1
|
Hong K, Radian Y, Manda T, Xu H, Luo Y. The Development of Plant Genome Sequencing Technology and Its Conservation and Application in Endangered Gymnosperms. PLANTS (BASEL, SWITZERLAND) 2023; 12:4006. [PMID: 38068641 PMCID: PMC10708082 DOI: 10.3390/plants12234006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 10/16/2024]
Abstract
Genome sequencing is widely recognized as a fundamental pillar in genetic research and legal studies of biological phenomena, providing essential insights for genetic investigations and legal analyses of biological events. The field of genome sequencing has experienced significant progress due to rapid improvements in scientific and technological developments. These advancements encompass not only significant improvements in the speed and quality of sequencing but also provide an unparalleled opportunity to explore the subtle complexities of genomes, particularly in the context of rare species. Such a wide range of possibilities has successfully supported the validation of plant gene functions and the refinement of precision breeding methodologies. This expanded scope now includes a comprehensive exploration of the current state and conservation efforts of gymnosperm gene sequencing, offering invaluable insights into their genomic landscapes. This comprehensive review elucidates the trajectory of development and the diverse applications of genome sequencing. It encompasses various domains, including crop breeding, responses to abiotic stress, species evolutionary dynamics, biodiversity, and the unique challenges faced in the conservation and utilization of gymnosperms. It highlights both ongoing challenges and the unveiling of forthcoming developmental trajectories.
Collapse
Affiliation(s)
- Kaiyue Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an 223300, China;
- School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Y.R.); (T.M.)
| | - Yasmina Radian
- School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Y.R.); (T.M.)
| | - Teja Manda
- School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Y.R.); (T.M.)
| | - Haibin Xu
- School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Y.R.); (T.M.)
| | - Yuming Luo
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an 223300, China;
| |
Collapse
|
2
|
Wan T, Gong Y, Liu Z, Zhou Y, Dai C, Wang Q. Evolution of complex genome architecture in gymnosperms. Gigascience 2022; 11:6659718. [PMID: 35946987 PMCID: PMC9364684 DOI: 10.1093/gigascience/giac078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/09/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Gymnosperms represent an ancient lineage that diverged from early spermatophytes during the Devonian. The long fossil records and low diversity in living species prove their complex evolutionary history, which included ancient radiations and massive extinctions. Due to their ultra-large genome size, the whole-genome assembly of gymnosperms has only generated in the past 10 years and is now being further expanded into more taxonomic representations. Here, we provide an overview of the publicly available gymnosperm genome resources and discuss their assembly quality and recent findings in large genome architectures. In particular, we describe the genomic features most related to changes affecting the whole genome. We also highlight new realizations relative to repetitive sequence dynamics, paleopolyploidy, and long introns. Based on the results of relevant genomic studies of gymnosperms, we suggest additional efforts should be made toward exploring the genomes of medium-sized (5–15 gigabases) species. Lastly, more comparative analyses among high-quality assemblies are needed to understand the genomic shifts and the early species diversification of seed plants.
Collapse
Affiliation(s)
- Tao Wan
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.,Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan 430074, China.,Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen 518004, China
| | - Yanbing Gong
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Research Center for Ecology, College of Science, Tibet University, Lhasa 850000, China
| | - Zhiming Liu
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen 518004, China
| | - YaDong Zhou
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Can Dai
- School of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Qingfeng Wang
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.,Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
3
|
Meta-Analysis as a Tool to Identify Candidate Genes Involved in the Fagus sylvatica L. Abiotic Stress Response. FORESTS 2022. [DOI: 10.3390/f13020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we aimed to evaluate whether candidate genes for abiotic stresses in Fagus sylvatica L. are also candidate genes for herbaceous plants, with the purpose of better defining the abiotic stress response model of F. sylvatica. Therefore, a meta-analysis was performed on published papers related to abiotic stress. Firstly, we carried out a systematic review regarding the activity of 24 candidate genes selected for F. sylvatica under abiotic stress reported in 503 articles. After choosing the inclusion criteria, 73 articles out of 503, regarding 12 candidate genes, were included in this analysis. We performed an exploratory meta-analysis based on the random-effect model and the combined effect-size approach (Cohen’s d). The results obtained through Forest and Funnel plots indicate that the candidate genes for F. sylvatica are considered to be candidate genes in other herbaceous species. These results allowed us to set up models of plants’ response to abiotic stresses implementing the stress models in forest species. The results of this study will serve to bridge knowledge gaps regarding the pathways of response to abiotic stresses in trees based on the meta-analysis. The study approach used could be extended to observe larger gene databases and different species.
