1
|
Khaliulin I, Hamoudi W, Amal H. The multifaceted role of mitochondria in autism spectrum disorder. Mol Psychiatry 2024:10.1038/s41380-024-02725-z. [PMID: 39223276 DOI: 10.1038/s41380-024-02725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Normal brain functioning relies on high aerobic energy production provided by mitochondria. Failure to supply a sufficient amount of energy, seen in different brain disorders, including autism spectrum disorder (ASD), may have a significant negative impact on brain development and support of different brain functions. Mitochondrial dysfunction, manifested in the abnormal activities of the electron transport chain and impaired energy metabolism, greatly contributes to ASD. The aberrant functioning of this organelle is of such high importance that ASD has been proposed as a mitochondrial disease. It should be noted that aerobic energy production is not the only function of the mitochondria. In particular, these organelles are involved in the regulation of Ca2+ homeostasis, different mechanisms of programmed cell death, autophagy, and reactive oxygen and nitrogen species (ROS and RNS) production. Several syndromes originated from mitochondria-related mutations display ASD phenotype. Abnormalities in Ca2+ handling and ATP production in the brain mitochondria affect synaptic transmission, plasticity, and synaptic development, contributing to ASD. ROS and Ca2+ regulate the activity of the mitochondrial permeability transition pore (mPTP). The prolonged opening of this pore affects the redox state of the mitochondria, impairs oxidative phosphorylation, and activates apoptosis, ultimately leading to cell death. A dysregulation between the enhanced mitochondria-related processes of apoptosis and the inhibited autophagy leads to the accumulation of toxic products in the brains of individuals with ASD. Although many mitochondria-related mechanisms still have to be investigated, and whether they are the cause or consequence of this disorder is still unknown, the accumulating data show that the breakdown of any of the mitochondrial functions may contribute to abnormal brain development leading to ASD. In this review, we discuss the multifaceted role of mitochondria in ASD from the various aspects of neuroscience.
Collapse
Affiliation(s)
- Igor Khaliulin
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wajeha Hamoudi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
2
|
Pua EPK, Desai T, Green C, Trevis K, Brown N, Delatycki M, Scheffer I, Wilson S. Endophenotyping social cognition in the broader autism phenotype. Autism Res 2024; 17:1365-1380. [PMID: 38037242 DOI: 10.1002/aur.3057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Relatives of individuals with autism spectrum disorder (ASD) may display milder social traits of the broader autism phenotype (BAP) providing potential endophenotypic markers of genetic risk for ASD. We performed a case-control comparison to quantify social cognition and pragmatic language difficulties in the BAP (n = 25 cases; n = 33 controls) using the Faux Pas test (FPT) and the Goldman-Eisler Cartoon task. Using deep phenotyping we then examined patterns of inheritance of social cognition in two large multiplex families and the spectrum of performance in 32 additional families (159 members; n = 51 ASD, n = 87 BAP, n = 21 unaffected). BAP individuals showed significantly poorer FPT performance and reduced verbal fluency with the absence of a compression effect in social discourse compared to controls. In multiplex families, we observed reduced FPT performance in 89% of autistic family members, 63% of BAP relatives and 50% of unaffected relatives. Across all affected families, there was a graded spectrum of difficulties, with ASD individuals showing the most severe FPT difficulties, followed by the BAP and unaffected relatives compared to community controls. We conclude that relatives of probands show an inherited pattern of graded difficulties in social cognition with atypical faux pas detection in social discourse providing a novel candidate endophenotype for ASD.
Collapse
Affiliation(s)
- Emmanuel Peng Kiat Pua
- Department of Medicine and Radiology, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Tarishi Desai
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Cherie Green
- Department of Psychology, Counselling & Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Krysta Trevis
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Natasha Brown
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Martin Delatycki
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Ingrid Scheffer
- Department of Medicine and Radiology, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Sarah Wilson
- Department of Medicine and Radiology, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Bamford RA, Zuko A, Eve M, Sprengers JJ, Post H, Taggenbrock RLRE, Fäβler D, Mehr A, Jones OJR, Kudzinskas A, Gandawijaya J, Müller UC, Kas MJH, Burbach JPH, Oguro-Ando A. CNTN4 modulates neural elongation through interplay with APP. Open Biol 2024; 14:240018. [PMID: 38745463 PMCID: PMC11293442 DOI: 10.1098/rsob.240018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 05/16/2024] Open
Abstract
The neuronal cell adhesion molecule contactin-4 (CNTN4) is genetically associated with autism spectrum disorder (ASD) and other psychiatric disorders. Cntn4-deficient mouse models have previously shown that CNTN4 plays important roles in axon guidance and synaptic plasticity in the hippocampus. However, the pathogenesis and functional role of CNTN4 in the cortex has not yet been investigated. Our study found a reduction in cortical thickness in the motor cortex of Cntn4 -/- mice, but cortical cell migration and differentiation were unaffected. Significant morphological changes were observed in neurons in the M1 region of the motor cortex, indicating that CNTN4 is also involved in the morphology and spine density of neurons in the motor cortex. Furthermore, mass spectrometry analysis identified an interaction partner for CNTN4, confirming an interaction between CNTN4 and amyloid-precursor protein (APP). Knockout human cells for CNTN4 and/or APP revealed a relationship between CNTN4 and APP. This study demonstrates that CNTN4 contributes to cortical development and that binding and interplay with APP controls neural elongation. This is an important finding for understanding the physiological function of APP, a key protein for Alzheimer's disease. The binding between CNTN4 and APP, which is involved in neurodevelopment, is essential for healthy nerve outgrowth.
Collapse
Affiliation(s)
- Rosemary A. Bamford
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Amila Zuko
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Madeline Eve
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Jan J. Sprengers
- Department of Translational Neuroscience, UMC Utrecht Brain Center, UMC Utrecht, Utrecht3508 AB, The Netherlands
| | - Harm Post
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht, Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Renske L. R. E. Taggenbrock
- Department of Translational Neuroscience, UMC Utrecht Brain Center, UMC Utrecht, Utrecht3508 AB, The Netherlands
| | - Dominique Fäβler
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Functional Genomics, University of Heidelberg, Heidelberg69120, Germany
| | - Annika Mehr
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Functional Genomics, University of Heidelberg, Heidelberg69120, Germany
| | - Owen J. R. Jones
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Aurimas Kudzinskas
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Josan Gandawijaya
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Ulrike C. Müller
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Functional Genomics, University of Heidelberg, Heidelberg69120, Germany
| | - Martien J. H. Kas
- Department of Translational Neuroscience, UMC Utrecht Brain Center, UMC Utrecht, Utrecht3508 AB, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - J. Peter H. Burbach
- Department of Translational Neuroscience, UMC Utrecht Brain Center, UMC Utrecht, Utrecht3508 AB, The Netherlands
| | - Asami Oguro-Ando
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- Research Institute for Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
4
|
Wainberg M, Forde NJ, Mansour S, Kerrebijn I, Medland SE, Hawco C, Tripathy SJ. Genetic architecture of the structural connectome. Nat Commun 2024; 15:1962. [PMID: 38438384 PMCID: PMC10912129 DOI: 10.1038/s41467-024-46023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
Myelinated axons form long-range connections that enable rapid communication between distant brain regions, but how genetics governs the strength and organization of these connections remains unclear. We perform genome-wide association studies of 206 structural connectivity measures derived from diffusion magnetic resonance imaging tractography of 26,333 UK Biobank participants, each representing the density of myelinated connections within or between a pair of cortical networks, subcortical structures or cortical hemispheres. We identify 30 independent genome-wide significant variants after Bonferroni correction for the number of measures studied (126 variants at nominal genome-wide significance) implicating genes involved in myelination (SEMA3A), neurite elongation and guidance (NUAK1, STRN, DPYSL2, EPHA3, SEMA3A, HGF, SHTN1), neural cell proliferation and differentiation (GMNC, CELF4, HGF), neuronal migration (CCDC88C), cytoskeletal organization (CTTNBP2, MAPT, DAAM1, MYO16, PLEC), and brain metal transport (SLC39A8). These variants have four broad patterns of spatial association with structural connectivity: some have disproportionately strong associations with corticothalamic connectivity, interhemispheric connectivity, or both, while others are more spatially diffuse. Structural connectivity measures are highly polygenic, with a median of 9.1 percent of common variants estimated to have non-zero effects on each measure, and exhibited signatures of negative selection. Structural connectivity measures have significant genetic correlations with a variety of neuropsychiatric and cognitive traits, indicating that connectivity-altering variants tend to influence brain health and cognitive function. Heritability is enriched in regions with increased chromatin accessibility in adult oligodendrocytes (as well as microglia, inhibitory neurons and astrocytes) and multiple fetal cell types, suggesting that genetic control of structural connectivity is partially mediated by effects on myelination and early brain development. Our results indicate pervasive, pleiotropic, and spatially structured genetic control of white-matter structural connectivity via diverse neurodevelopmental pathways, and support the relevance of this genetic control to healthy brain function.
Collapse
Affiliation(s)
- Michael Wainberg
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| | - Natalie J Forde
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Salim Mansour
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Isabel Kerrebijn
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Psychology, University of Queensland, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Colin Hawco
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | - Shreejoy J Tripathy
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Abstract
Autism is often considered to reflect categorically 'different brains'. Neuropsychological research on autism spectrum disorder (ASD) however, has struggled to define this difference, or derive clear-cut boundaries between autism and non-autism. Consequently, restructuring or disbanding the ASD diagnosis is becoming increasingly advocated within research. Nonetheless, autism now exists as a salient social construction, of which 'difference' is a key facet. Clinical and educational professionals must influence this cautiously, as changes to autism's social construction may counterproductively affect the quality of life of autistic people. This paper therefore reviews ASD's value as both neuropsychological and social constructs. Although lacking neuropsychological validity, the autism label may be beneficial for autistic self-identity, reduction of stigma, and administering support. Whilst a shift away from case-control ASD research is warranted, lay notions of 'different brains' may be preserved.
Collapse
Affiliation(s)
- Daniel Crawshaw
- School of Psychology, University of Nottingham, University Park, Nottingham, UK
| |
Collapse
|
6
|
Pintacuda G, Hsu YHH, Tsafou K, Li KW, Martín JM, Riseman J, Biagini JC, Ching JK, Mena D, Gonzalez-Lozano MA, Egri SB, Jaffe J, Smit AB, Fornelos N, Eggan KC, Lage K. Protein interaction studies in human induced neurons indicate convergent biology underlying autism spectrum disorders. CELL GENOMICS 2023; 3:100250. [PMID: 36950384 PMCID: PMC10025425 DOI: 10.1016/j.xgen.2022.100250] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/18/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023]
Abstract
Autism spectrum disorders (ASDs) have been linked to genes with enriched expression in the brain, but it is unclear how these genes converge into cell-type-specific networks. We built a protein-protein interaction network for 13 ASD-associated genes in human excitatory neurons derived from induced pluripotent stem cells (iPSCs). The network contains newly reported interactions and is enriched for genetic and transcriptional perturbations observed in individuals with ASDs. We leveraged the network data to show that the ASD-linked brain-specific isoform of ANK2 is important for its interactions with synaptic proteins and to characterize a PTEN-AKAP8L interaction that influences neuronal growth. The IGF2BP1-3 complex emerged as a convergent point in the network that may regulate a transcriptional circuit of ASD-associated genes. Our findings showcase cell-type-specific interactomes as a framework to complement genetic and transcriptomic data and illustrate how both individual and convergent interactions can lead to biological insights into ASDs.
Collapse
Affiliation(s)
- Greta Pintacuda
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Yu-Han H. Hsu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kalliopi Tsafou
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, CNCR, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Jacqueline M. Martín
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jackson Riseman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Julia C. Biagini
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joshua K.T. Ching
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daya Mena
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Miguel A. Gonzalez-Lozano
- Department of Molecular and Cellular Neurobiology, CNCR, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Shawn B. Egri
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jake Jaffe
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, CNCR, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Nadine Fornelos
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kevin C. Eggan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kasper Lage
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, 4000 Roskilde, Denmark
| |
Collapse
|
7
|
Zhou X, Wei J, Li L, Shu Z, You L, Liu Y, Zhao R, Yao J, Wang J, Luo M, Shu Y, Yuan K, Qi H. Microglial Pten safeguards postnatal integrity of the cortex and sociability. Front Immunol 2022; 13:1059364. [PMID: 36591296 PMCID: PMC9795847 DOI: 10.3389/fimmu.2022.1059364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Microglial abnormalities may contribute to neurodevelopmental disorders. PTEN is implicated as a susceptibility gene for autism spectrum disorders and its germline ablation in mice causes behavioral abnormalities. Here we find postnatal PTEN deletion in microglia causes deficits in sociability and novel object recognition test. Mutant mice harbor markedly more activated microglia that manifest enhanced phagocytosis. Interestingly, two-week postponement of microglia PTEN ablation leads to no social interaction defects, even though mutant microglia remain abnormal in adult animals. Disturbed neurodevelopment caused by early PTEN deletion in microglia is characterized by insufficient VGLUT1 protein in synaptosomes, likely a consequence of enhanced removal by microglia. In correlation, in vitro acute slice recordings demonstrate weakened synaptic inputs to layer 5 pyramidal neurons in the developing cortex. Therefore, microglial PTEN safeguards integrity of neural substrates underlying sociability in a developmentally determined manner.
