1
|
Isogami H, Murata T, Imaizumi K, Fukuda T, Kanno A, Kyozuka H, Yasuda S, Yamaguchi A, Sato A, Ogata Y, Horiuchi S, Shinohara R, Shinoki K, Hosoya M, Yasumura S, Yamagata Z, Hashimoto K, Fujimori K, Nishigori H. Association of Preconception or Antepartum Maternal Intimate Partner Violence with Autism Spectrum Disorder in 3-Year-Old Offspring: The Japan Environment and Children's Study. J Womens Health (Larchmt) 2024; 33:80-89. [PMID: 38019576 DOI: 10.1089/jwh.2022.0439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Objective: We investigated the association between maternal antepartum intimate partner violence (IPV) and autism spectrum disorder (ASD) in 3-year-old offspring. Materials and Methods: Secondary analysis of the Japan Environment and Children's Study, a nationwide prospective birth-cohort study, for preconceptional and antepartum psychological/physical IPV against mothers was undertaken based on data obtained from a maternal self-report questionnaire. Subgroup analysis by four-level IPV frequency versus no IPV was conducted, and the incidence of ASD diagnosed during ages 2-3 years was estimated using self-reported questionnaire data of participants from when the child was 3 years old. Multivariate logistic regression was used to determine the association of preconceptional/antepartum IPV with ASD in 3-year-old offspring. Results: Among 79,324 offspring, 355 (0.45%) had ASD; preconceptionally and prenatally, 1,504 (1.9%) and 839 (1.1%) mothers were exposed to physical IPV whereas 9,162 (11.6%) and 10,240 (12.9%) mothers were exposed to psychological IPV, respectively. Multivariate logistic regression revealed a significant association of preconceptional physical IPV with ASD in offspring (adjusted odds ratio, 3.21; 95% confidence interval, 1.24-8.31), but not for antepartum physical IPV and preconceptional and antepartum psychological IPV. Conclusion: Preconceptional, but not antepartum, physical IPV was associated with ASD in 3-year-old offspring. Preconceptional and antepartum psychological IPV was unassociated with ASD in 3-year-old offspring. Preconceptional care through prevention of preconceptional physical IPV is important for neurodevelopment in offspring, and the mechanisms underlying the effects of IPV among nonpregnant individuals on ASD development in offspring should be elucidated.
Collapse
Affiliation(s)
- Hirotaka Isogami
- Fukushima Regional Center for the Japan Environment and Children's Study, Fukushima, Japan
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tsuyoshi Murata
- Fukushima Regional Center for the Japan Environment and Children's Study, Fukushima, Japan
- Department of Obstetrics and Gynecology, Shirakawa Kosei General Hospital, Fukushima, Japan
| | - Karin Imaizumi
- Fukushima Regional Center for the Japan Environment and Children's Study, Fukushima, Japan
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Toma Fukuda
- Fukushima Regional Center for the Japan Environment and Children's Study, Fukushima, Japan
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Aya Kanno
- Fukushima Regional Center for the Japan Environment and Children's Study, Fukushima, Japan
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hyo Kyozuka
- Fukushima Regional Center for the Japan Environment and Children's Study, Fukushima, Japan
- Department of Obstetrics and Gynecology, Ota Nishinouchi Hospital, Fukushima, Japan
| | - Shun Yasuda
- Fukushima Regional Center for the Japan Environment and Children's Study, Fukushima, Japan
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Akiko Yamaguchi
- Fukushima Regional Center for the Japan Environment and Children's Study, Fukushima, Japan
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Akiko Sato
- Fukushima Regional Center for the Japan Environment and Children's Study, Fukushima, Japan
| | - Yuka Ogata
- Fukushima Regional Center for the Japan Environment and Children's Study, Fukushima, Japan
| | - Sayaka Horiuchi
- Center for Birth Cohort Studies, University of Yamanashi, Yamanashi, Japan
| | - Ryoji Shinohara
- Center for Birth Cohort Studies, University of Yamanashi, Yamanashi, Japan
| | - Kosei Shinoki
- Fukushima Regional Center for the Japan Environment and Children's Study, Fukushima, Japan
| | - Mitsuaki Hosoya
- Fukushima Regional Center for the Japan Environment and Children's Study, Fukushima, Japan
- Department of Pediatrics and Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Seiji Yasumura
- Fukushima Regional Center for the Japan Environment and Children's Study, Fukushima, Japan
- Department of Public Health, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Zentaro Yamagata
- Center for Birth Cohort Studies, University of Yamanashi, Yamanashi, Japan
- Department of Health Sciences, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Koichi Hashimoto
- Fukushima Regional Center for the Japan Environment and Children's Study, Fukushima, Japan
- Department of Pediatrics and Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Keiya Fujimori
- Fukushima Regional Center for the Japan Environment and Children's Study, Fukushima, Japan
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hidekazu Nishigori
- Fukushima Regional Center for the Japan Environment and Children's Study, Fukushima, Japan
- Fukushima Medical Center for Children and Women, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
2
|
Nisar S, Bhat AA, Masoodi T, Hashem S, Akhtar S, Ali TA, Amjad S, Chawla S, Bagga P, Frenneaux MP, Reddy R, Fakhro K, Haris M. Genetics of glutamate and its receptors in autism spectrum disorder. Mol Psychiatry 2022; 27:2380-2392. [PMID: 35296811 PMCID: PMC9135628 DOI: 10.1038/s41380-022-01506-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental impairment characterized by deficits in social interaction skills, impaired communication, and repetitive and restricted behaviors that are thought to be due to altered neurotransmission processes. The amino acid glutamate is an essential excitatory neurotransmitter in the human brain that regulates cognitive functions such as learning and memory, which are usually impaired in ASD. Over the last several years, increasing evidence from genetics, neuroimaging, protein expression, and animal model studies supporting the notion of altered glutamate metabolism has heightened the interest in evaluating glutamatergic dysfunction in ASD. Numerous pharmacological, behavioral, and imaging studies have demonstrated the imbalance in excitatory and inhibitory neurotransmitters, thus revealing the involvement of the glutamatergic system in ASD pathology. Here, we review the effects of genetic alterations on glutamate and its receptors in ASD and the role of non-invasive imaging modalities in detecting these changes. We also highlight the potential therapeutic targets associated with impaired glutamatergic pathways.
Collapse
Affiliation(s)
- Sabah Nisar
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Ajaz A Bhat
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sheema Hashem
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sabah Akhtar
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Tayyiba Akbar Ali
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sara Amjad
- Shibli National College, Azamgarh, Uttar Pradesh, 276001, India
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Puneet Bagga
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Michael P Frenneaux
- Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Khalid Fakhro
- Department of Human Genetics, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Laboratory of Animal Research, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
3
|
Mapelli L, Soda T, D’Angelo E, Prestori F. The Cerebellar Involvement in Autism Spectrum Disorders: From the Social Brain to Mouse Models. Int J Mol Sci 2022; 23:ijms23073894. [PMID: 35409253 PMCID: PMC8998980 DOI: 10.3390/ijms23073894] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders that include a variety of forms and clinical phenotypes. This heterogeneity complicates the clinical and experimental approaches to ASD etiology and pathophysiology. To date, a unifying theory of these diseases is still missing. Nevertheless, the intense work of researchers and clinicians in the last decades has identified some ASD hallmarks and the primary brain areas involved. Not surprisingly, the areas that are part of the so-called “social brain”, and those strictly connected to them, were found to be crucial, such as the prefrontal cortex, amygdala, hippocampus, limbic system, and dopaminergic pathways. With the recent acknowledgment of the cerebellar contribution to cognitive functions and the social brain, its involvement in ASD has become unmistakable, though its extent is still to be elucidated. In most cases, significant advances were made possible by recent technological developments in structural/functional assessment of the human brain and by using mouse models of ASD. Mouse models are an invaluable tool to get insights into the molecular and cellular counterparts of the disease, acting on the specific genetic background generating ASD-like phenotype. Given the multifaceted nature of ASD and related studies, it is often difficult to navigate the literature and limit the huge content to specific questions. This review fulfills the need for an organized, clear, and state-of-the-art perspective on cerebellar involvement in ASD, from its connections to the social brain areas (which are the primary sites of ASD impairments) to the use of monogenic mouse models.
Collapse
Affiliation(s)
- Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| | - Teresa Soda
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Brain Connectivity Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| |
Collapse
|
4
|
McPartland JC, Lerner MD, Bhat A, Clarkson T, Jack A, Koohsari S, Matuskey D, McQuaid GA, Su WC, Trevisan DA. Looking Back at the Next 40 Years of ASD Neuroscience Research. J Autism Dev Disord 2021; 51:4333-4353. [PMID: 34043128 PMCID: PMC8542594 DOI: 10.1007/s10803-021-05095-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2021] [Indexed: 12/18/2022]
Abstract
During the last 40 years, neuroscience has become one of the most central and most productive approaches to investigating autism. In this commentary, we assemble a group of established investigators and trainees to review key advances and anticipated developments in neuroscience research across five modalities most commonly employed in autism research: magnetic resonance imaging, functional near infrared spectroscopy, positron emission tomography, electroencephalography, and transcranial magnetic stimulation. Broadly, neuroscience research has provided important insights into brain systems involved in autism but not yet mechanistic understanding. Methodological advancements are expected to proffer deeper understanding of neural circuitry associated with function and dysfunction during the next 40 years.
Collapse
Affiliation(s)
| | - Matthew D Lerner
- Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Anjana Bhat
- Department of Physical Therapy, University of Delaware, Newark, DE, USA
| | - Tessa Clarkson
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Allison Jack
- Department of Psychology, George Mason University, Fairfax, VA, USA
| | - Sheida Koohsari
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Goldie A McQuaid
- Department of Psychology, George Mason University, Fairfax, VA, USA
| | - Wan-Chun Su
- Department of Physical Therapy, University of Delaware, Newark, DE, USA
| | | |
Collapse
|
5
|
Cupaioli FA, Fallerini C, Mencarelli MA, Perticaroli V, Filippini V, Mari F, Renieri A, Mezzelani A. Autism Spectrum Disorders: Analysis of Mobile Elements at 7q11.23 Williams-Beuren Region by Comparative Genomics. Genes (Basel) 2021; 12:genes12101605. [PMID: 34680999 PMCID: PMC8535890 DOI: 10.3390/genes12101605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of complex neurodevelopmental disorders, characterized by a deficit in social interaction and communication. Many genetic variants are associated with ASD, including duplication of 7q11.23 encompassing 26-28 genes. Symmetrically, the hemizygous deletion of 7q11.23 causes Williams-Beuren syndrome (WBS), a multisystem disorder characterized by "hyper-sociability" and communication skills. Interestingly, deletion of four non-exonic mobile elements (MEs) in the "canine WBS locus" were associated with the behavioral divergence between the wolf and the dog and dog sociability and domestication. We hypothesized that indel of these MEs could be involved in ASD, associated with its different phenotypes and useful as biomarkers for patient stratification and therapeutic design. Since these MEs are non-exonic they have never been discovered before. We searched the corresponding MEs and loci in humans by comparative genomics. Interestingly, they mapped on different but ASD related genes. The loci in individuals with phenotypically different autism and neurotypical controls were amplified by PCR. A sub-set of each amplicon was sequenced by Sanger. No variant resulted associated with ASD and neither specific phenotypes were found but novel small-scale insertions and SNPs were discovered. Since MEs are hyper-methylated and epigenetically modulate gene expression, further investigation in ASD is necessary.
Collapse
Affiliation(s)
- Francesca Anna Cupaioli
- Institute of Biomedical Technologies, Italian National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Italy;
| | - Chiara Fallerini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.F.); (V.P.); (V.F.); (F.M.); (A.R.)
- Medical Genetics, University of Siena, 53100 Siena, Italy
| | | | - Valentina Perticaroli
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.F.); (V.P.); (V.F.); (F.M.); (A.R.)
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero Universitaria Senese, 53100 Siena, Italy;
| | - Virginia Filippini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.F.); (V.P.); (V.F.); (F.M.); (A.R.)
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero Universitaria Senese, 53100 Siena, Italy;
| | - Francesca Mari
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.F.); (V.P.); (V.F.); (F.M.); (A.R.)
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero Universitaria Senese, 53100 Siena, Italy;
| | - Alessandra Renieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.F.); (V.P.); (V.F.); (F.M.); (A.R.)
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero Universitaria Senese, 53100 Siena, Italy;
| | - Alessandra Mezzelani
- Institute of Biomedical Technologies, Italian National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Italy;
- Correspondence:
| |
Collapse
|
6
|
Wu N, Wang Y, Jia JY, Pan YH, Yuan XB. Association of CDH11 with Autism Spectrum Disorder Revealed by Matched-gene Co-expression Analysis and Mouse Behavioral Studies. Neurosci Bull 2021; 38:29-46. [PMID: 34523068 PMCID: PMC8783018 DOI: 10.1007/s12264-021-00770-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/25/2021] [Indexed: 11/25/2022] Open
Abstract
A large number of putative risk genes for autism spectrum disorder (ASD) have been reported. The functions of most of these susceptibility genes in developing brains remain unknown, and causal relationships between their variation and autism traits have not been established. The aim of this study was to predict putative risk genes at the whole-genome level based on the analysis of gene co-expression with a group of high-confidence ASD risk genes (hcASDs). The results showed that three gene features - gene size, mRNA abundance, and guanine-cytosine content - affect the genome-wide co-expression profiles of hcASDs. To circumvent the interference of these features in gene co-expression analysis, we developed a method to determine whether a gene is significantly co-expressed with hcASDs by statistically comparing the co-expression profile of this gene with hcASDs to that of this gene with permuted gene sets of feature-matched genes. This method is referred to as "matched-gene co-expression analysis" (MGCA). With MGCA, we demonstrated the convergence in developmental expression profiles of hcASDs and improved the efficacy of risk gene prediction. The results of analysis of two recently-reported ASD candidate genes, CDH11 and CDH9, suggested the involvement of CDH11, but not CDH9, in ASD. Consistent with this prediction, behavioral studies showed that Cdh11-null mice, but not Cdh9-null mice, have multiple autism-like behavioral alterations. This study highlights the power of MGCA in revealing ASD-associated genes and the potential role of CDH11 in ASD.