Collapse
|
4
|
Can Forest Trees Cope with Climate Change?-Effects of DNA Methylation on Gene Expression and Adaptation to Environmental Change. Int J Mol Sci 2021; 22:ijms222413524. [PMID: 34948318 PMCID: PMC8703565 DOI: 10.3390/ijms222413524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic modifications, including chromatin modifications and DNA methylation, play key roles in regulating gene expression in both plants and animals. Transmission of epigenetic markers is important for some genes to maintain specific expression patterns and preserve the status quo of the cell. This article provides a review of existing research and the current state of knowledge about DNA methylation in trees in the context of global climate change, along with references to the potential of epigenome editing tools and the possibility of their use for forest tree research. Epigenetic modifications, including DNA methylation, are involved in evolutionary processes, developmental processes, and environmental interactions. Thus, the implications of epigenetics are important for adaptation and phenotypic plasticity because they provide the potential for tree conservation in forest ecosystems exposed to adverse conditions resulting from global warming and regional climate fluctuations.
Collapse
|
5
|
Rodrigues AM, Miguel C, Chaves I, António C. Mass spectrometry-based forest tree metabolomics. MASS SPECTROMETRY REVIEWS 2021; 40:126-157. [PMID: 31498921 DOI: 10.1002/mas.21603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/05/2019] [Indexed: 05/24/2023]
Abstract
Research in forest tree species has advanced slowly when compared with other agricultural crops and model organisms, mainly due to the long-life cycles, large genome sizes, and lack of genomic tools. Additionally, trees are complex matrices, and the presence of interferents (e.g., oleoresins and cellulose) challenges the analysis of tree tissues with mass spectrometry (MS)-based analytical platforms. In this review, advances in MS-based forest tree metabolomics are discussed. Given their economic and ecological significance, particular focus is given to Pinus, Quercus, and Eucalyptus forest tree species to better understand their metabolite responses to abiotic and biotic stresses in the current climate change scenario. Furthermore, MS-based metabolomics technologies produce large and complex datasets that require expertize to adequately manage, process, analyze, and store the data in dedicated repositories. To ensure that the full potential of forest tree metabolomics data are translated into new knowledge, these data should comply with the FAIR principles (i.e., Findable, Accessible, Interoperable, and Re-usable). It is essential that adequate standards are implemented to annotate metadata from forest tree metabolomics studies as is already required by many science and governmental agencies and some major scientific publishers. © 2019 John Wiley & Sons Ltd. Mass Spec Rev 40:126-157, 2021.
Collapse
Affiliation(s)
- Ana Margarida Rodrigues
- Plant Metabolomics Laboratory, GreenIT-Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica António Xavie, Universidade Nova de Lisboa (ITQB NOVA) Avenida da República, Oeiras, 2780-157, Portugal
| | - Célia Miguel
- Forest Genomics & Molecular Genetics Lab, BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157, Oeiras, Portugal
| | - Inês Chaves
- Forest Genomics & Molecular Genetics Lab, BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157, Oeiras, Portugal
| | - Carla António
- Plant Metabolomics Laboratory, GreenIT-Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica António Xavie, Universidade Nova de Lisboa (ITQB NOVA) Avenida da República, Oeiras, 2780-157, Portugal
| |
Collapse
|
6
|
Abstract
The importance of tree genetic variability in the ability of forests to respond and adapt to environmental changes is crucial in forest management and conservation. Along with genetics, recent advances have highlighted “epigenetics” as an emerging and promising field of research for the understanding of tree phenotypic plasticity and adaptive responses. In this paper, we review recent advances in this emerging field and their potential applications for tree researchers and breeders, as well as for forest managers. First, we present the basics of epigenetics in plants before discussing its potential for trees. We then propose a bibliometric and overview of the literature on epigenetics in trees, including recent advances on tree priming. Lastly, we outline the promises of epigenetics for forest research and management, along with current gaps and future challenges. Research in epigenetics could use highly diverse paths to help forests adapt to global change by eliciting different innovative silvicultural approaches for natural- and artificial-based forest management.
