1
|
Li G, Zhao X, Yang J, Hu S, Ponnu J, Kimura S, Hwang I, Torii KU, Hou H. Water wisteria genome reveals environmental adaptation and heterophylly regulation in amphibious plants. PLANT, CELL & ENVIRONMENT 2024; 47:4720-4740. [PMID: 39076061 DOI: 10.1111/pce.15050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024]
Abstract
Heterophylly is a phenomenon whereby an individual plant dramatically changes leaf shape in response to the surroundings. Hygrophila difformis (Acanthaceae; water wisteria), has recently emerged as a model plant to study heterophylly because of its striking leaf shape variation in response to various environmental factors. When submerged, H. difformis often develops complex leaves, but on land it develops simple leaves. Leaf complexity is also influenced by other factors, such as light density, humidity, and temperature. Here, we sequenced and assembled the H. difformis chromosome-level genome (scaffold N50: 60.43 Mb, genome size: 871.92 Mb), which revealed 36 099 predicted protein-coding genes distributed over 15 pseudochromosomes. H. difformis diverged from its relatives during the Oligocene climate-change period and expanded gene families related to its amphibious habit. Genes related to environmental stimuli, leaf development, and other pathways were differentially expressed in submerged and terrestrial conditions, possibly modulating morphological and physiological acclimation to changing environments. We also found that auxin plays a role in H. difformis heterophylly. Finally, we discovered candidate genes that respond to different environmental conditions and elucidated the role of LATE MERISTEM IDENTITY 1 (LMI1) in heterophylly. We established H. difformis as a model for studying interconnections between environmental adaptation and morphogenesis.
Collapse
Affiliation(s)
- Gaojie Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuyao Zhao
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jingjing Yang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shiqi Hu
- Laboratory of Marine Biological Resources Development and Utilization, Zhejiang Marine Development Research Institute, Zhoushan, Zhejiang, China
| | - Jathish Ponnu
- Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Seisuke Kimura
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Inhwan Hwang
- Department of Life Science, Pohang University of Science and Technology, Pohang, South Korea
| | - Keiko U Torii
- Institute of Transformative Biomolecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, Texas, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Hengchun C, Hui G, Weifei Y, Guiting L, Ming J, Yinghui D, Qiuzhen T, Qin M, Xiaoxu F, Zhanyou Z, Haiyang Z, Hongmei M. SesamumGDB: a comprehensive platform for Sesamum genetics and genomics analysis. Database (Oxford) 2024; 2024:baae105. [PMID: 39425944 PMCID: PMC11490215 DOI: 10.1093/database/baae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/08/2024] [Accepted: 09/05/2024] [Indexed: 10/21/2024]
Abstract
Sesame (Sesamum indicum L., 2n = 26) is a crucial oilseed crop cultivated worldwide. The ancient evolutionary position of the Sesamum genus highlights its value for genomics and molecular genetics research among the angiosperms of other genera. However, Sesamum is considered a small orphan genus with only a few genomic databases for cultivated sesame to date. The urgent need to construct comprehensive, curated genome databases that include genus-specific gene resources for both cultivated and wild Sesamum species is being recognized. In response, we developed Sesamum Genomics Database (SesamumGDB), a user-friendly genomic database that integrates extensive genomic resources from two cultivated sesame varieties (S. indicum) and seven wild Sesamum species, covering all three chromosome groups (2n = 26, 32, and 64). This database showcases a total of 352 471 genes, including 6026 related to lipid metabolism and 17 625 transcription factors within Sesamum. Equipped with an array of bioinformatics tools such as BLAST (basic local alignment search tool) and JBrowse (the Javascript browser), SesamumGDB facilitates data downloading, screening, visualization, and analysis. As the first centralized Sesamum genome database, SesamumGDB offers extensive insights into the genomics and genetics of sesame, potentially enhancing the molecular breeding of sesame and other oilseed crops in the future. Database URL: http://www.sgbdb.com/sgdb/.
Collapse
Affiliation(s)
- Cao Hengchun
- The Shennong Laboratory, 116 Huayuan Road, Zhengzhou, Henan 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou, Henan 450002, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou, Henan 450002, China
| | - Guo Hui
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou, Henan 450002, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou, Henan 450002, China
| | - Yang Weifei
- The Shennong Laboratory, 116 Huayuan Road, Zhengzhou, Henan 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou, Henan 450002, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou, Henan 450002, China
| | - Li Guiting
- The Shennong Laboratory, 116 Huayuan Road, Zhengzhou, Henan 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou, Henan 450002, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou, Henan 450002, China
| | - Ju Ming
- The Shennong Laboratory, 116 Huayuan Road, Zhengzhou, Henan 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou, Henan 450002, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou, Henan 450002, China
| | - Duan Yinghui
- The Shennong Laboratory, 116 Huayuan Road, Zhengzhou, Henan 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou, Henan 450002, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou, Henan 450002, China
| | - Tian Qiuzhen
- The Shennong Laboratory, 116 Huayuan Road, Zhengzhou, Henan 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou, Henan 450002, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou, Henan 450002, China
| | - Ma Qin
- The Shennong Laboratory, 116 Huayuan Road, Zhengzhou, Henan 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou, Henan 450002, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou, Henan 450002, China
| | - Feng Xiaoxu
- The Shennong Laboratory, 116 Huayuan Road, Zhengzhou, Henan 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou, Henan 450002, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou, Henan 450002, China
| | - Zhang Zhanyou
- The Shennong Laboratory, 116 Huayuan Road, Zhengzhou, Henan 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou, Henan 450002, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou, Henan 450002, China
| | - Zhang Haiyang
- The Shennong Laboratory, 116 Huayuan Road, Zhengzhou, Henan 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou, Henan 450002, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou, Henan 450002, China
| | - Miao Hongmei
- The Shennong Laboratory, 116 Huayuan Road, Zhengzhou, Henan 450002, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou, Henan 450002, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou, Henan 450002, China
| |
Collapse
|
3
|
Gadri Y, Avneri A, Peleg Z. Induced mutation in the SiALS gene offers new weed management opportunities for sesame crop. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 345:112104. [PMID: 38685454 DOI: 10.1016/j.plantsci.2024.112104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 05/02/2024]
Abstract
Weeds are the primary biotic constraint affecting sesame growth and production. Here, we applied EMS mutagenesis to an elite sesame cultivar and discovered a novel point mutation in the sesame SiALS gene conferring resistance to imidazolinone, a group of acetolactate-synthase (ALS)-inhibitors. The mutant line exhibited high resistance to imazamox, an ALS-inhibitor, with hybrid plants displaying an intermediate response. Field-based validation confirmed the mutant line's substantial resistance, leading to a significantly higher yield under imazamox treatment. Under pre-emergence application of imazapic, the mutant plants sustained growth, whereas wild-type and weed were effectively controlled. Field trials using s-metolachlor and imazapic combined resulted in weed-free plots compared to untreated controls. Consequently, this treatment showed a significantly greater yield (2280 vs. 880 Kg ha-1) than the commercial practice (s-metolachlor). Overall, our study unveils the potential of utilizing this point mutation in sesame breeding programs, offering new opportunities for integrated weed management strategies for sesame cultivation. Developing herbicide-resistant crop plants holds promise for supporting sustainable production and addressing the challenges of weed infestations in sesame farming.
Collapse
Affiliation(s)
- Yaron Gadri
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Asaf Avneri
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Zvi Peleg
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 7610001, Israel.
| |
Collapse
|
4
|
Zhang F, Feng LY, Lin PF, Jia JJ, Gao LZ. Chromosome-scale genome assembly of oil-tea tree Camellia crapnelliana. Sci Data 2024; 11:599. [PMID: 38849406 PMCID: PMC11161624 DOI: 10.1038/s41597-024-03459-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
Camellia crapnelliana Tutch., belonging to the Theaceae family, is an excellent landscape tree species with high ornamental values. It is particularly an important woody oil-bearing plant species with high ecological, economic, and medicinal values. Here, we first report the chromosome-scale reference genome of C. crapnelliana with integrated technologies of SMRT, Hi-C and Illumina sequencing platforms. The genome assembly had a total length of ~2.94 Gb with contig N50 of ~67.5 Mb, and ~96.34% of contigs were assigned to 15 chromosomes. In total, we predicted 37,390 protein-coding genes, ~99.00% of which could be functionally annotated. The chromosome-scale genome of C. crapnelliana will become valuable resources for understanding the genetic basis of the fatty acid biosynthesis, and greatly facilitate the exploration and conservation of C. crapnelliana.
Collapse
Affiliation(s)
- Fen Zhang
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education; Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou, 570228, China
| | - Li-Ying Feng
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education; Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou, 570228, China
| | - Pei-Fan Lin
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education; Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou, 570228, China
| | - Ju-Jin Jia
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education; Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou, 570228, China
| | - Li-Zhi Gao
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education; Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou, 570228, China.
| |
Collapse
|
5
|
Garg V, Barmukh R, Chitikineni A, Roorkiwal M, Ojiewo C, Bohra A, Thudi M, Singh VK, Kudapa H, Saxena RK, Fountain J, Mir RR, Bharadwaj C, Chen X, Xin L, Pandey MK. Celebrating Professor Rajeev K. Varshney's transformative research odyssey from genomics to the field on his induction as Fellow of the Royal Society. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1504-1515. [PMID: 38206288 PMCID: PMC11123405 DOI: 10.1111/pbi.14282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Professor Rajeev K. Varshney's transformative impact on crop genomics, genetics, and agriculture is the result of his passion, dedication, and unyielding commitment to harnessing the potential of genomics to address the most pressing challenges faced by the global agricultural community. Starting from a small town in India and reaching the global stage, Professor Varshney's academic and professional trajectory has inspired many scientists active in research today. His ground-breaking work, especially his effort to list orphan tropical crops to genomic resource-rich entities, has been transformative. Beyond his scientific achievements, Professor Varshney is recognized by his colleagues as an exemplary mentor, fostering the growth of future researchers, building institutional capacity, and strengthening scientific capability. His focus on translational genomics and strengthening seed system in developing countries for the improvement of agriculture has made a tangible impact on farmers' lives. His skills have been best utilized in roles at leading research centres where he has applied his expertise to deliver a new vision for crop improvement. These efforts have now been recognized by the Royal Society with the award of the Fellowship (FRS). As we mark this significant milestone in his career, we not only celebrate Professor Varshney's accomplishments but also his wider contributions that continue to transform the agricultural landscape.
Collapse
Affiliation(s)
- Vanika Garg
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Rutwik Barmukh
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Annapurna Chitikineni
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Manish Roorkiwal
- Khalifa Center for Genetic Engineering and BiotechnologyUnited Arab Emirates UniversityAl AinUAE
| | - Chris Ojiewo
- International Maize and Wheat Improvement Center (CIMMYT)NairobiKenya
| | - Abhishek Bohra
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | | | - Vikas K. Singh
- International Rice Research Institute (IRRI)‐South‐Asia HubInternational Crops Research Institute for the Semi‐Arid TropicsHyderabadIndia
| | - Himabindu Kudapa
- Center of Excellence in Genomics & Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | | | - Jake Fountain
- Department of Plant PathologyUniversity of GeorgiaGriffinGeorgiaUSA
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of AgricultureSKUAST‐KashmirWaduraIndia
| | | | - Xiaoping Chen
- Crops Research InstituteGuangdong Academy of Agricultural Sciences (GDAAS)GuangzhouChina
| | | | - Manish K. Pandey
- Center of Excellence in Genomics & Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| |
Collapse
|
6
|
Zhou S, Wu X, Yuan Y, Qiao X, Wang Z, Wu M, Qi K, Xie Z, Yin H, Zhang S. Evolutionary origin and gradual accumulation with plant evolution of the LACS family. BMC PLANT BIOLOGY 2024; 24:481. [PMID: 38816698 PMCID: PMC11140897 DOI: 10.1186/s12870-024-05194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND LACS (long-chain acyl-CoA synthetase) genes are widespread in organisms and have multiple functions in plants, especially in lipid metabolism. However, the origin and evolutionary dynamics of the LACS gene family remain largely unknown. RESULTS Here, we identified 1785 LACS genes in the genomes of 166 diverse plant species and identified the clades (I, II, III, IV, V, VI) of six clades for the LACS gene family of green plants through phylogenetic analysis. Based on the evolutionary history of plant lineages, we found differences in the origins of different clades, with Clade IV originating from chlorophytes and representing the origin of LACS genes in green plants. The structural characteristics of different clades indicate that clade IV is relatively independent, while the relationships between clades (I, II, III) and clades (V, VI) are closer. Dispersed duplication (DSD) and transposed duplication (TRD) are the main forces driving the evolution of plant LACS genes. Network clustering analysis further grouped all LACS genes into six main clusters, with genes within each cluster showing significant co-linearity. Ka/Ks results suggest that LACS family genes underwent purifying selection during evolution. We analyzed the phylogenetic relationships and characteristics of six clades of the LACS gene family to explain the origin, evolutionary history, and phylogenetic relationships of different clades and proposed a hypothetical evolutionary model for the LACS family of genes in plants. CONCLUSIONS Our research provides genome-wide insights into the evolutionary history of the LACS gene family in green plants. These insights lay an important foundation for comprehensive functional characterization in future research.