Collapse
Affiliation(s)
- Nan Wu
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Yue Wang
- Hussman Institute for Autism, Baltimore, 21201, USA
| | - Jing-Yan Jia
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China.
| | - Xiao-Bing Yuan
- Key Laboratory of Brain Functional Genomics of Shanghai and the Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, China. .,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, 21201, USA.
| |
Collapse
|
7
|
Uljarević M, Frazier TW, Rached G, Busch RM, Klaas P, Srivastava S, Martinez-Agosto JA, Sahin M, Eng C, Hardan AY. Toward better characterization of restricted and repetitive behaviors in individuals with germline heterozygous PTEN mutations. Am J Med Genet A 2021; 185:3401-3410. [PMID: 34423884 DOI: 10.1002/ajmg.a.62458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/14/2021] [Accepted: 06/28/2021] [Indexed: 11/05/2022]
Abstract
This study aimed to further our understanding of restricted and repetitive behaviors (RRB) among individuals with germline pathogenic mutations in PTEN by providing multimethod characterization and comparison of key RRB subdomains across individuals with PTEN mutations with autism spectrum disorder (ASD) (PTEN-ASD), with PTEN mutations without ASD (PTEN-No ASD) and with ASD and macrocephaly but without PTEN mutations (Macro-ASD). Of 86 total research participants, 38 had PTEN-ASD (Mage = 8.93 years, SDage = 4.75), 25 Macro-ASD (Mage = 11.99 years; SDage = 5.15), and 23 PTEN-No ASD (Mage = 8.94 years; SDage = 4.85). The Repetitive Behavior Scale-Revised (RBS-R) and the Autism Diagnostic Interview-Revised (ADI-R) were used as measures of distinct RRB domains. There were significant group differences in the RBS-R repetitive motor behaviors (RMB; F = 4.52, p = 0.014, ω2 = 0.08), insistence on sameness (IS; F = 4.11, p = 0.02, ω2 = 0.05), and circumscribed interests (CI; F = 7.80, p = 0.001, ω2 = 0.14) scales. Post hoc comparisons showed that the PTEN-No ASD group had significantly lower RMB, IS, and CI scores compared to both PTEN-ASD and Macro-ASD groups. Importantly, PTEN-No ASD group still showed elevated RRB levels. Furthermore, there was a portion of individuals in PTEN-No ASD group whose Full-Scale Intelligence Quotient (FSIQ) was >70 that did not show floor level scores in the RMB domain. After adjusting for age and FSIQ scores, group differences were no longer statistically significant. RMB, IS, and CI domains showed distinct association patterns with sex, age, and FSIQ. This investigation provides the largest and most comprehensive characterization of distinct RRB domains in individuals with PTEN mutations to date. Despite the limitations, our findings have important assessment and treatment implications.
Collapse
Affiliation(s)
- Mirko Uljarević
- Faculty of Medicine, Dentistry, and Health Sciences, Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia.,La Trobe University, Bundoora, Victoria, Australia
| | - Thomas W Frazier
- Department of Psychology, John Carroll University, University Heights, Ohio, USA.,Autism Speaks, New York, New York, USA
| | | | - Robyn M Busch
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Patricia Klaas
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Siddharth Srivastava
- Department of Neurology, Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Julian A Martinez-Agosto
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Mustafa Sahin
- Department of Neurology, Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Antonio Y Hardan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA
| | | |
Collapse
|
8
|
Kelly E, Escamilla CO, Tsai PT. Cerebellar Dysfunction in Autism Spectrum Disorders: Deriving Mechanistic Insights from an Internal Model Framework. Neuroscience 2021; 462:274-287. [PMID: 33253824 PMCID: PMC8076058 DOI: 10.1016/j.neuroscience.2020.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/28/2020] [Accepted: 11/07/2020] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorders (ASD) are highly prevalent neurodevelopmental disorders; however, the neurobiological mechanisms underlying disordered behavior in ASD remain poorly understood. Notably, individuals with ASD have demonstrated difficulties generating implicitly derived behavioral predictions and adaptations. Although many brain regions are involved in these processes, the cerebellum contributes an outsized role to these behavioral functions. Consistent with this prominent role, cerebellar dysfunction has been increasingly implicated in ASD. In this review, we will utilize the foundational, theoretical contributions of the late neuroscientist Masao Ito to establish an internal model framework for the cerebellar contribution to ASD-relevant behavioral predictions and adaptations. Additionally, we will also explore and then apply his key experimental contributions towards an improved, mechanistic understanding of the contribution of cerebellar dysfunction to ASD.
Collapse
Affiliation(s)
- Elyza Kelly
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Peter T Tsai
- Departments of Pediatrics and Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
9
|
Adhya D, Swarup V, Nagy R, Dutan L, Shum C, Valencia-Alarcón EP, Jozwik KM, Mendez MA, Horder J, Loth E, Nowosiad P, Lee I, Skuse D, Flinter FA, Murphy D, McAlonan G, Geschwind DH, Price J, Carroll J, Srivastava DP, Baron-Cohen S. Atypical Neurogenesis in Induced Pluripotent Stem Cells From Autistic Individuals. Biol Psychiatry 2021; 89:486-496. [PMID: 32826066 PMCID: PMC7843956 DOI: 10.1016/j.biopsych.2020.06.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/12/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Autism is a heterogeneous collection of disorders with a complex molecular underpinning. Evidence from postmortem brain studies have indicated that early prenatal development may be altered in autism. Induced pluripotent stem cells (iPSCs) generated from individuals with autism with macrocephaly also indicate prenatal development as a critical period for this condition. But little is known about early altered cellular events during prenatal stages in autism. METHODS iPSCs were generated from 9 unrelated individuals with autism without macrocephaly and with heterogeneous genetic backgrounds, and 6 typically developing control individuals. iPSCs were differentiated toward either cortical or midbrain fates. Gene expression and high throughput cellular phenotyping was used to characterize iPSCs at different stages of differentiation. RESULTS A subset of autism-iPSC cortical neurons were RNA-sequenced to reveal autism-specific signatures similar to postmortem brain studies, indicating a potential common biological mechanism. Autism-iPSCs differentiated toward a cortical fate displayed impairments in the ability to self-form into neural rosettes. In addition, autism-iPSCs demonstrated significant differences in rate of cell type assignment of cortical precursors and dorsal and ventral forebrain precursors. These cellular phenotypes occurred in the absence of alterations in cell proliferation during cortical differentiation, differing from previous studies. Acquisition of cell fate during midbrain differentiation was not different between control- and autism-iPSCs. CONCLUSIONS Taken together, our data indicate that autism-iPSCs diverge from control-iPSCs at a cellular level during early stage of neurodevelopment. This suggests that unique developmental differences associated with autism may be established at early prenatal stages.
Collapse
Affiliation(s)
- Dwaipayan Adhya
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Vivek Swarup
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Roland Nagy
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Lucia Dutan
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Carole Shum
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Eva P Valencia-Alarcón
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | - Maria Andreina Mendez
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jamie Horder
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Eva Loth
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Paulina Nowosiad
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Irene Lee
- Behavioural and Brain Sciences Unit, Population Policy Practice Programme, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - David Skuse
- Behavioural and Brain Sciences Unit, Population Policy Practice Programme, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Frances A Flinter
- Department of Clinical Genetics, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Declan Murphy
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Grainne McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
| | - Jack Price
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Jason Carroll
- Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom.
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
10
|
Xia B, Wei J, Ma X, Nehme A, Liong K, Cui Y, Chen C, Gallitano A, Ferguson D, Qiu S. Conditional knockout of MET receptor tyrosine kinase in cortical excitatory neurons leads to enhanced learning and memory in young adult mice but early cognitive decline in older adult mice. Neurobiol Learn Mem 2021; 179:107397. [PMID: 33524570 DOI: 10.1016/j.nlm.2021.107397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/22/2020] [Accepted: 01/20/2021] [Indexed: 12/15/2022]
Abstract
Human genetic studies established MET gene as a risk factor for autism spectrum disorders. We have previously shown that signaling mediated by MET receptor tyrosine kinase, expressed in early postnatal developing forebrain circuits, controls glutamatergic neuron morphological development, synapse maturation, and cortical critical period plasticity. Here we investigated how MET signaling affects synaptic plasticity, learning and memory behavior, and whether these effects are age-dependent. We found that in young adult (postnatal 2-3 months) Met conditional knockout (Metfx/fx:emx1cre, cKO) mice, the hippocampus exhibits elevated plasticity, measured by increased magnitude of long-term potentiation (LTP) and depression (LTD) in hippocampal slices. Surprisingly, in older adult cKO mice (10-12 months), LTP and LTD magnitudes were diminished. We further conducted a battery of behavioral tests to assess learning and memory function in cKO mice and littermate controls. Consistent with age-dependent LTP/LTD findings, we observed enhanced spatial memory learning in 2-3 months old young adult mice, assessed by hippocampus-dependent Morris water maze test, but impaired spatial learning in 10-12 months mice. Contextual and cued learning were further assessed using a Pavlovian fear conditioning test, which also revealed enhanced associative fear acquisition and extinction in young adult mice, but impaired fear learning in older adult mice. Lastly, young cKO mice also exhibited enhanced motor learning. Our results suggest that a shift in the window of synaptic plasticity and an age-dependent early cognitive decline may be novel circuit pathophysiology for a well-established autism genetic risk factor.
Collapse
Affiliation(s)
- Baomei Xia
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States
| | - Jing Wei
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States
| | - Xiaokuang Ma
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States
| | - Antoine Nehme
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States
| | - Katerina Liong
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States
| | - Yuehua Cui
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States
| | - Chang Chen
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States
| | - Amelia Gallitano
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States
| | - Deveroux Ferguson
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States
| | - Shenfeng Qiu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States.
| |
Collapse
|
11
|
Trevis KJ, Brown NJ, Green CC, Lockhart PJ, Desai T, Vick T, Anderson V, Pua EPK, Bahlo M, Delatycki MB, Scheffer IE, Wilson SJ. Tracing Autism Traits in Large Multiplex Families to Identify Endophenotypes of the Broader Autism Phenotype. Int J Mol Sci 2020; 21:E7965. [PMID: 33120939 PMCID: PMC7663259 DOI: 10.3390/ijms21217965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Families comprising many individuals with Autism Spectrum Disorders (ASD) may carry a dominant predisposing mutation. We implemented rigorous phenotyping of the "Broader Autism Phenotype" (BAP) in large multiplex ASD families using a novel endophenotype approach for the identification and characterisation of distinct BAP endophenotypes. We evaluated ASD/BAP features using standardised tests and a semi-structured interview to assess social, intellectual, executive and adaptive functioning in 110 individuals, including two large multiplex families (Family A: 30; Family B: 35) and an independent sample of small families (n = 45). Our protocol identified four distinct psychological endophenotypes of the BAP that were evident across these independent samples, and showed high sensitivity (97%) and specificity (82%) for individuals classified with the BAP. Patterns of inheritance of identified endophenotypes varied between the two large multiplex families, supporting their utility for identifying genes in ASD.
Collapse
Affiliation(s)
- Krysta J. Trevis
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia; (K.J.T.); (C.C.G.); (T.D.); (E.P.K.P.); (I.E.S.)
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Natasha J. Brown
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (N.J.B.); (M.B.D.)
- Barwon Health, Geelong, VIC 3220, Australia;
| | - Cherie C. Green
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia; (K.J.T.); (C.C.G.); (T.D.); (E.P.K.P.); (I.E.S.)
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Bundoora, VIC 3086, Australia
| | - Paul J. Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Tarishi Desai
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia; (K.J.T.); (C.C.G.); (T.D.); (E.P.K.P.); (I.E.S.)
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Tanya Vick
- Barwon Health, Geelong, VIC 3220, Australia;
| | - Vicki Anderson
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
- Psychological Service, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Clinical Sciences Research, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Emmanuel P. K. Pua
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia; (K.J.T.); (C.C.G.); (T.D.); (E.P.K.P.); (I.E.S.)
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Martin B. Delatycki
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (N.J.B.); (M.B.D.)
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ingrid E. Scheffer
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia; (K.J.T.); (C.C.G.); (T.D.); (E.P.K.P.); (I.E.S.)
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (N.J.B.); (M.B.D.)
- Clinical Sciences Research, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Sarah J. Wilson
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia; (K.J.T.); (C.C.G.); (T.D.); (E.P.K.P.); (I.E.S.)
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| |
Collapse
|
12
|
Farajzadeh Valilou S, Alavi A, Pashaei M, Ghasemi Firouzabadi S, Shafeghati Y, Nozari A, Hadipour F, Hadipour Z, Maghsoodlou Estrabadi B, Gholamreza Noorazar S, Banihashemi S, Karimian J, Fattahi M, Behjati F. Whole-Exome Sequencing Identifies Three Candidate Homozygous Variants in a Consanguineous Iranian Family with Autism Spectrum Disorder and Skeletal Problems. Mol Syndromol 2020; 11:62-72. [PMID: 32655337 DOI: 10.1159/000506530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2020] [Indexed: 11/19/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by 3 core symptoms with impaired social communication, repetitive behavior, and/or restricted interests in early childhood. As a complex neurodevelopmental disorder (NDD), the phenotype and severity of autism are extremely heterogeneous. Genetic factors have a key role in the etiology of autism. In this study, we investigated an Azeri Turkish family with 2 ASD-affected individuals to identify probable ASD-causing variants. First, the affected individuals were karyotyped in order to exclude chromosomal abnormalities. Then, whole-exome sequencing was carried out in one affected sibling followed by cosegregation analysis for the candidate variants in the family. In addition, SNP genotyping was carried out in the patients to identify possible homozygosity regions. Both proband and sibling had a normal karyotype. We detected 3 possible causative variants in this family: c.5443G>A; p.Gly1815Ser, c.1027C>T; p.Arg343Trp, and c.382A>G; p.Lys128Glu, which are in the FBN1, TF, and PLOD2 genes, respectively. All of the variants cosegregated in the family, and SNP genotyping revealed that these 3 variants are located in the homozygosity regions. This family serves as an example of a multimodal polygenic risk for a complex developmental disorder. Of these 3 genes, confluence of the variants in FBN1 and PLOD2 may contribute to the autistic features of the patient in addition to skeletal problems. Our study highlights the genetic complexity and heterogeneity of NDDs such as autism. In other words, in some patients with ASD, multiple rare variants in different loci rather than a monogenic state may contribute to the development of phenotypes.