Collapse
Affiliation(s)
- Xing Zhou
- Tsinghua-Peking Center for Life Sciences, Beijing, China,Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jiacheng Wei
- Tsinghua-Peking Center for Life Sciences, Beijing, China,Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Liang Li
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Zhenfeng Shu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Ling You
- Department of Bioengineering, School of Medicine, Tsinghua University, Beijing, China,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Yang Liu
- School of Life Sciences, Tsinghua University, Beijing, China,National Institute of Biological Science, Beijing, China
| | - Ruozhu Zhao
- Tsinghua-Peking Center for Life Sciences, Beijing, China,Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jiacheng Yao
- Tsinghua-Peking Center for Life Sciences, Beijing, China,School of Life Sciences, Tsinghua University, Beijing, China
| | - Jianbin Wang
- Tsinghua-Peking Center for Life Sciences, Beijing, China,School of Life Sciences, Tsinghua University, Beijing, China
| | - Minmin Luo
- School of Life Sciences, Tsinghua University, Beijing, China,National Institute of Biological Science, Beijing, China
| | - Yousheng Shu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Kexin Yuan
- Department of Bioengineering, School of Medicine, Tsinghua University, Beijing, China,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China,*Correspondence: Hai Qi, ; Kexin Yuan,
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Beijing, China,Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China,Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China,*Correspondence: Hai Qi, ; Kexin Yuan,
| |
Collapse
|
8
|
Serotonin Receptors as Therapeutic Targets for Autism Spectrum Disorder Treatment. Int J Mol Sci 2022; 23:ijms23126515. [PMID: 35742963 PMCID: PMC9223717 DOI: 10.3390/ijms23126515] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by repetitive and stereotyped behaviors as well as difficulties with social interaction and communication. According to reports for prevalence rates of ASD, approximately 1~2% of children worldwide have been diagnosed with ASD. Although there are a couple of FDA (Food and Drug Administration)—approved drugs for ASD treatment such as aripiprazole and risperidone, they are efficient for alleviating aggression, hyperactivity, and self-injury but not the core symptoms. Serotonin (5-hydroxytryptamine, 5-HT) as a neurotransmitter plays a crucial role in the early neurodevelopmental stage. In particular, 5-HT has been known to regulate a variety of neurobiological processes including neurite outgrowth, dendritic spine morphology, shaping neuronal circuits, synaptic transmission, and synaptic plasticity. Given the roles of serotonergic systems, the 5-HT receptors (5-HTRs) become emerging as potential therapeutic targets in the ASD. In this review, we will focus on the recent development of small molecule modulators of 5-HTRs as therapeutic targets for the ASD treatment.
Collapse
|
9
|
Nisar S, Bhat AA, Masoodi T, Hashem S, Akhtar S, Ali TA, Amjad S, Chawla S, Bagga P, Frenneaux MP, Reddy R, Fakhro K, Haris M. Genetics of glutamate and its receptors in autism spectrum disorder. Mol Psychiatry 2022; 27:2380-2392. [PMID: 35296811 PMCID: PMC9135628 DOI: 10.1038/s41380-022-01506-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental impairment characterized by deficits in social interaction skills, impaired communication, and repetitive and restricted behaviors that are thought to be due to altered neurotransmission processes. The amino acid glutamate is an essential excitatory neurotransmitter in the human brain that regulates cognitive functions such as learning and memory, which are usually impaired in ASD. Over the last several years, increasing evidence from genetics, neuroimaging, protein expression, and animal model studies supporting the notion of altered glutamate metabolism has heightened the interest in evaluating glutamatergic dysfunction in ASD. Numerous pharmacological, behavioral, and imaging studies have demonstrated the imbalance in excitatory and inhibitory neurotransmitters, thus revealing the involvement of the glutamatergic system in ASD pathology. Here, we review the effects of genetic alterations on glutamate and its receptors in ASD and the role of non-invasive imaging modalities in detecting these changes. We also highlight the potential therapeutic targets associated with impaired glutamatergic pathways.
Collapse
Affiliation(s)
- Sabah Nisar
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Ajaz A Bhat
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sheema Hashem
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sabah Akhtar
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Tayyiba Akbar Ali
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sara Amjad
- Shibli National College, Azamgarh, Uttar Pradesh, 276001, India
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Puneet Bagga
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Michael P Frenneaux
- Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Khalid Fakhro
- Department of Human Genetics, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Laboratory of Animal Research, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
10
|
Mapelli L, Soda T, D’Angelo E, Prestori F. The Cerebellar Involvement in Autism Spectrum Disorders: From the Social Brain to Mouse Models. Int J Mol Sci 2022; 23:ijms23073894. [PMID: 35409253 PMCID: PMC8998980 DOI: 10.3390/ijms23073894] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders that include a variety of forms and clinical phenotypes. This heterogeneity complicates the clinical and experimental approaches to ASD etiology and pathophysiology. To date, a unifying theory of these diseases is still missing. Nevertheless, the intense work of researchers and clinicians in the last decades has identified some ASD hallmarks and the primary brain areas involved. Not surprisingly, the areas that are part of the so-called “social brain”, and those strictly connected to them, were found to be crucial, such as the prefrontal cortex, amygdala, hippocampus, limbic system, and dopaminergic pathways. With the recent acknowledgment of the cerebellar contribution to cognitive functions and the social brain, its involvement in ASD has become unmistakable, though its extent is still to be elucidated. In most cases, significant advances were made possible by recent technological developments in structural/functional assessment of the human brain and by using mouse models of ASD. Mouse models are an invaluable tool to get insights into the molecular and cellular counterparts of the disease, acting on the specific genetic background generating ASD-like phenotype. Given the multifaceted nature of ASD and related studies, it is often difficult to navigate the literature and limit the huge content to specific questions. This review fulfills the need for an organized, clear, and state-of-the-art perspective on cerebellar involvement in ASD, from its connections to the social brain areas (which are the primary sites of ASD impairments) to the use of monogenic mouse models.
Collapse
Affiliation(s)
- Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| | - Teresa Soda
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Brain Connectivity Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| |
Collapse
|
11
|
Silverman JL, Thurm A, Ethridge SB, Soller MM, Petkova SP, Abel T, Bauman MD, Brodkin ES, Harony‐Nicolas H, Wöhr M, Halladay A. Reconsidering animal models used to study autism spectrum disorder: Current state and optimizing future. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12803. [PMID: 35285132 PMCID: PMC9189007 DOI: 10.1111/gbb.12803] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 12/15/2022]
Abstract
Neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD) and intellectual disability (ID), are pervasive, often lifelong disorders, lacking evidence-based interventions for core symptoms. With no established biological markers, diagnoses are defined by behavioral criteria. Thus, preclinical in vivo animal models of NDDs must be optimally utilized. For this reason, experts in the field of behavioral neuroscience convened a workshop with the goals of reviewing current behavioral studies, reports, and assessments in rodent models. Goals included: (a) identifying the maximal utility and limitations of behavior in animal models with construct validity; (b) providing recommendations for phenotyping animal models; and (c) guidelines on how in vivo models should be used and reported reliably and rigorously while acknowledging their limitations. We concluded by recommending minimal criteria for reporting in manuscripts going forward. The workshop elucidated a consensus of potential solutions to several problems, including revisiting claims made about animal model links to ASD (and related conditions). Specific conclusions included: mice (or other rodent or preclinical models) are models of the neurodevelopmental insult, not specifically any disorder (e.g., ASD); a model that perfectly recapitulates a disorder such as ASD is untenable; and greater attention needs be given to validation of behavioral testing methods, data analysis, and critical interpretation.
Collapse
Affiliation(s)
- Jill L. Silverman
- MIND Institute, Department of Psychiatry and Behavioral SciencesUniversity of California Davis School of MedicineSacramentoCaliforniaUSA
| | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping ServiceNational Institute of Mental HealthBethesdaMarylandUSA
| | - Sarah B. Ethridge
- Neurodevelopmental and Behavioral Phenotyping ServiceNational Institute of Mental HealthBethesdaMarylandUSA
| | - Makayla M. Soller
- MIND Institute, Department of Psychiatry and Behavioral SciencesUniversity of California Davis School of MedicineSacramentoCaliforniaUSA
| | - Stela P. Petkova
- MIND Institute, Department of Psychiatry and Behavioral SciencesUniversity of California Davis School of MedicineSacramentoCaliforniaUSA
| | - Ted Abel
- Department of Neuroscience and PharmacologyIowa Neuroscience Institute, University of IowaIowa CityIowaUSA
| | - Melissa D. Bauman
- MIND Institute, Department of Psychiatry and Behavioral SciencesUniversity of California Davis School of MedicineSacramentoCaliforniaUSA
| | - Edward S. Brodkin
- Department of PsychiatryPerelman School of Medicine at the University of Pennsylvania, Translational Research LaboratoryPhiladelphiaPennsylvaniaUSA
| | - Hala Harony‐Nicolas
- Seaver Autism Center for Research and TreatmentIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Markus Wöhr
- Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological PsychologySocial and Affective Neuroscience Research Group, KU LeuvenLeuvenBelgium,Leuven Brain InstituteKU LeuvenLeuvenBelgium,Faculty of Psychology, Experimental and Biological Psychology, Behavioral NeurosciencePhilipps‐University of MarburgMarburgGermany,Center for Mind, Brain, and BehaviorPhilipps‐University of MarburgMarburgGermany
| | - Alycia Halladay
- Autism Science FoundationUSA,Department of Pharmacology and ToxicologyRutgers UniversityPiscatawayNew JerseyUSA
| |
Collapse
|
12
|
Cupaioli FA, Fallerini C, Mencarelli MA, Perticaroli V, Filippini V, Mari F, Renieri A, Mezzelani A. Autism Spectrum Disorders: Analysis of Mobile Elements at 7q11.23 Williams-Beuren Region by Comparative Genomics. Genes (Basel) 2021; 12:genes12101605. [PMID: 34680999 PMCID: PMC8535890 DOI: 10.3390/genes12101605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of complex neurodevelopmental disorders, characterized by a deficit in social interaction and communication. Many genetic variants are associated with ASD, including duplication of 7q11.23 encompassing 26-28 genes. Symmetrically, the hemizygous deletion of 7q11.23 causes Williams-Beuren syndrome (WBS), a multisystem disorder characterized by "hyper-sociability" and communication skills. Interestingly, deletion of four non-exonic mobile elements (MEs) in the "canine WBS locus" were associated with the behavioral divergence between the wolf and the dog and dog sociability and domestication. We hypothesized that indel of these MEs could be involved in ASD, associated with its different phenotypes and useful as biomarkers for patient stratification and therapeutic design. Since these MEs are non-exonic they have never been discovered before. We searched the corresponding MEs and loci in humans by comparative genomics. Interestingly, they mapped on different but ASD related genes. The loci in individuals with phenotypically different autism and neurotypical controls were amplified by PCR. A sub-set of each amplicon was sequenced by Sanger. No variant resulted associated with ASD and neither specific phenotypes were found but novel small-scale insertions and SNPs were discovered. Since MEs are hyper-methylated and epigenetically modulate gene expression, further investigation in ASD is necessary.
Collapse
Affiliation(s)
- Francesca Anna Cupaioli
- Institute of Biomedical Technologies, Italian National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Italy;
| | - Chiara Fallerini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.F.); (V.P.); (V.F.); (F.M.); (A.R.)
- Medical Genetics, University of Siena, 53100 Siena, Italy
| | | | - Valentina Perticaroli
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.F.); (V.P.); (V.F.); (F.M.); (A.R.)
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero Universitaria Senese, 53100 Siena, Italy;
| | - Virginia Filippini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.F.); (V.P.); (V.F.); (F.M.); (A.R.)
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero Universitaria Senese, 53100 Siena, Italy;
| | - Francesca Mari
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.F.); (V.P.); (V.F.); (F.M.); (A.R.)
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero Universitaria Senese, 53100 Siena, Italy;
| | - Alessandra Renieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.F.); (V.P.); (V.F.); (F.M.); (A.R.)
