1
|
Straburzyński M, Romaszko-Wojtowicz A. Comparison of sinonasal symptoms in upper respiratory tract infections during the infectious diseases season of November 2023 to March 2024-a cross-sectional study. Front Med (Lausanne) 2024; 11:1447467. [PMID: 39267977 PMCID: PMC11390405 DOI: 10.3389/fmed.2024.1447467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Upper respiratory tract infections (URTIs) are among the most common reasons for patients consulting a general practitioner (GP) during the infectious diseases season, with viruses being the predominant cause. The COVID-19 pandemic has significantly impacted GPs' perception of these infections. The pandemic's progression, especially with the emergence of the Omicron variant, has complicated the diagnosis and treatment of URTIs, with evolving symptoms. Aim The aim of this study was to assess the differences in symptoms reported by patients with various infections, such as COVID-19, influenza, common cold, and post-viral rhinosinusitis, during the infectious diseases season of November 2023 to March 2024. Materials and methods The study was conducted in a primary health care clinic, providing care for a population of approximately 10,000 people, among adult patients presenting with URTI symptoms during the 2023/2024 infectious diseases season. Patients qualified for the study were swabbed for SARS-CoV-2, influenza A and B and respiratory syncytial virus (RSV) antigens. Symptoms were assessed with the use of a semi-structured questionnaire. Results Of the 1810 patients presenting with symptoms of URTIs, 276 patients were included in the study. Among patients with COVID-19, symptoms of nasal obstruction (p = 0.005) and nasal discharge (p = 0.001) were less common than in those with influenza or common cold. However, these nasal symptoms were significantly more frequent among patients with COVID-19 who had confirmed previous immunization (COVID-19 history or vaccination) (p = 0.028). Conclusion The incidence of individual sinonasal symptoms varies significantly depending on the aetiological agent of the URTI. This observation may not only help clinicians make the correct diagnosis, but also suggests an inflammatory response in the nasal mucosa and paranasal sinuses that is dependent on the aetiological agent. The study also indicates that this response is altered within the same virus species following immunization. Limitations The study's limitations include a small sample size (276 patients), focus on one season and one GP practice, and reliance on clinical signs and antigen tests. Nonetheless, the findings provide valuable insights. Further research with larger patient groups and extended follow-up periods is required to confirm these findings.
Collapse
Affiliation(s)
- Marcin Straburzyński
- Department of Family Medicine and Infectious Diseases, Collegium Medicum, School of Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Anna Romaszko-Wojtowicz
- Department of Pulmonology, School of Public Health, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
2
|
Li Y, Wang X, Xu R, Wang T, Zhang D, Qian W. Establishment of RT-RPA-Cas12a assay for rapid and sensitive detection of human rhinovirus B. BMC Microbiol 2023; 23:333. [PMID: 37951882 PMCID: PMC10640725 DOI: 10.1186/s12866-023-03096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023] Open
Abstract
Human rhinovirus B (HRV-B) is a major human viral pathogen that can be responsible for various kinds of infections. Due to the health risks associated with HRV-B, it is therefore crucial to explore a rapid, specific, and sensitive method for surveillance. Herein, we exploited a novel detection method for HRV-B by combining reverse-transcription recombinase polymerase amplification (RT-RPA) of nucleic acids isothermal amplification and the trans-cleavage activity of Cas12a. Our RT-RPA-Cas12a-based fluorescent assay can be completed within 35-45 min and obtain a lower detection threshold to 0.5 copies/µL of target RNA. Meanwhile, crRNA sequences without a specific protospacer adjacent motif can effectively activate the trans-cleavage activity of Cas12a. Moreover, our RT-RPA-Cas12a-based fluorescent method was examined using 30 clinical samples, and exhibited high accuracy with positive and negative predictive agreement of 90% and 100%, respectively. Taken together, a novel promising, rapid and effective RT-RPA-Cas12a-based detection method was explored and shows promising potential for on-site HRV-B infection in resource-limited settings.