Collapse
Affiliation(s)
- Saeed Farajzadeh Valilou
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mahdiyeh Pashaei
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Yousef Shafeghati
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.,Department of Medical Genetics and Sarem Cell Research Center (SCRC), Sarem Womens' Hospital, Tehran, Iran
| | - Ahoura Nozari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Fatemeh Hadipour
- Department of Medical Genetics and Sarem Cell Research Center (SCRC), Sarem Womens' Hospital, Tehran, Iran
| | - Zahra Hadipour
- Department of Medical Genetics and Sarem Cell Research Center (SCRC), Sarem Womens' Hospital, Tehran, Iran
| | | | - Seyed Gholamreza Noorazar
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Susan Banihashemi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Javad Karimian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mahshid Fattahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Farkhondeh Behjati
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
13
|
Assessment of haptoglobin alleles in autism spectrum disorders. Sci Rep 2020; 10:7758. [PMID: 32385356 PMCID: PMC7210291 DOI: 10.1038/s41598-020-64679-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
Gene-environment interactions, by means of abnormal macromolecular intestinal adsorption, is one of the possible causes of autism spectrum disorders (ASD) predominantly in patients with gastrointestinal disorders. Pre-haptoglobin-2 (zonulin), encoded by the Haptoglobin (HP) allele-2 gene, enhances the intestinal permeability by modulation of intercellular tight junctions. The two alleles of HP, HP1 and HP2, differ for 2 extra exons in HP2 that result in exon duplication undetectable by classic genome-wide association studies. To evaluate the role of HP2 in ASD pathogenesis and to set up a method to discriminate HP alleles, Italian subjects with ASD (n = 398) and healthy controls (n = 379) were genotyped by PCR analysis; subsequently, the PCR results were integrated with microarray genotypes (Illumina Human Omni 1S-8), obtained using a subset from the same subjects, and then we developed a computational method to predict HP alleles. On the contrary to our expectations, there was no association between HP2 and ASD (P > 0.05), and there was no significant allele association in subjects with ASD with or without gastrointestinal disorders (P > 0.05). With the aid of bioinformatics analysis, from a window frame of ~2 Mb containing 314 SNPs, we obtain imputation accuracy (r2) between 0.4 and 0.9 (median 0.7) and correct predictions were between 70% and 100% (median 90%). The conclusions endorse that enhanced intestinal permeability in subjects with ASD should not be imputed to HP2 but to other members of the zonulin family and/or to environmental factors.
Collapse
|
14
|
Zhang W, Ma L, Yang M, Shao Q, Xu J, Lu Z, Zhao Z, Chen R, Chai Y, Chen JF. Cerebral organoid and mouse models reveal a RAB39b-PI3K-mTOR pathway-dependent dysregulation of cortical development leading to macrocephaly/autism phenotypes. Genes Dev 2020; 34:580-597. [PMID: 32115408 PMCID: PMC7111266 DOI: 10.1101/gad.332494.119] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/29/2020] [Indexed: 12/14/2022]
Abstract
Dysregulation of early neurodevelopment is implicated in macrocephaly/autism disorders. However, the mechanism underlying this dysregulation, particularly in human cells, remains poorly understood. Mutations in the small GTPase gene RAB39b are associated with X-linked macrocephaly, autism spectrum disorder (ASD), and intellectual disability. The in vivo roles of RAB39b in the brain remain unknown. We generated Rab39b knockout (KO) mice and found that they exhibited cortical neurogenesis impairment, macrocephaly, and hallmark ASD behaviors, which resembled patient phenotypes. We also produced mutant human cerebral organoids that were substantially enlarged due to the overproliferation and impaired differentiation of neural progenitor cells (NPCs), which resemble neurodevelopmental deficits in KO mice. Mechanistic studies reveal that RAB39b interacts with PI3K components and its deletion promotes PI3K-AKT-mTOR signaling in NPCs of mouse cortex and cerebral organoids. The mTOR activity is robustly enhanced in mutant outer radial glia cells (oRGs), a subtype of NPCs barely detectable in rodents but abundant in human brains. Inhibition of AKT signaling rescued enlarged organoid sizes and NPC overproliferation caused by RAB39b mutations. Therefore, RAB39b mutation promotes PI3K-AKT-mTOR activity and alters cortical neurogenesis, leading to macrocephaly and autistic-like behaviors. Our studies provide new insights into neurodevelopmental dysregulation and common pathways associated with ASD across species.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California 90033, USA
| | - Li Ma
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California 90033, USA
| | - Mei Yang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California 90033, USA
| | - Qiang Shao
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California 90033, USA
| | - Jian Xu
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California 90033, USA
| | - Zhipeng Lu
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Zhen Zhao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Rong Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21205, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California 90033, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California 90033, USA
| |
Collapse
|
15
|
Geoffray MM, Falissard B, Green J, Kerr B, Evans DG, Huson S, Burkitt-Wright E, Garg S. Autism Spectrum Disorder Symptom Profile Across the RASopathies. Front Psychiatry 2020; 11:585700. [PMID: 33519543 PMCID: PMC7843573 DOI: 10.3389/fpsyt.2020.585700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/16/2020] [Indexed: 01/12/2023] Open
Abstract
Dysregulation of the Ras MAPK signaling pathway is implicated in the pathogenesis of autism spectrum disorder (ASD). The RASopathies, a group of disorders caused by mutations of the Ras/MAPK pathway genes, share many overlapping clinical features. Studies suggest a high prevalence of ASD in the RASopathies, but detailed characterization of the ASD profile is lacking. The aim of this study was to compare the ASD symptom profile of three distinct RASopathies associated with both gain-of-function and loss-of-function mutations: neurofibromatosis type 1 (NF1), Noonan syndrome (NS), and cardiofaciocutaneous syndrome (CFC). Participants were drawn from existing databases if they had a diagnosis of a RASopathy, met the criteria for ASD, and were able to communicate verbally. We compared the phenotypic profile of NF1 + ASD (n = 48), NS + ASD (n = 11), and CFC + ASD (n = 7) on the Autism Diagnostic Inventory (ADI-R) and the Autism Diagnostic Observation Schedule (ADOS). We found subtle but non-significant group differences with higher levels of social impairments and lower restricted repetitive behaviors in the NF1 group as compared with the NS and CFC groups. We observed group differences in developmental milestones with most severe delays in CFC, followed by NS and NF1. Our results suggest that despite developmental differences, the ASD profile remains relatively consistent across the three RASopathies. Though our results need confirmation in larger samples, they suggest the possibility that treatment and mechanistic insights developed in the context of one RASopathy may be generalizable to others and possibly to non-syndromic ASD associated with dysregulation of Ras/MAPK pathway genes.
Collapse
Affiliation(s)
- Marie-Maude Geoffray
- Centre Hospitalier Le Vinatier, Bron, France.,Division of Neuroscience and Experimental Psychology, Faculty of Biological Medical & Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Bruno Falissard
- CESP, INSERM U1018, Université Paris-Saclay, Villejuif, France
| | - Jonathan Green
- Division of Neuroscience and Experimental Psychology, Faculty of Biological Medical & Health Sciences, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Sciences Centre, Manchester, United Kingdom.,Department of Child and Adolescent Mental Health, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Browyn Kerr
- Manchester Academic Health Sciences Centre, Manchester, United Kingdom.,Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - D Gareth Evans
- Division of Neuroscience and Experimental Psychology, Faculty of Biological Medical & Health Sciences, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Sciences Centre, Manchester, United Kingdom.,Division of Evolution and Genomic Science, Department of Genomic Medicine, St Mary's Hospital, University of Manchester, Manchester, United Kingdom
| | - Susan Huson
- Manchester Academic Health Sciences Centre, Manchester, United Kingdom.,Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Emma Burkitt-Wright
- Manchester Academic Health Sciences Centre, Manchester, United Kingdom.,Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Shruti Garg
- Division of Neuroscience and Experimental Psychology, Faculty of Biological Medical & Health Sciences, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Sciences Centre, Manchester, United Kingdom.,Department of Child and Adolescent Mental Health, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
16
|
Association of genes with phenotype in autism spectrum disorder. Aging (Albany NY) 2019; 11:10742-10770. [PMID: 31744938 PMCID: PMC6914398 DOI: 10.18632/aging.102473] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/08/2019] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder (ASD) is a genetic heterogeneous neurodevelopmental disorder that is characterized by impairments in social interaction and speech development and is accompanied by stereotypical behaviors such as body rocking, hand flapping, spinning objects, sniffing and restricted behaviors. The considerable significance of the genetics associated with autism has led to the identification of many risk genes for ASD used for the probing of ASD specificity and shared cognitive features over the past few decades. Identification of ASD risk genes helps to unravel various genetic variants and signaling pathways which are involved in ASD. This review highlights the role of ASD risk genes in gene transcription and translation regulation processes, as well as neuronal activity modulation, synaptic plasticity, disrupted key biological signaling pathways, and the novel candidate genes that play a significant role in the pathophysiology of ASD. The current emphasis on autism spectrum disorders has generated new opportunities in the field of neuroscience, and further advancements in the identification of different biomarkers, risk genes, and genetic pathways can help in the early diagnosis and development of new clinical and pharmacological treatments for ASD.
Collapse
|
17
|
Wong CCY, Smith RG, Hannon E, Ramaswami G, Parikshak NN, Assary E, Troakes C, Poschmann J, Schalkwyk LC, Sun W, Prabhakar S, Geschwind DH, Mill J. Genome-wide DNA methylation profiling identifies convergent molecular signatures associated with idiopathic and syndromic autism in post-mortem human brain tissue. Hum Mol Genet 2019; 28:2201-2211. [PMID: 31220268 PMCID: PMC6602383 DOI: 10.1093/hmg/ddz052] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) encompasses a collection of complex neuropsychiatric disorders characterized by deficits in social functioning, communication and repetitive behaviour. Building on recent studies supporting a role for developmentally moderated regulatory genomic variation in the molecular aetiology of ASD, we quantified genome-wide patterns of DNA methylation in 223 post-mortem tissues samples isolated from three brain regions [prefrontal cortex, temporal cortex and cerebellum (CB)] dissected from 43 ASD patients and 38 non-psychiatric control donors. We identified widespread differences in DNA methylation associated with idiopathic ASD (iASD), with consistent signals in both cortical regions that were distinct to those observed in the CB. Individuals carrying a duplication on chromosome 15q (dup15q), representing a genetically defined subtype of ASD, were characterized by striking differences in DNA methylationacross a discrete domain spanning an imprinted gene cluster within the duplicated region. In addition to the dramatic cis-effects on DNA methylation observed in dup15q carriers, we identified convergent methylomic signatures associated with both iASD and dup15q, reflecting the findings from previous studies of gene expression and H3K27ac. Cortical co-methylation network analysis identified a number of co-methylated modules significantly associated with ASD that are enriched for genomic regions annotated to genes involved in the immune system, synaptic signalling and neuronal regulation. Our study represents the first systematic analysis of DNA methylation associated with ASD across multiple brain regions, providing novel evidence for convergent molecular signatures associated with both idiopathic and syndromic autism.
Collapse
Affiliation(s)
- Chloe C Y Wong
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, London, UK
| | - Rebecca G Smith
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Eilis Hannon
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Gokul Ramaswami
- Center for Autism Research and Treatment, and Program in Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Neelroop N Parikshak
- Center for Autism Research and Treatment, and Program in Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Elham Assary
- Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Claire Troakes
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, London, UK
| | - Jeremie Poschmann
- Centre de Recherche en Transplantation et Immunologie, Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Inserm, Université de Nantes, Nantes, France
| | | | - Wenjie Sun
- Computational and Systems Biology, Genome Institute of Singapore, Singapore
| | - Shyam Prabhakar
- Computational and Systems Biology, Genome Institute of Singapore, Singapore
| | - Daniel H Geschwind
- Center for Autism Research and Treatment, and Program in Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, USA
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, UK
| |
Collapse
|
18
|
Suppression of Akt-mTOR pathway rescued the social behavior in Cntnap2-deficient mice. Sci Rep 2019; 9:3041. [PMID: 30816216 PMCID: PMC6395585 DOI: 10.1038/s41598-019-39434-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/22/2019] [Indexed: 01/08/2023] Open
Abstract
Autism spectrum disorders (ASD) form a heterogeneous, neurodevelopmental syndrome characterized by deficits in social interactions and repetitive behavior/restricted interests. Dysregulation of mTOR signaling has been implicated in the pathogenesis of certain types of ASD, and inhibition of mTOR by rapamycin has been demonstrated to be an effective therapeutics for impaired social interaction in Tsc1+/−, Tsc2+/−, Pten−/− mice and valproic acid-induced ASD animal models. However, it is still unknown if dysregulation of mTOR signaling is responsible for the ASD-related deficit caused by other genes mutations. Contactin associated protein-like 2 (CNTNAP2) is the first widely replicated autism-predisposition gene. Mice deficient in Cntnap2 (Cntnap2−/− mice) show core ASD-like phenotypes, and have been demonstrated as a validated model for ASD-relevant drug discovery. In this study, we found hyperactive Akt-mTOR signaling in the hippocampus of Cntnap2−/− mice with RNA sequencing followed with biochemical analysis. Treatment with Akt inhibitor LY294002 or mTOR inhibitor rapamycin rescued the social deficit, but had no effect on hyperactivity and repetitive behavior/restricted behavior in Cntnap2−/− mice. We further showed that the effect of LY294002 and rapamycin on social behaviors is reversible. Our results thus identified hyperactive Akt-mTOR signaling pathway as a therapeutic target for abnormal social behavior in patients with dysfunction of CNTNAP2.