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero Universitaria Senese, 53100 Siena, Italy;
| | - Alessandra Mezzelani
- Institute of Biomedical Technologies, Italian National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Italy;
- Correspondence:
| |
Collapse
|
13
|
Wu N, Wang Y, Jia JY, Pan YH, Yuan XB. Association of CDH11 with Autism Spectrum Disorder Revealed by Matched-gene Co-expression Analysis and Mouse Behavioral Studies. Neurosci Bull 2021; 38:29-46. [PMID: 34523068 PMCID: PMC8783018 DOI: 10.1007/s12264-021-00770-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/25/2021] [Indexed: 11/25/2022] Open
Abstract
A large number of putative risk genes for autism spectrum disorder (ASD) have been reported. The functions of most of these susceptibility genes in developing brains remain unknown, and causal relationships between their variation and autism traits have not been established. The aim of this study was to predict putative risk genes at the whole-genome level based on the analysis of gene co-expression with a group of high-confidence ASD risk genes (hcASDs). The results showed that three gene features - gene size, mRNA abundance, and guanine-cytosine content - affect the genome-wide co-expression profiles of hcASDs. To circumvent the interference of these features in gene co-expression analysis, we developed a method to determine whether a gene is significantly co-expressed with hcASDs by statistically comparing the co-expression profile of this gene with hcASDs to that of this gene with permuted gene sets of feature-matched genes. This method is referred to as "matched-gene co-expression analysis" (MGCA). With MGCA, we demonstrated the convergence in developmental expression profiles of hcASDs and improved the efficacy of risk gene prediction. The results of analysis of two recently-reported ASD candidate genes, CDH11 and CDH9, suggested the involvement of CDH11, but not CDH9, in ASD. Consistent with this prediction, behavioral studies showed that Cdh11-null mice, but not Cdh9-null mice, have multiple autism-like behavioral alterations. This study highlights the power of MGCA in revealing ASD-associated genes and the potential role of CDH11 in ASD.
Collapse
Affiliation(s)
- Nan Wu
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Yue Wang
- Hussman Institute for Autism, Baltimore, 21201, USA
| | - Jing-Yan Jia
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China.
| | - Xiao-Bing Yuan
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China. .,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, 21201, USA.
| |
Collapse
|
14
|
Ma X, Wei J, Cui Y, Xia B, Zhang L, Nehme A, Zuo Y, Ferguson D, Levitt P, Qiu S. Disrupted Timing of MET Signaling Derails the Developmental Maturation of Cortical Circuits and Leads to Altered Behavior in Mice. Cereb Cortex 2021; 32:1769-1786. [PMID: 34470051 PMCID: PMC9016286 DOI: 10.1093/cercor/bhab323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 01/21/2023] Open
Abstract
The molecular regulation of the temporal dynamics of circuit maturation is a key contributor to the emergence of normal structure-function relations. Developmental control of cortical MET receptor tyrosine kinase, expressed early postnatally in subpopulations of excitatory neurons, has a pronounced impact on the timing of glutamatergic synapse maturation and critical period plasticity. Here, we show that using a controllable overexpression (cto-Met) transgenic mouse, extending the duration of MET signaling after endogenous Met is switched off leads to altered molecular constitution of synaptic proteins, persistent activation of small GTPases Cdc42 and Rac1, and sustained inhibitory phosphorylation of cofilin. These molecular changes are accompanied by an increase in the density of immature dendritic spines, impaired cortical circuit maturation of prefrontal cortex layer 5 projection neurons, and altered laminar excitatory connectivity. Two photon in vivo imaging of dendritic spines reveals that cto-Met enhances de novo spine formation while inhibiting spine elimination. Extending MET signaling for two weeks in developing cortical circuits leads to pronounced repetitive activity and impaired social interactions in adult mice. Collectively, our data revealed that temporally controlled MET signaling as a critical mechanism for controlling cortical circuit development and emergence of normal behavior.
Collapse
Affiliation(s)
- Xiaokuang Ma
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Jing Wei
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Yuehua Cui
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Baomei Xia
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Le Zhang
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Antoine Nehme
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Yi Zuo
- Department of Molecular, Cellular and Developmental Neurobiology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Deveroux Ferguson
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Pat Levitt
- Program in Developmental Neuroscience and Developmental Neurogenetics, The Saban Research Institute and Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Shenfeng Qiu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| |
Collapse
|
15
|
Kelly E, Escamilla CO, Tsai PT. Cerebellar Dysfunction in Autism Spectrum Disorders: Deriving Mechanistic Insights from an Internal Model Framework. Neuroscience 2021; 462:274-287. [PMID: 33253824 PMCID: PMC8076058 DOI: 10.1016/j.neuroscience.2020.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/28/2020] [Accepted: 11/07/2020] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorders (ASD) are highly prevalent neurodevelopmental disorders; however, the neurobiological mechanisms underlying disordered behavior in ASD remain poorly understood. Notably, individuals with ASD have demonstrated difficulties generating implicitly derived behavioral predictions and adaptations. Although many brain regions are involved in these processes, the cerebellum contributes an outsized role to these behavioral functions. Consistent with this prominent role, cerebellar dysfunction has been increasingly implicated in ASD. In this review, we will utilize the foundational, theoretical contributions of the late neuroscientist Masao Ito to establish an internal model framework for the cerebellar contribution to ASD-relevant behavioral predictions and adaptations. Additionally, we will also explore and then apply his key experimental contributions towards an improved, mechanistic understanding of the contribution of cerebellar dysfunction to ASD.
Collapse
Affiliation(s)
- Elyza Kelly
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Peter T Tsai
- Departments of Pediatrics and Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
16
|
Adhya D, Swarup V, Nagy R, Dutan L, Shum C, Valencia-Alarcón EP, Jozwik KM, Mendez MA, Horder J, Loth E, Nowosiad P, Lee I, Skuse D, Flinter FA, Murphy D, McAlonan G, Geschwind DH, Price J, Carroll J, Srivastava DP, Baron-Cohen S. Atypical Neurogenesis in Induced Pluripotent Stem Cells From Autistic Individuals. Biol Psychiatry 2021; 89:486-496. [PMID: 32826066 PMCID: PMC7843956 DOI: 10.1016/j.biopsych.2020.06.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/12/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Autism is a heterogeneous collection of disorders with a complex molecular underpinning. Evidence from postmortem brain studies have indicated that early prenatal development may be altered in autism. Induced pluripotent stem cells (iPSCs) generated from individuals with autism with macrocephaly also indicate prenatal development as a critical period for this condition. But little is known about early altered cellular events during prenatal stages in autism. METHODS iPSCs were generated from 9 unrelated individuals with autism without macrocephaly and with heterogeneous genetic backgrounds, and 6 typically developing control individuals. iPSCs were differentiated toward either cortical or midbrain fates. Gene expression and high throughput cellular phenotyping was used to characterize iPSCs at different stages of differentiation. RESULTS A subset of autism-iPSC cortical neurons were RNA-sequenced to reveal autism-specific signatures similar to postmortem brain studies, indicating a potential common biological mechanism. Autism-iPSCs differentiated toward a cortical fate displayed impairments in the ability to self-form into neural rosettes. In addition, autism-iPSCs demonstrated significant differences in rate of cell type assignment of cortical precursors and dorsal and ventral forebrain precursors. These cellular phenotypes occurred in the absence of alterations in cell proliferation during cortical differentiation, differing from previous studies. Acquisition of cell fate during midbrain differentiation was not different between control- and autism-iPSCs. CONCLUSIONS Taken together, our data indicate that autism-iPSCs diverge from control-iPSCs at a cellular level during early stage of neurodevelopment. This suggests that unique developmental differences associated with autism may be established at early prenatal stages.
Collapse
Affiliation(s)
- Dwaipayan Adhya
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Vivek Swarup
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Roland Nagy
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Lucia Dutan
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Carole Shum
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Eva P Valencia-Alarcón
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | - Maria Andreina Mendez
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jamie Horder
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Eva Loth
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Paulina Nowosiad
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Irene Lee
- Behavioural and Brain Sciences Unit, Population Policy Practice Programme, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - David Skuse
- Behavioural and Brain Sciences Unit, Population Policy Practice Programme, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Frances A Flinter
- Department of Clinical Genetics, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Declan Murphy
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Grainne McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
| | - Jack Price
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Jason Carroll
- Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom.
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Xia B, Wei J, Ma X, Nehme A, Liong K, Cui Y, Chen C, Gallitano A, Ferguson D, Qiu S. Conditional knockout of MET receptor tyrosine kinase in cortical excitatory neurons leads to enhanced learning and memory in young adult mice but early cognitive decline in older adult mice. Neurobiol Learn Mem 2021; 179:107397. [PMID: 33524570 DOI: 10.1016/j.nlm.2021.107397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/22/2020] [Accepted: 01/20/2021] [Indexed: 12/15/2022]
Abstract
Human genetic studies established MET gene as a risk factor for autism spectrum disorders. We have previously shown that signaling mediated by MET receptor tyrosine kinase, expressed in early postnatal developing forebrain circuits, controls glutamatergic neuron morphological development, synapse maturation, and cortical critical period plasticity. Here we investigated how MET signaling affects synaptic plasticity, learning and memory behavior, and whether these effects are age-dependent. We found that in young adult (postnatal 2-3 months) Met conditional knockout (Metfx/fx:emx1cre, cKO) mice, the hippocampus exhibits elevated plasticity, measured by increased magnitude of long-term potentiation (LTP) and depression (LTD) in hippocampal slices. Surprisingly, in older adult cKO mice (10-12 months), LTP and LTD magnitudes were diminished. We further conducted a battery of behavioral tests to assess learning and memory function in cKO mice and littermate controls. Consistent with age-dependent LTP/LTD findings, we observed enhanced spatial memory learning in 2-3 months old young adult mice, assessed by hippocampus-dependent Morris water maze test, but impaired spatial learning in 10-12 months mice. Contextual and cued learning were further assessed using a Pavlovian fear conditioning test, which also revealed enhanced associative fear acquisition and extinction in young adult mice, but impaired fear learning in older adult mice. Lastly, young cKO mice also exhibited enhanced motor learning. Our results suggest that a shift in the window of synaptic plasticity and an age-dependent early cognitive decline may be novel circuit pathophysiology for a well-established autism genetic risk factor.
Collapse
Affiliation(s)
- Baomei Xia
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States
| | - Jing Wei
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States
| | - Xiaokuang Ma
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States
| | - Antoine Nehme
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States
| | - Katerina Liong
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States
| | - Yuehua Cui
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States
| | - Chang Chen
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States
| | - Amelia Gallitano
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States
| | - Deveroux Ferguson
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States
| | - Shenfeng Qiu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States.
| |
Collapse
|
18
|
Trevis KJ, Brown NJ, Green CC, Lockhart PJ, Desai T, Vick T, Anderson V, Pua EPK, Bahlo M, Delatycki MB, Scheffer IE, Wilson SJ. Tracing Autism Traits in Large Multiplex Families to Identify Endophenotypes of the Broader Autism Phenotype. Int J Mol Sci 2020; 21:E7965. [PMID: 33120939 PMCID: PMC7663259 DOI: 10.3390/ijms21217965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Families comprising many individuals with Autism Spectrum Disorders (ASD) may carry a dominant predisposing mutation. We implemented rigorous phenotyping of the "Broader Autism Phenotype" (BAP) in large multiplex ASD families using a novel endophenotype approach for the identification and characterisation of distinct BAP endophenotypes. We evaluated ASD/BAP features using standardised tests and a semi-structured interview to assess social, intellectual, executive and adaptive functioning in 110 individuals, including two large multiplex families (Family A: 30; Family B: 35) and an independent sample of small families (n = 45). Our protocol identified four distinct psychological endophenotypes of the BAP that were evident across these independent samples, and showed high sensitivity (97%) and specificity (82%) for individuals classified with the BAP. Patterns of inheritance of identified endophenotypes varied between the two large multiplex families, supporting their utility for identifying genes in ASD.
Collapse
Affiliation(s)
- Krysta J. Trevis
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia; (K.J.T.); (C.C.G.); (T.D.); (E.P.K.P.); (I.E.S.)
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Natasha J. Brown
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (N.J.B.); (M.B.D.)
- Barwon Health, Geelong, VIC 3220, Australia;
| | - Cherie C. Green
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia; (K.J.T.); (C.C.G.); (T.D.); (E.P.K.P.); (I.E.S.)
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Bundoora, VIC 3086, Australia
| | - Paul J. Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Tarishi Desai
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia; (K.J.T.); (C.C.G.); (T.D.); (E.P.K.P.); (I.E.S.)
