1
|
Barta T, Monsempès C, Demondion E, Chatterjee A, Kostal L, Lucas P. Stimulus duration encoding occurs early in the moth olfactory pathway. Commun Biol 2024; 7:1252. [PMID: 39363042 PMCID: PMC11449909 DOI: 10.1038/s42003-024-06921-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Pheromones convey rich ethological information and guide insects' search behavior. Insects navigating in turbulent environments are tasked with the challenge of coding the temporal structure of an odor plume, obliging recognition of the onset and offset of whiffs of odor. The coding mechanisms that shape odor offset recognition remain elusive. We designed a device to deliver sharp pheromone pulses and simultaneously measured the response dynamics from pheromone-tuned olfactory receptor neurons (ORNs) in male moths and Drosophila. We show that concentration-invariant stimulus duration encoding is implemented in moth ORNs by spike frequency adaptation at two time scales. A linear-nonlinear model fully captures the underlying neural computations and offers an insight into their biophysical mechanisms. Drosophila use pheromone cis-vaccenyl acetate (cVA) only for very short distance communication and are not faced with the need to encode the statistics of the cVA plume. Their cVA-sensitive ORNs are indeed unable to encode odor-off events. Expression of moth pheromone receptors in Drosophila cVA-sensitive ORNs indicates that stimulus-offset coding is receptor independent. In moth ORNs, stimulus-offset coding breaks down for short ( < 200 ms) whiffs. This physiological constraint matches the behavioral latency of switching from the upwind surge to crosswind cast flight upon losing contact with the pheromone.
Collapse
Affiliation(s)
- Tomas Barta
- Department of Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Route de Saint Cyr, Versailles, 78000, France.
- Laboratory of Computational Neuroscience, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic.
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna, 904-0412, Okinawa, Japan.
| | - Christelle Monsempès
- Department of Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Route de Saint Cyr, Versailles, 78000, France
| | - Elodie Demondion
- Department of Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Route de Saint Cyr, Versailles, 78000, France
| | - Abhishek Chatterjee
- Department of Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Route de Saint Cyr, Versailles, 78000, France
| | - Lubomir Kostal
- Laboratory of Computational Neuroscience, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic.
| | - Philippe Lucas
- Department of Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Route de Saint Cyr, Versailles, 78000, France.
| |
Collapse
|
2
|
Ouyang B, True AC, Crimaldi JP, Ermentrout B. Simple olfactory navigation in air and water. J Theor Biol 2024; 595:111941. [PMID: 39260736 DOI: 10.1016/j.jtbi.2024.111941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
Two simple algorithms based on combining odor concentration differences across time and space along with information on the flow direction are tested for their ability to locate an odor source in four different odor landscapes. Image data taken from air plumes in three different regimes and a water plume are used as test environments for a bilateral ("stereo sampling") algorithm using concentration differences across two sensors and a "casting" algorithm that uses successive samples to decide orientation. Agents are started at random locations and orientations in the landscape and allowed to move until they reach the source of the odor (success) or leave the imaged area (failure). Parameters for the algorithm are chosen to optimize success and to minimize path length to the source. Success rates over 90% are consistently obtained with path lengths that can be as low as twice the starting distance from the source in air and four times the distance in the highly turbulent water plumes. We find that parameters that optimize success often lead to more exploratory pathways to the source. Information about the direction from which the odor is coming is necessary for successful navigation in the water plume and reduces the path length in the three tested air plumes.
Collapse
Affiliation(s)
- Bowei Ouyang
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, United States of America.
| | - Aaron C True
- Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, United States of America.
| | - John P Crimaldi
- Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, United States of America.
| | - Bard Ermentrout
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, United States of America.
| |
Collapse
|
3
|
Hoffmann A, Couzin-Fuchs E. Active smelling in the American cockroach. J Exp Biol 2023; 226:jeb245337. [PMID: 37750327 PMCID: PMC10651109 DOI: 10.1242/jeb.245337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
Motion plays an essential role in sensory acquisition. From changing the position in which information can be acquired to fine-scale probing and active sensing, animals actively control the way they interact with the environment. In olfaction, movement impacts the time and location of odour sampling as well as the flow of odour molecules around the olfactory organs. Employing a detailed spatiotemporal analysis, we investigated how insect antennae interact with the olfactory environment in a species with a well-studied olfactory system - the American cockroach. Cockroaches were tested in a wind-tunnel setup during the presentation of odours with different attractivity levels: colony extract, butanol and linalool. Our analysis revealed significant changes in antennal kinematics when odours were presented, including a shift towards the stream position, an increase in vertical movement and high-frequency local oscillations. Nevertheless, the antennal shifting occurred predominantly in a single antenna while the overall range covered by both antennae was maintained throughout. These findings hold true for both static and moving stimuli and were more pronounced for attractive odours. Furthermore, we found that upon odour encounter, there was an increase in the occurrence of high-frequency antennal sweeps and vertical strokes, which were shown to impact the olfactory environment's statistics directly. Our study lays out a tractable system for exploring the tight coupling between sensing and movement, in which antennal sweeps, in parallel to mammalian sniffing, are actively involved in facilitating odour capture and transport, generating odour intermittency in environments with low air movement where cockroaches dwell.
Collapse
Affiliation(s)
- Antoine Hoffmann
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- IMPRS for Quantitative Behaviour, Ecology and Evolution, 78315 Radolfzell, Germany
| | - Einat Couzin-Fuchs
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
4
|
Sehadová H, Podlahová Š, Reppert SM, Sauman I. 3D reconstruction of larval and adult brain neuropils of two giant silk moth species: Hyalophora cecropia and Antheraea pernyi. JOURNAL OF INSECT PHYSIOLOGY 2023; 149:104546. [PMID: 37451537 DOI: 10.1016/j.jinsphys.2023.104546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
We present a detailed analysis of the brain anatomy of two saturniid species, the cecropia silk moth, Hyalophora cecropia, and the Chinese oak silk moth, Antheraea pernyi, including 3D reconstructions of the major brain neuropils in the larva and in male and female adults. The 3D reconstructions, prepared from high-resolution optical sections, showed that the corresponding neuropils of these saturniid species are virtually identical. Similarities between the two species include a pronounced sexual dimorphism in the adults in the form of a male-specific assembly of markedly enlarged glomeruli forming the so-called macroglomerular complex. From the reports published to date, it can be concluded that the neuropil architecture of saturniids resembles that of other nocturnal moths, including the sibling family Sphingidae. In addition, compared with previous anatomical data on diurnal lepidopteran species, significant differences were observed in the two saturniid species, which include the thickness of the Y-tract of the mushroom body, the size of the main neuropils of the optic lobes, and the sexual dimorphisms of the antennal lobes.
Collapse
Affiliation(s)
- Hana Sehadová
- Biology Centre CAS, Institute of Entomology, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic; University of South Bohemia in Ceske Budejovice, Faculty of Science, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.
| | - Šárka Podlahová
- Biology Centre CAS, Institute of Entomology, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic; University of South Bohemia in Ceske Budejovice, Faculty of Science, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.
| | - Steven M Reppert
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | - Ivo Sauman
- Biology Centre CAS, Institute of Entomology, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic; University of South Bohemia in Ceske Budejovice, Faculty of Science, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.
| |
Collapse
|
5
|
Tichy H, Hellwig M. Gain control in olfactory receptor neurons and the detection of temporal fluctuations in odor concentration. Front Physiol 2023; 14:1158855. [PMID: 37501922 PMCID: PMC10368873 DOI: 10.3389/fphys.2023.1158855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
The ability of the cockroach to locate an odor source in still air suggests that the temporal dynamic of odor concentration in the slowly expanding stationary plume alone is used to infer odor source distance and location. This contradicts with the well-established view that insects use the wind direction as the principle directional cue. This contribution highlights the evidence for, and likely functional relevance of, the capacity of the cockroach's olfactory receptor neurons to detect and process-from one moment to the next-not only a succession of odor concentrations but also the rates at which concentration changes. This presents a challenge for the olfactory system because it must detect and encode the temporal concentration dynamic in a manner that simultaneously allows invariant odor recognition. The challenge is met by a parallel representation of odor identity and concentration changes in a dual pathway that starts from olfactory receptor neurons located in two morphologically distinct types of olfactory sensilla. Parallel processing uses two types of gain control that simultaneously allocate different weight to the instantaneous odor concentration and its rate of change. Robust gain control provides a stable sensitivity for the instantaneous concentration by filtering the information on fluctuations in the rate of change. Variable gain control, in turn, enhances sensitivity for the concentration rate according to variations in the duration of the fluctuation period. This efficiently represents the fluctuation of concentration changes in the environmental context in which such changes occur.