Collapse
Affiliation(s)
- Siyuan Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yubo Yuan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Qiao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zewen Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mayan Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaijie Qi
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihua Xie
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Yin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
7
|
Takvorian N, Zangui H, Naino Jika AK, Alouane A, Siljak-Yakovlev S. Genome Size Variation in Sesamum indicum L. Germplasm from Niger. Genes (Basel) 2024; 15:711. [PMID: 38927647 PMCID: PMC11203198 DOI: 10.3390/genes15060711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Sesamum indicum L. (Pedaliaceae) is one of the most economically important oil crops in the world, thanks to the high oil content of its seeds and its nutritional value. It is cultivated all over the world, mainly in Asia and Africa. Well adapted to arid environments, sesame offers a good opportunity as an alternative subsistence crop for farmers in Africa, particularly Niger, to cope with climate change. For the first time, the variation in genome size among 75 accessions of the Nigerien germplasm was studied. The sample was collected throughout Niger, revealing various morphological, biochemical and phenological traits. For comparison, an additional accession from Thailand was evaluated as an available Asian representative. In the Niger sample, the 2C DNA value ranged from 0.77 to 1 pg (753 to 978 Mbp), with an average of 0.85 ± 0.037 pg (831 Mbp). Statistical analysis showed a significant difference in 2C DNA values among 58 pairs of Niger accessions (p-value < 0.05). This significant variation indicates the likely genetic diversity of sesame germplasm, offering valuable insights into its possible potential for climate-resilient agriculture. Our results therefore raise a fundamental question: is intraspecific variability in the genome size of Nigerien sesame correlated with specific morphological and physiological traits?
Collapse
Affiliation(s)
- Najat Takvorian
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91190 Gif-sur-Yvette, France;
- Sorbonne Université, UFR Sciences de la Vie, UFR927, 4 Place Jussieu, F-75005 Paris Cedex 05, France
| | - Hamissou Zangui
- Department of Plant Production, Abdou Moumouni University, BP-10960 Niamey, Niger; (H.Z.); (A.K.N.J.)
| | - Abdel Kader Naino Jika
- Department of Plant Production, Abdou Moumouni University, BP-10960 Niamey, Niger; (H.Z.); (A.K.N.J.)
| | - Aïda Alouane
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91190 Gif-sur-Yvette, France;
- Sorbonne Université, UFR Sciences de la Vie, UFR927, 4 Place Jussieu, F-75005 Paris Cedex 05, France
| | - Sonja Siljak-Yakovlev
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91190 Gif-sur-Yvette, France;
| |
Collapse
|
8
|
Zare T, Paril JF, Barnett EM, Kaur P, Appels R, Ebert B, Roessner U, Fournier-Level A. Comparative genomics points to tandem duplications of SAD gene clusters as drivers of increased α-linolenic (ω-3) content in S. hispanica seeds. THE PLANT GENOME 2024; 17:e20430. [PMID: 38339968 DOI: 10.1002/tpg2.20430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/28/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024]
Abstract
Salvia hispanica L. (chia) is a source of abundant ω-3 polyunsaturated fatty acids (ω-3-PUFAs) that are highly beneficial to human health. The genomic basis for this accrued ω-3-PUFA content in this emerging crop was investigated through the assembly and comparative analysis of a chromosome-level reference genome for S. hispanica. The highly contiguous 321.5-Mbp genome assembly covering all six chromosomes enabled the identification of 32,922 protein-coding genes. Two whole-genome duplications (WGD) events were identified in the S. hispanica lineage. However, these WGD events could not be linked to the high α-linolenic acid (ALA, ω-3) accumulation in S. hispanica seeds based on phylogenomics. Instead, our analysis supports the hypothesis that evolutionary expansion through tandem duplications of specific lipid gene families, particularly the stearoyl-acyl carrier protein desaturase (ShSAD) gene family, is the main driver of the abundance of ω-3-PUFAs in S. hispanica seeds. The insights gained from the genomic analysis of S. hispanica will help establish a molecular breeding target that can be leveraged through genome editing techniques to increase ω-3 content in oil crops.
Collapse
Affiliation(s)
- Tannaz Zare
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jeff F Paril
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Emma M Barnett
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Parwinder Kaur
- School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - Rudi Appels
- School of Agriculture, Food and Ecosystem Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Berit Ebert
- School of Biology and Biotechnology, Ruhr-Universitat Bochum, Bochum, Germany
| | - Ute Roessner
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | | |
Collapse
|
9
|
Cao Y, Mo W, Li Y, Xiong Y, Wang H, Zhang Y, Lin M, Zhang L, Li X. Functional characterization of NBS-LRR genes reveals an NBS-LRR gene that mediates resistance against Fusarium wilt. BMC Biol 2024; 22:45. [PMID: 38408951 PMCID: PMC10898138 DOI: 10.1186/s12915-024-01836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/25/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Most disease resistance (R) genes in plants encode proteins that contain leucine-rich-repeat (LRR) and nucleotide-binding site (NBS) domains, which belong to the NBS-LRR family. The sequenced genomes of Fusarium wilt-susceptible Vernicia fordii and its resistant counterpart, Vernicia montana, offer significant resources for the functional characterization and discovery of novel NBS-LRR genes in tung tree. RESULTS Here, we identified 239 NBS-LRR genes across two tung tree genomes: 90 in V. fordii and 149 in V. montana. Five VmNBS-LRR paralogous were predicted in V. montana, and 43 orthologous were detected between V. fordii and V. montana. The orthologous gene pair Vf11G0978-Vm019719 exhibited distinct expression patterns in V. fordii and V. montana: Vf11G0978 showed downregulated expression in V. fordii, while its orthologous gene Vm019719 demonstrated upregulated expression in V. montana, indicating that this pair may be responsible for the resistance to Fusarium wilt in V. montana. Vm019719 from V. montana, activated by VmWRKY64, was shown to confer resistance to Fusarium wilt in V. montana by a virus-induced gene silencing (VIGS) experiment. However, in the susceptible V. fordii, its allelic counterpart, Vf11G0978, exhibited an ineffective defense response, attributed to a deletion in the promoter's W-box element. CONCLUSIONS This study provides the first systematic analysis of NBS-LRR genes in the tung tree and identifies a candidate gene that can be utilized for marker-assisted breeding to control Fusarium wilt in V. fordii.
Collapse
Affiliation(s)
- Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China.
- Forestry College, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Wanzhen Mo
- Forestry College, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yanli Li
- Forestry College, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yao Xiong
- Forestry College, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Han Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yingjie Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Mengfei Lin
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, 330224, China.
| | - Lin Zhang
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China.
- Hubei Shizhen Laboratory, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Xiaoxu Li
- Beijing Life Science Academy, Beijing, 102209, China.
| |
Collapse
|
10
|
Pei Y, Leng L, Sun W, Liu B, Feng X, Li X, Chen S. Whole-genome sequencing in medicinal plants: current progress and prospect. SCIENCE CHINA. LIFE SCIENCES 2024; 67:258-273. [PMID: 37837531 DOI: 10.1007/s11427-022-2375-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/23/2023] [Indexed: 10/16/2023]
Abstract
Advancements in genomics have dramatically accelerated the research on medicinal plants, and the development of herbgenomics has promoted the "Project of 1K Medicinal Plant Genome" to decipher their genetic code. However, it is difficult to obtain their high-quality whole genomes because of the prevalence of polyploidy and/or high genomic heterozygosity. Whole genomes of 123 medicinal plants were published until September 2022. These published genome sequences were investigated in this review, covering their classification, research teams, ploidy, medicinal functions, and sequencing strategies. More than 1,000 institutes or universities around the world and 50 countries are conducting research on medicinal plant genomes. Diploid species account for a majority of sequenced medicinal plants. The whole genomes of plants in the Poaceae family are the most studied. Almost 40% of the published papers studied species with tonifying, replenishing, and heat-cleaning medicinal effects. Medicinal plants are still in the process of domestication as compared with crops, thereby resulting in unclear genetic backgrounds and the lack of pure lines, thus making their genomes more difficult to complete. In addition, there is still no clear routine framework for a medicinal plant to obtain a high-quality whole genome. Herein, a clear and complete strategy has been originally proposed for creating a high-quality whole genome of medicinal plants. Moreover, whole genome-based biological studies of medicinal plants, including breeding and biosynthesis, were reviewed. We also advocate that a research platform of model medicinal plants should be established to promote the genomics research of medicinal plants.
Collapse
Affiliation(s)
- Yifei Pei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liang Leng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Baocai Liu
- Institute of Agricultural Bioresource, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Xue Feng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
11
|
Miao H, Wang L, Qu L, Liu H, Sun Y, Le M, Wang Q, Wei S, Zheng Y, Lin W, Duan Y, Cao H, Xiong S, Wang X, Wei L, Li C, Ma Q, Ju M, Zhao R, Li G, Mu C, Tian Q, Mei H, Zhang T, Gao T, Zhang H. Genomic evolution and insights into agronomic trait innovations of Sesamum species. PLANT COMMUNICATIONS 2024; 5:100729. [PMID: 37798879 PMCID: PMC10811377 DOI: 10.1016/j.xplc.2023.100729] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/17/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Sesame is an ancient oilseed crop with high oil content and quality. However, the evolutionary history and genetic mechanisms of its valuable agronomic traits remain unclear. Here, we report chromosome-scale genomes of cultivated sesame (Sesamum indicum L.) and six wild Sesamum species, representing all three karyotypes within this genus. Karyotyping and genome-based phylogenic analysis revealed the evolutionary route of Sesamum species from n = 13 to n = 16 and revealed that allotetraploidization occurred in the wild species Sesamum radiatum. Early divergence of the Sesamum genus (48.5-19.7 million years ago) during the Tertiary period and its ancient phylogenic position within eudicots were observed. Pan-genome analysis revealed 9164 core gene families in the 7 Sesamum species. These families are significantly enriched in various metabolic pathways, including fatty acid (FA) metabolism and FA biosynthesis. Structural variations in SiPT1 and SiDT1 within the phosphatidyl ethanolamine-binding protein gene family lead to the genomic evolution of plant-architecture and inflorescence-development phenotypes in Sesamum. A genome-wide association study (GWAS) of an interspecific population and genome comparisons revealed a long terminal repeat insertion and a sequence deletion in DIR genes of wild Sesamum angustifolium and cultivated sesame, respectively; both variations independently cause high susceptibility to Fusarium wilt disease. A GWAS of 560 sesame accessions combined with an overexpression study confirmed that the NAC1 and PPO genes play an important role in upregulating oil content of sesame. Our study provides high-quality genomic resources for cultivated and wild Sesamum species and insights that can improve molecular breeding strategies for sesame and other oilseed crops.
Collapse
Affiliation(s)
- Hongmei Miao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Lei Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Lingbo Qu
- College of Food Science and Technology, Henan Technology University, Zhengzhou 450001, China
| | - Hongyan Liu
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yamin Sun
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Meiwang Le
- Crops Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Qiang Wang
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Shuangling Wei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yongzhan Zheng
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Wenchao Lin
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Yinghui Duan
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Hengchun Cao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Songjin Xiong
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Xuede Wang
- College of Food Science and Technology, Henan Technology University, Zhengzhou 450001, China
| | - Libin Wei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Chun Li
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qin Ma
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Ming Ju
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Ruihong Zhao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Guiting Li
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Cong Mu
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qiuzhen Tian
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Hongxian Mei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Tide Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Tongmei Gao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Haiyang Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| |
Collapse
|
12
|
Fan E, Liu C, Wang Z, Wang S, Ma W, Lu N, Liu Y, Fu P, Wang R, Lv S, Qu G, Wang J. Genome-Wide Identification and Expression Analysis of the SQUAMOSA Promoter-Binding Protein-like ( SPL) Transcription Factor Family in Catalpabungei. Int J Mol Sci 2023; 25:97. [PMID: 38203267 PMCID: PMC10779025 DOI: 10.3390/ijms25010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024] Open
Abstract
As a plant-specific transcription factor, the SPL gene family plays a critical role in plant growth and development. Although the SPL gene family has been identified in diverse plant species, there have been no genome-wide identification or systematic study reports on the SPL gene family in Catalpa bungei. In this study, we identified 19 putative SPL gene family members in the C. bungei genome. According to the phylogenetic relationship, they can be divided into eight groups, and the genes in the same group have a similar gene structure and conserved motifs. Synteny analysis showed that fragment duplication played an important role in the expansion of the CbuSPL gene family. At the same time, CbuSPL genes have cis-acting elements and functions related to light response, hormone response, growth and development, and stress response. Tissue-specific expression and developmental period-specific expression analysis showed that CbuSPL may be involved in flowering initiation and development, flowering transition, and leaf development. In addition, the ectopic expression of CbuSPL4 in Arabidopsis confirmed that it can promote early flowering and induce the expression of related flowering genes. These systematic research results will lay a foundation for further study on the functional analysis of SPL genes in C. bungei.