Collapse
|
19
|
Ma X, Chen K, Lu Z, Piechowicz M, Liu Q, Wu J, Qiu S. Disruption of MET Receptor Tyrosine Kinase, an Autism Risk Factor, Impairs Developmental Synaptic Plasticity in the Hippocampus. Dev Neurobiol 2019; 79:36-50. [PMID: 30304576 PMCID: PMC6397659 DOI: 10.1002/dneu.22645] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/21/2018] [Accepted: 10/10/2018] [Indexed: 02/05/2023]
Abstract
As more genes conferring risks to neurodevelopmental disorders are identified, translating these genetic risk factors into biological mechanisms that impact the trajectory of the developing brain is a critical next step. Here, we report that disrupted signaling mediated MET receptor tyrosine kinase (RTK), an established risk factor for autism spectrum disorders, in the developing hippocampus glutamatergic circuit leads to profound deficits in neural development, synaptic transmission, and plasticity. In cultured hippocampus slices prepared from neonatal mice, pharmacological inhibition of MET kinase activity suppresses dendritic arborization and disrupts normal dendritic spine development. In addition, single-neuron knockdown (RNAi) or overexpression of Met in the developing hippocampal CA1 neurons leads to alterations, opposite in nature, in basal synaptic transmission and long-term plasticity. In forebrain-specific Met conditional knockout mice (Metfx/fx ;emx1cre ), an enhanced long-term potentiation (LTP) and long-term depression (LTD) were observed at early developmental stages (P12-14) at the Schaffer collateral to CA1 synapses compared with wild-type littermates. In contrast, LTP and LTD were markedly reduced at young adult stage (P56-70) during which wild-type mice show robust LTP and LTD. The altered trajectory of synaptic plasticity revealed by this study indicate that temporally regulated MET signaling as an intrinsic, cell autonomous, and pleiotropic mechanism not only critical for neuronal growth and functional maturation, but also for the timing of synaptic plasticity during forebrain glutamatergic circuits development.
Collapse
Affiliation(s)
- Xiaokuang Ma
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, 85004
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Ke Chen
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, 85004
- MOE Key Laboratory for NeuroInformation, The Clinical Hospital of Chengdu Brain Sciences Institute, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Zhongming Lu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, 85004
| | - Mariel Piechowicz
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, 85004
| | - Qiang Liu
- Barrow Neurological Institute, St. Joseph's Hospital Medical Center, Phoenix, Arizona, 85013
| | - Jie Wu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, 85004
- Barrow Neurological Institute, St. Joseph's Hospital Medical Center, Phoenix, Arizona, 85013
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Shenfeng Qiu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, 85004
| |
Collapse
|
20
|
Prenatal Neuropathologies in Autism Spectrum Disorder and Intellectual Disability: The Gestation of a Comprehensive Zebrafish Model. J Dev Biol 2018; 6:jdb6040029. [PMID: 30513623 PMCID: PMC6316217 DOI: 10.3390/jdb6040029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) and intellectual disability (ID) are neurodevelopmental disorders with overlapping diagnostic behaviors and risk factors. These include embryonic exposure to teratogens and mutations in genes that have important functions prenatally. Animal models, including rodents and zebrafish, have been essential in delineating mechanisms of neuropathology and identifying developmental critical periods, when those mechanisms are most sensitive to disruption. This review focuses on how the developmentally accessible zebrafish is contributing to our understanding of prenatal pathologies that set the stage for later ASD-ID behavioral deficits. We discuss the known factors that contribute prenatally to ASD-ID and the recent use of zebrafish to model deficits in brain morphogenesis and circuit development. We conclude by suggesting that a future challenge in zebrafish ASD-ID modeling will be to bridge prenatal anatomical and physiological pathologies to behavioral deficits later in life.
Collapse
|
21
|
Ko HM, Jin Y, Park HH, Lee JH, Jung SH, Choi SY, Lee SH, Shin CY. Dual mechanisms for the regulation of brain-derived neurotrophic factor by valproic acid in neural progenitor cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:679-688. [PMID: 30402028 PMCID: PMC6205935 DOI: 10.4196/kjpp.2018.22.6.679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/15/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorders (ASDs) are neurodevelopmental disorders that share behavioral features, the results of numerous studies have suggested that the underlying causes of ASDs are multifactorial. Behavioral and/or neurobiological analyses of ASDs have been performed extensively using a valid model of prenatal exposure to valproic acid (VPA). Abnormal synapse formation resulting from altered neurite outgrowth in neural progenitor cells (NPCs) during embryonic brain development has been observed in both the VPA model and ASD subjects. Although several mechanisms have been suggested, the actual mechanism underlying enhanced neurite outgrowth remains unclear. In this study, we found that VPA enhanced the expression of brain-derived neurotrophic factor (BDNF), particularly mature BDNF (mBDNF), through dual mechanisms. VPA increased the mRNA and protein expression of BDNF by suppressing the nuclear expression of methyl-CpG-binding protein 2 (MeCP2), which is a transcriptional repressor of BDNF. In addition, VPA promoted the expression and activity of the tissue plasminogen activator (tPA), which induces BDNF maturation through proteolytic cleavage. Trichostatin A and sodium butyrate also enhanced tPA activity, but tPA activity was not induced by valpromide, which is a VPA analog that does not induce histone acetylation, indicating that histone acetylation activity was required for tPA regulation. VPA-mediated regulation of BDNF, MeCP2, and tPA was not observed in astrocytes or neurons. Therefore, these results suggested that VPA-induced mBDNF upregulation was associated with the dysregulation of MeCP2 and tPA in developing cortical NPCs.
Collapse
Affiliation(s)
- Hyun Myung Ko
- Department of Life Science, College of Science and Technology, Woosuk University, Jincheon 27841, Korea
| | - Yeonsun Jin
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Jong Hyuk Lee
- Department of Pharmaceutical Engineering, College of Life and Health Science, Hoseo University, Asan 31499, Korea
| | - Seung Hyo Jung
- Department of Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Korea
| | - So Young Choi
- Department of Biomedical Science & Technology, Konkuk University, Seoul 05029, Korea
| | - Sung Hoon Lee
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Chan Young Shin
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
22
|
Chapman NH, Bernier RA, Webb SJ, Munson J, Blue EM, Chen DH, Heigham E, Raskind WH, Wijsman EM. Replication of a rare risk haplotype on 1p36.33 for autism spectrum disorder. Hum Genet 2018; 137:807-815. [PMID: 30276537 PMCID: PMC6309233 DOI: 10.1007/s00439-018-1939-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/22/2018] [Indexed: 01/15/2023]
Abstract
Hundreds of genes have been implicated in autism spectrum disorders (ASDs). In genetically heterogeneous conditions, large families with multiple affected individuals provide strong evidence implicating a rare variant, and replication of the same variant in multiple families is unusual. We previously published linkage analyses and follow-up exome sequencing in seven large families with ASDs, implicating 14 rare exome variants. These included rs200195897, which was transmitted to four affected individuals in one family. We attempted replication of those variants in the MSSNG database. MSSNG is a unique resource for replication of ASD risk loci, containing whole genome sequence (WGS) on thousands of individuals diagnosed with ASDs and family members. For each exome variant, we obtained all carriers and their relatives in MSSNG, using a TDT test to quantify evidence for transmission and association. We replicated the transmission of rs200195897 to four affected individuals in three additional families. rs200195897 was also present in three singleton affected individuals, and no unaffected individuals other than transmitting parents. We identified two additional rare variants (rs566472488 and rs185038034) transmitted with rs200195897 on 1p36.33. Sanger sequencing confirmed the presence of these variants in the original family segregating rs200195897. To our knowledge, this is the first example of a rare haplotype being transmitted with ASD in multiple families. The candidate risk variants include a missense mutation in SAMD11, an intronic variant in NOC2L, and a regulatory region variant close to both genes. NOC2L is a transcription repressor, and several genes involved in transcription regulation have been previously associated with ASDs.
Collapse
Affiliation(s)
- N H Chapman
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 359460, Seattle, WA, 98195, USA
| | - R A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, 98195, USA
- Center on Human Development and Disability, University of Washington, Seattle, WA, 98195, USA
| | - S J Webb
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, 98195, USA
- Center on Human Development and Disability, University of Washington, Seattle, WA, 98195, USA
| | - J Munson
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, 98195, USA
- Center on Human Development and Disability, University of Washington, Seattle, WA, 98195, USA
| | - E M Blue
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 359460, Seattle, WA, 98195, USA
| | - D-H Chen
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA
| | - E Heigham
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA
| | - W H Raskind
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 359460, Seattle, WA, 98195, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Ellen M Wijsman
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 359460, Seattle, WA, 98195, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA.
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
23
|
Fricano-Kugler CJ, Getz SA, Williams MR, Zurawel AA, DeSpenza T, Frazel PW, Li M, O’Malley AJ, Moen EL, Luikart BW. Nuclear Excluded Autism-Associated Phosphatase and Tensin Homolog Mutations Dysregulate Neuronal Growth. Biol Psychiatry 2018; 84:265-277. [PMID: 29373119 PMCID: PMC5984669 DOI: 10.1016/j.biopsych.2017.11.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/01/2017] [Accepted: 11/16/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Phosphatase and tensin homolog (PTEN) negatively regulates downstream protein kinase B signaling, resulting in decreased cellular growth and proliferation. PTEN is mutated in a subset of children with autism spectrum disorder (ASD); however, the mechanism by which specific point mutations alter PTEN function is largely unknown. Here, we assessed how ASD-associated single-nucleotide variations in PTEN (ASD-PTEN) affect function. METHODS We used viral-mediated molecular substitution of human PTEN into Pten knockout mouse neurons and assessed neuronal morphology to determine the functional impact of ASD-PTEN. We employed molecular cloning to examine how PTEN's stability, subcellular localization, and catalytic activity affect neuronal growth. RESULTS We identified a set of ASD-PTEN mutations displaying altered lipid phosphatase function and subcellular localization. We demonstrated that wild-type PTEN can rescue the neuronal hypertrophy, while PTEN H93R, F241S, D252G, W274L, N276S, and D326N failed to rescue this hypertrophy. A subset of these mutations lacked nuclear localization, prompting us to examine the role of nuclear PTEN in regulating neuronal growth. We found that nuclear PTEN alone is sufficient to regulate soma size. Furthermore, forced localization of the D252G and W274L mutations into the nucleus partially restores regulation of soma size. CONCLUSIONS ASD-PTEN mutations display decreased stability, catalytic activity, and/or altered subcellular localization. Mutations lacking nuclear localization uncover a novel mechanism whereby lipid phosphatase activity in the nucleus can regulate mammalian target of rapamycin signaling and neuronal growth.
Collapse
Affiliation(s)
- Catherine J. Fricano-Kugler
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire 03756
| | - Stephanie A. Getz
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire 03756
| | - Michael R. Williams
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire 03756
| | - Ashley A. Zurawel
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire 03756
| | - Tyrone DeSpenza
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire 03756
| | - Paul W. Frazel
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire 03756
| | - Meijie Li
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire 03756
| | - Alistair J. O’Malley
- The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA,Department of Biomedical Data Science, The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Erika L. Moen
- The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Bryan W. Luikart
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire 03756,Corresponding Author-
| |
Collapse
|
24
|
Dickie EW, Ameis SH, Shahab S, Calarco N, Smith DE, Miranda D, Viviano JD, Voineskos AN. Personalized Intrinsic Network Topography Mapping and Functional Connectivity Deficits in Autism Spectrum Disorder. Biol Psychiatry 2018; 84:278-286. [PMID: 29703592 PMCID: PMC6076333 DOI: 10.1016/j.biopsych.2018.02.1174] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Recent advances in techniques using functional magnetic resonance imaging data demonstrate individually specific variation in brain architecture in healthy individuals. To our knowledge, the effects of individually specific variation in complex brain disorders have not been previously reported. METHODS We developed a novel approach (Personalized Intrinsic Network Topography, PINT) for localizing individually specific resting-state networks using conventional resting-state functional magnetic resonance imaging scans. Using cross-sectional data from participants with autism spectrum disorder (ASD; n = 393) and typically developing (TD) control participants (n = 496) across 15 sites, we tested: 1) effect of diagnosis and age on the variability of intrinsic network locations and 2) whether prior findings of functional connectivity differences in persons with ASD compared with TD persons remain after PINT application. RESULTS We found greater variability in the spatial locations of resting-state networks within individuals with ASD compared with those in TD individuals. For TD persons, variability decreased from childhood into adulthood and increased in late life, following a U-shaped pattern that was not present in those with ASD. Comparison of intrinsic connectivity between groups revealed that the application of PINT decreased the number of hypoconnected regions in ASD. CONCLUSIONS Our results provide a new framework for measuring altered brain functioning in neurodevelopmental disorders that may have implications for tracking developmental course, phenotypic heterogeneity, and ultimately treatment response. We underscore the importance of accounting for individual variation in the study of complex brain disorders.
Collapse
Affiliation(s)
- Erin W Dickie
- Kimel Family Translational Imaging Genetics Research Laboratory, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada; Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Stephanie H Ameis
- Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada; Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Centre for Brain and Mental Health, the Hospital for Sick Children, Toronto, Canada
| | - Saba Shahab
- Kimel Family Translational Imaging Genetics Research Laboratory, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada; Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Navona Calarco
- Kimel Family Translational Imaging Genetics Research Laboratory, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada; Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Dawn E Smith
- Kimel Family Translational Imaging Genetics Research Laboratory, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada; Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Dayton Miranda
- Kimel Family Translational Imaging Genetics Research Laboratory, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada; Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Joseph D Viviano
- Kimel Family Translational Imaging Genetics Research Laboratory, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada; Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Aristotle N Voineskos
- Kimel Family Translational Imaging Genetics Research Laboratory, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada; Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada.
| |
Collapse
|
25
|
Meta-analysis of GABRB3 Gene Polymorphisms and Susceptibility to Autism Spectrum Disorder. J Mol Neurosci 2018; 65:432-437. [PMID: 30074174 DOI: 10.1007/s12031-018-1114-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/06/2018] [Indexed: 12/17/2022]
Abstract
Several lines of evidence have suggested that the GABA receptor subunit β3 (GABRB3) gene is a genetic contributor in the autism spectrum disorder (ASD). The aberrant expression of GABRB3 is reported in ASD patients which may be a consequence of the presence of certain genetic variants in the promoter region of the gene. The associations between single-nucleotide polymorphisms (SNPs) within this gene and ASD have been analyzed in previous studies. However, the results are conflicting. In the present study, we performed a meta-analysis on association between two SNPs located in the promoter region of GABRB3 gene (rs4906902 and rs20317) and ASD. The literature search was performed based on criteria provided by the meta-analysis of observational studies in epidemiology (MOOSE). The association between mentioned SNPs and ASD was calculated using pooled odd ratios (ORs) and 95% confidence intervals. The result of the present meta-analysis indicates that neither rs4906902 nor rs20317 are significantly associated with the risk of ASD. The underlying mechanism of the aberrant expression of GABRB3 gene in ASD patients should be investigated in other biological levels.