Collapse
|
6
|
Patel M, Kulkarni N, Lei HH, Lai K, Nematova O, Wei K, Lei H. Experimental and theoretical probe on mechano- and chemosensory integration in the insect antennal lobe. Front Physiol 2022; 13:1004124. [PMID: 36406994 PMCID: PMC9667105 DOI: 10.3389/fphys.2022.1004124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
In nature, olfactory signals are delivered to detectors—for example, insect antennae—by means of turbulent air, which exerts concurrent chemical and mechanical stimulation on the detectors. The antennal lobe, which is traditionally viewed as a chemosensory module, sits downstream of antennal inputs. We review experimental evidence showing that, in addition to being a chemosensory structure, antennal lobe neurons also respond to mechanosensory input in the form of wind speed. Benchmarked with empirical data, we constructed a dynamical model to simulate bimodal integration in the antennal lobe, with model dynamics yielding insights such as a positive correlation between the strength of mechanical input and the capacity to follow high frequency odor pulses, an important task in tracking odor sources. Furthermore, we combine experimental and theoretical results to develop a conceptual framework for viewing the functional significance of sensory integration within the antennal lobe. We formulate the testable hypothesis that the antennal lobe alternates between two distinct dynamical regimes, one which benefits odor plume tracking and one which promotes odor discrimination. We postulate that the strength of mechanical input, which correlates with behavioral contexts such being mid-flight versus hovering near a flower, triggers the transition from one regime to the other.
Collapse
Affiliation(s)
- Mainak Patel
- Department of Mathematics, William and Mary College, Williamsburg, VA, United States
| | - Nisha Kulkarni
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Harry H. Lei
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Kaitlyn Lai
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Omina Nematova
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Katherine Wei
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Hong Lei
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- *Correspondence: Hong Lei,
| |
Collapse
|
7
|
Cai X, Guo Y, Bian L, Luo Z, Li Z, Xiu C, Fu N, Chen Z. Variation in the ratio of compounds in a plant volatile blend during transmission by wind. Sci Rep 2022; 12:6176. [PMID: 35418592 PMCID: PMC9007946 DOI: 10.1038/s41598-022-09450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/18/2022] [Indexed: 11/30/2022] Open
Abstract
For plant volatiles to mediate interactions in tritrophic systems, they must convey accurate and reliable information to insects. However, it is unknown whether the ratio of compounds in plant volatile blends remains stable during wind transmission. In this study, volatiles released from an odor source were collected at different points in a wind tunnel and analyzed. The variation in the amounts of volatiles collected at different points formed a rough cone shape. The amounts of volatiles collected tended to decrease with increasing distance from the odor source. Principal component analyses showed that the volatile profiles were dissimilar among different collection points. The profiles of volatiles collected nearest the odor source were the most similar to the released odor. Higher wind speed resulted in a clearer spatial distribution of volatile compounds. Thus, variations in the ratios of compounds in odor plumes exist even during transport over short distances.
Collapse
Affiliation(s)
- Xiaoming Cai
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, China
| | - Yuhang Guo
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, China
| | - Lei Bian
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, China
| | - Zongxiu Luo
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, China
| | - Zhaoqun Li
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, China
| | - Chunli Xiu
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, China
| | - Nanxia Fu
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, China
| | - Zongmao Chen
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, China.
| |
Collapse
|
8
|
Tuckman H, Patel M, Lei H. Effects of Mechanosensory Input on the Tracking of Pulsatile Odor Stimuli by Moth Antennal Lobe Neurons. Front Neurosci 2021; 15:739730. [PMID: 34690678 PMCID: PMC8529024 DOI: 10.3389/fnins.2021.739730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Air turbulence ensures that in a natural environment insects tend to encounter odor stimuli in a pulsatile fashion. The frequency and duration of odor pulses varies with distance from the source, and hence successful mid-flight odor tracking requires resolution of spatiotemporal pulse dynamics. This requires both olfactory and mechanosensory input (from wind speed), a form of sensory integration observed within the antennal lobe (AL). In this work, we employ a model of the moth AL to study the effect of mechanosensory input on AL responses to pulsatile stimuli; in particular, we examine the ability of model neurons to: (1) encode the temporal length of a stimulus pulse; (2) resolve the temporal dynamics of a high frequency train of brief stimulus pulses. We find that AL glomeruli receiving olfactory input are adept at encoding the temporal length of a stimulus pulse but less effective at tracking the temporal dynamics of a pulse train, while glomeruli receiving mechanosensory input but little olfactory input can efficiently track the temporal dynamics of high frequency pulse delivery but poorly encode the duration of an individual pulse. Furthermore, we show that stronger intrinsic small-conductance calcium-dependent potassium (SK) currents tend to skew cells toward being better trackers of pulse frequency, while weaker SK currents tend to entail better encoding of the temporal length of individual pulses. We speculate a possible functional division of labor within the AL, wherein, for a particular odor, glomeruli receiving strong olfactory input exhibit prolonged spiking responses that facilitate detailed discrimination of odor features, while glomeruli receiving mechanosensory input (but little olfactory input) serve to resolve the temporal dynamics of brief, pulsatile odor encounters. Finally, we discuss how this hypothesis extends to explaining the functional significance of intraglomerular variability in observed phase II response patterns of AL neurons.
Collapse
Affiliation(s)
- Harrison Tuckman
- Department of Mathematics, William & Mary, Williamsburg, VA, United States
| | - Mainak Patel
- Department of Mathematics, William & Mary, Williamsburg, VA, United States
| | - Hong Lei
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
9
|
Tuckman H, Kim J, Rangan A, Lei H, Patel M. Dynamics of sensory integration of olfactory and mechanical stimuli within the response patterns of moth antennal lobe neurons. J Theor Biol 2020; 509:110510. [PMID: 33022286 DOI: 10.1016/j.jtbi.2020.110510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 11/19/2022]
Abstract
Odors emanating from a biologically relevant source are rapidly embedded within a windy, turbuluent medium that folds and spins filaments into fragmented strands of varying sizes. Environmental odor plumes therefore exhibit complex spatiotemporal dynamics, and rarely yield an easily discernible concentration gradient marking an unambiguous trail to an odor source. Thus, sensory integration of chemical input, encoding odor identity or concentration, and mechanosensory input, encoding wind speed, is a critical task that animals face in resolving the complex dynamics of odor plumes and tracking an odor source. In insects, who employ olfactory navigation as their primary means of foraging for food and finding mates, the antennal lobe (AL) is the first brain structure that processes sensory odor information. Although the importance of chemosensory and mechanosensory integration is widely recognized, the AL itself has traditionally been viewed purely from the perspective of odor encoding, with little attention given to its role as a bimodal integrator. In this work, we seek to explore the AL as a model for studying sensory integration - it boasts well-understood architecture, well-studied olfactory responses, and easily measurable cells. Using a moth model, we present experimental data that clearly demonstrates that AL neurons respond, in dynamically distinct ways, to both chemosensory and mechanosensory input; mechanosensory responses are transient and temporally precise, while olfactory responses are long-lasting but lack temporal precision. We further develop a computational model of the AL, show that our model captures odor response dynamics reported in the literature, and examine the dynamics of our model with the inclusion of mechanosensory input; we then use our model to pinpoint dynamical mechanisms underlying the bimodal AL responses revealed in our experimental work. Finally, we propose a novel hypothesis about the role of mechanosensory input in sculpting AL dynamics and the implications for biological odor tracking.
Collapse
Affiliation(s)
- Harrison Tuckman
- Department of Mathematics, William & Mary Williamsburg, VA 23187, USA
| | - Jungmin Kim
- Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Aaditya Rangan
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Hong Lei
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Mainak Patel
- Department of Mathematics, William & Mary Williamsburg, VA 23187, USA.
| |
Collapse
|
10
|
Young BD, Escalon JA, Mathew D. Odors: from chemical structures to gaseous plumes. Neurosci Biobehav Rev 2020; 111:19-29. [PMID: 31931034 DOI: 10.1016/j.neubiorev.2020.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
Abstract
We are immersed within an odorous sea of chemical currents that we parse into individual odors with complex structures. Odors have been posited as determined by the structural relation between the molecules that compose the chemical compounds and their interactions with the receptor site. But, naturally occurring smells are parsed from gaseous odor plumes. To give a comprehensive account of the nature of odors the chemosciences must account for these large distributed entities as well. We offer a focused review of what is known about the perception of odor plumes for olfactory navigation and tracking, which we then connect to what is known about the role odorants play as properties of the plume in determining odor identity with respect to odor quality. We end by motivating our central claim that more research needs to be conducted on the role that odorants play within the odor plume in determining odor identity.