Collapse
Affiliation(s)
- Erqin Fan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (E.F.); (C.L.); (S.W.); (Y.L.); (P.F.); (R.W.); (S.L.); (G.Q.)
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Z.W.); (W.M.); (N.L.)
| | - Caixia Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (E.F.); (C.L.); (S.W.); (Y.L.); (P.F.); (R.W.); (S.L.); (G.Q.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Zhi Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Z.W.); (W.M.); (N.L.)
| | - Shanshan Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (E.F.); (C.L.); (S.W.); (Y.L.); (P.F.); (R.W.); (S.L.); (G.Q.)
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Z.W.); (W.M.); (N.L.)
| | - Nan Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Z.W.); (W.M.); (N.L.)
| | - Yuhang Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (E.F.); (C.L.); (S.W.); (Y.L.); (P.F.); (R.W.); (S.L.); (G.Q.)
| | - Pengyue Fu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (E.F.); (C.L.); (S.W.); (Y.L.); (P.F.); (R.W.); (S.L.); (G.Q.)
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Z.W.); (W.M.); (N.L.)
| | - Rui Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (E.F.); (C.L.); (S.W.); (Y.L.); (P.F.); (R.W.); (S.L.); (G.Q.)
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Z.W.); (W.M.); (N.L.)
| | - Siyu Lv
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (E.F.); (C.L.); (S.W.); (Y.L.); (P.F.); (R.W.); (S.L.); (G.Q.)
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Z.W.); (W.M.); (N.L.)
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (E.F.); (C.L.); (S.W.); (Y.L.); (P.F.); (R.W.); (S.L.); (G.Q.)
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Z.W.); (W.M.); (N.L.)
| |
Collapse
|
13
|
Zhou H, Ma J, Liu H, Zhao P. Genome-Wide Identification of the CBF Gene Family and ICE Transcription Factors in Walnuts and Expression Profiles under Cold Conditions. Int J Mol Sci 2023; 25:25. [PMID: 38203199 PMCID: PMC10778614 DOI: 10.3390/ijms25010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Cold stress impacts woody tree growth and perennial production, especially when the temperature rapidly changes in late spring. To address this issue, we conducted the genome-wide identification of two important transcription factors (TFs), CBF (C-repeat binding factors) and ICE (inducers of CBF expression), in three walnut (Juglans) genomes. Although the CBF and ICE gene families have been identified in many crops, very little systematic analysis of these genes has been carried out in J. regia and J. sigillata. In this study, we identified a total of 16 CBF and 12 ICE genes in three Juglans genomes using bioinformatics analysis. Both CBF and ICE had conserved domains, motifs, and gene structures, which suggests that these two TFs were evolutionarily conserved. Most ICE genes are located at both ends of the chromosomes. The promoter cis-regulatory elements of CBF and ICE genes are largely involved in light and phytohormone responses. Based on 36 RNA sequencing of leaves from four walnut cultivars ('Zijing', 'Lvling', 'Hongren', and 'Liao1') under three temperature conditions (8 °C, 22 °C, and 5 °C) conditions in late spring, we found that the ICE genes were expressed more highly than CBFs. Both CBF and ICE proteins interacted with cold-related proteins, and many putative miRNAs had interactions with these two TFs. These results determined that CBF1 and ICE1 play important roles in the tolerance of walnut leaves to rapid temperature changes. Our results provide a useful resource on the function of the CBF and ICE genes related to cold tolerance in walnuts.
Collapse
Affiliation(s)
- Huijuan Zhou
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an 710061, China;
| | - Jiayu Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (J.M.); (H.L.)
| | - Hengzhao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (J.M.); (H.L.)
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (J.M.); (H.L.)
| |
Collapse
|
14
|
Kim S, Lee E, Lee J, An YJ, Oh E, Kim JI, Kim SW, Kim MY, Lee MH, Cho KS. Identification of QTLs and allelic effect controlling lignan content in sesame ( Sesamum indicum L.) using QTL-seq approach. Front Genet 2023; 14:1289793. [PMID: 38148976 PMCID: PMC10750367 DOI: 10.3389/fgene.2023.1289793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
Sesame (Sesamum indicum L.), an oilseed crop, is gaining worldwide recognition for its healthy functional ingredients as consumption increases. The content of lignans, known for their antioxidant and anti-inflammatory effects, is a key agronomic trait that determines the industrialization of sesame. However, the study of the genetics and physiology of lignans in sesame is challenging, as they are influenced by multiple genes and environmental factors, therefore, the understanding of gene function and synthetic pathways related to lignan in sesame is still limited. To address these knowledge gaps, we conducted genetic analyses using F7 recombinant inbred line (RIL) populations derived from Goenbaek and Gomazou as low and high lignin content variants, respectively. Using the QTL-seq approach, we identified three loci, qLignan1-1, qLignan6-1, and qLignan11-1, that control lignan content, specifically sesamin and sesamolin. The allelic effect between loci was evaluated using the RIL population. qLignan6-1 had an additive effect that increased lignan content when combined with the other two loci, suggesting that it could be an important factor in gene pyramiding for the development of high-lignan varieties. This study not only highlights the value of sesame lignan, but also provides valuable insights for the development of high-lignan varieties through the use of DNA markers in breeding strategies. Overall, this research contributes to our understanding of the importance of sesame oil and facilitates progress in sesame breeding for improved lignan content.
Collapse
Affiliation(s)
- Sungup Kim
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Eunsoo Lee
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Jeongeun Lee
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Yeon Ju An
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Eunyoung Oh
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Jung In Kim
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Sang Woo Kim
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Min Young Kim
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Myoung Hee Lee
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Kwang-Soo Cho
- Central Crop Breeding Research Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, Republic of Korea
| |
Collapse
|
15
|
Yan W, Hu P, Ni Y, Zhao H, Liu X, Cao H, Jia M, Tian B, Miao H, Liu H. Genome-wide characterization of the wall-associated kinase-like (WAKL) family in sesame (Sesamum indicum) identifies a SiWAKL6 gene involved in resistance to Macrophomina Phaseolina. BMC PLANT BIOLOGY 2023; 23:624. [PMID: 38057720 DOI: 10.1186/s12870-023-04658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Sesame charcoal rot caused by Macrophomina phaseolina is one of the most serious fungal diseases in sesame production, and threatens the yield and quality of sesame. WAKL genes are important in the plant response to biotic stresses by sensing and transmitting external signals to the intracellular receptor. However, there is still a lack about the WAKL gene family and its function in sesame resistance to M. phaseolina. The aim of this study was to interpret the roles of WAKL genes in sesame resistance to M. phaseolina. RESULTS In this study, a comprehensive study of the WAKL gene family was conducted and 31 WAKL genes were identified in the sesame genome. Tandem duplication events were the main factor in expansion of the SiWAKL gene family. Phylogenetic analysis showed that the sesame SiWAKL gene family was divided into 4 groups. SiWAKL genes exhibited different expression patterns in diverse tissues. Under M. phaseolina stress, most SiWAKL genes were significantly induced. Notably, SiWAKL6 was strongly induced in the resistant variety "Zhengzhi 13". Functional analysis showed that SiWAKL6 was induced by salicylic acid but not methyl jasmonate in sesame. Overexpression of SiWAKL6 in transgenic Arabidopsis thaliana plants enhanced their resistance to M. phaseolina by inducing the expression of genes involved in the salicylic acid signaling pathway and reconstructing reactive oxygen species homeostasis. CONCLUSIONS Taken together, the results provide a better understanding of functions about SiWAKL gene family and suggest that manipulation of these SiWAKL genes can improve plant resistance to M. phaseolina. The findings contributed to further understanding of functions of SiWAKL genes in plant immunity.
Collapse
Affiliation(s)
- Wenqing Yan
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Peilin Hu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Yunxia Ni
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Hui Zhao
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Xintao Liu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Hengchun Cao
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Zhengzhou, Henan, 450002, China
| | - Min Jia
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, Henan, 450002, China
| | - Baoming Tian
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, Henan, 450002, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, 450002, China.
| | - Hongmei Miao
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, Henan, 450002, China.
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Zhengzhou, Henan, 450002, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, 450002, China.
- The Shennong Laboratory, Zhengzhou, Henan, 450002, China.
| | - Hongyan Liu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Postgraduate T&R Base of Zhengzhou University, Zhengzhou, Henan, 450002, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, 450002, China.
- The Shennong Laboratory, Zhengzhou, Henan, 450002, China.
| |
Collapse
|
16
|
Ranjbar M, Khakdan F, Ghorbani A, Zargar M, Chen M. The variations in gene expression of GAPDH in Ocimum basilicum cultivars under drought-induced stress conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119187-119203. [PMID: 37919503 DOI: 10.1007/s11356-023-30549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/14/2023] [Indexed: 11/04/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) holds a pivotal role within the glycolytic pathway of higher plants. It has garnered attention as a significant target protein in instances of oxidative stress, where it can engage in thiolation reactions within its active site. Numerous genes encoding cytosolic iterations of GAPDH have been identified and analyzed in specific plant species. This investigation was conducted to gain insights into GAPDH's function amidst drought-induced stress. Within this framework, the basil plant (Ocimum basilicum) was chosen for focused exploration, encompassing the cloning of the comprehensive cDNA of basil GAPDH (ObGAPDH) and scrutinizing its patterns of expression. The complete sequence of Ob-GAPDH spanned 1315 base pairs. The resultant protein derived from this sequence comprised 399 amino acids, projecting a molecular weight of approximately 42.54 kDa and an isoelectric point (pI) of 6.01. An examination of the evolutionary connections among various GAPDH proteins unveiled ObGAPDH's shared lineage with GAPDH proteins sourced from other plants, such as Salvia splendens and Sesamum indicum. Furthermore, computational methodologies were harnessed to predict the potential oxidative role of ObGAPDH in response to external signals. Molecular docking simulations illuminated the interaction between ObGAPDH and hydrogen peroxide (H2O2) as a ligand. Scrutinizing the expression patterns of the ObGAPDH gene under conditions of water scarcity stress brought to light diverse levels of transcriptional activity. Collectively, these findings underscore the notion that the regulation of ObGAPDH expression is contingent upon both the specific plant cultivar and the presence of stress stemming from drought conditions.
Collapse
Affiliation(s)
- Mojtaba Ranjbar
- Microbial Biotechnology Department, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | | | - Abazar Ghorbani
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198, Moscow, Russia
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
17
|
Bu M, Fan W, Li R, He B, Cui P. Lipid Metabolism and Improvement in Oilseed Crops: Recent Advances in Multi-Omics Studies. Metabolites 2023; 13:1170. [PMID: 38132852 PMCID: PMC10744971 DOI: 10.3390/metabo13121170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Oilseed crops are rich in plant lipids that not only provide essential fatty acids for the human diet but also play important roles as major sources of biofuels and indispensable raw materials for the chemical industry. The regulation of lipid metabolism genes is a major factor affecting oil production. In this review, we systematically summarize the metabolic pathways related to lipid production and storage in plants and highlight key research advances in characterizing the genes and regulatory factors influencing lipid anabolic metabolism. In addition, we integrate the latest results from multi-omics studies on lipid metabolism to provide a reference to better understand the molecular mechanisms underlying oil anabolism in oilseed crops.