Collapse
|
7
|
Wegrzyn JL, Staton MA, Street NR, Main D, Grau E, Herndon N, Buehler S, Falk T, Zaman S, Ramnath R, Richter P, Sun L, Condon B, Almsaeed A, Chen M, Mannapperuma C, Jung S, Ficklin S. Cyberinfrastructure to Improve Forest Health and Productivity: The Role of Tree Databases in Connecting Genomes, Phenomes, and the Environment. FRONTIERS IN PLANT SCIENCE 2019; 10:813. [PMID: 31293610 PMCID: PMC6603172 DOI: 10.3389/fpls.2019.00813] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 06/05/2019] [Indexed: 05/11/2023]
Abstract
Despite tremendous advancements in high throughput sequencing, the vast majority of tree genomes, and in particular, forest trees, remain elusive. Although primary databases store genetic resources for just over 2,000 forest tree species, these are largely focused on sequence storage, basic genome assemblies, and functional assignment through existing pipelines. The tree databases reviewed here serve as secondary repositories for community data. They vary in their focal species, the data they curate, and the analytics provided, but they are united in moving toward a goal of centralizing both data access and analysis. They provide frameworks to view and update annotations for complex genomes, interrogate systems level expression profiles, curate data for comparative genomics, and perform real-time analysis with genotype and phenotype data. The organism databases of today are no longer simply catalogs or containers of genetic information. These repositories represent integrated cyberinfrastructure that support cross-site queries and analysis in web-based environments. These resources are striving to integrate across diverse experimental designs, sequence types, and related measures through ontologies, community standards, and web services. Efficient, simple, and robust platforms that enhance the data generated by the research community, contribute to improving forest health and productivity.
Collapse
Affiliation(s)
- Jill L. Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Margaret A. Staton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Nathaniel R. Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - Emily Grau
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Nic Herndon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Sean Buehler
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Taylor Falk
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Sumaira Zaman
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Risharde Ramnath
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Peter Richter
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Lang Sun
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Bradford Condon
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Abdullah Almsaeed
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Ming Chen
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Chanaka Mannapperuma
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Sook Jung
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - Stephen Ficklin
- Department of Horticulture, Washington State University, Pullman, WA, United States
| |
Collapse
|
8
|
Abstract
Genomic analysis in Juglans (walnuts) is expected to transform the breeding and agricultural production of both nuts and lumber. To that end, we report here the determination of reference sequences for six additional relatives of Juglans regia: Juglans sigillata (also from section Dioscaryon), Juglans nigra, Juglans microcarpa, Juglans hindsii (from section Rhysocaryon), Juglans cathayensis (from section Cardiocaryon), and the closely related Pterocarya stenoptera. While these are ‘draft’ genomes, ranging in size between 640Mbp and 990Mbp, their contiguities and accuracies can support powerful annotations of genomic variation that are often the foundation of new avenues of research and breeding. We annotated nucleotide divergence and synteny by creating complete pairwise alignments of each reference genome to the remaining six. In addition, we have re-sequenced a sample of accessions from four Juglans species (including regia). The variation discovered in these surveys comprises a critical resource for experimentation and breeding, as well as a solid complementary annotation. To demonstrate the potential of these resources the structural and sequence variation in and around the polyphenol oxidase loci, PPO1 and PPO2 were investigated. As reported for other seed crops variation in this gene is implicated in the domestication of walnuts. The apparently Juglandaceae specific PPO1 duplicate shows accelerated divergence and an excess of amino acid replacement on the lineage leading to accessions of the domesticated nut crop species, Juglans regia and sigillata.
