Lim
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Room M1-600, Toronto M4N1X2, Ontario, Canada
| | - Hans-Ulrich Klein
- Program in Translational Neuropsychiatric Genomics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 168c, Boston, Massachusetts 02115, USA
- Program in Medical and Population Genetics, Broad Institute, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center and Department of Neurological Sciences, Rush University Medical Center, 600 South Paulina Street, Chicago, Illinois 60612, USA
| | - Lori B. Chibnik
- Program in Translational Neuropsychiatric Genomics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 168c, Boston, Massachusetts 02115, USA
- Program in Medical and Population Genetics, Broad Institute, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Sanam Ali
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Room M1-600, Toronto M4N1X2, Ontario, Canada
| | - Jishu Xu
- Program in Translational Neuropsychiatric Genomics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 168c, Boston, Massachusetts 02115, USA
- Program in Medical and Population Genetics, Broad Institute, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - David A. Bennett
- Rush Alzheimer's Disease Center and Department of Neurological Sciences, Rush University Medical Center, 600 South Paulina Street, Chicago, Illinois 60612, USA
| | - Philip L. De Jager
- Program in Translational Neuropsychiatric Genomics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 168c, Boston, Massachusetts 02115, USA
- Program in Medical and Population Genetics, Broad Institute, 415 Main Street, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
50
|
Mendoza-Viveros L, Bouchard-Cannon P, Hegazi S, Cheng AH, Pastore S, Cheng HYM. Molecular modulators of the circadian clock: lessons from flies and mice. Cell Mol Life Sci 2017; 74:1035-1059. [PMID: 27689221 PMCID: PMC11107503 DOI: 10.1007/s00018-016-2378-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/03/2016] [Accepted: 09/22/2016] [Indexed: 12/16/2022]
Abstract
Circadian timekeeping is a ubiquitous mechanism that enables organisms to maintain temporal coordination between internal biological processes and time of the local environment. The molecular basis of circadian rhythms lies in a set of transcription-translation feedback loops (TTFLs) that drives the rhythmic transcription of core clock genes, whose level and phase of expression serve as the marker of circadian time. However, it has become increasingly evident that additional regulatory mechanisms impinge upon the TTFLs to govern the properties and behavior of the circadian clock. Such mechanisms include changes in chromatin architecture, interactions with other transcription factor networks, post-transcriptional control by RNA modifications, alternative splicing and microRNAs, and post-translational regulation of subcellular trafficking and protein degradation. In this review, we will summarize the current knowledge of circadian clock regulation-from transcriptional to post-translational-drawing from literature pertaining to the Drosophila and murine circadian systems.
Collapse
Affiliation(s)
- Lucia Mendoza-Viveros
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Pascale Bouchard-Cannon
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Sara Hegazi
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Arthur H Cheng
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Stephen Pastore
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Hai-Ying Mary Cheng
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada.
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada.
| |
Collapse
|