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Tanya Vick
- Barwon Health, Geelong, VIC 3220, Australia;
| | - Vicki Anderson
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
- Psychological Service, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Clinical Sciences Research, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Emmanuel P. K. Pua
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia; (K.J.T.); (C.C.G.); (T.D.); (E.P.K.P.); (I.E.S.)
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Martin B. Delatycki
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (N.J.B.); (M.B.D.)
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ingrid E. Scheffer
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia; (K.J.T.); (C.C.G.); (T.D.); (E.P.K.P.); (I.E.S.)
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (N.J.B.); (M.B.D.)
- Clinical Sciences Research, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Sarah J. Wilson
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia; (K.J.T.); (C.C.G.); (T.D.); (E.P.K.P.); (I.E.S.)
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| |
Collapse
|
19
|
Assessment of haptoglobin alleles in autism spectrum disorders. Sci Rep 2020; 10:7758. [PMID: 32385356 PMCID: PMC7210291 DOI: 10.1038/s41598-020-64679-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
Gene-environment interactions, by means of abnormal macromolecular intestinal adsorption, is one of the possible causes of autism spectrum disorders (ASD) predominantly in patients with gastrointestinal disorders. Pre-haptoglobin-2 (zonulin), encoded by the Haptoglobin (HP) allele-2 gene, enhances the intestinal permeability by modulation of intercellular tight junctions. The two alleles of HP, HP1 and HP2, differ for 2 extra exons in HP2 that result in exon duplication undetectable by classic genome-wide association studies. To evaluate the role of HP2 in ASD pathogenesis and to set up a method to discriminate HP alleles, Italian subjects with ASD (n = 398) and healthy controls (n = 379) were genotyped by PCR analysis; subsequently, the PCR results were integrated with microarray genotypes (Illumina Human Omni 1S-8), obtained using a subset from the same subjects, and then we developed a computational method to predict HP alleles. On the contrary to our expectations, there was no association between HP2 and ASD (P > 0.05), and there was no significant allele association in subjects with ASD with or without gastrointestinal disorders (P > 0.05). With the aid of bioinformatics analysis, from a window frame of ~2 Mb containing 314 SNPs, we obtain imputation accuracy (r2) between 0.4 and 0.9 (median 0.7) and correct predictions were between 70% and 100% (median 90%). The conclusions endorse that enhanced intestinal permeability in subjects with ASD should not be imputed to HP2 but to other members of the zonulin family and/or to environmental factors.
Collapse
|
20
|
Zhang W, Ma L, Yang M, Shao Q, Xu J, Lu Z, Zhao Z, Chen R, Chai Y, Chen JF. Cerebral organoid and mouse models reveal a RAB39b-PI3K-mTOR pathway-dependent dysregulation of cortical development leading to macrocephaly/autism phenotypes. Genes Dev 2020; 34:580-597. [PMID: 32115408 PMCID: PMC7111266 DOI: 10.1101/gad.332494.119] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/29/2020] [Indexed: 12/14/2022]
Abstract
Dysregulation of early neurodevelopment is implicated in macrocephaly/autism disorders. However, the mechanism underlying this dysregulation, particularly in human cells, remains poorly understood. Mutations in the small GTPase gene RAB39b are associated with X-linked macrocephaly, autism spectrum disorder (ASD), and intellectual disability. The in vivo roles of RAB39b in the brain remain unknown. We generated Rab39b knockout (KO) mice and found that they exhibited cortical neurogenesis impairment, macrocephaly, and hallmark ASD behaviors, which resembled patient phenotypes. We also produced mutant human cerebral organoids that were substantially enlarged due to the overproliferation and impaired differentiation of neural progenitor cells (NPCs), which resemble neurodevelopmental deficits in KO mice. Mechanistic studies reveal that RAB39b interacts with PI3K components and its deletion promotes PI3K-AKT-mTOR signaling in NPCs of mouse cortex and cerebral organoids. The mTOR activity is robustly enhanced in mutant outer radial glia cells (oRGs), a subtype of NPCs barely detectable in rodents but abundant in human brains. Inhibition of AKT signaling rescued enlarged organoid sizes and NPC overproliferation caused by RAB39b mutations. Therefore, RAB39b mutation promotes PI3K-AKT-mTOR activity and alters cortical neurogenesis, leading to macrocephaly and autistic-like behaviors. Our studies provide new insights into neurodevelopmental dysregulation and common pathways associated with ASD across species.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California 90033, USA
| | - Li Ma
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California 90033, USA
| | - Mei Yang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California 90033, USA
| | - Qiang Shao
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California 90033, USA
| | - Jian Xu
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California 90033, USA
| | - Zhipeng Lu
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Zhen Zhao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Rong Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21205, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California 90033, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California 90033, USA
| |
Collapse
|
21
|
Prem S, Millonig JH, DiCicco-Bloom E. Dysregulation of Neurite Outgrowth and Cell Migration in Autism and Other Neurodevelopmental Disorders. ADVANCES IN NEUROBIOLOGY 2020; 25:109-153. [PMID: 32578146 DOI: 10.1007/978-3-030-45493-7_5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite decades of study, elucidation of the underlying etiology of complex developmental disorders such as autism spectrum disorder (ASD), schizophrenia (SCZ), intellectual disability (ID), and bipolar disorder (BPD) has been hampered by the inability to study human neurons, the heterogeneity of these disorders, and the relevance of animal model systems. Moreover, a majority of these developmental disorders have multifactorial or idiopathic (unknown) causes making them difficult to model using traditional methods of genetic alteration. Examination of the brains of individuals with ASD and other developmental disorders in both post-mortem and MRI studies shows defects that are suggestive of dysregulation of embryonic and early postnatal development. For ASD, more recent genetic studies have also suggested that risk genes largely converge upon the developing human cerebral cortex between weeks 8 and 24 in utero. Yet, an overwhelming majority of studies in autism rodent models have focused on postnatal development or adult synaptic transmission defects in autism related circuits. Thus, studies looking at early developmental processes such as proliferation, cell migration, and early differentiation, which are essential to build the brain, are largely lacking. Yet, interestingly, a few studies that did assess early neurodevelopment found that alterations in brain structure and function associated with neurodevelopmental disorders (NDDs) begin as early as the initial formation and patterning of the neural tube. By the early to mid-2000s, the derivation of human embryonic stem cells (hESCs) and later induced pluripotent stem cells (iPSCs) allowed us to study living human neural cells in culture for the first time. Specifically, iPSCs gave us the unprecedented ability to study cells derived from individuals with idiopathic disorders. Studies indicate that iPSC-derived neural cells, whether precursors or "matured" neurons, largely resemble cortical cells of embryonic humans from weeks 8 to 24. Thus, these cells are an excellent model to study early human neurodevelopment, particularly in the context of genetically complex diseases. Indeed, since 2011, numerous studies have assessed developmental phenotypes in neurons derived from individuals with both genetic and idiopathic forms of ASD and other NDDs. However, while iPSC-derived neurons are fetal in nature, they are post-mitotic and thus cannot be used to study developmental processes that occur before terminal differentiation. Moreover, it is important to note that during the 8-24-week window of human neurodevelopment, neural precursor cells are actively undergoing proliferation, migration, and early differentiation to form the basic cytoarchitecture of the brain. Thus, by studying NPCs specifically, we could gain insight into how early neurodevelopmental processes contribute to the pathogenesis of NDDs. Indeed, a few studies have explored NPC phenotypes in NDDs and have uncovered dysregulations in cell proliferation. Yet, few studies have explored migration and early differentiation phenotypes of NPCs in NDDs. In this chapter, we will discuss cell migration and neurite outgrowth and the role of these processes in neurodevelopment and NDDs. We will begin by reviewing the processes that are important in early neurodevelopment and early cortical development. We will then delve into the roles of neurite outgrowth and cell migration in the formation of the brain and how errors in these processes affect brain development. We also provide review of a few key molecules that are involved in the regulation of neurite outgrowth and migration while discussing how dysregulations in these molecules can lead to abnormalities in brain structure and function thereby highlighting their contribution to pathogenesis of NDDs. Then we will discuss whether neurite outgrowth, migration, and the molecules that regulate these processes are associated with ASD. Lastly, we will review the utility of iPSCs in modeling NDDs and discuss future goals for the study of NDDs using this technology.
Collapse
Affiliation(s)
- Smrithi Prem
- Graduate Program in Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - James H Millonig
- Department of Neuroscience and Cell Biology, Center for Advanced Biotechnology and Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology/Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
22
|
Geoffray MM, Falissard B, Green J, Kerr B, Evans DG, Huson S, Burkitt-Wright E, Garg S. Autism Spectrum Disorder Symptom Profile Across the RASopathies. Front Psychiatry 2020; 11:585700. [PMID: 33519543 PMCID: PMC7843573 DOI: 10.3389/fpsyt.2020.585700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/16/2020] [Indexed: 01/12/2023] Open
Abstract
Dysregulation of the Ras MAPK signaling pathway is implicated in the pathogenesis of autism spectrum disorder (ASD). The RASopathies, a group of disorders caused by mutations of the Ras/MAPK pathway genes, share many overlapping clinical features. Studies suggest a high prevalence of ASD in the RASopathies, but detailed characterization of the ASD profile is lacking. The aim of this study was to compare the ASD symptom profile of three distinct RASopathies associated with both gain-of-function and loss-of-function mutations: neurofibromatosis type 1 (NF1), Noonan syndrome (NS), and cardiofaciocutaneous syndrome (CFC). Participants were drawn from existing databases if they had a diagnosis of a RASopathy, met the criteria for ASD, and were able to communicate verbally. We compared the phenotypic profile of NF1 + ASD (n = 48), NS + ASD (n = 11), and CFC + ASD (n = 7) on the Autism Diagnostic Inventory (ADI-R) and the Autism Diagnostic Observation Schedule (ADOS). We found subtle but non-significant group differences with higher levels of social impairments and lower restricted repetitive behaviors in the NF1 group as compared with the NS and CFC groups. We observed group differences in developmental milestones with most severe delays in CFC, followed by NS and NF1. Our results suggest that despite developmental differences, the ASD profile remains relatively consistent across the three RASopathies. Though our results need confirmation in larger samples, they suggest the possibility that treatment and mechanistic insights developed in the context of one RASopathy may be generalizable to others and possibly to non-syndromic ASD associated with dysregulation of Ras/MAPK pathway genes.
Collapse
Affiliation(s)
- Marie-Maude Geoffray
- Centre Hospitalier Le Vinatier, Bron, France.,Division of Neuroscience and Experimental Psychology, Faculty of Biological Medical & Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Bruno Falissard
- CESP, INSERM U1018, Université Paris-Saclay, Villejuif, France
| | - Jonathan Green
- Division of Neuroscience and Experimental Psychology, Faculty of Biological Medical & Health Sciences, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Sciences Centre, Manchester, United Kingdom.,Department of Child and Adolescent Mental Health, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Browyn Kerr
- Manchester Academic Health Sciences Centre, Manchester, United Kingdom.,Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - D Gareth Evans
- Division of Neuroscience and Experimental Psychology, Faculty of Biological Medical & Health Sciences, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Sciences Centre, Manchester, United Kingdom.,Division of Evolution and Genomic Science, Department of Genomic Medicine, St Mary's Hospital, University of Manchester, Manchester, United Kingdom
| | - Susan Huson
- Manchester Academic Health Sciences Centre, Manchester, United Kingdom.,Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Emma Burkitt-Wright
- Manchester Academic Health Sciences Centre, Manchester, United Kingdom.,Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Shruti Garg
- Division of Neuroscience and Experimental Psychology, Faculty of Biological Medical & Health Sciences, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Sciences Centre, Manchester, United Kingdom.,Department of Child and Adolescent Mental Health, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
23
|
Fernández M, Sierra-Arregui T, Peñagarikano O. The Cerebellum and Autism: More than Motor Control. Behav Neurosci 2019. [DOI: 10.5772/intechopen.85897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Association of genes with phenotype in autism spectrum disorder. Aging (Albany NY) 2019; 11:10742-10770. [PMID: 31744938 PMCID: PMC6914398 DOI: 10.18632/aging.102473] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/08/2019] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder (ASD) is a genetic heterogeneous neurodevelopmental disorder that is characterized by impairments in social interaction and speech development and is accompanied by stereotypical behaviors such as body rocking, hand flapping, spinning objects, sniffing and restricted behaviors. The considerable significance of the genetics associated with autism has led to the identification of many risk genes for ASD used for the probing of ASD specificity and shared cognitive features over the past few decades. Identification of ASD risk genes helps to unravel various genetic variants and signaling pathways which are involved in ASD. This review highlights the role of ASD risk genes in gene transcription and translation regulation processes, as well as neuronal activity modulation, synaptic plasticity, disrupted key biological signaling pathways, and the novel candidate genes that play a significant role in the pathophysiology of ASD. The current emphasis on autism spectrum disorders has generated new opportunities in the field of neuroscience, and further advancements in the identification of different biomarkers, risk genes, and genetic pathways can help in the early diagnosis and development of new clinical and pharmacological treatments for ASD.