Collapse
Affiliation(s)
- Benjamin D Young
- Philosophy and Neuroscience, University of Nevada, 1664 N Virginia St, Reno, NV 89557, United States.
| | | | - Dennis Mathew
- Biology and Neuroscience, University of Nevada, Reno, United States.
| |
Collapse
|
11
|
Pannunzi M, Nowotny T. Odor Stimuli: Not Just Chemical Identity. Front Physiol 2019; 10:1428. [PMID: 31827441 PMCID: PMC6890726 DOI: 10.3389/fphys.2019.01428] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/04/2019] [Indexed: 01/14/2023] Open
Abstract
In most sensory modalities the underlying physical phenomena are well understood, and stimulus properties can be precisely controlled. In olfaction, the situation is different. The presence of specific chemical compounds in the air (or water) is the root cause for perceived odors, but it remains unknown what organizing principles, equivalent to wavelength for light, determine the dimensions of odor space. Equally important, but less in the spotlight, odor stimuli are also complex with respect to their physical properties, including concentration and time-varying spatio-temporal distribution. We still lack a complete understanding or control over these properties, in either experiments or theory. In this review, we will concentrate on two important aspects of the physical properties of odor stimuli beyond the chemical identity of the odorants: (1) The amplitude of odor stimuli and their temporal dynamics. (2) The spatio-temporal structure of odor plumes in a natural environment. Concerning these issues, we ask the following questions: (1) Given any particular experimental protocol for odor stimulation, do we have a realistic estimate of the odorant concentration in the air, and at the olfactory receptor neurons? Can we control, or at least know, the dynamics of odorant concentration at olfactory receptor neurons? (2) What do we know of the spatio-temporal structure of odor stimuli in a natural environment both from a theoretical and experimental perspective? And how does this change if we consider mixtures of odorants? For both topics, we will briefly summarize the underlying principles of physics and review the experimental and theoretical Neuroscience literature, focusing on the aspects that are relevant to animals’ physiology and behavior. We hope that by bringing the physical principles behind odor plume landscapes to the fore we can contribute to promoting a new generation of experiments and models.
Collapse
|
12
|
Abstract
In most sensory modalities the underlying physical phenomena are well understood, and stimulus properties can be precisely controlled. In olfaction, the situation is different. The presence of specific chemical compounds in the air (or water) is the root cause for perceived odors, but it remains unknown what organizing principles, equivalent to wavelength for light, determine the dimensions of odor space. Equally important, but less in the spotlight, odor stimuli are also complex with respect to their physical properties, including concentration and time-varying spatio-temporal distribution. We still lack a complete understanding or control over these properties, in either experiments or theory. In this review, we will concentrate on two important aspects of the physical properties of odor stimuli beyond the chemical identity of the odorants: (1) The amplitude of odor stimuli and their temporal dynamics. (2) The spatio-temporal structure of odor plumes in a natural environment. Concerning these issues, we ask the following questions: (1) Given any particular experimental protocol for odor stimulation, do we have a realistic estimate of the odorant concentration in the air, and at the olfactory receptor neurons? Can we control, or at least know, the dynamics of odorant concentration at olfactory receptor neurons? (2) What do we know of the spatio-temporal structure of odor stimuli in a natural environment both from a theoretical and experimental perspective? And how does this change if we consider mixtures of odorants? For both topics, we will briefly summarize the underlying principles of physics and review the experimental and theoretical Neuroscience literature, focusing on the aspects that are relevant to animals' physiology and behavior. We hope that by bringing the physical principles behind odor plume landscapes to the fore we can contribute to promoting a new generation of experiments and models.
Collapse
|
13
|
Strube-Bloss MF, Rössler W. Multimodal integration and stimulus categorization in putative mushroom body output neurons of the honeybee. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171785. [PMID: 29515886 PMCID: PMC5830775 DOI: 10.1098/rsos.171785] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/15/2018] [Indexed: 06/11/2023]
Abstract
Flowers attract pollinating insects like honeybees by sophisticated compositions of olfactory and visual cues. Using honeybees as a model to study olfactory-visual integration at the neuronal level, we focused on mushroom body (MB) output neurons (MBON). From a neuronal circuit perspective, MBONs represent a prominent level of sensory-modality convergence in the insect brain. We established an experimental design allowing electrophysiological characterization of olfactory, visual, as well as olfactory-visual induced activation of individual MBONs. Despite the obvious convergence of olfactory and visual pathways in the MB, we found numerous unimodal MBONs. However, a substantial proportion of MBONs (32%) responded to both modalities and thus integrated olfactory-visual information across MB input layers. In these neurons, representation of the olfactory-visual compound was significantly increased compared with that of single components, suggesting an additive, but nonlinear integration. Population analyses of olfactory-visual MBONs revealed three categories: (i) olfactory, (ii) visual and (iii) olfactory-visual compound stimuli. Interestingly, no significant differentiation was apparent regarding different stimulus qualities within these categories. We conclude that encoding of stimulus quality within a modality is largely completed at the level of MB input, and information at the MB output is integrated across modalities to efficiently categorize sensory information for downstream behavioural decision processing.
Collapse
|
14
|
Kropf J, Rössler W. In-situ recording of ionic currents in projection neurons and Kenyon cells in the olfactory pathway of the honeybee. PLoS One 2018; 13:e0191425. [PMID: 29351552 PMCID: PMC5774781 DOI: 10.1371/journal.pone.0191425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/04/2018] [Indexed: 11/18/2022] Open
Abstract
The honeybee olfactory pathway comprises an intriguing pattern of convergence and divergence: ~60.000 olfactory sensory neurons (OSN) convey olfactory information on ~900 projection neurons (PN) in the antennal lobe (AL). To transmit this information reliably, PNs employ relatively high spiking frequencies with complex patterns. PNs project via a dual olfactory pathway to the mushroom bodies (MB). This pathway comprises the medial (m-ALT) and the lateral antennal lobe tract (l-ALT). PNs from both tracts transmit information from a wide range of similar odors, but with distinct differences in coding properties. In the MBs, PNs form synapses with many Kenyon cells (KC) that encode odors in a spatially and temporally sparse way. The transformation from complex information coding to sparse coding is a well-known phenomenon in insect olfactory coding. Intrinsic neuronal properties as well as GABAergic inhibition are thought to contribute to this change in odor representation. In the present study, we identified intrinsic neuronal properties promoting coding differences between PNs and KCs using in-situ patch-clamp recordings in the intact brain. We found very prominent K+ currents in KCs clearly differing from the PN currents. This suggests that odor coding differences between PNs and KCs may be caused by differences in their specific ion channel properties. Comparison of ionic currents of m- and l-ALT PNs did not reveal any differences at a qualitative level.
Collapse
Affiliation(s)
- Jan Kropf
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Würzburg, Germany
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Würzburg, Germany
| |
Collapse
|
15
|
Independent processing of increments and decrements in odorant concentration by ON and OFF olfactory receptor neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:873-891. [PMID: 30251036 PMCID: PMC6208657 DOI: 10.1007/s00359-018-1289-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 09/11/2018] [Accepted: 09/14/2018] [Indexed: 12/21/2022]
Abstract
A salient feature of the insect olfactory system is its ability to detect and interpret simultaneously the identity and concentration of an odorant signal along with the temporal stimulus cues that are essential for accurate odorant tracking. The olfactory system of the cockroach utilizes two parallel pathways for encoding of odorant identity and the moment-to-moment succession of odorant concentrations as well as the rate at which concentration changes. This separation originates at the peripheral level of the ORNs (olfactory receptor neurons) which are localized in basiconic and trichoid sensilla. The graded activity of ORNs in the basiconic sensilla provides the variable for the combinatorial representation of odorant identity. The antagonistically responding ON and OFF ORNs in the trichoid sensilla transmit information about concentration increments and decrements with excitatory signals. Each ON and OFF ORN adjusts its gain for odorant concentration and its rate of change to the temporal dynamics of the odorant signal: as the rate of change diminishes, both ORNs improve their sensitivity for the rate of change at the expense of the sensitivity for the instantaneous concentration. This suggests that the ON and OFF ORNs are optimized to detect minute fluctuations or even creeping changes in odorant concentration.
Collapse
|
16
|
Dupuy F, Rouyar A, Deisig N, Bourgeois T, Limousin D, Wycke MA, Anton S, Renou M. A Background of a Volatile Plant Compound Alters Neural and Behavioral Responses to the Sex Pheromone Blend in a Moth. Front Physiol 2017; 8:79. [PMID: 28239358 PMCID: PMC5301018 DOI: 10.3389/fphys.2017.00079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/27/2017] [Indexed: 11/13/2022] Open
Abstract
Recognition of intra-specific olfactory signals within a complex environment of plant-related volatiles is crucial for reproduction in male moths. Sex pheromone information is detected by specific olfactory receptor neurons (Phe-ORNs), highly abundant on the male antenna. The information is then transmitted to the pheromone processing macroglomerular complex (MGC) within the primary olfactory center, the antennal lobe, where it is processed by local interneurons and projection neurons. Ultimately a behavioral response, orientation toward the pheromone source, is elicited. Volatile plant compounds (VPCs) are detected by other functional types of olfactory receptor neurons (ORNs) projecting in another area of the antennal lobe. However, Phe-ORNs also respond to some VPCs. Female-produced sex pheromones are emitted within a rich environment of VPCs, some of which have been shown to interfere with the detection and processing of sex pheromone information. As interference between the different odor sources might depend on the spatial and temporal features of the two types of stimuli, we investigated here behavioral and neuronal responses to a brief sex pheromone blend pulse in a VPC background as compared to a control background in the male noctuid moth Agrotis ipsilon. We observed male orientation behavior in a wind tunnel and recorded responses of Phe-ORNs and MGC neurons to a brief sex pheromone pulse within a background of individual VPCs. We also recorded the global input signal to the MGC using in vivo calcium imaging with the same stimulation protocol. We found that VPCs eliciting a response in Phe-ORNs and MGC neurons masked responses to the pheromone and decreased the contrast between background odor and the sex pheromone at both levels, whereas α-pinene did not interfere with first order processing. The calcium signal produced in response to a VPC background was tonic, lasting longer than the VPC stimulus duration, and masked entirely the pheromone response. One percent heptanal and linalool, in addition to the masking effect, caused a clear delay in responses of MGC neurons to the sex pheromone. Upwind flight toward the pheromone in a wind tunnel was also delayed but otherwise not altered by different doses of heptanal.