Collapse
|
26
|
Rubinstein M, Patowary A, Stanaway IB, McCord E, Nesbitt RR, Archer M, Scheuer T, Nickerson D, Raskind WH, Wijsman EM, Bernier R, Catterall WA, Brkanac Z. Association of rare missense variants in the second intracellular loop of Na V1.7 sodium channels with familial autism. Mol Psychiatry 2018; 23:231-239. [PMID: 27956748 PMCID: PMC5468514 DOI: 10.1038/mp.2016.222] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 10/07/2016] [Accepted: 10/17/2016] [Indexed: 01/21/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder often accompanied by intellectual disability, language impairment and medical co-morbidities. The heritability of autism is high and multiple genes have been implicated as causal. However, most of these genes have been identified in de novo cases. To further the understanding of familial autism, we performed whole-exome sequencing on five families in which second- and third-degree relatives were affected. By focusing on novel and protein-altering variants, we identified a small set of candidate genes. Among these, a novel private missense C1143F variant in the second intracellular loop of the voltage-gated sodium channel NaV1.7, encoded by the SCN9A gene, was identified in one family. Through electrophysiological analysis, we show that NaV1.7C1143F exhibits partial loss-of-function effects, resulting in slower recovery from inactivation and decreased excitability in cultured cortical neurons. Furthermore, for the same intracellular loop of NaV1.7, we found an excess of rare variants in a case-control variant-burden study. Functional analysis of one of these variants, M932L/V991L, also demonstrated reduced firing in cortical neurons. However, although this variant is rare in Caucasians, it is frequent in Latino population, suggesting that genetic background can alter its effects on phenotype. Although the involvement of the SCN1A and SCN2A genes encoding NaV1.1 and NaV1.2 channels in de novo ASD has previously been demonstrated, our study indicates the involvement of inherited SCN9A variants and partial loss-of-function of NaV1.7 channels in the etiology of rare familial ASD.
Collapse
Affiliation(s)
- M Rubinstein
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - A Patowary
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - I B Stanaway
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - E McCord
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - R R Nesbitt
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - M Archer
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - T Scheuer
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - D Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - W H Raskind
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA,Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - E M Wijsman
- Department of Genome Sciences, University of Washington, Seattle, WA, USA,Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA,Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - R Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - W A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA, USA,Department of Pharmacology, University of Washington, Seattle, WA 98195, USA E-mail:
| | - Z Brkanac
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA,Department of Psychiatry and Behavioral Science, University of Washington, 1959N.E. Pacific Street, Room BB1526, Seattle, WA 98195-6560, USA. E-mail:
| |
Collapse
|
27
|
Adegbola A, Bury LA, Fu C, Zhang M, Wynshaw-Boris A. Concise Review: Induced Pluripotent Stem Cell Models for Neuropsychiatric Diseases. Stem Cells Transl Med 2017; 6:2062-2070. [PMID: 29027744 PMCID: PMC5702513 DOI: 10.1002/sctm.17-0150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/14/2017] [Indexed: 01/05/2023] Open
Abstract
The major neuropsychiatric conditions of schizophrenia, affective disorders, and infantile autism are characterized by chronic symptoms of episodic, stable, or progressive nature that result in significant morbidity. Symptomatic treatments are the mainstay but do not resolve the underlying disease processes, which are themselves poorly understood. The prototype psychotropic drugs are of variable efficacy, with therapeutic mechanisms of action that are still uncertain. Thus, neuropsychiatric disorders are ripe for new technologies and approaches with the potential to revolutionize mechanistic understanding and drive the development of novel targeted treatments. The advent of methods to produce patient‐derived stem cell models and three‐dimensional organoids with the capacity to differentiate into neurons and the various neuronal cellular lineages mark such an advance. We discuss numerous techniques involved, their applications, and areas that require further optimization. Stem Cells Translational Medicine2017;6:2062–2070
Collapse
Affiliation(s)
- Abidemi Adegbola
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Luke A Bury
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Chen Fu
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Meixiang Zhang
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Anthony Wynshaw-Boris
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
28
|
Gudenas BL, Srivastava AK, Wang L. Integrative genomic analyses for identification and prioritization of long non-coding RNAs associated with autism. PLoS One 2017; 12:e0178532. [PMID: 28562671 PMCID: PMC5451068 DOI: 10.1371/journal.pone.0178532] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/15/2017] [Indexed: 12/20/2022] Open
Abstract
Genetic studies have identified many risk loci for autism spectrum disorder (ASD) although causal factors in the majority of cases are still unknown. Currently, known ASD risk genes are all protein-coding genes; however, the vast majority of transcripts in humans are non-coding RNAs (ncRNAs) which do not encode proteins. Recently, long non-coding RNAs (lncRNAs) were shown to be highly expressed in the human brain and crucial for normal brain development. We have constructed a computational pipeline for the integration of various genomic datasets to identify lncRNAs associated with ASD. This pipeline utilizes differential gene expression patterns in affected tissues in conjunction with gene co-expression networks in tissue-matched non-affected samples. We analyzed RNA-seq data from the cortical brain tissues from ASD cases and controls to identify lncRNAs differentially expressed in ASD. We derived a gene co-expression network from an independent human brain developmental transcriptome and detected a convergence of the differentially expressed lncRNAs and known ASD risk genes into specific co-expression modules. Co-expression network analysis facilitates the discovery of associations between previously uncharacterized lncRNAs with known ASD risk genes, affected molecular pathways and at-risk developmental time points. In addition, we show that some of these lncRNAs have a high degree of overlap with major CNVs detected in ASD genetic studies. By utilizing this integrative approach comprised of differential expression analysis in affected tissues and connectivity metrics from a developmental co-expression network, we have prioritized a set of candidate ASD-associated lncRNAs. The identification of lncRNAs as novel ASD susceptibility genes could help explain the genetic pathogenesis of ASD.
Collapse
Affiliation(s)
- Brian L. Gudenas
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Anand K. Srivastava
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina, United States of America
| | - Liangjiang Wang
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
29
|
Eagleson KL, Xie Z, Levitt P. The Pleiotropic MET Receptor Network: Circuit Development and the Neural-Medical Interface of Autism. Biol Psychiatry 2017; 81:424-433. [PMID: 27837921 PMCID: PMC5285483 DOI: 10.1016/j.biopsych.2016.08.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 08/11/2016] [Accepted: 08/28/2016] [Indexed: 02/07/2023]
Abstract
People with autism spectrum disorder and other neurodevelopmental disorders (NDDs) are behaviorally and medically heterogeneous. The combination of polygenicity and gene pleiotropy-the influence of one gene on distinct phenotypes-raises questions of how specific genes and their protein products interact to contribute to NDDs. A preponderance of evidence supports developmental and pathophysiological roles for the MET receptor tyrosine kinase, a multifunctional receptor that mediates distinct biological responses depending upon cell context. MET influences neuron architecture and synapse maturation in the forebrain and regulates homeostasis in gastrointestinal and immune systems, both commonly disrupted in NDDs. Peak expression of synapse-enriched MET is conserved across rodent and primate forebrain, yet regional differences in primate neocortex are pronounced, with enrichment in circuits that participate in social information processing. A functional risk allele in the MET promoter, enriched in subgroups of children with autism spectrum disorder, reduces transcription and disrupts socially relevant neural circuits structurally and functionally. In mice, circuit-specific deletion of Met causes distinct atypical behaviors. MET activation increases dendritic complexity and nascent synapse number, but synapse maturation requires reductions in MET. MET mediates its specific biological effects through different intracellular signaling pathways and has a complex protein interactome that is enriched in autism spectrum disorder and other NDD candidates. The interactome is coregulated in developing human neocortex. We suggest that a gene as pleiotropic and highly regulated as MET, together with its interactome, is biologically relevant in normal and pathophysiological contexts, affecting central and peripheral phenotypes that contribute to NDD risk and clinical symptoms.
Collapse
Affiliation(s)
- Kathie L Eagleson
- Program in Developmental Neurogenetics, Institute for the Developing Mind Children's Hospital Los Angeles, CA; Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA
| | - Zhihui Xie
- Program in Developmental Neurogenetics, Institute for the Developing Mind Children's Hospital Los Angeles, CA
| | - Pat Levitt
- Program in Developmental Neurogenetics, Institute for the Developing Mind Children's Hospital Los Angeles, CA; Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA.
| |
Collapse
|
30
|
Cheng N, Rho JM, Masino SA. Metabolic Dysfunction Underlying Autism Spectrum Disorder and Potential Treatment Approaches. Front Mol Neurosci 2017; 10:34. [PMID: 28270747 PMCID: PMC5318388 DOI: 10.3389/fnmol.2017.00034] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/30/2017] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by deficits in sociability and communication, and increased repetitive and/or restrictive behaviors. While the etio-pathogenesis of ASD is unknown, clinical manifestations are diverse and many possible genetic and environmental factors have been implicated. As such, it has been a great challenge to identify key neurobiological mechanisms and to develop effective treatments. Current therapies focus on co-morbid conditions (such as epileptic seizures and sleep disturbances) and there is no cure for the core symptoms. Recent studies have increasingly implicated mitochondrial dysfunction in ASD. The fact that mitochondria are an integral part of diverse cellular functions and are susceptible to many insults could explain how a wide range of factors can contribute to a consistent behavioral phenotype in ASD. Meanwhile, the high-fat, low-carbohydrate ketogenic diet (KD), used for nearly a century to treat medically intractable epilepsy, has been shown to enhance mitochondrial function through a multiplicity of mechanisms and affect additional molecular targets that may address symptoms and comorbidities of ASD. Here, we review the evidence for the use of metabolism-based therapies such as the KD in the treatment of ASD as well as emerging co-morbid models of epilepsy and autism. Future research directions aimed at validating such therapeutic approaches and identifying additional and novel mechanistic targets are also discussed.
Collapse
Affiliation(s)
- Ning Cheng
- Departments of Pediatrics, University of CalgaryCalgary, AB, Canada
| | - Jong M. Rho
- Departments of Pediatrics, University of CalgaryCalgary, AB, Canada
- Clinical Neurosciences, University of CalgaryCalgary, AB, Canada
- Physiology and Pharmacology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of CalgaryCalgary, AB, Canada
| | - Susan A. Masino
- Neuroscience Program, Department of Psychology, Trinity CollegeHartford, CT, USA
| |
Collapse
|
31
|
Xie Z, Li J, Baker J, Eagleson KL, Coba MP, Levitt P. Receptor Tyrosine Kinase MET Interactome and Neurodevelopmental Disorder Partners at the Developing Synapse. Biol Psychiatry 2016; 80:933-942. [PMID: 27086544 PMCID: PMC5001930 DOI: 10.1016/j.biopsych.2016.02.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 07/15/2015] [Accepted: 02/15/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Atypical synapse development and plasticity are implicated in many neurodevelopmental disorders (NDDs). NDD-associated, high-confidence risk genes have been identified, yet little is known about functional relationships at the level of protein-protein interactions, which are the dominant molecular bases responsible for mediating circuit development. METHODS Proteomics in three independent developing neocortical synaptosomal preparations identified putative interacting proteins of the ligand-activated MET receptor tyrosine kinase, an autism risk gene that mediates synapse development. The candidates were translated into interactome networks and analyzed bioinformatically. Additionally, three independent quantitative proximity ligation assays in cultured neurons and four independent immunoprecipitation analyses of synaptosomes validated protein interactions. RESULTS Approximately 11% (8/72) of MET-interacting proteins, including SHANK3, SYNGAP1, and GRIN2B, are associated with NDDs. Proteins in the MET interactome were translated into a novel MET interactome network based on human protein-protein interaction databases. High-confidence genes from different NDD datasets that encode synaptosomal proteins were analyzed for being enriched in MET interactome proteins. This was found for autism but not schizophrenia, bipolar disorder, major depressive disorder, or attention-deficit/hyperactivity disorder. There is correlated gene expression between MET and its interactive partners in developing human temporal and visual neocortices but not with highly expressed genes that are not in the interactome. Proximity ligation assays and biochemical analyses demonstrate that MET-protein partner interactions are dynamically regulated by receptor activation. CONCLUSIONS The results provide a novel molecular framework for deciphering the functional relations of key regulators of synaptogenesis that contribute to both typical cortical development and to NDDs.