Collapse
Affiliation(s)
- Yongdong Li
- Ningbo Key Laboratory of Virus Research, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, P. R. China
| | - Xuefei Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Rong Xu
- Ningbo Key Laboratory of Virus Research, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, P. R. China
| | - Ting Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Dandan Zhang
- Ningbo Key Laboratory of Virus Research, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, P. R. China.
| | - Weidong Qian
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.
| |
Collapse
|
3
|
Potaczek DP, Unger SD, Zhang N, Taka S, Michel S, Akdağ N, Lan F, Helfer M, Hudemann C, Eickmann M, Skevaki C, Megremis S, Sadewasser A, Alashkar Alhamwe B, Alhamdan F, Akdis M, Edwards MR, Johnston SL, Akdis CA, Becker S, Bachert C, Papadopoulos NG, Garn H, Renz H. Development and characterization of DNAzyme candidates demonstrating significant efficiency against human rhinoviruses. J Allergy Clin Immunol 2018; 143:1403-1415. [PMID: 30114391 DOI: 10.1016/j.jaci.2018.07.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Infections with human rhinoviruses (RVs) are responsible for millions of common cold episodes and the majority of asthma exacerbations, especially in childhood. No drugs specifically targeting RVs are available. OBJECTIVE We sought to identify specific anti-RV molecules based on DNAzyme technology as candidates to a clinical study. METHODS A total of 226 candidate DNAzymes were designed against 2 regions of RV RNA genome identified to be sufficiently highly conserved between virus strains (ie, the 5'-untranslated region and cis-acting replication element) by using 3 test strains: RVA1, RVA16, and RVA29. All DNAzymes were screened for their cleavage efficiency against in vitro-expressed viral RNA. Those showing any catalytic activity were subjected to bioinformatic analysis of their reverse complementarity to 322 published RV genomic sequences. Further molecular optimization was conducted for the most promising candidates. Cytotoxic and off-target effects were excluded in HEK293 cell-based systems. Antiviral efficiency was analyzed in infected human bronchial BEAS-2B cells and ex vivo-cultured human sinonasal tissue. RESULTS Screening phase-generated DNAzymes characterized by either good catalytic activity or by high RV strain coverage but no single molecule represented a satisfactory combination of those 2 features. Modifications in length of the binding domains of 2 lead candidates, Dua-01(-L12R9) and Dua-02(-L10R11), improved their cleavage efficiency to an excellent level, with no loss in eminent strain coverage (about 98%). Both DNAzymes showed highly favorable cytotoxic/off-target profiles. Subsequent testing of Dua-01-L12R9 in BEAS-2B cells and sinonasal tissue demonstrated its significant antiviral efficiency. CONCLUSIONS Effective and specific management of RV infections with Dua-01-L12R9 might be useful in preventing asthma exacerbations, which should be verified by clinical trials.