Collapse
Affiliation(s)
- Mengjia Bu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Fan
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Ruonan Li
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Bing He
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Peng Cui
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| |
Collapse
|
18
|
Gao C, Han X, Xu Z, Yang Z, Yan Q, Zhang Y, Song J, Yu H, Liu R, Yang L, Hu W, Yang J, Wu M, Liu J, Xie Z, Yu J, Zhang Z. Oil candidate genes in seeds of cotton (Gossypium hirsutum L.) and functional validation of GhPXN1. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:169. [PMID: 37932798 PMCID: PMC10629180 DOI: 10.1186/s13068-023-02420-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Cottonseed oil is a promising edible plant oil with abundant unsaturated fatty acids. However, few studies have been conducted to explore the characteristics of cottonseed oil. The molecular mechanism of cottonseed oil accumulation remains unclear. RESULTS In the present study, we conducted comparative transcriptome and weighted gene co-expression network (WGCNA) analysis for two G. hirsutum materials with significant difference in cottonseed oil content. Results showed that, between the high oil genotype 6053 (H6053) and the low oil genotype 2052 (L2052), a total of 412, 507, 1,121, 1,953, and 2,019 differentially expressed genes (DEGs) were detected at 10, 15, 20, 25, and 30 DPA, respectively. Remarkably, a large number of the down-regulated DEGs were enriched in the phenylalanine metabolic processes. Investigation into the dynamic changes of expression profiling of genes associated with both phenylalanine metabolism and oil biosynthesis has shed light on a significant competitive relationship in substrate allocation during cottonseed development. Additionally, the WGCNA analysis of all DEGs identified eight distinct modules, one of which includes GhPXN1, a gene closely associated with oil accumulation. Through phylogenetic analysis, we hypothesized that GhPXN1 in G. hirsutum might have been introgressed from G. arboreum. Overexpression of the GhPXN1 gene in tobacco leaf suggested a significant reduction in oil content compared to the empty-vector transformants. Furthermore, ten other crucial oil candidate genes identified in this study were also validated using quantitative real-time PCR (qRT-PCR). CONCLUSIONS Overall, this study enhances our comprehension of the molecular mechanisms underlying cottonseed oil accumulation.
Collapse
Affiliation(s)
- Chenxu Gao
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450000, China
| | - Xiao Han
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050000, China
| | - Zhenzhen Xu
- Jiangsu Academy of Agricultural Sciences, Nanjing, 210000, China
| | - Zhaoen Yang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450000, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Qingdi Yan
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yihao Zhang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450000, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jikun Song
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Hang Yu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450000, China
| | - Renju Liu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450000, China
| | - Lan Yang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wei Hu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450000, China
| | - Jiaxiang Yang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450000, China
| | - Man Wu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jisheng Liu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zongming Xie
- Key Laboratory of Cotton Biology and Genetic Breeding in the Northwest Inland Cotton Production Region of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China.
| | - Jiwen Yu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450000, China.
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Zhibin Zhang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450000, China.
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
19
|
Mei H, Cui C, Liu Y, Du Z, Wu K, Jiang X, Zheng Y, Zhang H. QTL analysis of traits related to seed size and shape in sesame (Sesamum indicum L.). PLoS One 2023; 18:e0293155. [PMID: 37917626 PMCID: PMC10621824 DOI: 10.1371/journal.pone.0293155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023] Open
Abstract
Seed size and shape are important traits that determine seed yield in sesame. Understanding the genetic basis of seed size and shape is essential for improving the yield of sesame. In this study, F2 and BC1 populations were developed by crossing the Yuzhi 4 and Bengal small-seed (BS) lines for detecting the quantitative trait loci (QTLs) of traits related to seed size and shape. A total of 52 QTLs, including 13 in F2 and 39 in BC1 populations, for seed length (SL), seed width (SW), and length to width ratio (L/W) were identified, explaining phenotypic variations from 3.68 to 21.64%. Of these QTLs, nine stable major QTLs were identified in the two populations. Notably, three major QTLs qSL-LG3-2, qSW-LG3-2, and qSW-LG3-F2 that accounted for 4.94-16.34% of the phenotypic variations were co-localized in a 2.08 Mb interval on chromosome 1 (chr1) with 279 candidate genes. Three stable major QTLs qSL-LG6-2, qLW-LG6, and qLW-LG6-F2 that explained 8.14-33.74% of the phenotypic variations were co-localized in a 3.27 Mb region on chr9 with 398 candidate genes. In addition, the stable major QTL qSL-LG5 was co-localized with minor QTLs qLW-LG5-3 and qSW-LG5 to a 1.82 Mb region on chr3 with 195 candidate genes. Gene annotation, orthologous gene analysis, and sequence analysis indicated that three genes are likely involved in sesame seed development. These results obtained herein provide valuable in-formation for functional gene cloning and improving the seed yield of sesame.
Collapse
Affiliation(s)
- Hongxian Mei
- The Shennong Laboratory, Zhengzhou, Henan, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Chengqi Cui
- The Shennong Laboratory, Zhengzhou, Henan, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Yanyang Liu
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Zhenwei Du
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Ke Wu
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xiaolin Jiang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Yongzhan Zheng
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Haiyang Zhang
- The Shennong Laboratory, Zhengzhou, Henan, China
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| |
Collapse
|
20
|
Zhang Y, Shi J, Tan C, Liu Y, Xu YJ. Oilomics: An important branch of foodomics dealing with oil science and technology. Food Res Int 2023; 173:113301. [PMID: 37803609 DOI: 10.1016/j.foodres.2023.113301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 10/08/2023]
Abstract
Oil is one of three nutritious elements. The application of omics techniques in the field of oil science and technology is attracted increasing attention. Oilomics, which emerged as an important branch of foodomics, has been widely used in various aspects of oil science and technology. However, there are currently no articles systematically reviewing the application of oilomics. This paper aims to provide a critical overview of the advantages and value of oilomics technology compared to traditional techniques in various aspects of oil science and technology, including oil nutrition, oil processing, oil quality, safety, and traceability. Moreover, this article intends to review major issues in oilomics and give a comprehensive, critical overview of the current state of the art, future challenges and trends in oilomics, with a view to promoting the optimal application and development of oilomics technology in oil science and technology.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Chinping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
21
|
Varshney RK. Meet the PCP Editor-Rajeev K. Varshney FRS. PLANT & CELL PHYSIOLOGY 2023; 64:841-843. [PMID: 37338338 PMCID: PMC10434731 DOI: 10.1093/pcp/pcad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/21/2023]
Affiliation(s)
- Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
22
|
Li Y, Xu Y, Han R, Liu L, Pei X, Zhao X. Widely Targeted Metabolomic Profiling Combined with Transcriptome Analysis Provides New Insights into Lipid Biosynthesis in Seed Kernels of Pinus koraiensis. Int J Mol Sci 2023; 24:12887. [PMID: 37629067 PMCID: PMC10454069 DOI: 10.3390/ijms241612887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Lipid-rich Pinus koraiensis seed kernels are highly regarded for their nutritional and health benefits. To ascertain the molecular mechanism of lipid synthesis, we conducted widely targeted metabolomic profiling together with a transcriptome analysis of the kernels in P. koraiensis cones at various developmental stages. The findings reveal that 148 different types of lipid metabolites, or 29.6% of total metabolites, are present in kernels. Among those metabolites, the concentrations of linoleic acid, palmitic acid, and α-linolenic acid were higher, and they steadily rose as the kernels developed. An additional 10 hub genes implicated in kernel lipid synthesis were discovered using weighted gene co-expression network analysis (WGCNA), gene interaction network analysis, oil body biosynthesis, and transcriptome analysis. This study used lipid metabolome and transcriptome analyses to investigate the mechanisms of key regulatory genes and lipid synthesis molecules during kernel development, which served as a solid foundation for future research on lipid metabolism and the creation of P. koraiensis kernel food.
Collapse
Affiliation(s)
- Yan Li
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (Y.X.); (R.H.); (L.L.)
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Yujin Xu
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (Y.X.); (R.H.); (L.L.)
| | - Rui Han
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (Y.X.); (R.H.); (L.L.)
| | - Lin Liu
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (Y.X.); (R.H.); (L.L.)
| | - Xiaona Pei
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China
| | - Xiyang Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (Y.X.); (R.H.); (L.L.)
| |
Collapse
|
23
|
Zhang Y, Gong H, Cui X, Gao C, Li N, Pu Y, Zhang X, Zhao J. Integrated lipidomic and transcriptomic analyses reveal the mechanism of lipid biosynthesis and accumulation during seed development in sesame. FRONTIERS IN PLANT SCIENCE 2023; 14:1211040. [PMID: 37426956 PMCID: PMC10325577 DOI: 10.3389/fpls.2023.1211040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
Sesame is one of the most important oilseed crops and attracts significant attention because of its huge nutritional capacity. However, the molecular mechanisms underlying oil accumulation in sesame remains poorly understood. In this study, lipidomic and transcriptomic analyses in different stages of sesame seed (Luzhi No.1, seed oil content 56%) development were performed to gain insight into the regulatory mechanisms that govern differences in lipid composition, content, biosynthesis, and transport. In total, 481 lipids, including fatty acids (FAs, 38 species), triacylglycerol (TAG, 127 species), ceramide (33 species), phosphatidic acid (20 species), and diacylglycerol (17 species), were detected in developing sesame seed using gas and liquid chromatography-mass spectrometry. Most FAs and other lipids accumulated 21-33 days after flowering. RNA-sequence profiling in developing seed highlighted the enhanced expression of genes involved in the biosynthesis and transport of FAs, TAGs, and membrane lipids, which was similar to that seen during lipid accumulation. Through the differential expression analysis of genes involved in lipid biosynthesis and metabolism during seed development, several candidate genes were found to affect the oil content and FA composition of sesame seed, including ACCase, FAD2, DGAT, G3PDH, PEPCase, WRI1 and WRI1-like genes. Our study reveals the patterns of lipid accumulation and biosynthesis-related gene expression and lays an important foundation for the further exploration of sesame seed lipid biosynthesis and accumulation.
Collapse
Affiliation(s)
- Yujuan Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Huihui Gong
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xinxiao Cui
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chunhua Gao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Nana Li
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yanyan Pu
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiurong Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Junsheng Zhao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
24
|
Ruperao P, Bajaj P, Subramani R, Yadav R, Reddy Lachagari VB, Lekkala SP, Rathore A, Archak S, Angadi UB, Singh R, Singh K, Mayes S, Rangan P. A pilot-scale comparison between single and double-digest RAD markers generated using GBS strategy in sesame (Sesamum indicum L.). PLoS One 2023; 18:e0286599. [PMID: 37267340 DOI: 10.1371/journal.pone.0286599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/19/2023] [Indexed: 06/04/2023] Open
Abstract
To reduce the genome sequence representation, restriction site-associated DNA sequencing (RAD-seq) protocols is being widely used either with single-digest or double-digest methods. In this study, we genotyped the sesame population (48 sample size) in a pilot scale to compare single and double-digest RAD-seq (sd and ddRAD-seq) methods. We analysed the resulting short-read data generated from both protocols and assessed their performance impacting the downstream analysis using various parameters. The distinct k-mer count and gene presence absence variation (PAV) showed a significant difference between the sesame samples studied. Additionally, the variant calling from both datasets (sdRAD-seq and ddRAD-seq) exhibits a significant difference between them. The combined variants from both datasets helped in identifying the most diverse samples and possible sub-groups in the sesame population. The most diverse samples identified from each analysis (k-mer, gene PAV, SNP count, Heterozygosity, NJ and PCA) can possibly be representative samples holding major diversity of the small sesame population used in this study. The best possible strategies with suggested inputs for modifications to utilize the RAD-seq strategy efficiently on a large dataset containing thousands of samples to be subjected to molecular analysis like diversity, population structure and core development studies were discussed.
Collapse
Affiliation(s)
- Pradeep Ruperao
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Prasad Bajaj
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Rajkumar Subramani
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, India
| | - Rashmi Yadav
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, India
| | | | | | | | - Sunil Archak
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, India
| | - Ulavappa B Angadi
- ICAR-Indian Agricultural Statistical Research Institute, New Delhi, India
| | - Rakesh Singh
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, India
| | - Kuldeep Singh
- Genebank, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Sean Mayes
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Parimalan Rangan
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, India
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
25
|
Sheng C, Song S, Zhou W, Dossou SSK, Zhou R, Zhang Y, Li D, You J, Wang L. Integrating transcriptome and phytohormones analysis provided insights into plant height development in sesame. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107695. [PMID: 37058966 DOI: 10.1016/j.plaphy.2023.107695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/12/2023] [Accepted: 04/04/2023] [Indexed: 05/07/2023]
Abstract
Plant height is a key agronomic trait influencing crops yield. The height of sesame plants is important for yield performance, lodging resistance and plant architecture. Although plant height is significantly distinct among sesame varieties, the genetic basis of plant height remains largely unknown. In this study, in order to tackle genetic insights into the sesame plant height development, a comprehensive transcriptome analysis was conducted using the stem tips from two sesame varieties with distinct plant height, Zhongzhi13 and ZZM2748, at five time points by BGI MGIseq2000 sequencing platform. A total of 16,952 genes were differentially expressed between Zhongzhi13 and ZZM2748 at five time points. KEGG and MapMan enrichment analyses and quantitative analysis of phytohormones indicated that hormones biosynthesis and signaling pathways were associated with sesame plant height development. Plenty of candidate genes involved in biosynthesis and signaling of brassinosteroid (BR), cytokinin (CK) and gibberellin (GA) which were major differential hormones between two varieties were identified, suggesting their critical roles in plant height regulation. WGCNA revealed a module which was significantly positively associated with the plant height trait and founded SiSCL9 was the hub gene involved in plant height development in our network. Further overexpression in transgenic Arabidopsis validated the function of SiSCL9 in the increase of plant height by 26.86%. Collectively, these results increase our understanding of the regulatory network controlling the development of plant height and provide a valuable genetic resource for improvement of plant architecture in sesame.