Collapse
Affiliation(s)
- Zhihui Xie
- Department of Pediatrics and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Jing Li
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Jonathan Baker
- College of Science, University of Notre Dame, South Bend, Indiana
| | - Kathie L Eagleson
- Department of Pediatrics, Children's Hospital Los Angeles and the Keck School of Medicine of the University of Southern California; Los Angeles, California
| | - Marcelo P Coba
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Pat Levitt
- Department of Pediatrics, Children's Hospital Los Angeles and the Keck School of Medicine of the University of Southern California; Los Angeles, California; Program in Developmental Neurogenetics, Institute for the Developing Mind and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California.
| |
Collapse
|
32
|
Zhao W, Yang W, Zheng S, Hu Q, Qiu P, Huang X, Hong X, Lan F. A new bioinformatic insight into the associated proteins in psychiatric disorders. SPRINGERPLUS 2016; 5:1967. [PMID: 27917343 PMCID: PMC5108746 DOI: 10.1186/s40064-016-3655-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 11/04/2016] [Indexed: 01/21/2023]
Abstract
BACKGROUND Psychiatric diseases severely affect the quality of patients' lives and bring huge economic pressure to their families. Also, the great phenotypic variability among these patients makes it difficult to investigate the pathogenesis. Nowadays, bioinformatics is hopeful to be used as an effective tool for the diagnosis of psychiatric disorders, which can identify sensitive biomarkers and explore associated signaling pathways. METHODS In this study, we performed an integrated bioinformatic analysis on 1945 mental-associated proteins including 91 secreted proteins and 593 membrane proteins, which were screened from the Universal Protein Resource (Uniport) database. Then the function and pathway enrichment analyses, ontological classification, and constructed PPI network were executed. RESULTS Our present study revealed that the majority of mental proteins were closely related to metabolic processes and cellular processes. We also identified some significant molecular biomarkers in the progression of mental disorders, such as HRAS, ALS2, SLC6A1, SLC39A12, SIL1, IDUA, NEPH2 and XPO1. Furthermore, it was found that hub proteins, such as COMT, POMC, NPS and BDNF, might be the potential targets for mental disorders therapy. Finally, we demonstrated that psychiatric disorders may share the same signaling pathways with cancers, involving ESR1, BCL2 and MAPK3. CONCLUSION Our data are expected to contribute to explaining the possible mechanisms of psychiatric diseases and providing a useful reference for the diagnosis and therapy of them.
Collapse
Affiliation(s)
- Wenlong Zhao
- Department of Neurology, Affiliated Dongfang Hospital of Xiamen University (Fuzhou General Hospital), Fuzhou, Fujian People's Republic of China
| | - Wenjing Yang
- Department of Neurology, Affiliated Dongfang Hospital of Xiamen University (Fuzhou General Hospital), Fuzhou, Fujian People's Republic of China
| | - Shuanglin Zheng
- Department of Neurology, Affiliated Dongfang Hospital of Xiamen University (Fuzhou General Hospital), Fuzhou, Fujian People's Republic of China
| | - Qiong Hu
- Department of Neurology, Affiliated Dongfang Hospital of Xiamen University (Fuzhou General Hospital), Fuzhou, Fujian People's Republic of China
| | - Ping Qiu
- Department of Neurology, Affiliated Dongfang Hospital of Xiamen University (Fuzhou General Hospital), Fuzhou, Fujian People's Republic of China
| | - Xinghua Huang
- Department of Clinical Genetics and Experimental Medicine, Fuzhou General Hospital, No. 156, Xier Huan Road, Gulou District, Fuzhou, 350025 Fujian People's Republic of China
| | - Xiaoqian Hong
- Department of Neurology, Affiliated Dongfang Hospital of Xiamen University (Fuzhou General Hospital), Fuzhou, Fujian People's Republic of China
| | - Fenghua Lan
- Department of Clinical Genetics and Experimental Medicine, Fuzhou General Hospital, No. 156, Xier Huan Road, Gulou District, Fuzhou, 350025 Fujian People's Republic of China
| |
Collapse
|
33
|
Gevi F, Zolla L, Gabriele S, Persico AM. Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism. Mol Autism 2016; 7:47. [PMID: 27904735 PMCID: PMC5121959 DOI: 10.1186/s13229-016-0109-5] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 11/11/2016] [Indexed: 12/13/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is still diagnosed through behavioral observation, due to a lack of laboratory biomarkers, which could greatly aid clinicians in providing earlier and more reliable diagnoses. Metabolomics on human biofluids provides a sensitive tool to identify metabolite profiles potentially usable as biomarkers for ASD. Initial metabolomic studies, analyzing urines and plasma of ASD and control individuals, suggested that autistic patients may share some metabolic abnormalities, despite several inconsistencies stemming from differences in technology, ethnicity, age range, and definition of “control” status. Methods ASD-specific urinary metabolomic patterns were explored at an early age in 30 ASD children and 30 matched controls (age range 2–7, M:F = 22:8) using hydrophilic interaction chromatography (HILIC)-UHPLC and mass spectrometry, a highly sensitive, accurate, and unbiased approach. Metabolites were then subjected to multivariate statistical analysis and grouped by metabolic pathway. Results Urinary metabolites displaying the largest differences between young ASD and control children belonged to the tryptophan and purine metabolic pathways. Also, vitamin B6, riboflavin, phenylalanine-tyrosine-tryptophan biosynthesis, pantothenate and CoA, and pyrimidine metabolism differed significantly. ASD children preferentially transform tryptophan into xanthurenic acid and quinolinic acid (two catabolites of the kynurenine pathway), at the expense of kynurenic acid and especially of melatonin. Also, the gut microbiome contributes to altered tryptophan metabolism, yielding increased levels of indolyl 3-acetic acid and indolyl lactate. Conclusions The metabolic pathways most distinctive of young Italian autistic children largely overlap with those found in rodent models of ASD following maternal immune activation or genetic manipulations. These results are consistent with the proposal of a purine-driven cell danger response, accompanied by overproduction of epileptogenic and excitotoxic quinolinic acid, large reductions in melatonin synthesis, and gut dysbiosis. These metabolic abnormalities could underlie several comorbidities frequently associated to ASD, such as seizures, sleep disorders, and gastrointestinal symptoms, and could contribute to autism severity. Their diagnostic sensitivity, disease-specificity, and interethnic variability will merit further investigation. Electronic supplementary material The online version of this article (doi:10.1186/s13229-016-0109-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Federica Gevi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Lello Zolla
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Stefano Gabriele
- Unit of Child and Adolescent Neuropsychiatry, Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Rome, Italy
| | - Antonio M Persico
- Unit of Child and Adolescent Neuropsychiatry, Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy ; Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy
| |
Collapse
|
34
|
Selection of Suitable Reference Genes for Analysis of Salivary Transcriptome in Non-Syndromic Autistic Male Children. Int J Mol Sci 2016; 17:ijms17101711. [PMID: 27754318 PMCID: PMC5085743 DOI: 10.3390/ijms17101711] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 02/08/2023] Open
Abstract
Childhood autism is a severe form of complex genetically heterogeneous and behaviorally defined set of neurodevelopmental diseases, collectively termed as autism spectrum disorders (ASD). Reverse transcriptase quantitative real-time PCR (RT-qPCR) is a highly sensitive technique for transcriptome analysis, and it has been frequently used in ASD gene expression studies. However, normalization to stably expressed reference gene(s) is necessary to validate any alteration reported at the mRNA level for target genes. The main goal of the present study was to find the most stable reference genes in the salivary transcriptome for RT-qPCR analysis in non-syndromic male childhood autism. Saliva samples were obtained from nine drug naïve non-syndromic male children with autism and also sex-, age-, and location-matched healthy controls using the RNA-stabilizer kit from DNA Genotek. A systematic two-phased measurement of whole saliva mRNA levels for eight common housekeeping genes (HKGs) was carried out by RT-qPCR, and the stability of expression for each candidate gene was analyzed using two specialized algorithms, geNorm and NormFinder, in parallel. Our analysis shows that while the frequently used HKG ACTB is not a suitable reference gene, the combination of GAPDH and YWHAZ could be recommended for normalization of RT-qPCR analysis of salivary transcriptome in non-syndromic autistic male children.
Collapse
|
35
|
Johansen A, Rosti RO, Musaev D, Sticca E, Harripaul R, Zaki M, Çağlayan AO, Azam M, Sultan T, Froukh T, Reis A, Popp B, Ahmed I, John P, Ayub M, Ben-Omran T, Vincent JB, Gleeson JG, Abou Jamra R. Mutations in MBOAT7, Encoding Lysophosphatidylinositol Acyltransferase I, Lead to Intellectual Disability Accompanied by Epilepsy and Autistic Features. Am J Hum Genet 2016; 99:912-916. [PMID: 27616480 DOI: 10.1016/j.ajhg.2016.07.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/25/2016] [Indexed: 10/21/2022] Open
Abstract
The risk of epilepsy among individuals with intellectual disability (ID) is approximately ten times that of the general population. From a cohort of >5,000 families affected by neurodevelopmental disorders, we identified six consanguineous families harboring homozygous inactivating variants in MBOAT7, encoding lysophosphatidylinositol acyltransferase (LPIAT1). Subjects presented with ID frequently accompanied by epilepsy and autistic features. LPIAT1 is a membrane-bound phospholipid-remodeling enzyme that transfers arachidonic acid (AA) to lysophosphatidylinositol to produce AA-containing phosphatidylinositol. This study suggests a role for AA-containing phosphatidylinositols in the development of ID accompanied by epilepsy and autistic features.
Collapse
|
36
|
Féron F, Gepner B, Lacassagne E, Stephan D, Mesnage B, Blanchard MP, Boulanger N, Tardif C, Devèze A, Rousseau S, Suzuki K, Izpisua Belmonte JC, Khrestchatisky M, Nivet E, Erard-Garcia M. Olfactory stem cells reveal MOCOS as a new player in autism spectrum disorders. Mol Psychiatry 2016; 21:1215-24. [PMID: 26239292 PMCID: PMC4995547 DOI: 10.1038/mp.2015.106] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/06/2015] [Accepted: 06/15/2015] [Indexed: 12/27/2022]
Abstract
With an onset under the age of 3 years, autism spectrum disorders (ASDs) are now understood as diseases arising from pre- and/or early postnatal brain developmental anomalies and/or early brain insults. To unveil the molecular mechanisms taking place during the misshaping of the developing brain, we chose to study cells that are representative of the very early stages of ontogenesis, namely stem cells. Here we report on MOlybdenum COfactor Sulfurase (MOCOS), an enzyme involved in purine metabolism, as a newly identified player in ASD. We found in adult nasal olfactory stem cells of 11 adults with ASD that MOCOS is downregulated in most of them when compared with 11 age- and gender-matched control adults without any neuropsychiatric disorders. Genetic approaches using in vivo and in vitro engineered models converge to indicate that altered expression of MOCOS results in neurotransmission and synaptic defects. Furthermore, we found that MOCOS misexpression induces increased oxidative-stress sensitivity. Our results demonstrate that altered MOCOS expression is likely to have an impact on neurodevelopment and neurotransmission, and may explain comorbid conditions, including gastrointestinal disorders. We anticipate our discovery to be a fresh starting point for the study on the roles of MOCOS in brain development and its functional implications in ASD clinical symptoms. Moreover, our study suggests the possible development of new diagnostic tests based on MOCOS expression, and paves the way for drug screening targeting MOCOS and/or the purine metabolism to ultimately develop novel treatments in ASD.
Collapse
Affiliation(s)
- F Féron
- Inserm CBT 1409, Centre d'Investigations Cliniques en Biothérapie, Marseille, France
- Aix Marseille Université, CNRS, NICN UMR 7259, Marseille, France
| | - B Gepner
- Aix Marseille Université, CNRS, NICN UMR 7259, Marseille, France
| | - E Lacassagne
- Aix Marseille Université, CNRS, NICN UMR 7259, Marseille, France
| | - D Stephan
- Aix Marseille Université, CNRS, NICN UMR 7259, Marseille, France
| | - B Mesnage
- Aix Marseille Université, CNRS, NICN UMR 7259, Marseille, France
| | - M-P Blanchard
- Aix Marseille Université, CNRS, CRN2M UMR 6231, Marseille, France
| | - N Boulanger
- Aix Marseille Université, TAGC UMR 1090, Marseille, France
| | - C Tardif
- Aix Marseille Université, PsyCLE, EA 3273, Aix en Provence, France
| | - A Devèze
- AP-HM, Département ORL, Marseille, France
| | - S Rousseau
- AP-HM, Département Anesthésie, Marseille, France
| | - K Suzuki
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - J C Izpisua Belmonte
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - M Khrestchatisky
- Aix Marseille Université, CNRS, NICN UMR 7259, Marseille, France
| | - E Nivet
- Aix Marseille Université, CNRS, NICN UMR 7259, Marseille, France
| | - M Erard-Garcia
- Aix Marseille Université, CNRS, NICN UMR 7259, Marseille, France
| |
Collapse
|
37
|
Brain enhancer activities at the gene-poor 5p14.1 autism-associated locus. Sci Rep 2016; 6:31227. [PMID: 27503586 PMCID: PMC4977510 DOI: 10.1038/srep31227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/14/2016] [Indexed: 12/19/2022] Open
Abstract
Due to the vast clinical and genetic heterogeneity, identification of causal genetic determinants for autism spectrum disorder (ASD) has proven to be complex. Whereas several dozen ‘rare’ genetic variants for ASD susceptibility have been identified, studies are still underpowered to analyse ‘common’ variants for their subtle effects. A recent application of genome-wide association studies (GWAS) to ASD indicated significant associations with the single nucleotide polymorphisms (SNPs) on chromosome 5p14.1, located in a non-coding region between cadherin10 (CDH10) and cadherin9 (CDH9). Here we apply an in vivo bacterial artificial chromosome (BAC) based enhancer-trapping strategy in mice to scan the gene desert for spatiotemporal cis-regulatory activities. Our results show that the ASD-associated interval harbors the cortical area, striatum, and cerebellum specific enhancers for a long non-coding RNA, moesin pseudogene1 antisense (MSNP1AS) during the brain developing stages. Mouse moesin protein levels are not affected by exogenously expressed human antisense RNAs in our transgenic brains, demonstrating the difficulty in modeling rather smaller effects of common variants. Our first in vivo evidence for the spatiotemporal transcription of MSNP1AS however provides a further support to connect this intergenic variant with the ASD susceptibility.