Collapse
Affiliation(s)
- Daniel P Potaczek
- Institute of Laboratory Medicine, member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), and the inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), Marburg, Germany; PreDicta Consortium; John Paul II Hospital, Krakow, Poland
| | - Sebastian D Unger
- Institute of Laboratory Medicine, member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), and the inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), Marburg, Germany; PreDicta Consortium
| | - Nan Zhang
- PreDicta Consortium; Upper Airway Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Styliani Taka
- PreDicta Consortium; Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Sven Michel
- Secarna Pharmaceuticals GmbH, Planegg, Germany
| | - Nesibe Akdağ
- Institute of Laboratory Medicine, member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), and the inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), Marburg, Germany; PreDicta Consortium
| | - Feng Lan
- PreDicta Consortium; Upper Airway Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | | | - Christoph Hudemann
- Institute of Laboratory Medicine, member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), and the inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), Marburg, Germany; PreDicta Consortium
| | - Markus Eickmann
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Chrysanthi Skevaki
- Institute of Laboratory Medicine, member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), and the inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), Marburg, Germany; PreDicta Consortium
| | - Spyridon Megremis
- PreDicta Consortium; Division of Infection, Inflammation and Respiratory Medicine, University of Manchester, London, United Kingdom
| | | | - Bilal Alashkar Alhamwe
- Institute of Laboratory Medicine, member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), and the inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), Marburg, Germany; PreDicta Consortium
| | - Fahd Alhamdan
- Institute of Laboratory Medicine, member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), and the inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), Marburg, Germany; PreDicta Consortium
| | - Mübeccel Akdis
- PreDicta Consortium; Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Michael R Edwards
- PreDicta Consortium; Airway Disease Infection Section, National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom; Medical Research Council (MRC) and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Sebastian L Johnston
- PreDicta Consortium; Airway Disease Infection Section, National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom; Medical Research Council (MRC) and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Cezmi A Akdis
- PreDicta Consortium; Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland; Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Stephan Becker
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Claus Bachert
- PreDicta Consortium; Upper Airway Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Nikolaos G Papadopoulos
- PreDicta Consortium; Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece; Division of Infection, Inflammation and Respiratory Medicine, University of Manchester, London, United Kingdom
| | - Holger Garn
- Institute of Laboratory Medicine, member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), and the inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), Marburg, Germany; PreDicta Consortium
| | - Harald Renz
- Institute of Laboratory Medicine, member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), and the inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), Marburg, Germany; PreDicta Consortium.
| |
Collapse
|
4
|
Rosario K, Fierer N, Miller S, Luongo J, Breitbart M. Diversity of DNA and RNA Viruses in Indoor Air As Assessed via Metagenomic Sequencing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1014-1027. [PMID: 29298386 DOI: 10.1021/acs.est.7b04203] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Diverse bacterial and fungal communities inhabit human-occupied buildings and circulate in indoor air; however, viral diversity in these man-made environments remains largely unknown. Here we investigated DNA and RNA viruses circulating in the air of 12 university dormitory rooms by analyzing dust accumulated over a one-year period on heating, ventilation, and air conditioning (HVAC) filters. A metagenomic sequencing approach was used to determine the identity and diversity of viral particles extracted from the HVAC filters. We detected a broad diversity of viruses associated with a range of hosts, including animals, arthropods, bacteria, fungi, humans, plants, and protists, suggesting that disparate organisms can contribute to indoor airborne viral communities. Viral community composition and the distribution of human-infecting papillomaviruses and polyomaviruses were distinct in the different dormitory rooms, indicating that airborne viral communities are variable in human-occupied spaces and appear to reflect differential rates of viral shedding from room occupants. This work significantly expands the known airborne viral diversity found indoors, enabling the design of sensitive and quantitative assays to further investigate specific viruses of interest and providing new insight into the likely sources of viruses found in indoor air.
Collapse
Affiliation(s)
- Karyna Rosario
- College of Marine Science, University of South Florida , Saint Petersburg, Florida 33701, United States
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology, University of Colorado , Boulder, Colorado 80309, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado , Boulder, Colorado 80309, United States
| | - Shelly Miller
- Department of Mechanical Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Julia Luongo
- Department of Mechanical Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Mya Breitbart
- College of Marine Science, University of South Florida , Saint Petersburg, Florida 33701, United States
| |
Collapse
|
5
|
Buthelezi NM, Machaba KE, Soliman ME. The Identification of potential human rhinovirus inhibitors: exploring the binding landscape of HRV-3C protease through PRED pharmacophore screening. Future Virol 2017. [DOI: 10.2217/fvl-2017-0084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rhinovirus infections are estimated to be 70% of virus-related cold and flu-like illnesses. The disastrous impact of human rhinovirus infections costs healthcare systems billions annually. Herein, an in-house target-bound pharmacophore-based virtual screening protocol, outlined in our previous publications, was employed in identifying potential drug lead of 3C protease, based on the structural characteristics of rupintrivir. The two novel hits HRV-ZINC01537619 and HRV-ZINC601135028 may be commissioners of the new group of 3C proteases inhibitors against human rhinoviruses. Interestingly, both ZINC01537619 and ZINC601135028 interact with catalytic residues His40 and Cys147, respectively. This is a significant phenomenon which gives hope that viral replication inhibition is possible. These promising compounds now pave a fundamental new route toward the successful inhibition of the virus.