Collapse
Affiliation(s)
- Chen Sheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shengnan Song
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Wangyi Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Senouwa Segla Koffi Dossou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
26
|
Wang ML, Tonnis B, Li X, Morris JB. Generation of Sesame Mutant Population by Mutagenesis and Identification of High Oleate Mutants by GC Analysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1294. [PMID: 36986984 PMCID: PMC10055875 DOI: 10.3390/plants12061294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/31/2022] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Sesame is one of the important oilseed crops in the world. Natural genetic variation exists in the sesame germplasm collection. Mining and utilizing the genetic allele variation from the germplasm collection is an important approach for seed quality improvement. The sesame germplasm accession, PI 263470, which has a significantly higher level of oleic acid (54.0%) than the average (39.5%), was identified by screening the entire USDA germplasm collection. The seeds from this accession were planted in a greenhouse. Leaf tissues and seeds were harvested from individual plants. DNA sequencing of the coding region of the fatty acid desaturase gene (FAD2) confirmed that this accession contained a natural mutation of G425A which may correspond to the deduced amino acid substitution of R142H leading to the high level of oleic acid, but it was a mixed accession with three genotypes (G/G, G/A, and A/A at the position). The genotype with A/A was selected and self-crossed for three generations. The purified seeds were used for EMS-induced mutagenesis to further enhance the level of oleic acid. A total of 635 M2 plants were generated from mutagenesis. Some mutant plants had significant morphological changes including leafy flat stems and others. M3 seeds were used for fatty acid composition analysis by gas chromatography (GC). Several mutant lines were identified with high oleic acid (70%). Six M3 mutant lines plus one control line were advanced to M7 or M8 generations. Their high oleate traits from M7 or M8 seeds harvested from M6 or M7 plants were further confirmed. The level of oleic acid from one mutant line (M7 915-2) was over 75%. The coding region of FAD2 was sequenced from these six mutants, but no mutation was identified. Additional loci may contribute to the high level of oleic acid. The mutants identified in this study can be used as breeding materials for sesame improvement and as genetic materials for forward genetic studies.
Collapse
Affiliation(s)
- Ming Li Wang
- Plant Genetic Resources Conservation Unit, USDA-ARS, 1109 Experiment Street, Griffin, GA 30223, USA
| | - Brandon Tonnis
- Plant Genetic Resources Conservation Unit, USDA-ARS, 1109 Experiment Street, Griffin, GA 30223, USA
| | - Xianran Li
- Wheat Health, Genetics, and Quality Research, USDA-ARS, 291 Clark Hall, Pullman, WA 99164, USA
| | - John Bradly Morris
- Plant Genetic Resources Conservation Unit, USDA-ARS, 1109 Experiment Street, Griffin, GA 30223, USA
| |
Collapse
|
27
|
Li H, Tahir ul Qamar M, Yang L, Liang J, You J, Wang L. Current Progress, Applications and Challenges of Multi-Omics Approaches in Sesame Genetic Improvement. Int J Mol Sci 2023; 24:3105. [PMID: 36834516 PMCID: PMC9965044 DOI: 10.3390/ijms24043105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Sesame is one of the important traditional oil crops in the world, and has high economic and nutritional value. Recently, due to the novel high throughput sequencing techniques and bioinformatical methods, the study of the genomics, methylomics, transcriptomics, proteomics and metabonomics of sesame has developed rapidly. Thus far, the genomes of five sesame accessions have been released, including white and black seed sesame. The genome studies reveal the function and structure of the sesame genome, and facilitate the exploitation of molecular markers, the construction of genetic maps and the study of pan-genomes. Methylomics focus on the study of the molecular level changes under different environmental conditions. Transcriptomics provide a powerful tool to study abiotic/biotic stress, organ development, and noncoding RNAs, and proteomics and metabonomics also provide some support in studying abiotic stress and important traits. In addition, the opportunities and challenges of multi-omics in sesame genetics breeding were also described. This review summarizes the current research status of sesame from the perspectives of multi-omics and hopes to provide help for further in-depth research on sesame.
Collapse
Affiliation(s)
- Huan Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Muhammad Tahir ul Qamar
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad 38000, Pakistan
| | - Li Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Junchao Liang
- Jiangxi Province Key Laboratory of Oil Crops Biology, Crop Research Institute, Nanchang Branch of National Center of Oil Crops Improvement, Jiangxi Academy of Agricultural Sciences, Nanchang 330000, China
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
28
|
Jing D, Liu X, He Q, Dang J, Hu R, Xia Y, Wu D, Wang S, Zhang Y, Xia Q, Zhang C, Yu Y, Guo Q, Liang G. Genome assembly of wild loquat ( Eriobotrya japonica) and resequencing provide new insights into the genomic evolution and fruit domestication in loquat. HORTICULTURE RESEARCH 2023; 10:uhac265. [PMID: 36778182 PMCID: PMC9909508 DOI: 10.1093/hr/uhac265] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/21/2022] [Indexed: 05/05/2023]
Abstract
Wild loquats (Eriobotrya japonica Lindl.) provide remarkable genetic resources for studying domestication and breeding improved varieties. Herein, we generate the first high-quality chromosome-level genome assembly of wild loquat, with 45 791 predicted protein-coding genes. Analysis of comparative genomics indicated that loquat shares a common ancestor with apple and pear, and a recent whole-genome duplication event occurred in loquat prior to its divergence. Genome resequencing showed that the loquat germplasms can be distinctly classified into wild and cultivated groups, and the commercial cultivars have experienced allelic admixture. Compared with cultivated loquats, the wild loquat genome showed very few selected genomic regions and had higher levels of genetic diversity. However, whole-genome scans of selective sweeps were mainly related to fruit quality, size, and flesh color during the domestication process. Large-scale transcriptome and metabolome analyses were further performed to identify differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) in wild and cultivated loquats at various fruit development stages. Unlike those in wild loquat, the key DEGs and DAMs involved in carbohydrate metabolism, plant hormone signal transduction, flavonoid biosynthesis, and carotenoid biosynthesis were significantly regulated in cultivated loquats during fruit development. These high-quality reference genome, resequencing, and large-scale transcriptome/metabolome data provide valuable resources for elucidating fruit domestication and molecular breeding in loquat.
Collapse
Affiliation(s)
| | | | | | - Jiangbo Dang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Chongqing 400715, China
| | - Ruoqian Hu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Chongqing 400715, China
| | - Yan Xia
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Chongqing 400715, China
| | - Di Wu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Chongqing 400715, China
| | - Shuming Wang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Chongqing 400715, China
| | - Yin Zhang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Chongqing 400715, China
| | - Qingqing Xia
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Chongqing 400715, China
| | - Chi Zhang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Chongqing 400715, China
| | - Yuanhui Yu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Chongqing 400715, China
| | | | | |
Collapse
|
29
|
Dossou SSK, Song S, Liu A, Li D, Zhou R, Berhe M, Zhang Y, Sheng C, Wang Z, You J, Wang L. Resequencing of 410 Sesame Accessions Identifies SINST1 as the Major Underlying Gene for Lignans Variation. Int J Mol Sci 2023; 24:1055. [PMID: 36674569 PMCID: PMC9860558 DOI: 10.3390/ijms24021055] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Sesame is a promising oilseed crop that produces specific lignans of clinical importance. Hence, a molecular description of the regulatory mechanisms of lignan biosynthesis is essential for crop improvement. Here, we resequence 410 sesame accessions and identify 5.38 and 1.16 million SNPs (single nucleotide polymorphisms) and InDels, respectively. Population genomic analyses reveal that sesame has evolved a geographic pattern categorized into northern (NC), middle (MC), and southern (SC) groups, with potential origin in the southern region and subsequent introduction to the other regions. Selective sweeps analysis uncovers 120 and 75 significant selected genomic regions in MC and NC groups, respectively. By screening these genomic regions, we unveiled 184 common genes positively selected in these subpopulations for exploitation in sesame improvement. Genome-wide association study identifies 17 and 72 SNP loci for sesamin and sesamolin variation, respectively, and 11 candidate causative genes. The major pleiotropic SNPC/A locus for lignans variation is located in the exon of the gene SiNST1. Further analyses revealed that this locus was positively selected in higher lignan content sesame accessions, and the "C" allele is favorable for a higher accumulation of lignans. Overexpression of SiNST1C in sesame hairy roots significantly up-regulated the expression of SiMYB58, SiMYB209, SiMYB134, SiMYB276, and most of the monolignol biosynthetic genes. Consequently, the lignans content was significantly increased, and the lignin content was slightly increased. Our findings provide insights into lignans and lignin regulation in sesame and will facilitate molecular breeding of elite varieties and marker-traits association studies.
Collapse
Affiliation(s)
- Senouwa Segla Koffi Dossou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Laboratory of Plant Physiology and Biotechnologies, Faculty of Sciences, University of Lomé, Lomé 01BP 1515, Togo
| | - Shengnan Song
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Aili Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Muez Berhe
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Chen Sheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zhijian Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
30
|
Chen L, Xia B, Li Z, Liu X, Bai Y, Yang Y, Gao W, Meng Q, Xu N, Sun Y, Li Q, Yue L, He M, Zhou Y. Syringa oblata genome provides new insights into molecular mechanism of flower color differences among individuals and biosynthesis of its flower volatiles. FRONTIERS IN PLANT SCIENCE 2022; 13:1078677. [PMID: 36618636 PMCID: PMC9811319 DOI: 10.3389/fpls.2022.1078677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Syringa oblata is a high ornamental value tree owing to its elegant colors, unique aromas and wide adaptability, however, studies on the molecular mechanism underlying the formation of its ornamental traits are still lacking. Here, we presented a chromosome-scale genome assembly of S. oblata and the final genome size was 1.11 Gb with a contig N50 of 4.75 Mb, anchored on 23 chromosomes and was a better reference for S. oblata transcriptome assembly. Further by integrating transcriptomic and metabolic data, it was concluded that F3H, F3'H, 4CL and PAL, especially the F3'H, were important candidates involved in the formation of floral color differences among S. oblata individuals. Genome-wide identification and analysis revealed that the TPS-b subfamily was the most abundant subfamily of TPS family in S. oblata, which together with the CYP76 family genes determined the formation of the major floral volatiles of S. oblata. Overall, our results provide an important reference for mechanistic studies on the main ornamental traits and molecular breeding in S. oblata.
Collapse
Affiliation(s)
- Lifei Chen
- College of Horticulture, Jilin Agricultural University, Changchun, China
| | - Bin Xia
- College of Landscape Architecture, Northeast Forestry University, Harbin, China
| | - Ziwei Li
- College of Landscape Architecture, Northeast Forestry University, Harbin, China
| | - Xiaowei Liu
- College of Landscape Architecture, Northeast Forestry University, Harbin, China
| | - Yun Bai
- College of Horticulture, Jilin Agricultural University, Changchun, China
| | - Yujia Yang
- College of Landscape Architecture, Northeast Forestry University, Harbin, China
| | - Wenjie Gao
- School of Ecological Technology and Engineering, Shanghai Institute of Technology University, Shanghai, China
| | - Qingran Meng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology University, Shanghai, China
| | - Ning Xu
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Ying Sun
- College of Landscape Architecture, Northeast Forestry University, Harbin, China
| | - Qiang Li
- College of Landscape Architecture, Northeast Forestry University, Harbin, China
| | - Liran Yue
- College of Landscape Architecture, Northeast Forestry University, Harbin, China
| | - Miao He
- College of Landscape Architecture, Northeast Forestry University, Harbin, China
| | - Yunwei Zhou
- College of Horticulture, Jilin Agricultural University, Changchun, China
| |
Collapse
|
31
|
Wang M, Huang J, Liu S, Liu X, Li R, Luo J, Fu Z. Improved assembly and annotation of the sesame genome. DNA Res 2022; 29:dsac041. [PMID: 36355766 PMCID: PMC9724774 DOI: 10.1093/dnares/dsac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Sesame (Sesamum indicum L.) is an important oilseed crop that produces abundant seed oil and has a pleasant flavor and high nutritional value. To date, several Illumina-based genome assemblies corresponding to different sesame genotypes have been published and widely used in genetic and genomic studies of sesame. However, these assemblies consistently showed low continuity with numerous gaps. Here, we reported a high-quality, reference-level sesame genome assembly by integrating PacBio high-fidelity sequencing and Hi-C technology. Our updated sesame assembly was 309.35 Mb in size with a high chromosome anchoring rate (97.54%) and contig N50 size (13.48 Mb), which were better than previously published genomes. We identified 163.38 Mb repetitive elements and 24,345 high-confidence protein-coding genes in the updated sesame assembly. Comparative genomic analysis showed that sesame shared an ancient whole-genome duplication event with two Lamiales species. A total of 2,782 genes were tandemly duplicated. We also identified several genes that were likely involved in fatty acid and triacylglycerol biosynthesis. Our improved sesame assembly and annotation will facilitate future genetic studies and genomics-assisted breeding of sesame.