Collapse
|
38
|
Mullins C, Fishell G, Tsien RW. Unifying Views of Autism Spectrum Disorders: A Consideration of Autoregulatory Feedback Loops. Neuron 2016; 89:1131-1156. [PMID: 26985722 DOI: 10.1016/j.neuron.2016.02.017] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2016] [Indexed: 12/31/2022]
Abstract
Understanding the mechanisms underlying autism spectrum disorders (ASDs) is a challenging goal. Here we review recent progress on several fronts, including genetics, proteomics, biochemistry, and electrophysiology, that raise motivation for forming a viable pathophysiological hypothesis. In place of a traditionally unidirectional progression, we put forward a framework that extends homeostatic hypotheses by explicitly emphasizing autoregulatory feedback loops and known synaptic biology. The regulated biological feature can be neuronal electrical activity, the collective strength of synapses onto a dendritic branch, the local concentration of a signaling molecule, or the relative strengths of synaptic excitation and inhibition. The sensor of the biological variable (which we have termed the homeostat) engages mechanisms that operate as negative feedback elements to keep the biological variable tightly confined. We categorize known ASD-associated gene products according to their roles in such feedback loops and provide detailed commentary for exemplar genes within each module.
Collapse
Affiliation(s)
- Caitlin Mullins
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Gord Fishell
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Richard W Tsien
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
39
|
Peng Y, Lu Z, Li G, Piechowicz M, Anderson M, Uddin Y, Wu J, Qiu S. The autism-associated MET receptor tyrosine kinase engages early neuronal growth mechanism and controls glutamatergic circuits development in the forebrain. Mol Psychiatry 2016; 21:925-35. [PMID: 26728565 PMCID: PMC4914424 DOI: 10.1038/mp.2015.182] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/30/2015] [Accepted: 09/08/2015] [Indexed: 12/18/2022]
Abstract
The human MET gene imparts a replicated risk for autism spectrum disorder (ASD), and is implicated in the structural and functional integrity of brain. MET encodes a receptor tyrosine kinase, MET, which has a pleiotropic role in embryogenesis and modifies a large number of neurodevelopmental events. Very little is known, however, on how MET signaling engages distinct cellular events to collectively affect brain development in ASD-relevant disease domains. Here, we show that MET protein expression is dynamically regulated and compartmentalized in developing neurons. MET is heavily expressed in neuronal growth cones at early developmental stages and its activation engages small GTPase Cdc42 to promote neuronal growth, dendritic arborization and spine formation. Genetic ablation of MET signaling in mouse dorsal pallium leads to altered neuronal morphology indicative of early functional maturation. In contrast, prolonged activation of MET represses the formation and functional maturation of glutamatergic synapses. Moreover, manipulating MET signaling levels in vivo in the developing prefrontal projection neurons disrupts the local circuit connectivity made onto these neurons. Therefore, normal time-delimited MET signaling is critical in regulating the timing of neuronal growth, glutamatergic synapse maturation and cortical circuit function. Dysregulated MET signaling may lead to pathological changes in forebrain maturation and connectivity, and thus contribute to the emergence of neurological symptoms associated with ASD.
Collapse
Affiliation(s)
- Yun Peng
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004
| | - Zhongming Lu
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004,Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China, 210009
| | - Guohui Li
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004,Interdisciplinary Graduate Program in Neuroscience, School of Life Science, Arizona State University. Tempe, AZ 85287
| | - Mariel Piechowicz
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004
| | - Miranda Anderson
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004
| | - Yasin Uddin
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004
| | - Jie Wu
- Division of Neurology, Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013
| | - Shenfeng Qiu
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004,Interdisciplinary Graduate Program in Neuroscience, School of Life Science, Arizona State University. Tempe, AZ 85287
| |
Collapse
|
40
|
Khan S, Hashmi JA, Mamashli F, Bharadwaj HM, Ganesan S, Michmizos KP, Kitzbichler MG, Zetino M, Garel KLA, Hämäläinen MS, Kenet T. Altered Onset Response Dynamics in Somatosensory Processing in Autism Spectrum Disorder. Front Neurosci 2016; 10:255. [PMID: 27375417 PMCID: PMC4896941 DOI: 10.3389/fnins.2016.00255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/23/2016] [Indexed: 12/19/2022] Open
Abstract
Abnormalities in cortical connectivity and evoked responses have been extensively documented in autism spectrum disorder (ASD). However, specific signatures of these cortical abnormalities remain elusive, with data pointing toward abnormal patterns of both increased and reduced response amplitudes and functional connectivity. We have previously proposed, using magnetoencephalography (MEG) data, that apparent inconsistencies in prior studies could be reconciled if functional connectivity in ASD was reduced in the feedback (top-down) direction, but increased in the feedforward (bottom-up) direction. Here, we continue this line of investigation by assessing abnormalities restricted to the onset, feedforward inputs driven, component of the response to vibrotactile stimuli in somatosensory cortex in ASD. Using a novel method that measures the spatio-temporal divergence of cortical activation, we found that relative to typically developing participants, the ASD group was characterized by an increase in the initial onset component of the cortical response, and a faster spread of local activity. Given the early time window, the results could be interpreted as increased thalamocortical feedforward connectivity in ASD, and offer a plausible mechanism for the previously observed increased response variability in ASD, as well as for the commonly observed behaviorally measured tactile processing abnormalities associated with the disorder.
Collapse
Affiliation(s)
- Sheraz Khan
- Department of Neurology, Massachusetts General HospitalBoston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/HarvardBoston, MA, USA; Harvard Medical SchoolBoston, MA, USA; McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Javeria A Hashmi
- Department of Neurology, Massachusetts General HospitalBoston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/HarvardBoston, MA, USA; Harvard Medical SchoolBoston, MA, USA
| | - Fahimeh Mamashli
- Department of Neurology, Massachusetts General HospitalBoston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/HarvardBoston, MA, USA; Harvard Medical SchoolBoston, MA, USA
| | - Hari M Bharadwaj
- Department of Neurology, Massachusetts General HospitalBoston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/HarvardBoston, MA, USA; Harvard Medical SchoolBoston, MA, USA
| | - Santosh Ganesan
- Department of Neurology, Massachusetts General HospitalBoston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/HarvardBoston, MA, USA
| | | | - Manfred G Kitzbichler
- Department of Neurology, Massachusetts General HospitalBoston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/HarvardBoston, MA, USA; Harvard Medical SchoolBoston, MA, USA
| | - Manuel Zetino
- Department of Neurology, Massachusetts General HospitalBoston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/HarvardBoston, MA, USA
| | - Keri-Lee A Garel
- Department of Neurology, Massachusetts General HospitalBoston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/HarvardBoston, MA, USA
| | - Matti S Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/HarvardBoston, MA, USA; Harvard Medical SchoolBoston, MA, USA; Department of Radiology, Massachusetts General HospitalBoston, MA, USA; Department of Neuroscience and Biomedical Engineering, Aalto University School of ScienceEspoo, Finland
| | - Tal Kenet
- Department of Neurology, Massachusetts General HospitalBoston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, MGH/MIT/HarvardBoston, MA, USA; Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
41
|
Pirooznia M, Wang T, Avramopoulos D, Potash JB, Zandi PP, Goes FS. High-throughput sequencing of the synaptome in major depressive disorder. Mol Psychiatry 2016; 21. [PMID: 26216301 PMCID: PMC4731311 DOI: 10.1038/mp.2015.98] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Major depressive disorder (MDD) is among the leading causes of worldwide disability. Despite its significant heritability, large-scale genome-wide association studies (GWASs) of MDD have yet to identify robustly associated common variants. Although increased sample sizes are being amassed for the next wave of GWAS, few studies have as yet focused on rare genetic variants in the study of MDD. We sequenced the exons of 1742 synaptic genes previously identified by proteomic experiments. PLINK/SEQ was used to perform single variant, gene burden and gene set analyses. The GeneMANIA interaction database was used to identify protein-protein interaction-based networks. Cases were selected from a familial collection of early-onset, recurrent depression and were compared with screened controls. After extensive quality control, we analyzed 259 cases with familial, early-onset MDD and 334 controls. The distribution of association test statistics for the single variant and gene burden analyses were consistent with the null hypothesis. However, analysis of prioritized gene sets showed a significant association with damaging singleton variants in a Cav2-adaptor gene set (odds ratio=2.6; P=0.0008) that survived correction for all gene sets and annotation categories tested (empirical P=0.049). In addition, we also found statistically significant evidence for an enrichment of rare variants in a protein-based network of 14 genes involved in actin polymerization and dendritic spine formation (nominal P=0.0031). In conclusion, we have identified a statistically significant gene set and gene network of rare variants that are over-represented in MDD, providing initial evidence that calcium signaling and dendrite regulation may be involved in the etiology of depression.
Collapse
Affiliation(s)
- M Pirooznia
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - T Wang
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - D Avramopoulos
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - JB Potash
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - PP Zandi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA,Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - FS Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
42
|
Berto S, Perdomo-Sabogal A, Gerighausen D, Qin J, Nowick K. A Consensus Network of Gene Regulatory Factors in the Human Frontal Lobe. Front Genet 2016; 7:31. [PMID: 27014338 PMCID: PMC4782181 DOI: 10.3389/fgene.2016.00031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/18/2016] [Indexed: 01/29/2023] Open
Abstract
Cognitive abilities, such as memory, learning, language, problem solving, and planning, involve the frontal lobe and other brain areas. Not much is known yet about the molecular basis of cognitive abilities, but it seems clear that cognitive abilities are determined by the interplay of many genes. One approach for analyzing the genetic networks involved in cognitive functions is to study the coexpression networks of genes with known importance for proper cognitive functions, such as genes that have been associated with cognitive disorders like intellectual disability (ID) or autism spectrum disorders (ASD). Because many of these genes are gene regulatory factors (GRFs) we aimed to provide insights into the gene regulatory networks active in the human frontal lobe. Using genome wide human frontal lobe expression data from 10 independent data sets, we first derived 10 individual coexpression networks for all GRFs including their potential target genes. We observed a high level of variability among these 10 independently derived networks, pointing out that relying on results from a single study can only provide limited biological insights. To instead focus on the most confident information from these 10 networks we developed a method for integrating such independently derived networks into a consensus network. This consensus network revealed robust GRF interactions that are conserved across the frontal lobes of different healthy human individuals. Within this network, we detected a strong central module that is enriched for 166 GRFs known to be involved in brain development and/or cognitive disorders. Interestingly, several hubs of the consensus network encode for GRFs that have not yet been associated with brain functions. Their central role in the network suggests them as excellent new candidates for playing an essential role in the regulatory network of the human frontal lobe, which should be investigated in future studies.
Collapse
Affiliation(s)
- Stefano Berto
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University LeipzigLeipzig, Germany; Paul-Flechsig Institute for Brain Research, University of LeipzigLeipzig, Germany; Department of Neuroscience, University of Texas Southwestern Medical CenterDallas, TX, USA
| | - Alvaro Perdomo-Sabogal
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University Leipzig Leipzig, Germany
| | - Daniel Gerighausen
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University Leipzig Leipzig, Germany
| | - Jing Qin
- Department of Mathematics and Computer Sciences, University of Southern DenmarkOdense, Denmark; Institute for Theoretical Chemistry, University of ViennaVienna, Austria
| | - Katja Nowick
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University LeipzigLeipzig, Germany; Paul-Flechsig Institute for Brain Research, University of LeipzigLeipzig, Germany
| |
Collapse
|
43
|
GABA/Glutamate synaptic pathways targeted by integrative genomic and electrophysiological explorations distinguish autism from intellectual disability. Mol Psychiatry 2016; 21:411-8. [PMID: 26055424 DOI: 10.1038/mp.2015.75] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/19/2015] [Accepted: 04/27/2015] [Indexed: 02/06/2023]
Abstract
Phenotypic and genetic heterogeneity is predominant in autism spectrum disorders (ASD), for which the molecular and pathophysiological bases are still unclear. Significant comorbidity and genetic overlap between ASD and other neurodevelopmental disorders are also well established. However, little is understood regarding the frequent observation of a wide phenotypic spectrum associated with deleterious mutations affecting a single gene even within multiplex families. We performed a clinical, neurophysiological (in vivo electroencephalography-auditory-evoked related potentials) and genetic (whole-exome sequencing) follow-up analysis of two families with known deleterious NLGN4X gene mutations (either truncating or overexpressing) present in individuals with ASD and/or with intellectual disability (ID). Complete phenotypic evaluation of the pedigrees in the ASD individuals showed common specific autistic behavioural features and neurophysiological patterns (abnormal MisMatch Negativity in response to auditory change) that were absent in healthy parents as well as in family members with isolated ID. Whole-exome sequencing in ASD patients from each family identified a second rare inherited genetic variant, affecting either the GLRB or the ANK3 genes encoding NLGN4X interacting proteins expressed in inhibitory or in excitatory synapses, respectively. The GRLB and ANK3 mutations were absent in relatives with ID as well as in control databases. In summary, our findings provide evidence of a double-hit genetic model focused on excitatory/inhibitory synapses in ASD, that is not found in isolated ID, associated with an atypical in vivo neurophysiological pattern linked to predictive coding.