Collapse
Affiliation(s)
- Ndumiso M Buthelezi
- Molecular Modeling & Drug Design Research Group, School of Health Sciences, Pharmaceutical Chemistry, University of KwaZulu-Natal, Westville Campus, Durban, KwaZulu-Natal 4001, South Africa
| | - Kgothatso E Machaba
- Molecular Modeling & Drug Design Research Group, School of Health Sciences, Pharmaceutical Chemistry, University of KwaZulu-Natal, Westville Campus, Durban, KwaZulu-Natal 4001, South Africa
| | - Mahmoud E Soliman
- Molecular Modeling & Drug Design Research Group, School of Health Sciences, Pharmaceutical Chemistry, University of KwaZulu-Natal, Westville Campus, Durban, KwaZulu-Natal 4001, South Africa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural & Mechanical University (FAMU), Tallahassee, FL 32307, USA
| |
Collapse
|
6
|
Sousa FH, Casanova V, Findlay F, Stevens C, Svoboda P, Pohl J, Proudfoot L, Barlow PG. Cathelicidins display conserved direct antiviral activity towards rhinovirus. Peptides 2017; 95:76-83. [PMID: 28764966 PMCID: PMC5577862 DOI: 10.1016/j.peptides.2017.07.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 12/20/2022]
Abstract
Human rhinoviruses (HRVs) are the most common cause of viral respiratory tract infections, and are associated with significant morbidity and mortality in immunocompromised individuals and patients with pre-existing pulmonary conditions. The therapeutic options available are extremely limited and therefore novel therapeutics for HRV infections are of significant interest. Cathelicidins have been shown to have potent antiviral activity against a range of pathogens and are known to be key immunomodulatory mediators during infection. We therefore assessed the antiviral potential of cathelicidins from humans and other mammalian species against HRV, together with the potential for the human cathelicidin to modulate apoptotic pathways and alter cell viability during HRV infection. We demonstrate that LL-37, the porcine cathelicidin Protegrin-1, and the ovine cathelicidin SMAP-29 display potent antiviral activity towards HRV and that this activity is visible when either the virus is exposed to the peptides prior to cell infection or after cells have been infected. We further demonstrate that, in contrast to established findings with bacterial infection models, LL-37 does not induce apoptosis or necrosis in HRV-infected lung epithelial cells at physiological or superphysiological concentrations, but does reduce the metabolic activity of infected cells compared to uninfected cells treated with similar peptide concentrations. Collectively, the findings from this study demonstrate that the mechanism of action of cathelicidins against rhinovirus is by directly affecting the virus and we propose that the delivery of exogenous cathelicidins, or novel synthetic analogues, represent an exciting and novel therapeutic strategy for rhinovirus infection.
Collapse
Affiliation(s)
- Filipa Henderson Sousa
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, United Kingdom
| | - Victor Casanova
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, United Kingdom
| | - Fern Findlay
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, United Kingdom
| | - Craig Stevens
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, United Kingdom
| | - Pavel Svoboda
- Biotechnology Core Facility Branch, Division of Scientific Resources, US Centers for Disease Control and Prevention, Atlanta, GA 30333, United States
| | - Jan Pohl
- Biotechnology Core Facility Branch, Division of Scientific Resources, US Centers for Disease Control and Prevention, Atlanta, GA 30333, United States
| | - Lorna Proudfoot
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, United Kingdom
| | - Peter G Barlow
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, United Kingdom.
| |
Collapse
|
7
|
Young Jeong J, Sperry J, Taylor JA, Brimble MA. Synthesis and evaluation of 9-deoxy analogues of (-)-thysanone, an inhibitor of HRV 3C protease. Eur J Med Chem 2014; 87:220-7. [PMID: 25259514 DOI: 10.1016/j.ejmech.2014.09.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/15/2014] [Accepted: 09/18/2014] [Indexed: 11/27/2022]
Abstract
9-Deoxy analogues of the HRV 3C protease inhibitor (-)-thysanone display better inhibitory properties than the natural product, inferring the C9-OH hinders binding to the enzyme.