Collapse
Affiliation(s)
- Fabienne Dupuy
- Institut d'Ecologie et des Sciences de l'Environnement de Paris-ECOSENS, Institut National de la Recherche Agronomique-UPMC Versailles, France
| | - Angéla Rouyar
- Institut d'Ecologie et des Sciences de l'Environnement de Paris-ECOSENS, Institut National de la Recherche Agronomique-UPMC Versailles, France
| | - Nina Deisig
- Institut d'Ecologie et des Sciences de l'Environnement de Paris-ECOSENS, Institut National de la Recherche Agronomique-UPMC Versailles, France
| | - Thomas Bourgeois
- Institut d'Ecologie et des Sciences de l'Environnement de Paris-ECOSENS, Institut National de la Recherche Agronomique-UPMC Versailles, France
| | - Denis Limousin
- Institut d'Ecologie et des Sciences de l'Environnement de Paris-ECOSENS, Institut National de la Recherche Agronomique-UPMC Versailles, France
| | - Marie-Anne Wycke
- Institut d'Ecologie et des Sciences de l'Environnement de Paris-ECOSENS, Institut National de la Recherche Agronomique-UPMC Versailles, France
| | - Sylvia Anton
- Institut d'Ecologie et des Sciences de l'Environnement de Paris-ECOSENS, Institut National de la Recherche Agronomique-UPMC Versailles, France
| | - Michel Renou
- Institut d'Ecologie et des Sciences de l'Environnement de Paris-ECOSENS, Institut National de la Recherche Agronomique-UPMC Versailles, France
| |
Collapse
|
17
|
Presynaptic GABA Receptors Mediate Temporal Contrast Enhancement in Drosophila Olfactory Sensory Neurons and Modulate Odor-Driven Behavioral Kinetics. eNeuro 2016; 3:eN-NWR-0080-16. [PMID: 27588305 PMCID: PMC4994068 DOI: 10.1523/eneuro.0080-16.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/04/2016] [Accepted: 07/21/2016] [Indexed: 11/21/2022] Open
Abstract
Contrast enhancement mediated by lateral inhibition within the nervous system enhances the detection of salient features of visual and auditory stimuli, such as spatial and temporal edges. However, it remains unclear how mechanisms for temporal contrast enhancement in the olfactory system can enhance the detection of odor plume edges during navigation. To address this question, we delivered to Drosophila melanogaster flies pulses of high odor intensity that induce sustained peripheral responses in olfactory sensory neurons (OSNs). We use optical electrophysiology to directly measure electrical responses in presynaptic terminals and demonstrate that sustained peripheral responses are temporally sharpened by the combined activity of two types of inhibitory GABA receptors to generate contrast-enhanced voltage responses in central OSN axon terminals. Furthermore, we show how these GABA receptors modulate the time course of innate behavioral responses after odor pulse termination, demonstrating an important role for temporal contrast enhancement in odor-guided navigation.
Collapse
|
18
|
Reisenman CE, Lei H, Guerenstein PG. Neuroethology of Olfactory-Guided Behavior and Its Potential Application in the Control of Harmful Insects. Front Physiol 2016; 7:271. [PMID: 27445858 PMCID: PMC4928593 DOI: 10.3389/fphys.2016.00271] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/16/2016] [Indexed: 11/26/2022] Open
Abstract
Harmful insects include pests of crops and storage goods, and vectors of human and animal diseases. Throughout their history, humans have been fighting them using diverse methods. The fairly recent development of synthetic chemical insecticides promised efficient crop and health protection at a relatively low cost. However, the negative effects of those insecticides on human health and the environment, as well as the development of insect resistance, have been fueling the search for alternative control tools. New and promising alternative methods to fight harmful insects include the manipulation of their behavior using synthetic versions of "semiochemicals", which are natural volatile and non-volatile substances involved in the intra- and/or inter-specific communication between organisms. Synthetic semiochemicals can be used as trap baits to monitor the presence of insects, so that insecticide spraying can be planned rationally (i.e., only when and where insects are actually present). Other methods that use semiochemicals include insect annihilation by mass trapping, attract-and- kill techniques, behavioral disruption, and the use of repellents. In the last decades many investigations focused on the neural bases of insect's responses to semiochemicals. Those studies help understand how the olfactory system detects and processes information about odors, which could lead to the design of efficient control tools, including odor baits, repellents or ways to confound insects. Here we review our current knowledge about the neural mechanisms controlling olfactory responses to semiochemicals in harmful insects. We also discuss how this neuroethology approach can be used to design or improve pest/vector management strategies.
Collapse
Affiliation(s)
- Carolina E. Reisenman
- Department of Molecular and Cell Biology and Essig Museum of Entomology, University of California, BerkeleyBerkeley, CA, USA
| | - Hong Lei
- Department of Neuroscience, University of ArizonaTucson, AZ, USA
| | - Pablo G. Guerenstein
- Lab. de Estudio de la Biología de Insectos, CICyTTP-CONICETDiamante, Argentina
- Facultad de Ingeniería, Universidad Nacional de Entre RíosOro Verde, Argentina
| |
Collapse
|
19
|
Lei H, Yu Y, Zhu S, Rangan AV. Intrinsic and Network Mechanisms Constrain Neural Synchrony in the Moth Antennal Lobe. Front Physiol 2016; 7:80. [PMID: 27014082 PMCID: PMC4781831 DOI: 10.3389/fphys.2016.00080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 02/18/2016] [Indexed: 11/30/2022] Open
Abstract
Projection-neurons (PNs) within the antennal lobe (AL) of the hawkmoth respond vigorously to odor stimulation, with each vigorous response followed by a ~1 s period of suppression—dubbed the “afterhyperpolarization-phase,” or AHP-phase. Prior evidence indicates that this AHP-phase is important for the processing of odors, but the mechanisms underlying this phase and its function remain unknown. We investigate this issue. Beginning with several physiological experiments, we find that pharmacological manipulation of the AL yields surprising results. Specifically, (a) the application of picrotoxin (PTX) lengthens the AHP-phase and reduces PN activity, whereas (b) the application of Bicuculline-methiodide (BIC) reduces the AHP-phase and increases PN activity. These results are curious, as both PTX and BIC are inhibitory-receptor antagonists. To resolve this conundrum, we speculate that perhaps (a) PTX reduces PN activity through a disinhibitory circuit involving a heterogeneous population of local-neurons, and (b) BIC acts to hamper certain intrinsic currents within the PNs that contribute to the AHP-phase. To probe these hypotheses further we build a computational model of the AL and benchmark our model against our experimental observations. We find that, for parameters which satisfy these benchmarks, our model exhibits a particular kind of synchronous activity: namely, “multiple-firing-events” (MFEs). These MFEs are causally-linked sequences of spikes which emerge stochastically, and turn out to have important dynamical consequences for all the experimentally observed phenomena we used as benchmarks. Taking a step back, we extract a few predictions from our computational model pertaining to the real AL: Some predictions deal with the MFEs we expect to see in the real AL, whereas other predictions involve the runaway synchronization that we expect when BIC-application hampers the AHP-phase. By examining the literature we see support for the former, and we perform some additional experiments to confirm the latter. The confirmation of these predictions validates, at least partially, our initial speculation above. We conclude that the AL is poised in a state of high-gain; ready to respond vigorously to even faint stimuli. After each response the AHP-phase functions to prevent runaway synchronization and to “reset” the AL for another odor-specific response.
Collapse
Affiliation(s)
- Hong Lei
- Department of Neuroscience, The University of Arizona Tucson, AZ, USA
| | - Yanxue Yu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine Beijing, China
| | - Shuifang Zhu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine Beijing, China
| | - Aaditya V Rangan
- Department of Mathematics, Courant Institute of Mathematical Sciences, New York University New York, NY, USA
| |
Collapse
|
20
|
Lizbinski KM, Metheny JD, Bradley SP, Kesari A, Dacks AM. The anatomical basis for modulatory convergence in the antennal lobe of Manduca sexta. J Comp Neurol 2015; 524:1859-75. [PMID: 26560074 DOI: 10.1002/cne.23926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022]
Abstract
The release of neuromodulators by widely projecting neurons often allows sensory systems to alter how they process information based on the physiological state of an animal. Neuromodulators alter network function by changing the biophysical properties of individual neurons and the synaptic efficacy with which individual neurons communicate. However, most, if not all, sensory networks receive multiple neuromodulatory inputs, and the mechanisms by which sensory networks integrate multiple modulatory inputs are not well understood. Here we characterized the relative glomerular distribution of two extrinsic neuromodulators associated with distinct physiological states, serotonin (5-HT) and dopamine (DA), in the antennal lobe (AL) of the moth Manduca sexta. By using immunocytochemistry and mass dye fills, we characterized the innervation patterns of both 5-HT- and tyrosine hydroxylase-immunoreactive processes relative to each other, to olfactory receptor neurons (ORNs), to projection neurons (PNs), and to several subsets of local interneurons (LNs). 5-HT immunoreactivity had nearly complete overlap with PNs and LNs, yet no overlap with ORNs, suggesting that 5-HT may modulate PNs and LNs directly but not ORNs. TH immunoreactivity overlapped with PNs, LNs, and ORNs, suggesting that dopamine has the potential to modulate all three cell types. Furthermore, the branching density of each neuromodulator differed, with 5-HT exhibiting denser arborizations and TH-ir processes being sparser. Our results suggest that 5-HT and DA extrinsic neurons target partially overlapping glomerular regions, yet DA extends further into the region occupied by ORNs.