Collapse
|
25
|
Takeuchi A, Iida K, Tsubota T, Hosokawa M, Denawa M, Brown JB, Ninomiya K, Ito M, Kimura H, Abe T, Kiyonari H, Ohno K, Hagiwara M. Loss of Sfpq Causes Long-Gene Transcriptopathy in the Brain. Cell Rep 2019; 23:1326-1341. [PMID: 29719248 DOI: 10.1016/j.celrep.2018.03.141] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/19/2018] [Accepted: 03/30/2018] [Indexed: 12/13/2022] Open
Abstract
Genes specifically expressed in neurons contain members with extended long introns. Longer genes present a problem with respect to fulfilment of gene length transcription, and evidence suggests that dysregulation of long genes is a mechanism underlying neurodegenerative and psychiatric disorders. Here, we report the discovery that RNA-binding protein Sfpq is a critical factor for maintaining transcriptional elongation of long genes. We demonstrate that Sfpq co-transcriptionally binds to long introns and is required for sustaining long-gene transcription by RNA polymerase II through mediating the interaction of cyclin-dependent kinase 9 with the elongation complex. Phenotypically, Sfpq disruption caused neuronal apoptosis in developing mouse brains. Expression analysis of Sfpq-regulated genes revealed specific downregulation of developmentally essential neuronal genes longer than 100 kb in Sfpq-disrupted brains; those genes are enriched in associations with neurodegenerative and psychiatric diseases. The identified molecular machinery yields directions for targeted investigations of the association between long-gene transcriptopathy and neuronal diseases.
Collapse
Affiliation(s)
- Akihide Takeuchi
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Kei Iida
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Medical Research Support Center, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Toshiaki Tsubota
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Motoyasu Hosokawa
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masatsugu Denawa
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - J B Brown
- Laboratory for Molecular Biosciences, Life Science Informatics Research Unit, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kensuke Ninomiya
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroshi Kimura
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Takaya Abe
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe 650-0047, Japan
| | - Hiroshi Kiyonari
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe 650-0047, Japan; Animal Resource Development Unit, R IKEN Center for Life Science Technologies, Kobe 650-0047, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
26
|
Lam M, Moslem M, Bryois J, Pronk RJ, Uhlin E, Ellström ID, Laan L, Olive J, Morse R, Rönnholm H, Louhivuori L, Korol SV, Dahl N, Uhlén P, Anderlid BM, Kele M, Sullivan PF, Falk A. Single cell analysis of autism patient with bi-allelic NRXN1-alpha deletion reveals skewed fate choice in neural progenitors and impaired neuronal functionality. Exp Cell Res 2019; 383:111469. [PMID: 31302032 DOI: 10.1016/j.yexcr.2019.06.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022]
Abstract
We generated human iPS derived neural stem cells and differentiated cells from healthy control individuals and an individual with autism spectrum disorder carrying bi-allelic NRXN1-alpha deletion. We investigated the expression of NRXN1-alpha during neural induction and neural differentiation and observed a pivotal role for NRXN1-alpha during early neural induction and neuronal differentiation. Single cell RNA-seq pinpointed neural stem cells carrying NRXN1-alpha deletion shifting towards radial glia-like cell identity and revealed higher proportion of differentiated astroglia. Furthermore, neuronal cells carrying NRXN1-alpha deletion were identified as immature by single cell RNA-seq analysis, displayed significant depression in calcium signaling activity and presented impaired maturation action potential profile in neurons investigated with electrophysiology. Our observations propose NRXN1-alpha plays an important role for the efficient establishment of neural stem cells, in neuronal differentiation and in maturation of functional excitatory neuronal cells.
Collapse
Affiliation(s)
- Matti Lam
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mohsen Moslem
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Julien Bryois
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Robin J Pronk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Elias Uhlin
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ivar Dehnisch Ellström
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Loora Laan
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jessica Olive
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Rebecca Morse
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Harriet Rönnholm
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lauri Louhivuori
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sergiy V Korol
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Niklas Dahl
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Malin Kele
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
27
|
Wong CCY, Smith RG, Hannon E, Ramaswami G, Parikshak NN, Assary E, Troakes C, Poschmann J, Schalkwyk LC, Sun W, Prabhakar S, Geschwind DH, Mill J. Genome-wide DNA methylation profiling identifies convergent molecular signatures associated with idiopathic and syndromic autism in post-mortem human brain tissue. Hum Mol Genet 2019; 28:2201-2211. [PMID: 31220268 PMCID: PMC6602383 DOI: 10.1093/hmg/ddz052] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) encompasses a collection of complex neuropsychiatric disorders characterized by deficits in social functioning, communication and repetitive behaviour. Building on recent studies supporting a role for developmentally moderated regulatory genomic variation in the molecular aetiology of ASD, we quantified genome-wide patterns of DNA methylation in 223 post-mortem tissues samples isolated from three brain regions [prefrontal cortex, temporal cortex and cerebellum (CB)] dissected from 43 ASD patients and 38 non-psychiatric control donors. We identified widespread differences in DNA methylation associated with idiopathic ASD (iASD), with consistent signals in both cortical regions that were distinct to those observed in the CB. Individuals carrying a duplication on chromosome 15q (dup15q), representing a genetically defined subtype of ASD, were characterized by striking differences in DNA methylationacross a discrete domain spanning an imprinted gene cluster within the duplicated region. In addition to the dramatic cis-effects on DNA methylation observed in dup15q carriers, we identified convergent methylomic signatures associated with both iASD and dup15q, reflecting the findings from previous studies of gene expression and H3K27ac. Cortical co-methylation network analysis identified a number of co-methylated modules significantly associated with ASD that are enriched for genomic regions annotated to genes involved in the immune system, synaptic signalling and neuronal regulation. Our study represents the first systematic analysis of DNA methylation associated with ASD across multiple brain regions, providing novel evidence for convergent molecular signatures associated with both idiopathic and syndromic autism.
Collapse
Affiliation(s)
- Chloe C Y Wong
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, London, UK
| | - Rebecca G Smith
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Eilis Hannon
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Gokul Ramaswami
- Center for Autism Research and Treatment, and Program in Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Neelroop N Parikshak
- Center for Autism Research and Treatment, and Program in Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Elham Assary
- Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Claire Troakes
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, London, UK
| | - Jeremie Poschmann
- Centre de Recherche en Transplantation et Immunologie, Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Inserm, Université de Nantes, Nantes, France
| | | | - Wenjie Sun
- Computational and Systems Biology, Genome Institute of Singapore, Singapore
| | - Shyam Prabhakar
- Computational and Systems Biology, Genome Institute of Singapore, Singapore
| | - Daniel H Geschwind
- Center for Autism Research and Treatment, and Program in Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, USA
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, UK
| |
Collapse
|
28
|
Carias KV, Wevrick R. Clinical and genetic analysis of children with a dual diagnosis of Tourette syndrome and autism spectrum disorder. J Psychiatr Res 2019; 111:145-153. [PMID: 30771620 DOI: 10.1016/j.jpsychires.2019.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/17/2018] [Accepted: 01/29/2019] [Indexed: 01/09/2023]
Abstract
Gilles de la Tourette Syndrome (TS) is a neurodevelopmental disorder that causes children to make repeated, brief involuntary movements or sounds. TS can be co-morbid with other neurodevelopmental disorders, including autism spectrum disorder (ASD). Clusters of biologically related genes have been associated with neurodevelopmental disorders, suggesting shared pathologies. However, the genetic contribution to TS remains poorly defined. We asked whether children with both TS and ASD differed clinically from children with ASD alone, and identified potentially deleterious genetic events in children with TS and ASD. We compared clinical data from 119 children with ASD and TS to 2603 children with ASD, all from the Simons Simplex Collection. We performed gene set enrichment analysis on de novo genetic events in children with both TS and ASD to identify candidate genes and pathways, and compared these genes and pathways with those previously identified in TS. Children with TS and ASD were diagnosed at an older age, had higher IQ scores, and had more restricted and repetitive behavior than children with ASD but not TS. Gene Ontology analysis revealed that proteins important for specific biological pathways, including regulation of calcium ion-dependent exocytosis, basement membrane organization, and visual behavior and learning, and specific cellular pathways, including basal lamina and ciliary transition zone, are enriched among genes with de novo mutations in children with TS and ASD. Clinical and genetic analysis of cohorts of affected children can help to determine the underlying pathophysiology of TS and other neurodevelopmental disorders.
Collapse
Affiliation(s)
| | - Rachel Wevrick
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
29
|
Ma X, Chen K, Lu Z, Piechowicz M, Liu Q, Wu J, Qiu S. Disruption of MET Receptor Tyrosine Kinase, an Autism Risk Factor, Impairs Developmental Synaptic Plasticity in the Hippocampus. Dev Neurobiol 2019; 79:36-50. [PMID: 30304576 PMCID: PMC6397659 DOI: 10.1002/dneu.22645] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/21/2018] [Accepted: 10/10/2018] [Indexed: 02/05/2023]
Abstract
As more genes conferring risks to neurodevelopmental disorders are identified, translating these genetic risk factors into biological mechanisms that impact the trajectory of the developing brain is a critical next step. Here, we report that disrupted signaling mediated MET receptor tyrosine kinase (RTK), an established risk factor for autism spectrum disorders, in the developing hippocampus glutamatergic circuit leads to profound deficits in neural development, synaptic transmission, and plasticity. In cultured hippocampus slices prepared from neonatal mice, pharmacological inhibition of MET kinase activity suppresses dendritic arborization and disrupts normal dendritic spine development. In addition, single-neuron knockdown (RNAi) or overexpression of Met in the developing hippocampal CA1 neurons leads to alterations, opposite in nature, in basal synaptic transmission and long-term plasticity. In forebrain-specific Met conditional knockout mice (Metfx/fx ;emx1cre ), an enhanced long-term potentiation (LTP) and long-term depression (LTD) were observed at early developmental stages (P12-14) at the Schaffer collateral to CA1 synapses compared with wild-type littermates. In contrast, LTP and LTD were markedly reduced at young adult stage (P56-70) during which wild-type mice show robust LTP and LTD. The altered trajectory of synaptic plasticity revealed by this study indicate that temporally regulated MET signaling as an intrinsic, cell autonomous, and pleiotropic mechanism not only critical for neuronal growth and functional maturation, but also for the timing of synaptic plasticity during forebrain glutamatergic circuits development.
Collapse
Affiliation(s)
- Xiaokuang Ma
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, 85004
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Ke Chen
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, 85004
- MOE Key Laboratory for NeuroInformation, The Clinical Hospital of Chengdu Brain Sciences Institute, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Zhongming Lu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, 85004
| | - Mariel Piechowicz
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, 85004
| | - Qiang Liu
- Barrow Neurological Institute, St. Joseph's Hospital Medical Center, Phoenix, Arizona, 85013
| | - Jie Wu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, 85004
- Barrow Neurological Institute, St. Joseph's Hospital Medical Center, Phoenix, Arizona, 85013
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Shenfeng Qiu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, 85004
| |
Collapse
|
30
|
Abstract
Abstract
Jaswal & Akhtar (J&A) offer evidence against lack of social motivation in “autistic people,” providing no further phenotypic details as to the autism spectrum disorder (ASD) subgroups that they refer to. I will argue that given the extensive behavioral and neurobiological heterogeneity among people who receive the diagnosis, reference to “autistic people” is misleading. As a consequence, J&A's claims are difficult to interpret.
Collapse
|
31
|
Prenatal Neuropathologies in Autism Spectrum Disorder and Intellectual Disability: The Gestation of a Comprehensive Zebrafish Model. J Dev Biol 2018; 6:jdb6040029. [PMID: 30513623 PMCID: PMC6316217 DOI: 10.3390/jdb6040029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) and intellectual disability (ID) are neurodevelopmental disorders with overlapping diagnostic behaviors and risk factors. These include embryonic exposure to teratogens and mutations in genes that have important functions prenatally. Animal models, including rodents and zebrafish, have been essential in delineating mechanisms of neuropathology and identifying developmental critical periods, when those mechanisms are most sensitive to disruption. This review focuses on how the developmentally accessible zebrafish is contributing to our understanding of prenatal pathologies that set the stage for later ASD-ID behavioral deficits. We discuss the known factors that contribute prenatally to ASD-ID and the recent use of zebrafish to model deficits in brain morphogenesis and circuit development. We conclude by suggesting that a future challenge in zebrafish ASD-ID modeling will be to bridge prenatal anatomical and physiological pathologies to behavioral deficits later in life.