Collapse
Affiliation(s)
- Joo Young Jeong
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1142, New Zealand; School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand
| | - Jonathan Sperry
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1142, New Zealand
| | - John A Taylor
- School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand.
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand.
| |
Collapse
|
8
|
Abstract
UNLABELLED Few drugs targeting picornaviruses are available, making the discovery of antivirals a high priority. Here, we identified and characterized three compounds from a library of kinase inhibitors that block replication of poliovirus, coxsackievirus B3, and encephalomyocarditis virus. Using an in vitro translation-replication system, we showed that these drugs inhibit different stages of the poliovirus life cycle. A4(1) inhibited both the formation and functioning of the replication complexes, while E5(1) and E7(2) were most effective during the formation but not the functioning step. Neither of the compounds significantly inhibited VPg uridylylation. Poliovirus resistant to E7(2) had a G5318A mutation in the 3A protein. This mutation was previously found to confer resistance to enviroxime-like compounds, which target a phosphatidylinositol 4-kinase IIIβ (PI4KIIIβ)-dependent step in viral replication. Analysis of host protein recruitment showed that E7(2) reduced the amount of GBF1 on the replication complexes; however, the level of PI4KIIIβ remained intact. E7(2) as well as another enviroxime-like compound, GW5074, interfered with viral polyprotein processing affecting both 3C- and 2A-dependent cleavages, and the resistant G5318A mutation partially rescued this defect. Moreover, E7(2) induced abnormal recruitment to membranes of the viral proteins; thus, enviroxime-like compounds likely severely compromise the interaction of the viral polyprotein with membranes. A4(1) demonstrated partial protection from paralysis in a murine model of poliomyelitis. Multiple attempts to isolate resistant mutants in the presence of A4(1) or E5(1) were unsuccessful, showing that effective broad-spectrum antivirals could be developed on the basis of these compounds. IMPORTANCE Diverse picornaviruses can trigger multiple human maladies, yet currently, only hepatitis A virus and poliovirus can be controlled with vaccination. The development of antipicornavirus therapeutics is also facing significant difficulties because these viruses readily generate resistance to compounds targeting either viral or cellular factors. Here, we describe three novel compounds that effectively block replication of distantly related picornaviruses with minimal toxicity to cells. The compounds prevent viral RNA replication after the synthesis of the uridylylated VPg primer. Importantly, two of the inhibitors are strongly refractory to the emergence of resistant mutants, making them promising candidates for further broad-spectrum therapeutic development. Evaluation of one of the compounds in an in vivo model of poliomyelitis demonstrated partial protection from the onset of paralysis.