Collapse
|
9
|
Fox H, Doron-Faigenboim A, Kelly G, Bourstein R, Attia Z, Zhou J, Moshe Y, Moshelion M, David-Schwartz R. Transcriptome analysis of Pinus halepensis under drought stress and during recovery. TREE PHYSIOLOGY 2018; 38:423-441. [PMID: 29177514 PMCID: PMC5982726 DOI: 10.1093/treephys/tpx137] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/24/2017] [Accepted: 10/12/2017] [Indexed: 05/09/2023]
Abstract
Forest trees use various strategies to cope with drought stress and these strategies involve complex molecular mechanisms. Pinus halepensis Miller (Aleppo pine) is found throughout the Mediterranean basin and is one of the most drought-tolerant pine species. In order to decipher the molecular mechanisms that P. halepensis uses to withstand drought, we performed large-scale physiological and transcriptome analyses. We selected a mature tree from a semi-arid area with suboptimal growth conditions for clonal propagation through cuttings. We then used a high-throughput experimental system to continuously monitor whole-plant transpiration rates, stomatal conductance and the vapor pressure deficit. The transcriptomes of plants were examined at six physiological stages: pre-stomatal response, partial stomatal closure, minimum transpiration, post-irrigation, partial recovery and full recovery. At each stage, data from plants exposed to the drought treatment were compared with data collected from well-irrigated control plants. A drought-stressed P. halepensis transcriptome was created using paired-end RNA-seq. In total, ~6000 differentially expressed, non-redundant transcripts were identified between drought-treated and control trees. Cluster analysis has revealed stress-induced down-regulation of transcripts related to photosynthesis, reactive oxygen species (ROS)-scavenging through the ascorbic acid (AsA)-glutathione cycle, fatty acid and cell wall biosynthesis, stomatal activity, and the biosynthesis of flavonoids and terpenoids. Up-regulated processes included chlorophyll degradation, ROS-scavenging through AsA-independent thiol-mediated pathways, abscisic acid response and accumulation of heat shock proteins, thaumatin and exordium. Recovery from drought induced strong transcription of retrotransposons, especially the retrovirus-related transposon Tnt1-94. The drought-related transcriptome illustrates this species' dynamic response to drought and recovery and unravels novel mechanisms.
Collapse
Affiliation(s)
- Hagar Fox
- Institute of Plant Sciences, Volcani Center, ARO, Bet Dagan 50250, Israel
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | - Gilor Kelly
- Institute of Plant Sciences, Volcani Center, ARO, Bet Dagan 50250, Israel
| | - Ronny Bourstein
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Ziv Attia
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Jing Zhou
- Institute of Plant Sciences, Volcani Center, ARO, Bet Dagan 50250, Israel
| | - Yosef Moshe
- Institute of Plant Sciences, Volcani Center, ARO, Bet Dagan 50250, Israel
| | - Menachem Moshelion
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | |
Collapse
|
10
|
Liu J, Sniezko RA, Zamany A, Williams H, Wang N, Kegley A, Savin DP, Chen H, Sturrock RN. Saturated genic SNP mapping identified functional candidates and selection tools for the Pinus monticola Cr2 locus controlling resistance to white pine blister rust. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1149-1162. [PMID: 28176454 PMCID: PMC5552481 DOI: 10.1111/pbi.12705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 01/11/2017] [Accepted: 02/02/2017] [Indexed: 05/17/2023]
Abstract
Molecular breeding incorporates efficient tools to increase rust resistance in five-needle pines. Susceptibility of native five-needle pines to white pine blister rust (WPBR), caused by the non-native invasive fungus Cronartium ribicola (J.C. Fisch.), has significantly reduced wild populations of these conifers in North America. Major resistance (R) genes against specific avirulent pathotypes have been found in several five-needle pine species. In this study, we screened genic SNP markers by comparative transcriptome and genetic association analyses and constructed saturated linkage maps for the western white pine (Pinus monticola) R locus (Cr2). Phenotypic segregation was measured by a hypersensitive reaction (HR)-like response on the needles and disease symptoms of cankered stems post inoculation by the C. ribicola avcr2 race. SNP genotypes were determined by HRM- and TaqMan-based SNP genotyping. Saturated maps of the Cr2-linkage group (LG) were constructed in three seed families using a total of 34 SNP markers within 21 unique genes. Cr2 was consistently flanked by contig_2142 (encoding a ruvb-like protein) and contig_3772 (encoding a delta-fatty acid desaturase) across the three seed families. Cr2 was anchored to the Pinus consensus LG-1, which differs from LGs where other R loci of Pinus species were mapped. GO annotation identified a set of NBS-LRR and other resistance-related genes as R candidates in the Cr2 region. Association of one nonsynonymous SNP locus of an NBS-LRR gene with Cr2-mediated phenotypes provides a valuable tool for marker-assisted selection (MAS), which will shorten the breeding cycle of resistance screening and aid in the restoration of WPBR-disturbed forest ecosystems.