Collapse
Affiliation(s)
- Mingcheng Wang
- Institute for Advanced Study, Chengdu University, No. 2025 Chengluo Road, Chengdu 610106, China
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu 610106, China
| | | | - Song Liu
- Berry Genomics Corporation, Beijing 100015, China
| | - Xiaofeng Liu
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Rui Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu 610106, China
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Junjia Luo
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Zhixi Fu
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| |
Collapse
|
32
|
Song S, Zhang L, Zhao Y, Sheng C, Zhou W, Dossou SSK, Wang L, You J, Zhou R, Wei X, Zhang X. Metabolome genome-wide association study provides biochemical and genetic insights into natural variation of primary metabolites in sesame. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1051-1069. [PMID: 36176211 DOI: 10.1111/tpj.15995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Plants' primary metabolites are of great importance from the survival and nutritional perspectives. However, the genetic bases underlying the profiles of primary metabolites in oilseed crops remain largely unclear. As one of the main oilseed crops, sesame (Sesamum indicum L.) is a potential model plant for investigating oil metabolism in plants. Therefore, the objective of this study is to disclose the genetic variants associated with variation in the content of primary metabolites in sesame. We performed a comprehensive metabolomics analysis of primary metabolites in 412 diverse sesame accessions using gas chromatography-mass spectrometry and identified a total of 45 metabolites, including fatty acids, monoacylglycerols (MAGs), and amino acids. Genome-wide association study unveiled 433 significant single-nucleotide polymorphism loci associated with variation in primary metabolite contents in sesame. By integrating diverse genomic analyses, we identified 10 key candidate causative genes of variation in MAG, fatty acid, asparagine, and sucrose contents. Among them, SiDSEL was significantly associated with multiple traits. SiCAC3 and SiKASI were strongly associated with variation in oleic acid and linoleic acid contents. Overexpression of SiCAC3, SiKASI, SiLTPI.25, and SiLTPI.26 in transgenic Arabidopsis and Saccharomyces cerevisiae revealed that SiCAC3 is a potential target gene for improvement of unsaturated fatty acid levels in crops. Furthermore, we found that it may be possible to breed several quality traits in sesame simultaneously. Our results provide valuable genetic resources for improving sesame seed quality and our understanding of oilseed crops' primary metabolism.
Collapse
Affiliation(s)
- Shengnan Song
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Liangxiao Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Yan Zhao
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Chen Sheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Wangyi Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Senouwa Segla Koffi Dossou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Xin Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiurong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| |
Collapse
|
33
|
Kefale H, Wang L. Discovering favorable genes, QTLs, and genotypes as a genetic resource for sesame ( Sesamum indicum L.) improvement. Front Genet 2022; 13:1002182. [PMID: 36544489 PMCID: PMC9763032 DOI: 10.3389/fgene.2022.1002182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/03/2022] [Indexed: 12/12/2022] Open
Abstract
Sesame (Sesamum indicum L.) is an ancient diploid oilseed crop with high oil content, quality protein, and antioxidant characteristics that is produced in many countries worldwide. The genes, QTLs, and genetic resources of sesame are utilized by sesame researchers and growers. Researchers have identified the many useful traits of this crop, which are available on different platforms. The genes, genotypes, QTLs, and other genetic diversity data of sesame have been collected and stored in more than nine genomic resources, and five sesame crop marker databases are available online. However, data on phenotypic and genotypic variability, which would contribute to sesame improvements, are limited and not yet accessible. The present study comprehensively reviewed more than 110 original published research papers and scientifically incorporated the results. The candidate genes, genotypes, and QTLs of significantly important traits of sesame were identified. Genetic resources related to grain yield and yield component traits, oil content and quality, drought tolerance, salt tolerance, waterlogging resistance, disease resistance, mineral nutrient, capsule shattering resistance, and other agronomic important traits of sesame were studied. Numerous candidate genotypes, genes, QTLs, and alleles associated with those traits were summarized and discovered. The chromosome regions and linkage groups, maps associated with the best traits, and candidate genes were also included. The variability presented in this paper combined with sesame genetic information will help inform further sesame improvement.
Collapse
Affiliation(s)
- Habtamu Kefale
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China,Department of Plant Science, College of Agriculture and Natural Resources, Debre Markos University, Debre Markos, Ethiopia,*Correspondence: Habtamu Kefale,
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
34
|
A high-throughput skim-sequencing approach for genotyping, dosage estimation and identifying translocations. Sci Rep 2022; 12:17583. [PMID: 36266371 PMCID: PMC9584886 DOI: 10.1038/s41598-022-19858-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/06/2022] [Indexed: 01/13/2023] Open
Abstract
The development of next-generation sequencing (NGS) enabled a shift from array-based genotyping to directly sequencing genomic libraries for high-throughput genotyping. Even though whole-genome sequencing was initially too costly for routine analysis in large populations such as breeding or genetic studies, continued advancements in genome sequencing and bioinformatics have provided the opportunity to capitalize on whole-genome information. As new sequencing platforms can routinely provide high-quality sequencing data for sufficient genome coverage to genotype various breeding populations, a limitation comes in the time and cost of library construction when multiplexing a large number of samples. Here we describe a high-throughput whole-genome skim-sequencing (skim-seq) approach that can be utilized for a broad range of genotyping and genomic characterization. Using optimized low-volume Illumina Nextera chemistry, we developed a skim-seq method and combined up to 960 samples in one multiplex library using dual index barcoding. With the dual-index barcoding, the number of samples for multiplexing can be adjusted depending on the amount of data required, and could be extended to 3,072 samples or more. Panels of doubled haploid wheat lines (Triticum aestivum, CDC Stanley x CDC Landmark), wheat-barley (T. aestivum x Hordeum vulgare) and wheat-wheatgrass (Triticum durum x Thinopyrum intermedium) introgression lines as well as known monosomic wheat stocks were genotyped using the skim-seq approach. Bioinformatics pipelines were developed for various applications where sequencing coverage ranged from 1 × down to 0.01 × per sample. Using reference genomes, we detected chromosome dosage, identified aneuploidy, and karyotyped introgression lines from the skim-seq data. Leveraging the recent advancements in genome sequencing, skim-seq provides an effective and low-cost tool for routine genotyping and genetic analysis, which can track and identify introgressions and genomic regions of interest in genetics research and applied breeding programs.
Collapse
|
35
|
Mesfer ALshamrani S, Safhi FA, Alshaya DS, Ibrahim AA, Mansour H, Abd El Moneim D. Genetic diversity using biochemical, physiological, karyological and molecular markers of Sesamum indicum L. Front Genet 2022; 13:1035977. [PMID: 36313443 PMCID: PMC9597450 DOI: 10.3389/fgene.2022.1035977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
The genetic diversity and the relationships among sesame cultivars were investigated using physiological and cyto/molecular analysis. To our information, no studies have yet been conducted on the genetic evaluation of sesame genotypes based on cyto/molecular analysis in Saudi Arabia. This study showed that genotype Bah-312 had the highest values from physiological and biochemical traits (plant height, harvest index, total plant dry matter, seed yield, oil content, and fatty acids content). Using 20 ISSR and 25 SCoT primers, the studied genotypes amplified 233 and 275 alleles, while the average polymorphism percentage (P%) was 65.32% (ISSR) and 77.8% (SCoT) across all the studied genotypes, respectively. To assess the markers efficiency analysis the polymorphism information contents (PIC), Marker Index (MI), Effective Multiplex Ratio (EMR), Resolving Power (Rp) were estimated. In general, primers (ISSR 2 & SCoT 21) and (ISSR 4 & SCoT 3) revealed the highest and lowest values for P %, PIC, MI, and EMR%. Furthermore, 188 positive and negative unique bands were detected, out of which ISSR generated 84, while 104 were amplified by SCoT analysis. In this regard, genotype Bah-312 generated 41 unique amplicons, and Jiz-511 genotype 23 unique amplicons. In the same context, the population genetics parameters, number of different alleles (Na), number of effective alleles (Ne), Shannon’s index (I), expected heterozygosity (He), and Unbiased Expected Heterozygosity (uHe), were calculated. ISSR marker showed the highest values for all the estimated parameters. In this regard, genotype Bah-312 exhibited the highest values (1.35, 1.37, 0.31, 0.21, 0.29) & (1.31, 1.35, 0.30, 0.20, 0.27) while, genotype Ahs-670 revealed the least values (1.29, 1.31, 0.26, 0.16, 0.23) &(1.14, 1.26, 0.22, 0.15, 0.20) for ISSR and SCoT markers respectively. For cytological data, according to the highest asymmetry index (AsK%) and lowest total form percentage (TF%) values, genotype Ahs-670 was the most advanced cultivar, and genotype Bah-312 was the most primitive one. According to the degree of asymmetry of karyotype (A) and intrachromosomal asymmetry index (A1), sesame genotype Ahs-670 was the most asymmetrical, and Bah-312 was the most symmetrical genotype. This study gives some helpful information about the genetic diversity of six sesame landraces. The variation harbored by these landraces could be used in sesame breeding programs.
Collapse
Affiliation(s)
| | - Fatmah Ahmed Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
- *Correspondence: Fatmah Ahmed Safhi,
| | - Dalal Sulaiman Alshaya
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amira A. Ibrahim
- Botany and Microbiology Department, Faculty of Science, Arish University, El-Arish, Egypt
| | - Hassan Mansour
- Department of Biological Sciences, College of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
- Botany Department, Faculty of Science, Suez Canal University Ismailia, Ismailia, Egypt
| | - Diaa Abd El Moneim
- Department of Plant Production, (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| |
Collapse
|
36
|
The wild allotetraploid sesame genome provides novel insights into evolution and lignan biosynthesis. J Adv Res 2022:S2090-1232(22)00233-8. [PMID: 36265763 PMCID: PMC10403651 DOI: 10.1016/j.jare.2022.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION The wild tetraploid sesame (Sesamum schinzianum), an ancestral relative of diploid cultivated sesame, grows in the tropical desert of the African Plateau. As a valuable seed resource, wild sesame has several advantageous traits, such as strong environmental adaptability and an extremely high content of sesamolin in its seeds. High-quality genome assembly is essential for a detailed understanding of genome structure, genome evolution and crop improvement. OBJECTIVES Here, we generated two high-quality chromosome-scale genomes from S. schinzianum and a cultivated diploid elite sesame (Sesamum indicum L.) to investigate the potential genetic basis underlying these traits of wild sesame. METHODS The long-read data from PacBio Sequel II platform and high-throughput chromosome conformation capture (Hi-C) data were used to construct high-quality sesame genome. Then dissecting the molecular mechanisms of sesame evolution and lignan biosynthesis through comparative genomics and transcriptomics. RESULTS We found evidence of divergent evolution that involved differences in the number, sequence and expression level of homologous genes between the two sets of subgenomes from allotetraploids in S. schinzianum, all of which might be driven by subfunctionalization after polyploidization. Furthermore, it was found that a great number of genes involved in the stress response have undergone positive selection and resulted from gene family expansion in the wild sesame genome compared with the cultivated sesame genome, which, overall, is associated with adaptative evolution to the environment. We hypothesized that the sole functional member CYP92B14 (SscC22g35272) could be associated with high content of sesamolin in wild sesame seeds. CONCLUSION This study provides high-quality wild allotetraploid sesame and cultivated sesame genomes, reveals evolutionary features of the allotetraploid genome and provides novel insights into lignan synthesis pathways. Meanwhile, the wild sesame genome will be an important resource to conduct comparative genomic and evolutionary studies and plant improvement programmes.
Collapse
|
37
|
Zhou W, Song S, Segla Koffi Dossou S, Zhou R, Wei X, Wang Z, Sheng C, Zhang Y, You J, Wang L. Genome-wide association analysis and transcriptome reveal novel loci and a candidate regulatory gene of fatty acid biosynthesis in sesame (Sesamum indicum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:220-231. [PMID: 35921726 DOI: 10.1016/j.plaphy.2022.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The regulatory mechanisms of fatty acid (FA) biosynthesis and triacylglycerols (TAGs) assembly remain largely misunderstood in sesame. Gas chromatography was used to analyze the natural variation in FA compositions and oil content (OC) in 400 sesame accessions grown in three different environments. The phenotypic data was associated with the newly released SNP data from whole-genome resequencing, and 43 significant loci for FA and OC were identified. Comparative transcriptomics analysis of high-OC and low-OC materials was performed, and 515 differentially expressed genes (DEGs) were identified across three seed developmental stages. By integrating the genome-wide association study (GWAS) and DEGs analysis, twenty candidate genes were identified, of which SiTPS1 (trehalose-6-phosphate synthase 1) has emerged as a key regulatory gene of FAs and TAGs metabolism in sesame. Overexpression of SiTPS1 in transgenic Arabidopsis influenced FA composition and significantly increased OC. Our study provides resources for the markers-based improvement of OC and quality in sesame and other crops.