Collapse
|
32
|
Drozd HP, Karathanasis SF, Molosh AI, Lukkes JL, Clapp DW, Shekhar A. From bedside to bench and back: Translating ASD models. PROGRESS IN BRAIN RESEARCH 2018; 241:113-158. [PMID: 30447753 DOI: 10.1016/bs.pbr.2018.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autism spectrum disorders (ASD) represent a heterogeneous group of disorders defined by deficits in social interaction/communication and restricted interests, behaviors, or activities. Models of ASD, developed based on clinical data and observations, are used in basic science, the "bench," to better understand the pathophysiology of ASD and provide therapeutic options for patients in the clinic, the "bedside." Translational medicine creates a bridge between the bench and bedside that allows for clinical and basic science discoveries to challenge one another to improve the opportunities to bring novel therapies to patients. From the clinical side, biomarker work is expanding our understanding of possible mechanisms of ASD through measures of behavior, genetics, imaging modalities, and serum markers. These biomarkers could help to subclassify patients with ASD in order to better target treatments to a more homogeneous groups of patients most likely to respond to a candidate therapy. In turn, basic science has been responding to developments in clinical evaluation by improving bench models to mechanistically and phenotypically recapitulate the ASD phenotypes observed in clinic. While genetic models are identifying novel therapeutics targets at the bench, the clinical efforts are making progress by defining better outcome measures that are most representative of meaningful patient responses. In this review, we discuss some of these challenges in translational research in ASD and strategies for the bench and bedside to bridge the gap to achieve better benefits to patients.
Collapse
Affiliation(s)
- Hayley P Drozd
- Program in Medical Neurobiology, Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sotirios F Karathanasis
- Program in Medical Neurobiology, Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Andrei I Molosh
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jodi L Lukkes
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - D Wade Clapp
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Anantha Shekhar
- Program in Medical Neurobiology, Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States; Indiana Clinical and Translation Sciences Institute, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
33
|
Ko HM, Jin Y, Park HH, Lee JH, Jung SH, Choi SY, Lee SH, Shin CY. Dual mechanisms for the regulation of brain-derived neurotrophic factor by valproic acid in neural progenitor cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:679-688. [PMID: 30402028 PMCID: PMC6205935 DOI: 10.4196/kjpp.2018.22.6.679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/15/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorders (ASDs) are neurodevelopmental disorders that share behavioral features, the results of numerous studies have suggested that the underlying causes of ASDs are multifactorial. Behavioral and/or neurobiological analyses of ASDs have been performed extensively using a valid model of prenatal exposure to valproic acid (VPA). Abnormal synapse formation resulting from altered neurite outgrowth in neural progenitor cells (NPCs) during embryonic brain development has been observed in both the VPA model and ASD subjects. Although several mechanisms have been suggested, the actual mechanism underlying enhanced neurite outgrowth remains unclear. In this study, we found that VPA enhanced the expression of brain-derived neurotrophic factor (BDNF), particularly mature BDNF (mBDNF), through dual mechanisms. VPA increased the mRNA and protein expression of BDNF by suppressing the nuclear expression of methyl-CpG-binding protein 2 (MeCP2), which is a transcriptional repressor of BDNF. In addition, VPA promoted the expression and activity of the tissue plasminogen activator (tPA), which induces BDNF maturation through proteolytic cleavage. Trichostatin A and sodium butyrate also enhanced tPA activity, but tPA activity was not induced by valpromide, which is a VPA analog that does not induce histone acetylation, indicating that histone acetylation activity was required for tPA regulation. VPA-mediated regulation of BDNF, MeCP2, and tPA was not observed in astrocytes or neurons. Therefore, these results suggested that VPA-induced mBDNF upregulation was associated with the dysregulation of MeCP2 and tPA in developing cortical NPCs.
Collapse
Affiliation(s)
- Hyun Myung Ko
- Department of Life Science, College of Science and Technology, Woosuk University, Jincheon 27841, Korea
| | - Yeonsun Jin
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Jong Hyuk Lee
- Department of Pharmaceutical Engineering, College of Life and Health Science, Hoseo University, Asan 31499, Korea
| | - Seung Hyo Jung
- Department of Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Korea
| | - So Young Choi
- Department of Biomedical Science & Technology, Konkuk University, Seoul 05029, Korea
| | - Sung Hoon Lee
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Chan Young Shin
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
34
|
Chapman NH, Bernier RA, Webb SJ, Munson J, Blue EM, Chen DH, Heigham E, Raskind WH, Wijsman EM. Replication of a rare risk haplotype on 1p36.33 for autism spectrum disorder. Hum Genet 2018; 137:807-815. [PMID: 30276537 PMCID: PMC6309233 DOI: 10.1007/s00439-018-1939-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/22/2018] [Indexed: 01/15/2023]
Abstract
Hundreds of genes have been implicated in autism spectrum disorders (ASDs). In genetically heterogeneous conditions, large families with multiple affected individuals provide strong evidence implicating a rare variant, and replication of the same variant in multiple families is unusual. We previously published linkage analyses and follow-up exome sequencing in seven large families with ASDs, implicating 14 rare exome variants. These included rs200195897, which was transmitted to four affected individuals in one family. We attempted replication of those variants in the MSSNG database. MSSNG is a unique resource for replication of ASD risk loci, containing whole genome sequence (WGS) on thousands of individuals diagnosed with ASDs and family members. For each exome variant, we obtained all carriers and their relatives in MSSNG, using a TDT test to quantify evidence for transmission and association. We replicated the transmission of rs200195897 to four affected individuals in three additional families. rs200195897 was also present in three singleton affected individuals, and no unaffected individuals other than transmitting parents. We identified two additional rare variants (rs566472488 and rs185038034) transmitted with rs200195897 on 1p36.33. Sanger sequencing confirmed the presence of these variants in the original family segregating rs200195897. To our knowledge, this is the first example of a rare haplotype being transmitted with ASD in multiple families. The candidate risk variants include a missense mutation in SAMD11, an intronic variant in NOC2L, and a regulatory region variant close to both genes. NOC2L is a transcription repressor, and several genes involved in transcription regulation have been previously associated with ASDs.
Collapse
Affiliation(s)
- N H Chapman
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 359460, Seattle, WA, 98195, USA
| | - R A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, 98195, USA
- Center on Human Development and Disability, University of Washington, Seattle, WA, 98195, USA
| | - S J Webb
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, 98195, USA
- Center on Human Development and Disability, University of Washington, Seattle, WA, 98195, USA
| | - J Munson
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, 98195, USA
- Center on Human Development and Disability, University of Washington, Seattle, WA, 98195, USA
| | - E M Blue
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 359460, Seattle, WA, 98195, USA
| | - D-H Chen
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA
| | - E Heigham
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA
| | - W H Raskind
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 359460, Seattle, WA, 98195, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Ellen M Wijsman
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 359460, Seattle, WA, 98195, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA.
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
35
|
Fricano-Kugler CJ, Getz SA, Williams MR, Zurawel AA, DeSpenza T, Frazel PW, Li M, O’Malley AJ, Moen EL, Luikart BW. Nuclear Excluded Autism-Associated Phosphatase and Tensin Homolog Mutations Dysregulate Neuronal Growth. Biol Psychiatry 2018; 84:265-277. [PMID: 29373119 PMCID: PMC5984669 DOI: 10.1016/j.biopsych.2017.11.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/01/2017] [Accepted: 11/16/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Phosphatase and tensin homolog (PTEN) negatively regulates downstream protein kinase B signaling, resulting in decreased cellular growth and proliferation. PTEN is mutated in a subset of children with autism spectrum disorder (ASD); however, the mechanism by which specific point mutations alter PTEN function is largely unknown. Here, we assessed how ASD-associated single-nucleotide variations in PTEN (ASD-PTEN) affect function. METHODS We used viral-mediated molecular substitution of human PTEN into Pten knockout mouse neurons and assessed neuronal morphology to determine the functional impact of ASD-PTEN. We employed molecular cloning to examine how PTEN's stability, subcellular localization, and catalytic activity affect neuronal growth. RESULTS We identified a set of ASD-PTEN mutations displaying altered lipid phosphatase function and subcellular localization. We demonstrated that wild-type PTEN can rescue the neuronal hypertrophy, while PTEN H93R, F241S, D252G, W274L, N276S, and D326N failed to rescue this hypertrophy. A subset of these mutations lacked nuclear localization, prompting us to examine the role of nuclear PTEN in regulating neuronal growth. We found that nuclear PTEN alone is sufficient to regulate soma size. Furthermore, forced localization of the D252G and W274L mutations into the nucleus partially restores regulation of soma size. CONCLUSIONS ASD-PTEN mutations display decreased stability, catalytic activity, and/or altered subcellular localization. Mutations lacking nuclear localization uncover a novel mechanism whereby lipid phosphatase activity in the nucleus can regulate mammalian target of rapamycin signaling and neuronal growth.
Collapse
Affiliation(s)
- Catherine J. Fricano-Kugler
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire 03756
| | - Stephanie A. Getz
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire 03756
| | - Michael R. Williams
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire 03756
| | - Ashley A. Zurawel
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire 03756
| | - Tyrone DeSpenza
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire 03756
| | - Paul W. Frazel
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire 03756
| | - Meijie Li
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire 03756
| | - Alistair J. O’Malley
- The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA,Department of Biomedical Data Science, The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Erika L. Moen
- The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Bryan W. Luikart
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire 03756,Corresponding Author-
| |
Collapse
|
36
|
Dickie EW, Ameis SH, Shahab S, Calarco N, Smith DE, Miranda D, Viviano JD, Voineskos AN. Personalized Intrinsic Network Topography Mapping and Functional Connectivity Deficits in Autism Spectrum Disorder. Biol Psychiatry 2018; 84:278-286. [PMID: 29703592 PMCID: PMC6076333 DOI: 10.1016/j.biopsych.2018.02.1174] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Recent advances in techniques using functional magnetic resonance imaging data demonstrate individually specific variation in brain architecture in healthy individuals. To our knowledge, the effects of individually specific variation in complex brain disorders have not been previously reported. METHODS We developed a novel approach (Personalized Intrinsic Network Topography, PINT) for localizing individually specific resting-state networks using conventional resting-state functional magnetic resonance imaging scans. Using cross-sectional data from participants with autism spectrum disorder (ASD; n = 393) and typically developing (TD) control participants (n = 496) across 15 sites, we tested: 1) effect of diagnosis and age on the variability of intrinsic network locations and 2) whether prior findings of functional connectivity differences in persons with ASD compared with TD persons remain after PINT application. RESULTS We found greater variability in the spatial locations of resting-state networks within individuals with ASD compared with those in TD individuals. For TD persons, variability decreased from childhood into adulthood and increased in late life, following a U-shaped pattern that was not present in those with ASD. Comparison of intrinsic connectivity between groups revealed that the application of PINT decreased the number of hypoconnected regions in ASD. CONCLUSIONS Our results provide a new framework for measuring altered brain functioning in neurodevelopmental disorders that may have implications for tracking developmental course, phenotypic heterogeneity, and ultimately treatment response. We underscore the importance of accounting for individual variation in the study of complex brain disorders.
Collapse
Affiliation(s)
- Erin W Dickie
- Kimel Family Translational Imaging Genetics Research Laboratory, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada; Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Stephanie H Ameis
- Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada; Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Centre for Brain and Mental Health, the Hospital for Sick Children, Toronto, Canada
| | - Saba Shahab
- Kimel Family Translational Imaging Genetics Research Laboratory, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada; Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Navona Calarco
- Kimel Family Translational Imaging Genetics Research Laboratory, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada; Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Dawn E Smith
- Kimel Family Translational Imaging Genetics Research Laboratory, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada; Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Dayton Miranda
- Kimel Family Translational Imaging Genetics Research Laboratory, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada; Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Joseph D Viviano
- Kimel Family Translational Imaging Genetics Research Laboratory, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada; Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Aristotle N Voineskos
- Kimel Family Translational Imaging Genetics Research Laboratory, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada; Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada.
| |
Collapse
|
37
|
Meta-analysis of GABRB3 Gene Polymorphisms and Susceptibility to Autism Spectrum Disorder. J Mol Neurosci 2018; 65:432-437. [PMID: 30074174 DOI: 10.1007/s12031-018-1114-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/06/2018] [Indexed: 12/17/2022]
Abstract
Several lines of evidence have suggested that the GABA receptor subunit β3 (GABRB3) gene is a genetic contributor in the autism spectrum disorder (ASD). The aberrant expression of GABRB3 is reported in ASD patients which may be a consequence of the presence of certain genetic variants in the promoter region of the gene. The associations between single-nucleotide polymorphisms (SNPs) within this gene and ASD have been analyzed in previous studies. However, the results are conflicting. In the present study, we performed a meta-analysis on association between two SNPs located in the promoter region of GABRB3 gene (rs4906902 and rs20317) and ASD. The literature search was performed based on criteria provided by the meta-analysis of observational studies in epidemiology (MOOSE). The association between mentioned SNPs and ASD was calculated using pooled odd ratios (ORs) and 95% confidence intervals. The result of the present meta-analysis indicates that neither rs4906902 nor rs20317 are significantly associated with the risk of ASD. The underlying mechanism of the aberrant expression of GABRB3 gene in ASD patients should be investigated in other biological levels.