Collapse
Affiliation(s)
- Kristyn M Lizbinski
- Department of Biology, West Virginia University, Morgantown, West Virginia, 26505
| | - Jackie D Metheny
- Department of Biology, West Virginia University, Morgantown, West Virginia, 26505.,Center for Cardiovascular and Pulmonary Research and The Heart Center at Nationwide Children's Hospital, Columbus, Ohio, 43205
| | - Samual P Bradley
- Department of Biology, West Virginia University, Morgantown, West Virginia, 26505
| | - Aditya Kesari
- Department of Biology, West Virginia University, Morgantown, West Virginia, 26505
| | - Andrew M Dacks
- Department of Biology, West Virginia University, Morgantown, West Virginia, 26505
| |
Collapse
|
21
|
Abstract
Animals need to discriminate differences in spatiotemporally distributed sensory signals in terms of quality as well as quantity for generating adaptive behavior. Olfactory signals characterized by odor identity and concentration are intermittently distributed in the environment. From these intervals of stimulation, animals process odorant concentration to localize partners or food sources. Although concentration-response characteristics in olfactory neurons have traditionally been investigated using single stimulus pulses, their behavior under intermittent stimulus regimens remains largely elusive. Using the silkmoth (Bombyx mori) pheromone processing system, a simple and behaviorally well-defined model for olfaction, we investigated the neuronal representation of odorant concentration upon intermittent stimulation in the naturally occurring range. To the first stimulus in a series, the responses of antennal lobe (AL) projection neurons (PNs) showed a concentration dependence as previously shown in many olfactory systems. However, PN response amplitudes dynamically changed upon exposure to intermittent stimuli of the same odorant concentration and settled to a constant, largely concentration-independent level. As a result, PN responses emphasized odorant concentration changes rather than encoding absolute concentration in pulse trains of stimuli. Olfactory receptor neurons did not contribute to this response transformation which was due to long-lasting inhibition affecting PNs in the AL. Simulations confirmed that inhibition also provides advantages when stimuli have naturalistic properties. The primary olfactory center thus functions as an odorant concentration differentiator to efficiently detect concentration changes, thereby improving odorant source orientation over a wide concentration range.
Collapse
|
22
|
Information flow through neural circuits for pheromone orientation. Nat Commun 2014; 5:5919. [DOI: 10.1038/ncomms6919] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/20/2014] [Indexed: 11/08/2022] Open
|
23
|
Coutinho-Abreu IV, Forster L, Guda T, Ray A. Odorants for surveillance and control of the Asian Citrus Psyllid (Diaphorina citri). PLoS One 2014; 9:e109236. [PMID: 25347318 PMCID: PMC4209970 DOI: 10.1371/journal.pone.0109236] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/05/2014] [Indexed: 12/02/2022] Open
Abstract
Background The Asian Citrus Psyllid (ACP), Diaphorina citri, can transmit the bacterium Candidatus Liberibacter while feeding on citrus flush shoots. This bacterium causes Huanglongbing (HLB), a major disease of citrus cultivation worldwide necessitating the development of new tools for ACP surveillance and control. The olfactory system of ACP is sensitive to variety of odorants released by citrus plants and offers an opportunity to develop new attractants and repellents. Results In this study, we performed single-unit electrophysiology to identify odorants that are strong activators, inhibitors, and prolonged activators of ACP odorant receptor neurons (ORNs). We identified a suite of odorants that activated the ORNs with high specificity and sensitivity, which may be useful in eliciting behavior such as attraction. In separate experiments, we also identified odorants that evoked prolonged ORN responses and antagonistic odorants able to suppress neuronal responses to activators, both of which can be useful in lowering attraction to hosts. In field trials, we tested the electrophysiologically identified activating odorants and identified a 3-odor blend that enhances trap catches by ∼230%. Conclusion These findings provide a set of odorants that can be used to develop affordable and safe odor-based surveillance and masking strategies for this dangerous pest insect.
Collapse
Affiliation(s)
- Iliano V. Coutinho-Abreu
- Department of Entomology, University of California Riverside, Riverside, California, United States of America
| | - Lisa Forster
- Department of Entomology, University of California Riverside, Riverside, California, United States of America
| | - Tom Guda
- Department of Entomology, University of California Riverside, Riverside, California, United States of America
| | - Anandasankar Ray
- Department of Entomology, University of California Riverside, Riverside, California, United States of America
- Center for Disease Vector Research, University of California Riverside, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
Voges N, Chaffiol A, Lucas P, Martinez D. Reactive searching and infotaxis in odor source localization. PLoS Comput Biol 2014; 10:e1003861. [PMID: 25330317 PMCID: PMC4211930 DOI: 10.1371/journal.pcbi.1003861] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 08/15/2014] [Indexed: 11/19/2022] Open
Abstract
Male moths aiming to locate pheromone-releasing females rely on stimulus-adapted search maneuvers complicated by a discontinuous distribution of pheromone patches. They alternate sequences of upwind surge when perceiving the pheromone and cross- or downwind casting when the odor is lost. We compare four search strategies: three reactive versus one cognitive. The former consist of pre-programmed movement sequences triggered by pheromone detections while the latter uses Bayesian inference to build spatial probability maps. Based on the analysis of triphasic responses of antennal lobe neurons (On, inhibition, Off), we propose three reactive strategies. One combines upwind surge (representing the On response to a pheromone detection) and spiral casting, only. The other two additionally include crosswind (zigzag) casting representing the Off phase. As cognitive strategy we use the infotaxis algorithm which was developed for searching in a turbulent medium. Detection events in the electroantennogram of a moth attached to a robot indirectly control this cyborg, depending on the strategy in use. The recorded trajectories are analyzed with regard to success rates, efficiency, and other features. In addition, we qualitatively compare our robotic trajectories to behavioral search paths. Reactive searching is more efficient (yielding shorter trajectories) for higher pheromone doses whereas cognitive searching works better for lower doses. With respect to our experimental conditions (2 m from starting position to pheromone source), reactive searching with crosswind zigzag yields the shortest trajectories (for comparable success rates). Assuming that the neuronal Off response represents a short-term memory, zigzagging is an efficient movement to relocate a recently lost pheromone plume. Accordingly, such reactive strategies offer an interesting alternative to complex cognitive searching.
Collapse
Affiliation(s)
- Nicole Voges
- CNRS, LORIA, UMR 7503, Vandoeuvre-les-Nancy, France
- * E-mail:
| | | | - Philippe Lucas
- INRA, UMR 1392, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | | |
Collapse
|
25
|
Riffell JA, Shlizerman E, Sanders E, Abrell L, Medina B, Hinterwirth AJ, Kutz JN. Sensory biology. Flower discrimination by pollinators in a dynamic chemical environment. Science 2014; 344:1515-8. [PMID: 24970087 DOI: 10.1126/science.1251041] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Pollinators use their sense of smell to locate flowers from long distances, but little is known about how they are able to discriminate their target odor from a mélange of other natural and anthropogenic odors. Here, we measured the plume from Datura wrightii flowers, a nectar resource for Manduca sexta moths, and show that the scent was dynamic and rapidly embedded among background odors. The moth's ability to track the odor was dependent on the background and odor frequency. By influencing the balance of excitation and inhibition in the antennal lobe, background odors altered the neuronal representation of the target odor and the ability of the moth to track the plume. These results show that the mix of odors present in the environment influences the pollinator's olfactory ability.