Collapse
Affiliation(s)
- Wangyi Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Shengnan Song
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Senouwa Segla Koffi Dossou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Xin Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhijian Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Chen Sheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
38
|
Zoclanclounon YAB, Rostás M, Chung NJ, Mo Y, Karlovsky P, Dossa K. Characterization of Peroxidase and Laccase Gene Families and In Silico Identification of Potential Genes Involved in Upstream Steps of Lignan Formation in Sesame. Life (Basel) 2022; 12:1200. [PMID: 36013379 PMCID: PMC9410177 DOI: 10.3390/life12081200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Peroxidases and laccases are oxidative enzymes involved in physiological processes in plants, covering responses to biotic and abiotic stress as well as biosynthesis of health-promoting specialized metabolites. Although they are thought to be involved in the biosynthesis of (+)-pinoresinol, a comprehensive investigation of this class of enzymes has not yet been conducted in the emerging oil crop sesame and no information is available regarding the potential (+)-pinoresinol synthase genes in this crop. In the present study, we conducted a pan-genome-wide identification of peroxidase and laccase genes coupled with transcriptome profiling of diverse sesame varieties. A total of 83 and 48 genes have been identified as coding for sesame peroxidase and laccase genes, respectively. Based on their protein domain and Arabidopsis thaliana genes used as baits, the genes were classified into nine and seven groups of peroxidase and laccase genes, respectively. The expression of the genes was evaluated using dynamic transcriptome sequencing data from six sesame varieties, including one elite cultivar, white vs black seed varieties, and high vs low oil content varieties. Two peroxidase genes (SiPOD52 and SiPOD63) and two laccase genes (SiLAC1 and SiLAC39), well conserved within the sesame pan-genome and exhibiting consistent expression patterns within sesame varieties matching the kinetic of (+)-pinoresinol accumulation in seeds, were identified as potential (+)-pinoresinol synthase genes. Cis-acting elements of the candidate genes revealed their potential involvement in development, hormonal signaling, and response to light and other abiotic triggers. Transcription factor enrichment analysis of promoter regions showed the predominance of MYB binding sequences. The findings from this study pave the way for lignans-oriented engineering of sesame with wide potential applications in food, health and medicinal domains.
Collapse
Affiliation(s)
- Yedomon Ange Bovys Zoclanclounon
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju 54896, Korea
| | - Michael Rostás
- Molecular Phytopathology and Mycotoxin Research, Grisebachstrasse 6, Georg-August-University Goettingen, D-37077 Goettingen, Germany
| | - Nam-Jin Chung
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju 54896, Korea
| | - Youngjun Mo
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju 54896, Korea
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, Grisebachstrasse 6, Georg-August-University Goettingen, D-37077 Goettingen, Germany
| | - Komivi Dossa
- Molecular Phytopathology and Mycotoxin Research, Grisebachstrasse 6, Georg-August-University Goettingen, D-37077 Goettingen, Germany
| |
Collapse
|
39
|
Wang L, Lee M, Sun F, Song Z, Yang Z, Yue GH. A chromosome-level genome assembly of chia provides insights into high omega-3 content and coat color variation of its seeds. PLANT COMMUNICATIONS 2022; 3:100326. [PMID: 35605203 PMCID: PMC9284293 DOI: 10.1016/j.xplc.2022.100326] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/14/2022] [Accepted: 04/11/2022] [Indexed: 05/26/2023]
Abstract
Chia (Salvia hispanica) is a functional food crop for humans. Although its seeds contain high omega-3 fatty acids, the seed yield of chia is still low. Genomic resources available for this plant are limited. We report the first high-quality chromosome-level genome sequence of chia. The assembled genome size was 347.6 Mb and covered 98.1% of the estimated genome size. A total of 31 069 protein-coding genes were predicted. The absence of recent whole-genome duplication and the relatively low intensity of transposable element expansion in chia compared to its sister species contribute to its small genome size. Transcriptome sequencing and gene duplication analysis reveal that the expansion of the fab2 gene family is likely to be related to the high content of omega-3 in seeds. The white seed coat color is determined by a single locus on chromosome 4. This study provides novel insights into the evolution of Salvia species and high omega-3 content, as well as valuable genomic resources for genetic improvement of important commercial traits of chia and its related species.
Collapse
Affiliation(s)
- Le Wang
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - May Lee
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Fei Sun
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Zhuojun Song
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Zituo Yang
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Gen Hua Yue
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
40
|
Song JM, Zhang Y, Zhou ZW, Lu S, Ma W, Lu C, Chen LL, Guo L. Oil plant genomes: current state of the science. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2859-2874. [PMID: 35560205 DOI: 10.1093/jxb/erab472] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/22/2021] [Indexed: 05/25/2023]
Abstract
Vegetable oils are an indispensable nutritional component of the human diet as well as important raw materials for a variety of industrial applications such as pharmaceuticals, cosmetics, oleochemicals, and biofuels. Oil plant genomes are highly diverse, and their genetic variation leads to a diversity in oil biosynthesis and accumulation along with agronomic traits. This review discusses plant oil biosynthetic pathways, current state of genome assembly, polyploidy and asymmetric evolution of genomes of oil plants and their wild relatives, and research progress of pan-genomics in oil plants. The availability of complete high-resolution genomes and pan-genomes has enabled the identification of structural variations in the genomes that are associated with the diversity of agronomic and environment fitness traits. These and future genomes also provide powerful tools to understand crop evolution and to harvest the rich natural variations to improve oil crops for enhanced productivity, oil quality, and adaptability to changing environments.
Collapse
Affiliation(s)
- Jia-Ming Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yuting Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhi-Wei Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Chaofu Lu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
| | - Ling-Ling Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
41
|
Yadav R, Kalia S, Rangan P, Pradheep K, Rao GP, Kaur V, Pandey R, Rai V, Vasimalla CC, Langyan S, Sharma S, Thangavel B, Rana VS, Vishwakarma H, Shah A, Saxena A, Kumar A, Singh K, Siddique KHM. Current Research Trends and Prospects for Yield and Quality Improvement in Sesame, an Important Oilseed Crop. FRONTIERS IN PLANT SCIENCE 2022; 13:863521. [PMID: 35599863 PMCID: PMC9120847 DOI: 10.3389/fpls.2022.863521] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/16/2022] [Indexed: 06/04/2023]
Abstract
Climate change is shifting agricultural production, which could impact the economic and cultural contexts of the oilseed industry, including sesame. Environmental threats (biotic and abiotic stresses) affect sesame production and thus yield (especially oil content). However, few studies have investigated the genetic enhancement, quality improvement, or the underlying mechanisms of stress tolerance in sesame. This study reveals the challenges faced by farmers/researchers growing sesame crops and the potential genetic and genomic resources for addressing the threats, including: (1) developing sesame varieties that tolerate phyllody, root rot disease, and waterlogging; (2) investigating beneficial agro-morphological traits, such as determinate growth, prostrate habit, and delayed response to seed shattering; (3) using wild relatives of sesame for wide hybridization; and (4) advancing existing strategies to maintain sesame production under changing climatic conditions. Future research programs need to add technologies and develop the best research strategies for economic and sustainable development.
Collapse
Affiliation(s)
- Rashmi Yadav
- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - Sanjay Kalia
- Department of Biotechnology, Ministry of Science and Technology, Government of India, New Delhi, India
| | - Parimalan Rangan
- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - K. Pradheep
- National Bureau of Plant Genetic Resources, Thrissur, India
| | - Govind Pratap Rao
- Indian Agricultural Research Institute, Pusa Campus, New Delhi, India
| | - Vikender Kaur
- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - Renu Pandey
- Indian Agricultural Research Institute, Pusa Campus, New Delhi, India
| | - Vandna Rai
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India
| | | | - Sapna Langyan
- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - Sanjula Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, India
| | - Boopathi Thangavel
- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | | | | | - Anshuman Shah
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Abhishek Saxena
- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - Ashok Kumar
- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
| | - Kuldeep Singh
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Kadambot H. M. Siddique
- The UWA School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia (UWA), Perth, WA, Australia
| |
Collapse
|
42
|
Dutta D, Harper A, Gangopadhyay G. Transcriptomic analysis of high oil-yielding cultivated white sesame and low oil-yielding wild black sesame seeds reveal differentially expressed genes for oil and seed coat colour. THE NUCLEUS 2022. [DOI: 10.1007/s13237-022-00389-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
43
|
Song J, Pei W, Wang N, Ma J, Xin Y, Yang S, Wang W, Chen Q, Zhang J, Yu J, Wu M, Qu Y. Transcriptome analysis and identification of genes associated with oil accumulation in upland cotton. PHYSIOLOGIA PLANTARUM 2022; 174:e13701. [PMID: 35526222 DOI: 10.1111/ppl.13701] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/25/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Cotton is not only the most important fiber crop but also the fifth most important oilseed crop in the world because of its oil-rich seeds as a byproduct of fiber production. By comparative transcriptome analysis between two germplasms with diverse oil accumulation, we reveal pieces of the gene expression network involved in the process of oil synthesis in cottonseeds. Approximately, 197.16 Gb of raw data from 30 RNA sequencing samples with 3 biological replicates were generated. Comparison of the high-oil and low-oil transcriptomes enabled the identification of 7682 differentially expressed genes (DEGs). Based on gene expression profiles relevant to triacylglycerol (TAG) biosynthesis, we proposed that the Kennedy pathway (diacylglycerol acyltransferase-catalyzed diacylglycerol to TAG) is the main pathway for oil production, rather than the phospholipid diacylglycerol acyltransferase-mediated pathway. Using weighted gene co-expression network analysis, 5312 DEGs were obtained and classified into 14 co-expression modules, including the MEblack module containing 10 genes involved in lipid metabolism. Among the DEGs in the MEblack module, GhCYSD1 was identified as a potential key player in oil biosynthesis. The overexpression of GhCYSD1 in yeast resulted in increased oil content and altered fatty acid composition. This study may not only shed more light on the underlying molecular mechanism of oil accumulation in cottonseed oil, but also provide a set of new gene for potential enhancement of oil content in cottonseeds.
Collapse
Affiliation(s)
- Jikun Song
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Wenfeng Pei
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Nuohan Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Jianjiang Ma
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Yue Xin
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Shuxian Yang
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Wei Wang
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico, USA
| | - Jiwen Yu
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Man Wu
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Yanying Qu
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
44
|
Mehmood M, Khan MJ, Khan MJ, Akhtar N, Mughal F, Shah STA, Hyder MZ, Farrakh S, Sadiq I. Systematic analysis of HD-ZIP transcription factors in sesame genome and gene expression profiling of SiHD-ZIP class I entailing drought stress responses at early seedling stage. Mol Biol Rep 2022; 49:2059-2071. [PMID: 34993726 DOI: 10.1007/s11033-021-07024-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Sesame is an ancient oilseed crop, known for its high oil content and quality. Its sensitivity to drought at early seedling stage is one of the limiting factors affecting its world-wide growth and productivity. Among plant specific transcription factors, the association of HD-ZIPs with sesame drought responses at early seedling stage is not well-established yet and is very important to develop our molecular understanding on sesame drought tolerance. METHODS AND RESULTS In this study, total 61 sesame HD-ZIP proteins were identified, based on their protein sequence homology with Arabidopsis and protein domain(s) architecture prediction, followed by their phylogenetic, conserved domain(s) motifs and gene structure analyses to classify them into four classes (HD-ZIP Class I-IV). HD-ZIP Class I was also subdivided into four subgroups: α (SiHZ25, SiHZ43, SiHZ9 and SiHZ16), β1 (SiHZ10, SiHZ30, SiHZ32 and SiHZ26), β2 (SiHZ42 and SiHZ45) and γ (SiHZ17, SiHZ7 and SiHZ35) by a comparative phylogenetic analysis of sesame with Arabidopsis and maize. Afterwards, twenty-one days old sesame seedlings were exposed to drought stress by withholding water for 7 days (when soil moisture content reduced to ~16%) and gene expression of HD-ZIP Class I (13 members) was performed in well- watered (control) and drought stressed seedlings. The gene expression analysis showed that the expressions of SiHZ7 (6.8 fold) and SiHZ35 (2.6 fold) from γ subgroup were significantly high in drought seedlings. CONCLUSIONS This study is useful in demonstrating the role of SiHD-ZIP Class I in sesame drought responses at early seedling stage and to develop its novel drought tolerant varieties.