Collapse
|
44
|
Tao Y, Gao H, Ackerman B, Guo W, Saffen D, Shugart YY. Evidence for contribution of common genetic variants within chromosome 8p21.2-8p21.1 to restricted and repetitive behaviors in autism spectrum disorders. BMC Genomics 2016; 17:163. [PMID: 26931105 PMCID: PMC4774106 DOI: 10.1186/s12864-016-2475-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/15/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Restricted and Repetitive Behaviors (RRB), one of the core symptom categories for Autism Spectrum Disorders (ASD), comprises heterogeneous groups of behaviors. Previous research indicates that there are two or more factors (subcategories) within the RRB domain. In an effort to identify common variants associated with RRB, we have carried out a genome-wide association study (GWAS) using the Autism Genetic Resource Exchange (AGRE) dataset (n = 1,335, all ASD probands of European ancestry) for each identified RRB subcategory, while allowing for comparisons of associated single nucleotide polymorphisms (SNPs) with associated SNPs in the same set of probands analyzed using all the RRB subcategories as phenotypes in a multivariate linear mixed model. The top ranked SNPs were then explored in an independent dataset. RESULTS Using principal component analysis of item scores obtained from Autism Diagnostic Interview-Revised (ADI-R), two distinct subcategories within Restricted and Repetitive Behaviors were identified: Repetitive Sensory Motor (RSM) and Insistence on Sameness (IS). Quantitative RSM and IS scores were subsequently used as phenotypes in a GWAS using the AGRE ASD cohort. Although no associated SNPs with genome-wide significance (P < 5.0E-08) were detected when RSM or IS were analyzed independently, three SNPs approached genome-wide significance when RSM and IS were considered together using multivariate association analysis. These included the top IS-associated SNP, rs62503729 (P-value = 6.48E-08), which is located within chromosome 8p21.2-8p21.1, a locus previously linked to schizophrenia. Notably, all of the most significantly associated SNPs are located in close proximity to STMN4 and PTK2B, genes previously shown to function in neuron development. In addition, several of the top-ranked SNPs showed correlations with STMN4 mRNA expression in adult CEU (Caucasian and European descent) human prefrontal cortex. However, the association signals within chromosome 8p21.2-8p21.1 failed to replicate in an independent sample of 2,588 ASD probands; the insufficient sample size and between-study heterogeneity are possible explanations for the non-replication. CONCLUSIONS Our analysis indicates that RRB in ASD can be represented by two distinct subcategories: RSM and IS. Subsequent univariate and multivariate genome-wide association studies of these RRB subcategories enabled the detection of associated SNPs at 8p21.2-8p21.1. Although these results did not replicate in an independent ASD dataset, genomic features of this region and pathway analysis suggest that common variants in 8p21.2-8p21.1 may contribute to RRB, particularly IS. Together, these observations warrant future studies to elucidate the possible contributions of common variants in 8p21.2-8p21.1 to the etiology of RSM and IS in ASD.
Collapse
Affiliation(s)
- Yu Tao
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, 130Dong'an Road, Shanghai, 200032, China.
| | - Hui Gao
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, 130Dong'an Road, Shanghai, 200032, China.
| | - Benjamin Ackerman
- JohnsHopkins University, Baltimore, MD, USA. .,Unit on Statistical Genomics, Intramural Research Program, National Institute of Mental Health, National Institute of Health, Bethesda, MD, USA.
| | - Wei Guo
- Unit on Statistical Genomics, Intramural Research Program, National Institute of Mental Health, National Institute of Health, Bethesda, MD, USA.
| | - David Saffen
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, 130Dong'an Road, Shanghai, 200032, China.
| | - Yin Yao Shugart
- Unit on Statistical Genomics, Intramural Research Program, National Institute of Mental Health, National Institute of Health, Bethesda, MD, USA.
| |
Collapse
|
45
|
Peñagarikano O. New Therapeutic Options for Autism Spectrum Disorder: Experimental Evidences. Exp Neurobiol 2015; 24:301-11. [PMID: 26713078 PMCID: PMC4688330 DOI: 10.5607/en.2015.24.4.301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/25/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by impairment in two behavioral domains: social interaction/communication together with the presence of stereotyped behaviors and restricted interests. The heterogeneity in the phenotype among patients and the complex etiology of the disorder have long impeded the advancement of the development of successful pharmacotherapies. However, in the recent years, the integration of findings of multiple levels of research, from human genetics to mouse models, have made considerable progress towards the understanding of ASD pathophysiology, allowing the development of more effective targeted drug therapies. The present review discusses the current state of pharmacological research in ASD based on the emerging common pathophysiology signature.
Collapse
Affiliation(s)
- Olga Peñagarikano
- Department of Pharmacology, School of Medicine, University of the Basque Country, Sarriena s/n, Leioa 48940, Spain
| |
Collapse
|
46
|
Berg JM, Lee C, Chen L, Galvan L, Cepeda C, Chen JY, Peñagarikano O, Stein JL, Li A, Oguro-Ando A, Miller JA, Vashisht AA, Starks ME, Kite EP, Tam E, Gdalyahu A, Al-Sharif NB, Burkett ZD, White SA, Fears SC, Levine MS, Wohlschlegel JA, Geschwind DH. JAKMIP1, a Novel Regulator of Neuronal Translation, Modulates Synaptic Function and Autistic-like Behaviors in Mouse. Neuron 2015; 88:1173-1191. [PMID: 26627310 DOI: 10.1016/j.neuron.2015.10.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/02/2015] [Accepted: 10/15/2015] [Indexed: 11/18/2022]
Abstract
Autism spectrum disorder (ASD) is a heritable, common neurodevelopmental disorder with diverse genetic causes. Several studies have implicated protein synthesis as one among several of its potential convergent mechanisms. We originally identified Janus kinase and microtubule-interacting protein 1 (JAKMIP1) as differentially expressed in patients with distinct syndromic forms of ASD, fragile X syndrome, and 15q duplication syndrome. Here, we provide multiple lines of evidence that JAKMIP1 is a component of polyribosomes and an RNP translational regulatory complex that includes fragile X mental retardation protein, DEAD box helicase 5, and the poly(A) binding protein cytoplasmic 1. JAKMIP1 loss dysregulates neuronal translation during synaptic development, affecting glutamatergic NMDAR signaling, and results in social deficits, stereotyped activity, abnormal postnatal vocalizations, and other autistic-like behaviors in the mouse. These findings define an important and novel role for JAKMIP1 in neural development and further highlight pathways regulating mRNA translation during synaptogenesis in the genesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jamee M Berg
- Interdepartmental Program for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA; Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Changhoon Lee
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Leslie Chen
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Laurie Galvan
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Carlos Cepeda
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jane Y Chen
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Olga Peñagarikano
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jason L Stein
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alvin Li
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Asami Oguro-Ando
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jeremy A Miller
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ajay A Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mary E Starks
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elyse P Kite
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Eric Tam
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amos Gdalyahu
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA; Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Noor B Al-Sharif
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zachary D Burkett
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Interdepartmental Program in Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephanie A White
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Interdepartmental Program in Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Scott C Fears
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael S Levine
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel H Geschwind
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA; Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Autism Research and Treatment and Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
47
|
Thompson BL, Levitt P. Complete or partial reduction of the Met receptor tyrosine kinase in distinct circuits differentially impacts mouse behavior. J Neurodev Disord 2015; 7:35. [PMID: 26523156 PMCID: PMC4628780 DOI: 10.1186/s11689-015-9131-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/20/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Our laboratory discovered that the gene encoding the receptor tyrosine kinase, MET, contributes to autism risk. Expression of MET is reduced in human postmortem temporal lobe in autism and Rett Syndrome. Subsequent studies revealed a role for MET in human and mouse functional and structural cortical connectivity. To further understand the contribution of Met to brain development and its impact on behavior, we generated two conditional mouse lines in which Met is deleted from select populations of central nervous system neurons. Mice were then tested to determine the consequences of disrupting Met expression. METHODS Mating of Emx1 (cre) and Met (fx/fx) mice eliminates receptor signaling from all cells arising from the dorsal pallium. Met (fx/fx) and Nestin (cre) crosses result in receptor signaling elimination from all neural cells. Behavioral tests were performed to assess cognitive, emotional, and social impairments that are observed in multiple neurodevelopmental disorders and that are in part subserved by circuits that express Met. RESULTS Met (fx/fx) /Emx1 (cre) null mice displayed significant hypoactivity in the activity chamber and in the T-maze despite superior performance on the rotarod. Additionally, these animals showed a deficit in spontaneous alternation. Surprisingly, Met (fx/fx; fx/+) /Nestin (cre) null and heterozygous mice exhibited deficits in contextual fear conditioning, and Met (fx/+) /Nestin (cre) heterozygous mice spent less time in the closed arms of the elevated plus maze. CONCLUSIONS These data suggest a complex contribution of Met in the development of circuits mediating social, emotional, and cognitive behavior. The impact of disrupting developmental Met expression is dependent upon circuit-specific deletion patterns and levels of receptor activity.
Collapse
Affiliation(s)
- Barbara L Thompson
- Chan Division of Occupational Science and Occupational Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089 USA ; Institute for the Developing Mind, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA ; Department of Pediatrics, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA
| | - Pat Levitt
- Institute for the Developing Mind, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA ; Department of Pediatrics, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA
| |
Collapse
|
48
|
Hamada N, Ito H, Iwamoto I, Morishita R, Tabata H, Nagata KI. Role of the cytoplasmic isoform of RBFOX1/A2BP1 in establishing the architecture of the developing cerebral cortex. Mol Autism 2015; 6:56. [PMID: 26500751 PMCID: PMC4617638 DOI: 10.1186/s13229-015-0049-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/10/2015] [Indexed: 11/29/2022] Open
Abstract
Background RBFOX1 (also known as FOX1 or A2BP1) regulates alternative splicing of a variety of transcripts crucial for neuronal functions. Physiological significance of RBFOX1 during brain development is seemingly essential since abnormalities in the gene cause autism spectrum disorder (ASD) and other neurodevelopmental and neuropsychiatric disorders such as intellectual disability, epilepsy, attention deficit hyperactivity disorder, and schizophrenia. RBFOX1 was also shown to serve as a “hub” in ASD gene transcriptome network. However, the pathophysiological significance of RBFOX1 gene abnormalities remains to be clarified. Methods To elucidate the pathophysiological relevance of Rbfox1, we performed a battery of in vivo and in vitro analyses of the brain-specific cytoplasmic isoform, Rbfox1-iso2, during mouse corticogenesis. In vivo analyses were based on in utero electroporation, and the role of Rbfox1-iso2 in cortical neuron migration, neurogenesis, and morphology was investigated by morphological methods including confocal laser microscope-assisted time-lapse imaging. In vitro analyses were carried out to examine the morphology of primary cultured mouse hippocampal neurons. Results Silencing of Rbfox1-iso2 in utero caused defects in the radial migration and terminal translocation of cortical neurons during corticogenesis. Time-lapse imaging revealed that radial migration was apparently impaired by dysregulated nucleokinesis. Rbfox1-iso2 also regulated neuronal network formation in vivo since axon extension to the opposite hemisphere and dendritic arborization were hampered by the knockdown. In in vitro analyses, spine density and mature spine number were reduced in Rbfox1-iso2-deficient hippocampal neurons. Conclusions Impaired Rbfox1-iso2 function was found to cause abnormal corticogenesis during brain development. The abnormal process may underlie the basic pathophysiology of ASD and other neurodevelopmental disorders and may contribute to the emergence of the clinical symptoms of the patients with RBFOX1 gene abnormalities. Electronic supplementary material The online version of this article (doi:10.1186/s13229-015-0049-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nanako Hamada
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya, Kasugai Aichi, 480-0392 Japan
| | - Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya, Kasugai Aichi, 480-0392 Japan
| | - Ikuko Iwamoto
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya, Kasugai Aichi, 480-0392 Japan
| | - Rika Morishita
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya, Kasugai Aichi, 480-0392 Japan
| | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya, Kasugai Aichi, 480-0392 Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya, Kasugai Aichi, 480-0392 Japan
| |
Collapse
|
49
|
Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat Rev Neurosci 2015; 16:469-86. [PMID: 26189694 DOI: 10.1038/nrn3978] [Citation(s) in RCA: 337] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increasing evidence points to a central role for immune dysregulation in autism spectrum disorder (ASD). Several ASD risk genes encode components of the immune system and many maternal immune system-related risk factors--including autoimmunity, infection and fetal reactive antibodies--are associated with ASD. In addition, there is evidence of ongoing immune dysregulation in individuals with ASD and in animal models of this disorder. Recently, several molecular signalling pathways--including pathways downstream of cytokines, the receptor MET, major histocompatibility complex class I molecules, microglia and complement factors--have been identified that link immune activation to ASD phenotypes. Together, these findings indicate that the immune system is a point of convergence for multiple ASD-related genetic and environmental risk factors.
Collapse
|
50
|
Chapman NH, Nato AQ, Bernier R, Ankenman K, Sohi H, Munson J, Patowary A, Archer M, Blue EM, Webb SJ, Coon H, Raskind WH, Brkanac Z, Wijsman EM. Whole exome sequencing in extended families with autism spectrum disorder implicates four candidate genes. Hum Genet 2015; 134:1055-68. [PMID: 26204995 PMCID: PMC4578871 DOI: 10.1007/s00439-015-1585-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/11/2015] [Indexed: 12/26/2022]
Abstract
Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders, characterized by impairment in communication and social interactions, and by repetitive behaviors. ASDs are highly heritable, and estimates of the number of risk loci range from hundreds to >1000. We considered 7 extended families (size 12-47 individuals), each with ≥3 individuals affected by ASD. All individuals were genotyped with dense SNP panels. A small subset of each family was typed with whole exome sequence (WES). We used a 3-step approach for variant identification. First, we used family-specific parametric linkage analysis of the SNP data to identify regions of interest. Second, we filtered variants in these regions based on frequency and function, obtaining exactly 200 candidates. Third, we compared two approaches to narrowing this list further. We used information from the SNP data to impute exome variant dosages into those without WES. We regressed affected status on variant allele dosage, using pedigree-based kinship matrices to account for relationships. The p value for the test of the null hypothesis that variant allele dosage is unrelated to phenotype was used to indicate strength of evidence supporting the variant. A cutoff of p = 0.05 gave 28 variants. As an alternative third filter, we required Mendelian inheritance in those with WES, resulting in 70 variants. The imputation- and association-based approach was effective. We identified four strong candidate genes for ASD (SEZ6L, HISPPD1, FEZF1, SAMD11), all of which have been previously implicated in other studies, or have a strong biological argument for their relevance.
Collapse
Affiliation(s)
- Nicola H Chapman
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Alejandro Q Nato
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Raphael Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Katy Ankenman
- Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Harkirat Sohi
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Jeff Munson
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
- Center on Child Development and Disability, University of Washington, Seattle, WA, USA
| | - Ashok Patowary
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Marilyn Archer
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Elizabeth M Blue
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Sara Jane Webb
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
- Center on Child Development and Disability, University of Washington, Seattle, WA, USA
| | - Hilary Coon
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
- Department of Psychiatry, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Wendy H Raskind
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, WA, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Zoran Brkanac
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Ellen M Wijsman
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle, WA, USA.
- Department of Biostatistics, University of Washington, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- University of Washington, University of Washington Tower, T15, 4333 Brooklyn Ave, NE, BOX 359460, Seattle, WA, 98195-9460, USA.
| |
Collapse
|