Collapse
Affiliation(s)
- Jeffrey A Riffell
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA.
| | - Eli Shlizerman
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195-3925, USA
| | - Elischa Sanders
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Leif Abrell
- Department of Chemistry and Biochemistry and Department of Soil, Water, and Environmental Science, University of Arizona, AZ 85721-0077, USA
| | - Billie Medina
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Armin J Hinterwirth
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - J Nathan Kutz
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195-3925, USA
| |
Collapse
|
26
|
Houot B, Burkland R, Tripathy S, Daly KC. Antennal lobe representations are optimized when olfactory stimuli are periodically structured to simulate natural wing beat effects. Front Cell Neurosci 2014; 8:159. [PMID: 24971052 PMCID: PMC4053783 DOI: 10.3389/fncel.2014.00159] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 05/23/2014] [Indexed: 11/13/2022] Open
Abstract
Animals use behaviors to actively sample the environment across a broad spectrum of sensory domains. These behaviors discretize the sensory experience into unique spatiotemporal moments, minimize sensory adaptation, and enhance perception. In olfaction, behaviors such as sniffing, antennal flicking, and wing beating all act to periodically expose olfactory epithelium. In mammals, it is thought that sniffing enhances neural representations; however, the effects of insect wing beating on representations remain unknown. To determine how well the antennal lobe (AL) produces odor dependent representations when wing beating effects are simulated, we used extracellular methods to record neural units and local field potentials (LFPs) from moth AL. We recorded responses to odors presented as prolonged continuous stimuli or periodically as 20 and 25 Hz pulse trains designed to simulate the oscillating effects of wing beating around the antennae during odor guided flight. Using spectral analyses, we show that ~25% of all recorded units were able to entrain to "pulsed stimuli"; this includes pulsed blanks, which elicited the strongest overall entrainment. The strength of entrainment to pulse train stimuli was dependent on molecular features of the odorants, odor concentration, and pulse train duration. Moreover, units showing pulse tracking responses were highly phase locked to LFPs during odor stimulation, indicating that unit-LFP phase relationships are stimulus-driven. Finally, a Euclidean distance-based population vector analysis established that AL odor representations are more robust, peak more quickly, and do not show adaptation when odors were presented at the natural wing beat frequency as opposed to prolonged continuous stimulation. These results suggest a general strategy for optimizing olfactory representations, which exploits the natural rhythmicity of wing beating by integrating mechanosensory and olfactory cues at the level of the AL.
Collapse
Affiliation(s)
- Benjamin Houot
- Department of Biology, West Virginia University Morgantown, WV, USA ; Centre des Sciences du Goût et de l'Alimentation, Université de Bourgogne Dijon, France
| | - Rex Burkland
- Department of Biology, West Virginia University Morgantown, WV, USA
| | - Shreejoy Tripathy
- Center for the Neural Basis of Cognition, Carnegie Mellon University Pittsburgh, PA, USA
| | - Kevin C Daly
- Department of Biology, West Virginia University Morgantown, WV, USA
| |
Collapse
|
27
|
Guidobaldi F, May-Concha IJ, Guerenstein PG. Morphology and physiology of the olfactory system of blood-feeding insects. ACTA ACUST UNITED AC 2014; 108:96-111. [PMID: 24836537 DOI: 10.1016/j.jphysparis.2014.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/21/2014] [Accepted: 04/29/2014] [Indexed: 01/12/2023]
Abstract
Several blood-feeding (hematophagous) insects are vectors of a number of diseases including dengue, Chagas disease and leishmaniasis which persistently affect public health throughout Latin America. The vectors of those diseases include mosquitoes, triatomine bugs and sandflies. As vector control is an efficient way to prevent these illnesses it is important to understand the sensory biology of those harmful insects. We study the physiology of the olfactory system of those insects and apply that knowledge on the development of methods to manipulate their behavior. Here we review some of the latest information on insect olfaction with emphasis on hematophagous insects. The insect olfactory sensory neurons are housed inside hair-like organs called sensilla which are mainly distributed on the antenna and mouthparts. The identity of many of the odor compounds that those neurons detect are already known in hematophagous insects. They include several constituents of host (vertebrate) odor, sex, aggregation and alarm pheromones, and compounds related to egg-deposition behavior. Recent work has contributed significant knowledge on how odor information is processed in the insect first odor-processing center in the brain, the antennal lobe. The quality, quantity, and temporal features of the odor stimuli are encoded by the neural networks of the antennal lobe. Information regarding odor mixtures is also encoded. While natural mixtures evoke strong responses, synthetic mixtures that deviate from their natural counterparts in terms of key constituents or proportions of those constituents evoke weaker responses. The processing of olfactory information is largely unexplored in hematophagous insects. However, many aspects of their olfactory behavior are known. As in other insects, responses to relevant single odor compounds are weak while natural mixtures evoke strong responses. Future challenges include studying how information about odor mixtures is processed in their brain. This could help develop highly attractive synthetic odor blends to lure them into traps.
Collapse
Affiliation(s)
- F Guidobaldi
- Laboratorio de Neuroetología Ecológica, CICyTTP-CONICET, Diamante, Entre Ríos, Argentina; Facultad de Ingeniería, UNER, Oro Verde, Entre Ríos, Argentina
| | - I J May-Concha
- Laboratorio de Neuroetología Ecológica, CICyTTP-CONICET, Diamante, Entre Ríos, Argentina; Centro Regional de Investigación en Salud Pública (CRISP), Instituto Nacional de Salud Pública (INSP), Tapachula, Chiapas, Mexico.
| | - P G Guerenstein
- Laboratorio de Neuroetología Ecológica, CICyTTP-CONICET, Diamante, Entre Ríos, Argentina; Facultad de Ingeniería, UNER, Oro Verde, Entre Ríos, Argentina
| |
Collapse
|
28
|
Gage SL, Nighorn A. The role of nitric oxide in memory is modulated by diurnal time. Front Syst Neurosci 2014; 8:59. [PMID: 24847218 PMCID: PMC4017719 DOI: 10.3389/fnsys.2014.00059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/28/2014] [Indexed: 11/21/2022] Open
Abstract
Nitric oxide (NO) is thought to play an important neuromodulatory role in the olfactory system. This modulation has been suggested to be particularly important for olfactory learning and memory in the antennal lobe (the primary olfactory network in invertebrates). We are using the hawkmoth, Manduca sexta, to further investigate the role of NO in olfactory memory. Recent findings suggest that NO affects short-term memory traces and that NO concentration fluctuates with the light cycle. This gives rise to the hypothesis that NO may be involved in the connection between memory and circadian rhythms. In this study, we explore the role of diurnal time and NO in memory by altering the time of day when associative-olfactory conditioning is performed. We find a strong effect of NO on short-term memory, and two surprising effects of diurnal time. We find that (1) at certain time points, NO affects longer traces of memory in addition to short-term memory; and (2) when conditioning is performed close to the light cycle switches—both from light to dark and dark to light—NO does not significantly affect memory at all. These findings suggest an intriguing functional role for NO in olfactory conditioning that is modulated as a function of diurnal time.
Collapse
Affiliation(s)
- Stephanie L Gage
- Department of Neuroscience, University of Arizona Tucson, AZ, USA
| | - Alan Nighorn
- Department of Neuroscience, University of Arizona Tucson, AZ, USA
| |
Collapse
|
29
|
Fujiwara T, Kazawa T, Haupt SS, Kanzaki R. Postsynaptic odorant concentration dependent inhibition controls temporal properties of spike responses of projection neurons in the moth antennal lobe. PLoS One 2014; 9:e89132. [PMID: 24586546 PMCID: PMC3929629 DOI: 10.1371/journal.pone.0089132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 01/21/2014] [Indexed: 11/24/2022] Open
Abstract
Although odorant concentration-response characteristics of olfactory neurons have been widely investigated in a variety of animal species, the effect of odorant concentration on neural processing at circuit level is still poorly understood. Using calcium imaging in the silkmoth (Bombyx mori) pheromone processing circuit of the antennal lobe (AL), we studied the effect of odorant concentration on second-order projection neuron (PN) responses. While PN calcium responses of dendrites showed monotonic increases with odorant concentration, calcium responses of somata showed decreased responses at higher odorant concentrations due to postsynaptic inhibition. Simultaneous calcium imaging and electrophysiology revealed that calcium responses of PN somata but not dendrites reflect spiking activity. Inhibition shortened spike response duration rather than decreasing peak instantaneous spike frequency (ISF). Local interneurons (LNs) that were specifically activated at high odorant concentrations at which PN responses were suppressed are the putative source of inhibition. Our results imply the existence of an intraglomerular mechanism that preserves time resolution in olfactory processing over a wide odorant concentration range.
Collapse
Affiliation(s)
- Terufumi Fujiwara
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tomoki Kazawa
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Stephan Shuichi Haupt
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Ryohei Kanzaki
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
30
|
|
31
|
Capurro A, Baroni F, Kuebler LS, Kárpáti Z, Dekker T, Lei H, Hansson BS, Pearce TC, Olsson SB. Temporal features of spike trains in the moth antennal lobe revealed by a comparative time-frequency analysis. PLoS One 2014; 9:e84037. [PMID: 24465391 PMCID: PMC3896344 DOI: 10.1371/journal.pone.0084037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 11/11/2013] [Indexed: 12/24/2022] Open
Abstract
The discrimination of complex sensory stimuli in a noisy environment is an immense computational task. Sensory systems often encode stimulus features in a spatiotemporal fashion through the complex firing patterns of individual neurons. To identify these temporal features, we have developed an analysis that allows the comparison of statistically significant features of spike trains localized over multiple scales of time-frequency resolution. Our approach provides an original way to utilize the discrete wavelet transform to process instantaneous rate functions derived from spike trains, and select relevant wavelet coefficients through statistical analysis. Our method uncovered localized features within olfactory projection neuron (PN) responses in the moth antennal lobe coding for the presence of an odor mixture and the concentration of single component odorants, but not for compound identities. We found that odor mixtures evoked earlier responses in biphasic response type PNs compared to single components, which led to differences in the instantaneous firing rate functions with their signal power spread across multiple frequency bands (ranging from 0 to 45.71 Hz) during a time window immediately preceding behavioral response latencies observed in insects. Odor concentrations were coded in excited response type PNs both in low frequency band differences (2.86 to 5.71 Hz) during the stimulus and in the odor trace after stimulus offset in low (0 to 2.86 Hz) and high (22.86 to 45.71 Hz) frequency bands. These high frequency differences in both types of PNs could have particular relevance for recruiting cellular activity in higher brain centers such as mushroom body Kenyon cells. In contrast, neurons in the specialized pheromone-responsive area of the moth antennal lobe exhibited few stimulus-dependent differences in temporal response features. These results provide interesting insights on early insect olfactory processing and introduce a novel comparative approach for spike train analysis applicable to a variety of neuronal data sets.