Collapse
Affiliation(s)
- Maryam Mehmood
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan
| | - Muhammad Jadoon Khan
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan
| | - Muhammad Jawad Khan
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan
| | - Nadeem Akhtar
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan
| | - Fizza Mughal
- Illinois Informatics Institute, University of Illinois, Urbana-Champaign, USA
| | - Syed Tahir Abbas Shah
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan
| | | | - Sumaira Farrakh
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan.
| | - Irfan Sadiq
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan.
| |
Collapse
|
45
|
Gao R, Lou Q, Hao L, Qi G, Tian Y, Pu X, He C, Wang Y, Xu W, Xu Z, Song J. Comparative genomics reveal the convergent evolution of CYP82D and CYP706X members related to flavone biosynthesis in Lamiaceae and Asteraceae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1305-1318. [PMID: 34907610 DOI: 10.1111/tpj.15634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Distant species producing the same secondary metabolites is an interesting and common phenomenon in nature. A classic example of this is scutellarein whose derivatives have been used clinically for more than 30 years. Scutellarein occurs in significant amounts in species of two different orders, Scutellaria baicalensis and Erigeron breviscapus, which diverged more than 100 million years ago. Here, according to the genome-wide selection and functional identification of 39 CYP450 genes from various angiosperms, we confirmed that only seven Scutellaria-specific CYP82D genes and one Erigeron CYP706X gene could perform the catalytic activity of flavone 6-hydroxylase (F6H), suggesting that the convergent evolution of scutellarein production in these two distant species was caused by two independently evolved CYP450 families. We also identified seven Scutellaria-specific CYP82D genes encoding flavone 8-hydroxylase (F8H). The evolutionary patterns of CYP82 and CYP706 families via kingdom-wide comparative genomics highlighted the evolutionary diversity of CYP82D and the specificity of CYP706X in angiosperms. Multi-collinearity and phylogenetic analysis of CYP82D in Scutellaria confirmed that the function of F6H evolved from F8H. Furthermore, the SbaiCYP82D1A319D , EbreCYP706XR130A , EbreCYP706XF312D and EbreCYP706XA318D mutants can significantly decrease the catalytic activity of F6H, revealing the contribution of crucial F6H amino acids to the scutellarein biosynthesis of distant species. This study provides important insights into the multi-origin evolution of the same secondary metabolite biosynthesis in the plant kingdom.
Collapse
Affiliation(s)
- Ranran Gao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qian Lou
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Lijun Hao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Guihong Qi
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Ya Tian
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Xiangdong Pu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Chunnian He
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Yu Wang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Wenjie Xu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Zhichao Xu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China
| |
Collapse
|
46
|
Di Marsico M, Paytuvi Gallart A, Sanseverino W, Aiese Cigliano R. GreeNC 2.0: a comprehensive database of plant long non-coding RNAs. Nucleic Acids Res 2022; 50:D1442-D1447. [PMID: 34723326 PMCID: PMC8728176 DOI: 10.1093/nar/gkab1014] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 02/04/2023] Open
Abstract
The Green Non-Coding Database (GreeNC) is one of the reference databases for the study of plant long non-coding RNAs (lncRNAs). Here we present our most recent update where 16 species have been updated, while 78 species have been added, resulting in the annotation of more than 495 000 lncRNAs. Moreover, sequence clustering was applied providing information about sequence conservation and gene families. The current version of the database is available at: http://greenc.sequentiabiotech.com/wiki2/Main_Page.
Collapse
Affiliation(s)
- Marco Di Marsico
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | | | | | | |
Collapse
|
47
|
Moyer TB, Brechbill AM, Hicks LM. Mass Spectrometric Identification of Antimicrobial Peptides from Medicinal Seeds. Molecules 2021; 26:molecules26237304. [PMID: 34885884 PMCID: PMC8659199 DOI: 10.3390/molecules26237304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/02/2022] Open
Abstract
Traditional medicinal plants contain a variety of bioactive natural products including cysteine-rich (Cys-rich) antimicrobial peptides (AMPs). Cys-rich AMPs are often crosslinked by multiple disulfide bonds which increase their resistance to chemical and enzymatic degradation. However, this class of molecules is relatively underexplored. Herein, in silico analysis predicted 80–100 Cys-rich AMPs per species from three edible traditional medicinal plants: Linum usitatissimum (flax), Trifolium pratense (red clover), and Sesamum indicum (sesame). Bottom-up proteomic analysis of seed peptide extracts revealed direct evidence for the translation of 3–10 Cys-rich AMPs per species, including lipid transfer proteins, defensins, α-hairpinins, and snakins. Negative activity revealed by antibacterial screening highlights the importance of employing a multi-pronged approach for AMP discovery. Further, this study demonstrates that flax, red clover, and sesame are promising sources for further AMP discovery and characterization.
Collapse
|
48
|
Ma Y, Wariss HM, Liao R, Zhang R, Yun Q, Olmstead RG, Chau JH, Milne RI, Van de Peer Y, Sun W. Genome-wide analysis of butterfly bush (Buddleja alternifolia) in three uplands provides insights into biogeography, demography and speciation. THE NEW PHYTOLOGIST 2021; 232:1463-1476. [PMID: 34292587 PMCID: PMC9291457 DOI: 10.1111/nph.17637] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/19/2021] [Indexed: 05/06/2023]
Abstract
Understanding processes that generate and maintain large disjunctions within plant species can provide valuable insights into plant diversity and speciation. The butterfly bush Buddleja alternifolia has an unusual disjunct distribution, occurring in the Himalaya, Hengduan Mountains (HDM) and the Loess Plateau (LP) in China. We generated a high-quality, chromosome-level genome assembly of B. alternifolia, the first within the family Scrophulariaceae. Whole-genome re-sequencing data from 48 populations plus morphological and petal colour reflectance data covering its full distribution range were collected. Three distinct genetic lineages of B. alternifolia were uncovered, corresponding to Himalayan, HDM and LP populations, with the last also differentiated morphologically and phenologically, indicating occurrence of allopatric speciation likely to be facilitated by geographic isolation and divergent adaptation to distinct ecological niches. Moreover, speciation with gene flow between populations from either side of a mountain barrier could be under way within LP. The current disjunctions within B. alternifolia might result from vicariance of a once widespread distribution, followed by several past contraction and expansion events, possibly linked to climate fluctuations promoted by the Kunlun-Yellow river tectonic movement. Several adaptive genes are likely to be either uniformly or diversely selected among regions, providing a footprint of local adaptations. These findings provide new insights into plant biogeography, adaptation and different processes of allopatric speciation.
Collapse
Affiliation(s)
- Yong‐Peng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small PopulationsKunming Institute of BotanyChinese Academy of SciencesKunming650201China
| | - Hafiz Muhammad Wariss
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small PopulationsKunming Institute of BotanyChinese Academy of SciencesKunming650201China
| | - Rong‐Li Liao
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small PopulationsKunming Institute of BotanyChinese Academy of SciencesKunming650201China
- Fuzhou Botanical GardenFuzhou350012China
| | - Ren‐Gang Zhang
- Beijing Ori‐Gene Science and Technology Co. LtdBeijing102206China
| | - Quan‐Zheng Yun
- Beijing Ori‐Gene Science and Technology Co. LtdBeijing102206China
| | - Richard G. Olmstead
- Department of Biology and Burke MuseumUniversity of WashingtonBox 351800SeattleWA98195USA
| | - John H. Chau
- Centre for Ecological Genomics and Wildlife ConservationDepartment of ZoologyUniversity of JohannesburgPO Box 524Auckland Park2006South Africa
| | - Richard I. Milne
- Institute of Molecular Plant SciencesUniversity of EdinburghEdinburghEH9 3JHUK
| | - Yves Van de Peer
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentB‐9052Belgium
- VIB Center for Plant Systems BiologyGhentB‐9052Belgium
- College of HorticultureNanjing Agricultural UniversityNanjing210095China
- Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaArcadia0007South Africa
| | - Wei‐Bang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small PopulationsKunming Institute of BotanyChinese Academy of SciencesKunming650201China
| |
Collapse
|
49
|
Cao Y, Sun G, Zhai X, Xu P, Ma L, Deng M, Zhao Z, Yang H, Dong Y, Shang Z, Lv Y, Yan L, Liu H, Cao X, Li B, Wang Z, Zhao X, Yu H, Wang F, Ma W, Huang J, Fan G. Genomic insights into the fast growth of paulownias and the formation of Paulownia witches' broom. MOLECULAR PLANT 2021; 14:1668-1682. [PMID: 34214658 DOI: 10.1016/j.molp.2021.06.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/18/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Paulownias are among the fastest growing trees in the world, but they often suffer tremendous loss of wood production due to infection by Paulownia witches' broom (PaWB) phytoplasmas. In this study, we have sequenced and assembled a high-quality nuclear genome of Paulownia fortunei, a commonly cultivated paulownia species. The assembled genome of P. fortunei is 511.6 Mb in size, with 93.2% of its sequences anchored to 20 pseudo-chromosomes, and it contains 31 985 protein-coding genes. Phylogenomic analyses show that the family Paulowniaceae is sister to a clade composed of Phrymaceae and Orobanchaceae. Higher photosynthetic efficiency is achieved by integrating C3 photosynthesis and the crassulacean acid metabolism pathway, which may contribute to the extremely fast growth habit of paulownia trees. Comparative transcriptome analyses reveal modules related to cambial growth and development, photosynthesis, and defense responses. Additional genome sequencing of PaWB phytoplasma, combined with functional analyses, indicates that the effector PaWB-SAP54 interacts directly with Paulownia PfSPLa, which in turn causes the degradation of PfSPLa by the ubiquitin-mediated pathway and leads to the formation of witches' broom. Taken together, these results provide significant insights into the biology of paulownias and the regulatory mechanism for the formation of PaWB.
Collapse
Affiliation(s)
- Yabing Cao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Guiling Sun
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xiaoqiao Zhai
- Henan Academy of Forestry, Zhengzhou, Henan 450002, China
| | - Pingluo Xu
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Liming Ma
- Biomarker Technologies Corporation, Beijing 101399, China
| | - Minjie Deng
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Zhenli Zhao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Haibo Yang
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Yanpeng Dong
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Zhonghai Shang
- Henan Academy of Forestry, Zhengzhou, Henan 450002, China
| | - Yujie Lv
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Lijun Yan
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Haifang Liu
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Xibing Cao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Bingbing Li
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Zhe Wang
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Xiaogai Zhao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Haiyan Yu
- Biomarker Technologies Corporation, Beijing 101399, China
| | - Fan Wang
- Biomarker Technologies Corporation, Beijing 101399, China
| | - Wen Ma
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jinling Huang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| | - Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, China; College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| |
Collapse
|
50
|
Mehmood M, Pérez-Llorca M, Casadesús A, Farrakh S, Munné-Bosch S. Leaf size modulation by cytokinins in sesame plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:763-770. [PMID: 34530321 DOI: 10.1016/j.plaphy.2021.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Phytohormones play important roles in controlling leaf size and in the modulation of various stress responses, including drought. In this study, hormone profiling analyses by ultra high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (UHPLC-MS/MS) was performed in leaves collected at three stages of active leaf growth to unravel which phytohormones modulate leaf size in sesame (Sesamum indicum L.) plants, an important oil-rich crop. Furthermore, endogenous contents of phytohormones were measured in parallel to various stress markers in sesame plants exposed to mild water deficit conditions by withholding water in potted plants for one week. Results revealed a major role of cytokinins and auxin in the modulation of leaf growth in sesame plants (which increased by 21.5 and 2.1-fold, respectively, with leaf growth), as well as a putative antagonistic response between jasmonic acid and salicylic acid during leaf development. Furthermore, growth arrest during water deficit stress appeared to be modulated by cytokinins, the endogenous contents of which decreased (by 48%) in parallel with ABA increases (by 59%). Reductions in the contents of the active cytokinin trans-zeatin occurred in parallel with increases in isopentenyladenine contents under drought, which suggests a partial metabolic limitation in cytokinin biosynthesis in leaves upon water deficit stress. These results provide useful information for the hormonal modulation of leaf size and the improvement of leaf growth and production in sesame plants through manipulation of the levels of key regulatory phytohormones.
Collapse
Affiliation(s)
- Maryam Mehmood
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Tarlai Kalan, 45550, Islamabad, Pakistan; Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, E-08028, Barcelona, Spain
| | - Marina Pérez-Llorca
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Tarlai Kalan, 45550, Islamabad, Pakistan
| | - Andrea Casadesús
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, E-08028, Barcelona, Spain
| | - Sumaira Farrakh
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Tarlai Kalan, 45550, Islamabad, Pakistan
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, E-08028, Barcelona, Spain; Institute of Nutrition and Food Safety (INSA), University of Barcelona, Avinguda Diagonal 643, E-08028, Barcelona, Spain.
| |
Collapse
|