Collapse
|
9
|
Rhinoviruses. VIRAL INFECTIONS OF HUMANS 2014. [PMCID: PMC7120790 DOI: 10.1007/978-1-4899-7448-8_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Savolainen-Kopra C, Simonen-Tikka ML, Klemola P, Blomqvist S, Suomenrinne S, Näntö-Salonen K, Simell O, Roivainen M. Human rhinoviruses in INDIS-study material-evidence for recovery of viable rhinovirus from fecal specimens. J Med Virol 2013; 85:1466-72. [DOI: 10.1002/jmv.23593] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2013] [Indexed: 01/12/2023]
Affiliation(s)
- Carita Savolainen-Kopra
- Department of Infectious Disease Surveillance and Control, Virology Unit; National Institute for Health and Welfare (THL); Helsinki Finland
| | - Marja-Leena Simonen-Tikka
- Department of Infectious Disease Surveillance and Control, Virology Unit; National Institute for Health and Welfare (THL); Helsinki Finland
| | - Päivi Klemola
- Department of Infectious Disease Surveillance and Control, Virology Unit; National Institute for Health and Welfare (THL); Helsinki Finland
| | - Soile Blomqvist
- Department of Infectious Disease Surveillance and Control, Virology Unit; National Institute for Health and Welfare (THL); Helsinki Finland
| | | | | | - Olli Simell
- Department of Pediatrics; University of Turku; Turku Finland
| | - Merja Roivainen
- Department of Infectious Disease Surveillance and Control, Virology Unit; National Institute for Health and Welfare (THL); Helsinki Finland
| |
Collapse
|
11
|
Miller EK, Mackay IM. From sneeze to wheeze: what we know about rhinovirus Cs. J Clin Virol 2013; 57:291-9. [PMID: 23714395 DOI: 10.1016/j.jcv.2013.04.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/16/2013] [Accepted: 04/20/2013] [Indexed: 12/21/2022]
Abstract
While the discovery of HRV-Cs is recent, there are no indications that they are new viruses, or that they are emerging in real-time. Genetically, HRV-Cs are most closely related to the members of HRV-A and HRV-B but even a small genetic difference can impart encompass significant changes to their clinical impact, complicated by a diverse human background of prior virus exposure and underlying host immune and disease variability. It is well known that HRVs are a major trigger of asthma exacerbations and HRV-Cs are now under investigation for their potential involvement in asthma inception. The newly described HRV-Cs account for a large proportion of HRV-related illness, including common colds and wheezing exacerbations. HRV-Cs are genetically diverse and appear to circulate with seasonal variation, exchanging dominance with HRV-A. Whether HRV-Cs are consistently more pathogenic or "asthmagenic" is unproven. Antigenic diversity complicates passive and active prophylactic interventions (i.e. antibodies or vaccines), so further identification and characterisation of individual types (and their neutralising antigens) is likely to inform future preventive strategies. In the meantime, new antivirals should benefit groups at risk of the most severe disease.
Collapse
Affiliation(s)
- E Kathryn Miller
- Department of Pediatrics, Division of Allergy, Immunology, and Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | | |
Collapse
|
12
|
Willenborg C, Stelzer-Braid S. Sneezing leads to wheezing: microorganisms important in asthma. MICROBIOLOGY AUSTRALIA 2013. [DOI: 10.1071/ma13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Tomkinson N, Wenlock M, McCrae C. Selection of a screening panel of rhinoviral serotypes. Bioorg Med Chem Lett 2012; 22:7494-8. [DOI: 10.1016/j.bmcl.2012.10.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/03/2012] [Accepted: 10/08/2012] [Indexed: 10/27/2022]
|
14
|
Pavia AT. Viral infections of the lower respiratory tract: old viruses, new viruses, and the role of diagnosis. Clin Infect Dis 2011; 52 Suppl 4:S284-9. [PMID: 21460286 PMCID: PMC3106235 DOI: 10.1093/cid/cir043] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Viral infections of the lower respiratory tract cause an enormous disease burden in children, and the role of respiratory viruses in serious lower respiratory tract infections (LRTIs) in older adults is increasingly appreciated. Although viruses are responsible for a large proportion LRTIs, antibiotics are often prescribed. New diagnostic platforms have the potential to detect a wider range of established and newly discovered viruses with greater sensitivity. This will create additional challenges. Although it is clear that influenza, parainfluenza, respiratory syncytial virus, human metapneumovirus, and adenovirus are important causes of pneumonia, the role of rhinoviruses and some of the newly described viruses, including human coronaviruses and bocavirus, is harder to determine. Better diagnostic tests that establish the cause of LRTIs in children have the potential to both reduce overall antibiotic use and to improve the targeted use of antibiotics. In addition, rapid identification of viral infections can help control nosocomial transmission.