Collapse
Affiliation(s)
- Alberto Capurro
- Department of Engineering, University of Leicester, Leicester, United Kingdom
| | - Fabiano Baroni
- School of Psychology and Psychiatry, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- NeuroEngineering Laboratory, Department of Electrical & Electronic Engineering, University of Melbourne, Melbourne, Victoria, Australia
- Centre for Neural Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - Linda S. Kuebler
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Zsolt Kárpáti
- Department of Zoology, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Teun Dekker
- Division of Chemical Ecology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Hong Lei
- Department of Neuroscience, School of Mind, Brain and Behavior, University of Arizona, Tucson, Arizona, United States of America
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Timothy C. Pearce
- Department of Engineering, University of Leicester, Leicester, United Kingdom
| | - Shannon B. Olsson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- * E-mail:
| |
Collapse
|
32
|
Effect of GABAergic inhibition on odorant concentration coding in mushroom body intrinsic neurons of the honeybee. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 200:183-95. [DOI: 10.1007/s00359-013-0877-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/06/2013] [Accepted: 12/10/2013] [Indexed: 12/29/2022]
|
33
|
Heinbockel T, Shields VDC, Reisenman CE. Glomerular interactions in olfactory processing channels of the antennal lobes. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:929-46. [PMID: 23893248 PMCID: PMC4066976 DOI: 10.1007/s00359-013-0842-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/14/2013] [Accepted: 07/16/2013] [Indexed: 11/24/2022]
Abstract
An open question in olfactory coding is the extent of interglomerular connectivity: do olfactory glomeruli and their neurons regulate the odorant responses of neurons innervating other glomeruli? In the olfactory system of the moth Manduca sexta, the response properties of different types of antennal olfactory receptor cells are known. Likewise, a subset of antennal lobe glomeruli has been functionally characterized and the olfactory tuning of their innervating neurons identified. This provides a unique opportunity to determine functional interactions between glomeruli of known input, specifically, (1) glomeruli processing plant odors and (2) glomeruli activated by antennal stimulation with pheromone components of conspecific females. Several studies describe reciprocal inhibitory effects between different types of pheromone-responsive projection neurons suggesting lateral inhibitory interactions between pheromone component-selective glomerular neural circuits. Furthermore, antennal lobe projection neurons that respond to host plant volatiles and innervate single, ordinary glomeruli are inhibited during antennal stimulation with the female's sex pheromone. The studies demonstrate the existence of lateral inhibitory effects in response to behaviorally significant odorant stimuli and irrespective of glomerular location in the antennal lobe. Inhibitory interactions are present within and between olfactory subsystems (pheromonal and non-pheromonal subsystems), potentially to enhance contrast and strengthen odorant discrimination.
Collapse
Affiliation(s)
- Thomas Heinbockel
- Department of Anatomy, Howard University College of Medicine, 520 W St., N.W., Washington, DC, 20059, USA,
| | | | | |
Collapse
|
34
|
Synchronous firing of antennal-lobe projection neurons encodes the behaviorally effective ratio of sex-pheromone components in male Manduca sexta. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:963-79. [PMID: 24002682 DOI: 10.1007/s00359-013-0849-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 10/26/2022]
Abstract
Olfactory stimuli that are essential to an animal's survival and reproduction are often complex mixtures of volatile organic compounds in characteristic proportions. Here, we investigated how these proportions are encoded in the primary olfactory processing center, the antennal lobe, of male Manduca sexta moths. Two key components of the female's sex pheromone, present in an approximately 2:1 ratio, are processed in each of two neighboring glomeruli in the macroglomerular complex (MGC) of males of this species. In wind-tunnel flight experiments, males exhibited behavioral selectivity for ratios approximating the ratio released by conspecific females. The ratio between components was poorly represented, however, in the firing-rate output of uniglomerular MGC projection neurons (PNs). PN firing rate was mostly insensitive to the ratio between components, and individual PNs did not exhibit a preference for a particular ratio. Recording simultaneously from pairs of PNs in the same glomerulus, we found that the natural ratio between components elicited the most synchronous spikes, and altering the proportion of either component decreased the proportion of synchronous spikes. The degree of synchronous firing between PNs in the same glomerulus thus selectively encodes the natural ratio that most effectively evokes the natural behavioral response to pheromone.
Collapse
|
35
|
Pheromone responsiveness threshold depends on temporal integration by antennal lobe projection neurons. Proc Natl Acad Sci U S A 2013; 110:15455-60. [PMID: 24006366 DOI: 10.1073/pnas.1313707110] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The olfactory system of male moths has an extreme sensitivity with the capability to detect and recognize conspecific pheromones dispersed and greatly diluted in the air. Just 170 molecules of the silkmoth (Bombyx mori) sex pheromone bombykol are sufficient to induce sexual behavior in the male. However, it is still unclear how the sensitivity of olfactory receptor neurons (ORNs) is relayed through the brain to generate high behavioral responsiveness. Here, we show that ORN activity that is subthreshold in terms of behavior can be amplified to suprathreshold levels by temporal integration in antennal lobe projection neurons (PNs) if occurring within a specific time window. To control ORN inputs with high temporal resolution, channelrhodopsin-2 was genetically introduced into bombykol-responsive ORNs. Temporal integration in PNs was only observed for weak inputs, but not for strong inputs. Pharmacological dissection revealed that GABAergic mechanisms inhibit temporal integration of strong inputs, showing that GABA signaling regulates PN responses in a stimulus-dependent fashion. Our results show that boosting of the PNs' responses by temporal integration of olfactory information occurs specifically near the behavioral threshold, effectively defining the lower bound for behavioral responsiveness.
Collapse
|
36
|
Distribution of correlated spiking events in a population-based approach for Integrate-and-Fire networks. J Comput Neurosci 2013; 36:279-95. [PMID: 23851661 DOI: 10.1007/s10827-013-0472-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/12/2013] [Accepted: 06/16/2013] [Indexed: 10/26/2022]
Abstract
Randomly connected populations of spiking neurons display a rich variety of dynamics. However, much of the current modeling and theoretical work has focused on two dynamical extremes: on one hand homogeneous dynamics characterized by weak correlations between neurons, and on the other hand total synchrony characterized by large populations firing in unison. In this paper we address the conceptual issue of how to mathematically characterize the partially synchronous "multiple firing events" (MFEs) which manifest in between these two dynamical extremes. We further develop a geometric method for obtaining the distribution of magnitudes of these MFEs by recasting the cascading firing event process as a first-passage time problem, and deriving an analytical approximation of the first passage time density valid for large neuron populations. Thus, we establish a direct link between the voltage distributions of excitatory and inhibitory neurons and the number of neurons firing in an MFE that can be easily integrated into population-based computational methods, thereby bridging the gap between homogeneous firing regimes and total synchrony.
Collapse
|
37
|
The role of the coreceptor Orco in insect olfactory transduction. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:897-909. [PMID: 23824225 DOI: 10.1007/s00359-013-0837-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 10/26/2022]
Abstract
Insects sense odorants with specialized odorant receptors (ORs). Each antennal olfactory receptor neuron expresses one OR with an odorant binding site together with a conserved coreceptor called Orco which does not bind odorants. Orco is necessary for localization of ORs to dendritic membranes and, thus, is essential for odorant detection. It forms a spontaneously opening cation channel, activated via phosphorylation by protein kinase C. Thereafter, Orco is also activated via cyclic adenosine monophosphate (cAMP). Orco forms homo-as well as heteromers with ORs with unknown stoichiometry. Contradictory publications suggest different mechanisms of olfactory transduction. On the one hand, evidence accumulates for the employment of more than one G protein-coupled olfactory transduction cascade in different insects. On the other hand, results from other studies suggest that the OR-Orco complex functions as an odorant-gated cation channel mediating ionotropic signal transduction. This review analyzes conflicting hypotheses concerning the role of Orco in insect olfactory transduction. In conclusion, in situ studies in hawkmoths falsify the hypothesis that Orco underlies odorant-induced ionotropic signal transduction in all insect species. Instead, Orco forms a metabotropically gated, slow cation channel which controls odorant response threshold and kinetics of the sensory neuron.