Collapse
|
38
|
Neuroimaging in neurodevelopmental disorders: focus on resting-state fMRI analysis of intrinsic functional brain connectivity. Curr Opin Neurol 2018; 31:140-148. [DOI: 10.1097/wco.0000000000000536] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Rubinstein M, Patowary A, Stanaway IB, McCord E, Nesbitt RR, Archer M, Scheuer T, Nickerson D, Raskind WH, Wijsman EM, Bernier R, Catterall WA, Brkanac Z. Association of rare missense variants in the second intracellular loop of Na V1.7 sodium channels with familial autism. Mol Psychiatry 2018; 23:231-239. [PMID: 27956748 PMCID: PMC5468514 DOI: 10.1038/mp.2016.222] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 10/07/2016] [Accepted: 10/17/2016] [Indexed: 01/21/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder often accompanied by intellectual disability, language impairment and medical co-morbidities. The heritability of autism is high and multiple genes have been implicated as causal. However, most of these genes have been identified in de novo cases. To further the understanding of familial autism, we performed whole-exome sequencing on five families in which second- and third-degree relatives were affected. By focusing on novel and protein-altering variants, we identified a small set of candidate genes. Among these, a novel private missense C1143F variant in the second intracellular loop of the voltage-gated sodium channel NaV1.7, encoded by the SCN9A gene, was identified in one family. Through electrophysiological analysis, we show that NaV1.7C1143F exhibits partial loss-of-function effects, resulting in slower recovery from inactivation and decreased excitability in cultured cortical neurons. Furthermore, for the same intracellular loop of NaV1.7, we found an excess of rare variants in a case-control variant-burden study. Functional analysis of one of these variants, M932L/V991L, also demonstrated reduced firing in cortical neurons. However, although this variant is rare in Caucasians, it is frequent in Latino population, suggesting that genetic background can alter its effects on phenotype. Although the involvement of the SCN1A and SCN2A genes encoding NaV1.1 and NaV1.2 channels in de novo ASD has previously been demonstrated, our study indicates the involvement of inherited SCN9A variants and partial loss-of-function of NaV1.7 channels in the etiology of rare familial ASD.
Collapse
Affiliation(s)
- M Rubinstein
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - A Patowary
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - I B Stanaway
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - E McCord
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - R R Nesbitt
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - M Archer
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - T Scheuer
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - D Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - W H Raskind
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA,Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - E M Wijsman
- Department of Genome Sciences, University of Washington, Seattle, WA, USA,Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA,Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - R Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - W A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA, USA,Department of Pharmacology, University of Washington, Seattle, WA 98195, USA E-mail:
| | - Z Brkanac
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA,Department of Psychiatry and Behavioral Science, University of Washington, 1959N.E. Pacific Street, Room BB1526, Seattle, WA 98195-6560, USA. E-mail:
| |
Collapse
|
40
|
Ishizuka K, Tabata H, Ito H, Kushima I, Noda M, Yoshimi A, Usami M, Watanabe K, Morikawa M, Uno Y, Okada T, Mori D, Aleksic B, Ozaki N, Nagata KI. Possible involvement of a cell adhesion molecule, Migfilin, in brain development and pathogenesis of autism spectrum disorders. J Neurosci Res 2017; 96:789-802. [PMID: 29114925 DOI: 10.1002/jnr.24194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 11/07/2022]
Abstract
Migfilin, encoded by FBLIM1 at the 1p36 locus, is a multi-domain adaptor protein essential for various cellular processes such as cell morphology and migration. Small deletions and duplications at the 1p36 locus, monosomy of which results in neurodevelopmental disorders and multiple congenital anomalies, have also been identified in patients with autism spectrum disorder (ASD). However, the impact of FBLIM1, the gene within 1p36, on the pathogenesis of ASD is unknown. In this study, we performed morphological analyses of migfilin to elucidate its role in brain development. Migfilin was detected specifically in the embryonic and perinatal stages of the mouse brain. Either silencing or overexpression of migfilin in embryos following in utero electroporation disrupted Neocortical neuronal migration. Additionally, neurite elongation was impaired when migfilin was silenced in cultured mouse hippocampal neurons. We then screened FBLIM1 for rare exonic deletions/duplications in 549 Japanese ASD patients and 824 controls, detecting one case of ASD and intellectual delay that harbored a 26-kb deletion at 1p36.21 that solely included the C-terminal exon of FBLIM1. The FBLIM1 mRNA expression level in this case was reduced compared to levels in individuals without FBLIM1 deletion. Our findings indicate that tightly regulated expression of migfilin is essential for neuronal development and that FBLIM1 disruption may be related to the phenotypes associated with ASD and related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kanako Ishizuka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mariko Noda
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Akira Yoshimi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahide Usami
- Department of Child and Adolescent Psychiatry, Kohnodai Hospital, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Kyota Watanabe
- Hiroshima City Center for Children's Health and Development, Hiroshima, Japan
| | - Mako Morikawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yota Uno
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan.,Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
41
|
Lacivita E, Perrone R, Margari L, Leopoldo M. Targets for Drug Therapy for Autism Spectrum Disorder: Challenges and Future Directions. J Med Chem 2017; 60:9114-9141. [PMID: 29039668 DOI: 10.1021/acs.jmedchem.7b00965] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by persistent deficits in social communication and interaction and restricted, repetitive patterns of behavior, interests, and activities. Various factors are involved in the etiopathogenesis of ASD, including genetic factors, environmental toxins and stressors, impaired immune responses, mitochondrial dysfunction, and neuroinflammation. The heterogeneity in the phenotype among ASD patients and the complex etiology of the condition have long impeded the advancement of the development of pharmacological therapies. In the recent years, the integration of findings from mouse models to human genetics resulted in considerable progress toward the understanding of ASD pathophysiology. Currently, strategies to treat core symptoms of ASD are directed to correct synaptic dysfunctions, abnormalities in central oxytocin, vasopressin, and serotonin neurotransmission, and neuroinflammation. Here, we present a survey of the studies that have suggested molecular targets for drug development for ASD and the state-of-the-art of medicinal chemistry efforts in related areas.
Collapse
Affiliation(s)
- Enza Lacivita
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , via Orabona 4, 70125, Bari, Italy
| | - Roberto Perrone
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , via Orabona 4, 70125, Bari, Italy
| | - Lucia Margari
- Dipartimento di Scienze Mediche di Base, Neuroscienze e Organi di Senso, Unità di Neuropsichiatria Infantile, Università degli Studi di Bari Aldo Moro , Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Marcello Leopoldo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , via Orabona 4, 70125, Bari, Italy
| |
Collapse
|
42
|
Adegbola A, Bury LA, Fu C, Zhang M, Wynshaw-Boris A. Concise Review: Induced Pluripotent Stem Cell Models for Neuropsychiatric Diseases. Stem Cells Transl Med 2017; 6:2062-2070. [PMID: 29027744 PMCID: PMC5702513 DOI: 10.1002/sctm.17-0150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/14/2017] [Indexed: 01/05/2023] Open
Abstract
The major neuropsychiatric conditions of schizophrenia, affective disorders, and infantile autism are characterized by chronic symptoms of episodic, stable, or progressive nature that result in significant morbidity. Symptomatic treatments are the mainstay but do not resolve the underlying disease processes, which are themselves poorly understood. The prototype psychotropic drugs are of variable efficacy, with therapeutic mechanisms of action that are still uncertain. Thus, neuropsychiatric disorders are ripe for new technologies and approaches with the potential to revolutionize mechanistic understanding and drive the development of novel targeted treatments. The advent of methods to produce patient‐derived stem cell models and three‐dimensional organoids with the capacity to differentiate into neurons and the various neuronal cellular lineages mark such an advance. We discuss numerous techniques involved, their applications, and areas that require further optimization. Stem Cells Translational Medicine2017;6:2062–2070
Collapse
Affiliation(s)
- Abidemi Adegbola
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Luke A Bury
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Chen Fu
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Meixiang Zhang
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Anthony Wynshaw-Boris
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
43
|
Lintas C, Picinelli C, Piras IS, Sacco R, Brogna C, Persico AM. Copy number variation in 19 Italian multiplex families with autism spectrum disorder: Importance of synaptic and neurite elongation genes. Am J Med Genet B Neuropsychiatr Genet 2017; 174:547-556. [PMID: 28304131 DOI: 10.1002/ajmg.b.32537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 02/17/2017] [Indexed: 12/11/2022]
Abstract
Autism Spectrum Disorder (ASD) is endowed with impressive heritability estimates and high recurrence rates. Its genetic underpinnings are nonetheless very heterogeneous, with common, and rare contributing variants located in hundreds of different loci, each characterized by variable levels of penetrance. Multiplex families from single ethnic groups represent a useful means to reduce heterogeneity and enhance genetic load. We screened 19 Italian ASD multiplex families (3 triplets and 16 duplets, total N = 41 ASD subjects), using array-CGH (Agilent 180 K). Causal or ASD-relevant CNVs were detected in 36.6% (15/41) of ASD probands, corresponding to 36.8% (7/19) multiplex families with at least one affected sibling genetically positive. However, only in less than half (3/7) of positive families, affected siblings share the same causal or ASD-relevant CNV. Even in these three families, additional potentially relevant CNVs not shared by affected sib pairs were also detected. These results provide further evidence of genetic heterogeneity in ASD even within multiplex families belonging to a single ethnic group. Differences in CNV burden may likely contribute to the substantial clinical heterogeneity observed between affected siblings. In addition, Gene Ontology enrichment analysis indicates that most potentially causal or relevant ASD genes detected in our cohort belong to nervous system-specific categories, especially involved in neurite elongation and synaptic structure/function. These findings point toward the existence of genomic instability in these families, whose underlying genetic and epigenetic mechanisms deserve further scrutiny.
Collapse
Affiliation(s)
- Carla Lintas
- Service for Neurodevelopmental Disorders and Laboratory of Molecular Psychiatry and Neurogenetics, University "Campus Bio-Medico", Rome, Italy
| | - Chiara Picinelli
- Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy
| | | | - Roberto Sacco
- Service for Neurodevelopmental Disorders and Laboratory of Molecular Psychiatry and Neurogenetics, University "Campus Bio-Medico", Rome, Italy
| | - Claudia Brogna
- Service for Neurodevelopmental Disorders and Laboratory of Molecular Psychiatry and Neurogenetics, University "Campus Bio-Medico", Rome, Italy
| | - Antonio M Persico
- Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy.,Unit of Child and Adolescent Neuropsychiatry, "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| |
Collapse
|
44
|
Nawa Y, Kaneko H, Oda M, Tsubonoya M, Hiroi T, Gentile MT, Colucci-D'Amato L, Takahashi R, Matsui H. Functional characterization of the neuron-restrictive silencer element in the human tryptophan hydroxylase 2 gene expression. J Neurochem 2017; 142:827-840. [PMID: 28464229 DOI: 10.1111/jnc.14060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/24/2022]
Abstract
Tryptophan hydroxylase 2 (TPH2) is the key enzyme in the synthesis of neuronal serotonin. Although previous studies suggest that TPH2 neuron-restrictive silencer element (NRSE) functions as a negative regulator dependent on neuron-restrictive silencer factor (NRSF) activity, the underlying mechanisms are yet to be fully elucidated. Here, we show a detailed analysis of the NRSE-mediated repression of the human TPH2 (hTPH2) promoter activity in RN46A cells, a cell line derived from rat raphe neurons. Quantitative real-time RT-PCR analysis revealed the expression of serotonergic marker genes (Mash1, Nkx2.2, Gata2, Gata3, Lmx1b, Pet-1, 5-Htt, and Vmat2) and Nrsf gene in RN46A cells. Tph1 mRNA is the prevalent form expressed in RN46A cells; Tph2 mRNA is also expressed but at a lower level. Electrophoretic mobility shift assays and reporter assays showed that hTPH2 NRSE is necessary for the efficient DNA binding of NRSF and for the NRSF-dependent repression of the hTPH2 promoter activity. The hTPH2 promoter activity was increased by knockdown of NRSF, or over-expression of the engineered NRSF (a dominant-negative mutant or a DNA-binding domain and activation domain fusion protein). MS-275, a class I histone deacetylase (HDAC) inhibitor, was found to be more potent than MC-1568, a class II HDAC inhibitor, in enhancing the hTPH2 promoter activity. Furthermore, treatment with the ubiquitin-specific protease 7 deubiquitinase inhibitors, P-22077 or HBX 41108, increased the hTPH2 promoter activity. Collectively, our data demonstrate that the hTPH2 NRSE-mediated promoter repression via NRSF involves class I HDACs and is modulated by the ubiquitin-specific protease 7-mediated deubiquitination and stabilization of NRSF.