Collapse
Affiliation(s)
- Jun‐Jun Liu
- Canadian Forest ServiceNatural Resources CanadaVictoriaCanada
| | | | - Arezoo Zamany
- Canadian Forest ServiceNatural Resources CanadaVictoriaCanada
| | - Holly Williams
- Canadian Forest ServiceNatural Resources CanadaVictoriaCanada
| | - Ning Wang
- Canadian Forest ServiceNatural Resources CanadaVictoriaCanada
- Academy of Agriculture and Forestry ScienceQinghai UniversityXiningChina
| | - Angelia Kegley
- Dorena Genetic Resource CenterUSDA Forest ServiceCottage GroveORUSA
| | - Douglas P. Savin
- Dorena Genetic Resource CenterUSDA Forest ServiceCottage GroveORUSA
| | - Hao Chen
- Canadian Forest ServiceNatural Resources CanadaVictoriaCanada
| | | |
Collapse
|
11
|
Biotechnology for bioenergy dedicated trees: meeting future energy demands. ACTA ACUST UNITED AC 2017; 73:15-32. [DOI: 10.1515/znc-2016-0185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/26/2017] [Indexed: 11/15/2022]
Abstract
Abstract
With the increase in human demands for energy, purpose-grown woody crops could be part of the global renewable energy solution, especially in geographical regions where plantation forestry is feasible and economically important. In addition, efficient utilization of woody feedstocks would engage in mitigating greenhouse gas emissions, decreasing the challenge of food and energy security, and resolving the conflict between land use for food or biofuel production. This review compiles existing knowledge on biotechnological and genomics-aided improvements of biomass performance of purpose-grown poplar, willow, eucalyptus and pine species, and their relative hybrids, for efficient and sustainable bioenergy applications. This includes advancements in tree in vitro regeneration, and stable expression or modification of selected genes encoding desirable traits, which enhanced growth and yield, wood properties, site adaptability, and biotic and abiotic stress tolerance. Genetic modifications used to alter lignin/cellulose/hemicelluloses ratio and lignin composition, towards effective lignocellulosic feedstock conversion into cellulosic ethanol, are also examined. Biotech-trees still need to pass challengeable regulatory authorities’ processes, including biosafety and risk assessment analyses prior to their commercialization release. Hence, strategies developed to contain transgenes, or to mitigate potential transgene flow risks, are discussed.
Collapse
|
12
|
Wang T, Zhao M, Rotgans BA, Ni G, Dean JFD, Nahrung HF, Cummins SF. Proteomic analysis of the venom and venom sac of the woodwasp, Sirex noctilio - Towards understanding its biological impact. J Proteomics 2016; 146:195-206. [PMID: 27389852 DOI: 10.1016/j.jprot.2016.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/27/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022]
Abstract
UNLABELLED The European horntail woodwasp, Sirex noctilio, is an invasive insect that attacks conifer hosts, particularly Pinus species. Venom injected by female S. noctilio, together with its symbiotic fungus, damages the normal physiology of Pinus, leading to death of the tree. To identify the proteinaceous components in the venom and uncover the interplay between venom proteins and tree proteins, clarification of the overall profile of proteins produced in the venom gland apparatus was carried out in this work. The venom sac proteome utilised in-solution digested in either a natural or deglycosylated state, prior to nanoHPLC LTQ-Orbitrap under CID/ETD mode. Here, we report the identification of 1454 and 1225 proteins in venom and sac, respectively, with 410 mutual proteins. Approximately 90 proteins were predicted to be secretory, of which 8 have features characteristic of toxins. Chemosensory binding proteins were also identified. Gene ontology and KEGG pathway analysis were employed to predict the protein functions and biological pathways in venom and sac. Protein-protein interaction (PPI) analysis suggested that one-step responses represent the majority of the Sirex-Pinus PPIs, and the proteins representing network hub nodes could be of importance for the development of pest management strategies. SIGNIFICANCE The woodwasp Sirex noctilio is an invasive species in many parts of the world, including Australia and North America, where it is considered within the top 10 most serious forest insects. Where they have been introduced, the female woodwasps attack living pine trees, causing significant economic losses. Central to this destruction is the woodwasp's life cycle requirement to bore a hole to deposit eggs and a toxic mucus that disables the tree's network for transporting water and nutrients, yet aids in larval survival. Here we specifically examine the mucus gland apparatus and its contents, revealing the protein components that together with 'noctilisin' facilitate this complex association. The identification of chemosensory binding proteins further supports a role for the woodwasp ovipositor as an instrument for early stages of host tree selection. These findings could provide important clues towards the development of novel control tools against this pest.