Collapse
Affiliation(s)
- Andrew T Pavia
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Utah, Salt Lake City, UT 84108, USA.
| |
Collapse
|
15
|
Tovey ER, Rawlinson WD. A modern miasma hypothesis and back-to-school asthma exacerbations. Med Hypotheses 2011; 76:113-6. [PMID: 20869177 DOI: 10.1016/j.mehy.2010.08.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/13/2010] [Accepted: 08/21/2010] [Indexed: 11/18/2022]
Abstract
A sudden increase in the rate of asthma exacerbations has been observed among young children in many countries 2-3 weeks after their return-to-school following the summer holidays. These exacerbations are frequently associated with human rhinovirus (hRV) infections, with possible interactions with allergen sensitisation, allergen exposure and medication use. It was originally proposed that the sudden increase resulted from new strains of respiratory viruses acquired during the holidays spreading rapidly on return to school. While there is compelling evidence implicating hRV in these exacerbations, recent observations on virus transmission, infection patterns and immune responses to both viruses and allergens have led us to propose an additional hypothesis for this increase in exacerbations. We propose that classrooms typically provide persistent exposure to a mixture of airborne viruses, viral proteins, endotoxin, community allergens and other human-derived aerosols - a modern miasma. During the preceding school term, this exposure establishes and maintains a level of immune tolerance and herd immunity, which then declines during the two-month holidays due to lack of such exposure, creating a transitory window of susceptibility to viral infections and asthma. The return to school re-establishes exposure to these aerosols resulting in an acceleration of exacerbations, until the tolerance and herd immunity are re-established. Thus, the peak in return-to-school asthma is more a function of a transitory increase in susceptibility due to a temporary lack of this complex exposure, than it is to novel, locally endemic strains of hRV.
Collapse
Affiliation(s)
- E R Tovey
- Allergen Group, Woolcock Institute of Medical Research, Missenden Road, Glebe, NSW 2050, Australia.
| | | |
Collapse
|
16
|
Arden KE, Mackay IM. Newly identified human rhinoviruses: molecular methods heat up the cold viruses. Rev Med Virol 2010; 20:156-76. [PMID: 20127751 PMCID: PMC7169101 DOI: 10.1002/rmv.644] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human rhinovirus (HRV) infections cause at least 70% of virus‐related wheezing exacerbations and cold and flu‐like illnesses. They are associated with otitis media, sinusitis and pneumonia. Annually, the economic impact of HRV infections costs billions in healthcare and lost productivity. Since 1987, 100 officially recognised HRV serotypes reside in two genetically distinct species; HRV A and HRV B, within the genus Enterovirus, family Picornaviridae. Sequencing of their ∼7kb genomes was finalised in 2009. Since 1999, many globally circulating, molecularly‐defined ‘strains’, perhaps equivalent to novel serotypes, have been discovered but remain uncharacterised. Many of these currently unculturable strains have been assigned to a proposed new species, HRV C although confusion exists over the membership of the species. There has not been sufficient sampling to ensure the identification of all strains and no consensus criteria exist to define whether clinical HRV detections are best described as a distinct strain or a closely related variant of a previously identified strain (or serotype). We cannot yet robustly identify patterns in the circulation of newly identified HRVs (niHRVs) or the full range of associated illnesses and more data are required. Many questions arise from this new found diversity: what drives the development of so many distinct viruses compared to other species of RNA viruses? What role does recombination play in generating this diversity? Are there species‐ or strain‐specific circulation patterns and clinical outcomes? Are divergent strains sensitive to existing capsid‐binding antivirals? This update reviews the findings that trigger these and other questions arising during the current cycle of intense rhinovirus discovery. Copyright © 2010 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Katherine E Arden
- Qpid Laboratory, Sir Albert Sakzewski Virus Research Centre, Queensland Children's Medical Research Institute, Royal Children's Hospital, Queensland, Australia
| | | |
Collapse
|