Collapse
Affiliation(s)
- Yukino Nawa
- Institute of Radioisotope Research, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Hanae Kaneko
- Institute of Radioisotope Research, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Masayuki Oda
- Department of Pharmacogenomics, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Masaaki Tsubonoya
- Institute of Radioisotope Research, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Tomoko Hiroi
- Institute of Radioisotope Research, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Maria Teresa Gentile
- Laboratory of Molecular and Cellular Pathology, Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| | - Luca Colucci-D'Amato
- Laboratory of Molecular and Cellular Pathology, Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| | - Ryoya Takahashi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Japan
| | - Hiroaki Matsui
- Institute of Radioisotope Research, St. Marianna University Graduate School of Medicine, Kawasaki, Japan.,Department of Molecular and Behavioral Neuroscience, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| |
Collapse
|
45
|
Gudenas BL, Srivastava AK, Wang L. Integrative genomic analyses for identification and prioritization of long non-coding RNAs associated with autism. PLoS One 2017; 12:e0178532. [PMID: 28562671 PMCID: PMC5451068 DOI: 10.1371/journal.pone.0178532] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/15/2017] [Indexed: 12/20/2022] Open
Abstract
Genetic studies have identified many risk loci for autism spectrum disorder (ASD) although causal factors in the majority of cases are still unknown. Currently, known ASD risk genes are all protein-coding genes; however, the vast majority of transcripts in humans are non-coding RNAs (ncRNAs) which do not encode proteins. Recently, long non-coding RNAs (lncRNAs) were shown to be highly expressed in the human brain and crucial for normal brain development. We have constructed a computational pipeline for the integration of various genomic datasets to identify lncRNAs associated with ASD. This pipeline utilizes differential gene expression patterns in affected tissues in conjunction with gene co-expression networks in tissue-matched non-affected samples. We analyzed RNA-seq data from the cortical brain tissues from ASD cases and controls to identify lncRNAs differentially expressed in ASD. We derived a gene co-expression network from an independent human brain developmental transcriptome and detected a convergence of the differentially expressed lncRNAs and known ASD risk genes into specific co-expression modules. Co-expression network analysis facilitates the discovery of associations between previously uncharacterized lncRNAs with known ASD risk genes, affected molecular pathways and at-risk developmental time points. In addition, we show that some of these lncRNAs have a high degree of overlap with major CNVs detected in ASD genetic studies. By utilizing this integrative approach comprised of differential expression analysis in affected tissues and connectivity metrics from a developmental co-expression network, we have prioritized a set of candidate ASD-associated lncRNAs. The identification of lncRNAs as novel ASD susceptibility genes could help explain the genetic pathogenesis of ASD.
Collapse
Affiliation(s)
- Brian L. Gudenas
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Anand K. Srivastava
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina, United States of America
| | - Liangjiang Wang
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
46
|
Tian Y, Wang L, Jia M, Lu T, Ruan Y, Wu Z, Wang L, Liu J, Zhang D. Association of oligodendrocytes differentiation regulator gene DUSP15 with autism. World J Biol Psychiatry 2017; 18:143-150. [PMID: 27223645 DOI: 10.1080/15622975.2016.1178395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Autism is a pervasive neurodevelopmental disorder with high heritability. Genetic factors play crucial roles in the aetiology of autism. Dual specificity phosphatase 15 (DUSP15) has been recognised as a key regulator gene for oligodendrocytes differentiation. A previous study detected one de novo missense variant (p.Thr107Met) with probable deleterious function in exon 6 of DUSP15 among patients with autism. Therefore, we sequenced this mutation in autistic children and performed an association analysis between DUSP15 polymorphisms and autism. METHODS We performed a case-control study between 255 children affected with autism and 427 healthy controls. Four tag-single nucleotide polymorphisms (SNPs) were selected. These SNPs and the previously reported mutation in exon 6 of DUSP15 were genotyped via Sanger sequencing. RESULTS Our results showed that rs3746599 was significantly associated with autism under allelic, additive and dominant models, respectively (χ2 = 9.699, P = 0.0018; χ2 = 16.224, P = 0.001; χ2 = 7.198, P = 0.007). The association remained significant after Bonferroni correction and permutation tests (n = 10,000). We did not detect the missense variant p.Thr107Met reported in previous studies. However, a de novo missense variant of DUSP15 (p.Ala56Thr) with a probable disease-causing effect was detected in one autistic child while absent in healthy controls. CONCLUSIONS Our findings initially suggest that DUSP15 might be a susceptibility gene for autism in Chinese Han population.
Collapse
Affiliation(s)
- Ye Tian
- a Institute of Mental Health, Peking University , Beijing , PR China.,b Peking University Sixth Hospital , Beijing , PR China.,c Key Laboratory for Mental Health , Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University) , Beijing , PR China
| | - Lifang Wang
- a Institute of Mental Health, Peking University , Beijing , PR China.,b Peking University Sixth Hospital , Beijing , PR China.,c Key Laboratory for Mental Health , Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University) , Beijing , PR China
| | - Meixiang Jia
- a Institute of Mental Health, Peking University , Beijing , PR China.,b Peking University Sixth Hospital , Beijing , PR China.,c Key Laboratory for Mental Health , Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University) , Beijing , PR China
| | - Tianlan Lu
- a Institute of Mental Health, Peking University , Beijing , PR China.,b Peking University Sixth Hospital , Beijing , PR China.,c Key Laboratory for Mental Health , Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University) , Beijing , PR China
| | - Yanyan Ruan
- a Institute of Mental Health, Peking University , Beijing , PR China.,b Peking University Sixth Hospital , Beijing , PR China.,c Key Laboratory for Mental Health , Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University) , Beijing , PR China
| | - Zhiliu Wu
- a Institute of Mental Health, Peking University , Beijing , PR China.,b Peking University Sixth Hospital , Beijing , PR China.,c Key Laboratory for Mental Health , Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University) , Beijing , PR China
| | - Linyan Wang
- a Institute of Mental Health, Peking University , Beijing , PR China.,b Peking University Sixth Hospital , Beijing , PR China.,c Key Laboratory for Mental Health , Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University) , Beijing , PR China
| | - Jing Liu
- a Institute of Mental Health, Peking University , Beijing , PR China.,b Peking University Sixth Hospital , Beijing , PR China.,c Key Laboratory for Mental Health , Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University) , Beijing , PR China
| | - Dai Zhang
- a Institute of Mental Health, Peking University , Beijing , PR China.,b Peking University Sixth Hospital , Beijing , PR China.,c Key Laboratory for Mental Health , Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University) , Beijing , PR China.,d PKU-IDG/McGovern Institute for Brain Research, Peking University , Beijing , PR China
| |
Collapse
|
47
|
Eagleson KL, Xie Z, Levitt P. The Pleiotropic MET Receptor Network: Circuit Development and the Neural-Medical Interface of Autism. Biol Psychiatry 2017; 81:424-433. [PMID: 27837921 PMCID: PMC5285483 DOI: 10.1016/j.biopsych.2016.08.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 08/11/2016] [Accepted: 08/28/2016] [Indexed: 02/07/2023]
Abstract
People with autism spectrum disorder and other neurodevelopmental disorders (NDDs) are behaviorally and medically heterogeneous. The combination of polygenicity and gene pleiotropy-the influence of one gene on distinct phenotypes-raises questions of how specific genes and their protein products interact to contribute to NDDs. A preponderance of evidence supports developmental and pathophysiological roles for the MET receptor tyrosine kinase, a multifunctional receptor that mediates distinct biological responses depending upon cell context. MET influences neuron architecture and synapse maturation in the forebrain and regulates homeostasis in gastrointestinal and immune systems, both commonly disrupted in NDDs. Peak expression of synapse-enriched MET is conserved across rodent and primate forebrain, yet regional differences in primate neocortex are pronounced, with enrichment in circuits that participate in social information processing. A functional risk allele in the MET promoter, enriched in subgroups of children with autism spectrum disorder, reduces transcription and disrupts socially relevant neural circuits structurally and functionally. In mice, circuit-specific deletion of Met causes distinct atypical behaviors. MET activation increases dendritic complexity and nascent synapse number, but synapse maturation requires reductions in MET. MET mediates its specific biological effects through different intracellular signaling pathways and has a complex protein interactome that is enriched in autism spectrum disorder and other NDD candidates. The interactome is coregulated in developing human neocortex. We suggest that a gene as pleiotropic and highly regulated as MET, together with its interactome, is biologically relevant in normal and pathophysiological contexts, affecting central and peripheral phenotypes that contribute to NDD risk and clinical symptoms.
Collapse
Affiliation(s)
- Kathie L Eagleson
- Program in Developmental Neurogenetics, Institute for the Developing Mind Children's Hospital Los Angeles, CA; Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA
| | - Zhihui Xie
- Program in Developmental Neurogenetics, Institute for the Developing Mind Children's Hospital Los Angeles, CA
| | - Pat Levitt
- Program in Developmental Neurogenetics, Institute for the Developing Mind Children's Hospital Los Angeles, CA; Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA.
| |
Collapse
|
48
|
Cheng N, Rho JM, Masino SA. Metabolic Dysfunction Underlying Autism Spectrum Disorder and Potential Treatment Approaches. Front Mol Neurosci 2017; 10:34. [PMID: 28270747 PMCID: PMC5318388 DOI: 10.3389/fnmol.2017.00034] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/30/2017] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by deficits in sociability and communication, and increased repetitive and/or restrictive behaviors. While the etio-pathogenesis of ASD is unknown, clinical manifestations are diverse and many possible genetic and environmental factors have been implicated. As such, it has been a great challenge to identify key neurobiological mechanisms and to develop effective treatments. Current therapies focus on co-morbid conditions (such as epileptic seizures and sleep disturbances) and there is no cure for the core symptoms. Recent studies have increasingly implicated mitochondrial dysfunction in ASD. The fact that mitochondria are an integral part of diverse cellular functions and are susceptible to many insults could explain how a wide range of factors can contribute to a consistent behavioral phenotype in ASD. Meanwhile, the high-fat, low-carbohydrate ketogenic diet (KD), used for nearly a century to treat medically intractable epilepsy, has been shown to enhance mitochondrial function through a multiplicity of mechanisms and affect additional molecular targets that may address symptoms and comorbidities of ASD. Here, we review the evidence for the use of metabolism-based therapies such as the KD in the treatment of ASD as well as emerging co-morbid models of epilepsy and autism. Future research directions aimed at validating such therapeutic approaches and identifying additional and novel mechanistic targets are also discussed.
Collapse
Affiliation(s)
- Ning Cheng
- Departments of Pediatrics, University of CalgaryCalgary, AB, Canada
| | - Jong M. Rho
- Departments of Pediatrics, University of CalgaryCalgary, AB, Canada
- Clinical Neurosciences, University of CalgaryCalgary, AB, Canada
- Physiology and Pharmacology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of CalgaryCalgary, AB, Canada
| | - Susan A. Masino
- Neuroscience Program, Department of Psychology, Trinity CollegeHartford, CT, USA
| |
Collapse
|
49
|
Sivanesan S, Tan A, Jeyaraj R, Lam J, Gole M, Hardan A, Ashkan K, Rajadas J. Pharmaceuticals and Stem Cells in Autism Spectrum Disorders: Wishful Thinking? World Neurosurg 2017; 98:659-672. [DOI: 10.1016/j.wneu.2016.09.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/24/2016] [Accepted: 09/26/2016] [Indexed: 12/21/2022]
|
50
|
Abstract
Autism spectrum disorders (ASDs) are neurodevelopmental disorders with early onset, characterized by deficits in social communication and repetitive and restricted interests and activities. A growing number of studies over the last 10 years support the efficacy of behaviorally based interventions in ASD for the improvement of social communication and behavioral functioning. In contrast, research on neurobiological based therapies for ASD is still at its beginnings. In this article, we will provide a selective overview of both well-established evidence-based treatments and novel interventions and drug treatments based on neurobiological principles aiming at improving core symptoms in ASD. Directions and options for future research on treatment in ASD are discussed.
Collapse
Affiliation(s)
- L Poustka
- Clinic for Child and Adolescent Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - I Kamp-Becker
- Clinic for Child and Adolescent Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|