Collapse
Affiliation(s)
- Tianfang Wang
- Genecology Research Centre, University of The Sunshine Coast, Maroochydore DC 4558, Queensland, Australia
| | - Min Zhao
- Genecology Research Centre, University of The Sunshine Coast, Maroochydore DC 4558, Queensland, Australia
| | - Bronwyn A Rotgans
- Genecology Research Centre, University of The Sunshine Coast, Maroochydore DC 4558, Queensland, Australia
| | - Guoying Ni
- Genecology Research Centre, University of The Sunshine Coast, Maroochydore DC 4558, Queensland, Australia; School of Medical Science, Griffith Health Institute, Griffith University, Gold Coast 4222, Australia
| | - Jeffrey F D Dean
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry, Molecular Biology, Entomology & Plant Pathology, Mississippi State University, MS 39762, USA
| | - Helen F Nahrung
- Genecology Research Centre, University of The Sunshine Coast, Maroochydore DC 4558, Queensland, Australia; Forest Industries Research Centre, University of the Sunshine Coast, Maroochydore DC 4558, Queensland, Australia.
| | - Scott F Cummins
- Genecology Research Centre, University of The Sunshine Coast, Maroochydore DC 4558, Queensland, Australia.
| |
Collapse
|
13
|
Daru BH, Berger DK, van Wyk AE. Opportunities for unlocking the potential of genomics for African trees. THE NEW PHYTOLOGIST 2016; 210:772-778. [PMID: 26695092 DOI: 10.1111/nph.13826] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Barnabas H Daru
- Department of Plant Science, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
- Genomics Research Institute, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - Dave K Berger
- Department of Plant Science, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
- Genomics Research Institute, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - Abraham E van Wyk
- Department of Plant Science, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| |
Collapse
|
14
|
Sensitive and specific detection of pine nut (Pinus spp.) by real-time PCR in complex food products. Food Chem 2016; 194:980-5. [DOI: 10.1016/j.foodchem.2015.08.114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 08/27/2015] [Accepted: 08/27/2015] [Indexed: 11/22/2022]
|
15
|
Bragg JG, Supple MA, Andrew RL, Borevitz JO. Genomic variation across landscapes: insights and applications. THE NEW PHYTOLOGIST 2015; 207:953-67. [PMID: 25904408 DOI: 10.1111/nph.13410] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 03/09/2015] [Indexed: 05/22/2023]
Abstract
The distribution of genomic variation across landscapes can provide insights into the complex interactions between the environment and the genome that influence the distribution of species, and mediate phenotypic adaptation to local conditions. High throughput sequencing technologies now offer unprecedented power to explore these interactions, allowing powerful inferences about historical processes of colonization, gene flow and divergence, as well as the identification of loci that mediate local adaptation. These 'landscape genomic' approaches have been validated in model species and are now being applied to nonmodel organisms, including foundation species that have substantial effects on ecosystem processes. Here we review the growing field of landscape genomics from a very broad perspective. In particular, we describe the inferential power that is gained by taking a genome-wide view of genetic variation, strategies for study design to best capture adaptive variation, and how to apply this information to practical challenges, such as restoration.
Collapse
Affiliation(s)
- Jason G Bragg
- Research School of Biology and Centre for Biodiversity Analysis, Australian National University, Canberra, ACT, 0200, Australia
| | - Megan A Supple
- Research School of Biology and Centre for Biodiversity Analysis, Australian National University, Canberra, ACT, 0200, Australia
| | - Rose L Andrew
- Research School of Biology and Centre for Biodiversity Analysis, Australian National University, Canberra, ACT, 0200, Australia
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2350, Australia
| | - Justin O Borevitz
- Research School of Biology and Centre for Biodiversity Analysis, Australian National University, Canberra, ACT, 0200, Australia
- ARC Centre of Excellence in Plant Energy Biology, Australian National University, Canberra, ACT, 0200, Australia
| |
Collapse
|
16
|
El Mujtar VA, Gallo LA, Lang T, Garnier-Géré P. Development of genomic resources forNothofagusspecies using next-generation sequencing data. Mol Ecol Resour 2014; 14:1281-95. [DOI: 10.1111/1755-0998.12276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/23/2014] [Accepted: 04/28/2014] [Indexed: 11/30/2022]
Affiliation(s)
- V. A. El Mujtar
- Unidad de Genética Ecológica y Mejoramiento Forestal; Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Bariloche; Modesta Victoria 4450 (8400) Bariloche Río Negro Argentina
- INRA; UMR 1202 Biodiversity Genes & Communities; F- 33610 Cestas France
- UMR1202 Biodiversity Genes & Communities; University of Bordeaux; Bordeaux F-33400 Talence France
| | - L. A. Gallo
- Unidad de Genética Ecológica y Mejoramiento Forestal; Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Bariloche; Modesta Victoria 4450 (8400) Bariloche Río Negro Argentina
| | - T. Lang
- Key Laboratory of Tropical Forest Ecology; Xishuangbanna Tropical Botanical Garden; Chinese Academy of Sciences; Mengla Yunnan 666303 China
| | - P. Garnier-Géré
- INRA; UMR 1202 Biodiversity Genes & Communities; F- 33610 Cestas France
- UMR1202 Biodiversity Genes & Communities; University of Bordeaux; Bordeaux F-33400 Talence France
| |
Collapse
|
17
|
Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, Crepeau MW, Cardeno C, Koriabine M, Holtz-Morris AE, Liechty JD, Martínez-García PJ, Vasquez-Gross HA, Lin BY, Zieve JJ, Dougherty WM, Fuentes-Soriano S, Wu LS, Gilbert D, Marçais G, Roberts M, Holt C, Yandell M, Davis JM, Smith KE, Dean JFD, Lorenz WW, Whetten RW, Sederoff R, Wheeler N, McGuire PE, Main D, Loopstra CA, Mockaitis K, deJong PJ, Yorke JA, Salzberg SL, Langley CH. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol 2014; 15:R59. [PMID: 24647006 PMCID: PMC4053751 DOI: 10.1186/gb-2014-15-3-r59] [Citation(s) in RCA: 280] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/04/2014] [Indexed: 11/30/2022] Open
Abstract
Background The size and complexity of conifer genomes has, until now, prevented full genome sequencing and assembly. The large research community and economic importance of loblolly pine, Pinus taeda L., made it an early candidate for reference sequence determination. Results We develop a novel strategy to sequence the genome of loblolly pine that combines unique aspects of pine reproductive biology and genome assembly methodology. We use a whole genome shotgun approach relying primarily on next generation sequence generated from a single haploid seed megagametophyte from a loblolly pine tree, 20-1010, that has been used in industrial forest tree breeding. The resulting sequence and assembly was used to generate a draft genome spanning 23.2 Gbp and containing 20.1 Gbp with an N50 scaffold size of 66.9 kbp, making it a significant improvement over available conifer genomes. The long scaffold lengths allow the annotation of 50,172 gene models with intron lengths averaging over 2.7 kbp and sometimes exceeding 100 kbp in length. Analysis of orthologous gene sets identifies gene families that may be unique to conifers. We further characterize and expand the existing repeat library based on the de novo analysis of the repetitive content, estimated to encompass 82% of the genome. Conclusions In addition to its value as a resource for researchers and breeders, the loblolly pine genome sequence and assembly reported here demonstrates a novel approach to sequencing the large and complex genomes of this important group of plants that can now be widely applied.
Collapse
|
18
|
Bilsborough GD. Plant genomics: sowing the seeds of success. Genome Biol 2013; 14:404. [PMID: 23809627 PMCID: PMC3706952 DOI: 10.1186/gb4111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
|
19
|
|