Collapse
|
38
|
Beyaert I, Hilker M. Plant odour plumes as mediators of plant-insect interactions. Biol Rev Camb Philos Soc 2013; 89:68-81. [PMID: 23714000 DOI: 10.1111/brv.12043] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 04/19/2013] [Accepted: 04/25/2013] [Indexed: 01/11/2023]
Abstract
Insect olfactory orientation along odour plumes has been studied intensively with respect to pheromonal communication, whereas little knowledge is available on how plant odour plumes (POPs) affect olfactory searching by an insect for its host plants. The primary objective of this review is to examine the role of POPs in the attraction of insects. First, we consider parameters of an odour source and the environment which determine the size, shape and structure of an odour plume, and we apply that knowledge to POPs. Second, we compare characteristics of insect pheromonal plumes and POPs. We propose a 'POP concept' for the olfactory orientation of insects to plants. We suggest that: (i) an insect recognises a POP by means of plant volatile components that are encountered in concentrations higher than a threshold detection limit and that occur in a qualitative and quantitative blend indicating a resource; (ii) perception of the fine structure of a POP enables an insect to distinguish a POP from an unspecific odorous background and other interfering plumes; and (iii) an insect can follow several POPs to their sources, and may leave the track of one POP and switch to another one if this conveys a signal with higher reliability or indicates a more suitable resource. The POP concept proposed here may be a useful tool for research in olfactory-mediated plant-insect interactions.
Collapse
Affiliation(s)
- Ivo Beyaert
- Freie Universität Berlin, Institut für Biologie, Haderslebener Str. 9, D-12163, Berlin, Germany
| | | |
Collapse
|
39
|
Gage SL, Daly KC, Nighorn A. Nitric oxide affects short-term olfactory memory in the antennal lobe of Manduca sexta. ACTA ACUST UNITED AC 2013; 216:3294-300. [PMID: 23685973 DOI: 10.1242/jeb.086694] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nitric oxide (NO) is thought to play an important neuromodulatory role in olfaction. We are using the hawkmoth Manduca sexta to investigate the function of NO signaling in the antennal lobe (AL; the primary olfactory network in invertebrates). We have found previously that NO is present at baseline levels, dramatically increases in response to odor stimulation, and alters the electrophysiology of AL neurons. It is unclear, however, how these effects contribute to common features of olfactory systems such as olfactory learning and memory, odor detection and odor discrimination. In this study, we used chemical detection and a behavioral approach to further examine the function of NO in the AL. We found that basal levels of NO fluctuate with the daily light cycle, being higher during the nocturnal active period. NO also appears to be necessary for short-term olfactory memory. NO does not appear to affect odor detection, odor discrimination between dissimilar odorants, or learning acquisition. These findings suggest a modulatory role for NO in the timing of olfactory-guided behaviors.
Collapse
|
40
|
Multiphasic on/off pheromone signalling in moths as neural correlates of a search strategy. PLoS One 2013; 8:e61220. [PMID: 23613816 PMCID: PMC3629186 DOI: 10.1371/journal.pone.0061220] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/06/2013] [Indexed: 11/19/2022] Open
Abstract
Insects and robots searching for odour sources in turbulent plumes face the same problem: the random nature of mixing causes fluctuations and intermittency in perception. Pheromone-tracking male moths appear to deal with discontinuous flows of information by surging upwind, upon sensing a pheromone patch, and casting crosswind, upon losing the plume. Using a combination of neurophysiological recordings, computational modelling and experiments with a cyborg, we propose a neuronal mechanism that promotes a behavioural switch between surge and casting. We show how multiphasic On/Off pheromone-sensitive neurons may guide action selection based on signalling presence or loss of the pheromone. A Hodgkin-Huxley-type neuron model with a small-conductance calcium-activated potassium (SK) channel reproduces physiological On/Off responses. Using this model as a command neuron and the antennae of tethered moths as pheromone sensors, we demonstrate the efficiency of multiphasic patterning in driving a robotic searcher toward the source. Taken together, our results suggest that multiphasic On/Off responses may mediate olfactory navigation and that SK channels may account for these responses.
Collapse
|
41
|
Abstract
In their natural environment, animals face complex and highly dynamic olfactory input. Thus vertebrates as well as invertebrates require fast and reliable processing of olfactory information. Parallel processing has been shown to improve processing speed and power in other sensory systems and is characterized by extraction of different stimulus parameters along parallel sensory information streams. Honeybees possess an elaborate olfactory system with unique neuronal architecture: a dual olfactory pathway comprising a medial projection-neuron (PN) antennal lobe (AL) protocerebral output tract (m-APT) and a lateral PN AL output tract (l-APT) connecting the olfactory lobes with higher-order brain centers. We asked whether this neuronal architecture serves parallel processing and employed a novel technique for simultaneous multiunit recordings from both tracts. The results revealed response profiles from a high number of PNs of both tracts to floral, pheromonal, and biologically relevant odor mixtures tested over multiple trials. PNs from both tracts responded to all tested odors, but with different characteristics indicating parallel processing of similar odors. Both PN tracts were activated by widely overlapping response profiles, which is a requirement for parallel processing. The l-APT PNs had broad response profiles suggesting generalized coding properties, whereas the responses of m-APT PNs were comparatively weaker and less frequent, indicating higher odor specificity. Comparison of response latencies within and across tracts revealed odor-dependent latencies. We suggest that parallel processing via the honeybee dual olfactory pathway provides enhanced odor processing capabilities serving sophisticated odor perception and olfactory demands associated with a complex olfactory world of this social insect.
Collapse
|
42
|
Riffell JA, Lei H, Abrell L, Hildebrand JG. Neural Basis of a Pollinator's Buffet: Olfactory Specialization and Learning in Manduca sexta. Science 2012; 339:200-4. [DOI: 10.1126/science.1225483] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
43
|
Getahun MN, Wicher D, Hansson BS, Olsson SB. Temporal response dynamics of Drosophila olfactory sensory neurons depends on receptor type and response polarity. Front Cell Neurosci 2012; 6:54. [PMID: 23162431 PMCID: PMC3499765 DOI: 10.3389/fncel.2012.00054] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/28/2012] [Indexed: 12/16/2022] Open
Abstract
Insect olfactory sensory neurons (OSN) express a diverse array of receptors from different protein families, i.e. ionotropic receptors (IR), gustatory receptors (GR) and odorant receptors (OR). It is well known that insects are exposed to a plethora of odor molecules that vary widely in both space and time under turbulent natural conditions. In addition to divergent ligand specificities, these different receptors might also provide an increased range of temporal dynamics and sensitivities for the olfactory system. To test this, we challenged different Drosophila OSNs with both varying stimulus durations (10–2000 ms), and repeated stimulus pulses of key ligands at various frequencies (1–10 Hz). Our results show that OR-expressing OSNs responded faster and with higher sensitivity to short stimulations as compared to IR- and Gr21a-expressing OSNs. In addition, OR-expressing OSNs could respond to repeated stimulations of excitatory ligands up to 5 Hz, while IR-expressing OSNs required ~5x longer stimulations and/or higher concentrations to respond to similar stimulus durations and frequencies. Nevertheless, IR-expressing OSNs did not exhibit adaptation to longer stimulations, unlike OR- and Gr21a-OSNs. Both OR- and IR-expressing OSNs were also unable to resolve repeated pulses of inhibitory ligands as fast as excitatory ligands. These differences were independent of the peri-receptor environment in which the receptors were expressed and suggest that the receptor expressed by a given OSN affects both its sensitivity and its response to transient, intermittent chemical stimuli. OR-expressing OSNs are better at resolving low dose, intermittent stimuli, while IR-expressing OSNs respond more accurately to long-lasting odor pulses. This diversity increases the capacity of the insect olfactory system to respond to the diverse spatiotemporal signals in the natural environment.
Collapse
Affiliation(s)
- Merid N Getahun
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology Jena, Germany
| | | | | | | |
Collapse
|
44
|
Rangan AV, Young LS. Dynamics of spiking neurons: between homogeneity and synchrony. J Comput Neurosci 2012; 34:433-60. [PMID: 23096934 DOI: 10.1007/s10827-012-0429-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/28/2012] [Accepted: 10/02/2012] [Indexed: 11/24/2022]
Abstract
Randomly connected networks of neurons driven by Poisson inputs are often assumed to produce "homogeneous" dynamics, characterized by largely independent firing and approximable by diffusion processes. At the same time, it is well known that such networks can fire synchronously. Between these two much studied scenarios lies a vastly complex dynamical landscape that is relatively unexplored. In this paper, we discuss a phenomenon which commonly manifests in these intermediate regimes, namely brief spurts of spiking activity which we call multiple firing events (MFE). These events do not depend on structured network architecture nor on structured input; they are an emergent property of the system. We came upon them in an earlier modeling paper, in which we discovered, through a careful benchmarking process, that MFEs are the single most important dynamical mechanism behind many of the V1 phenomena we were able to replicate. In this paper we explain in a simpler setting how MFEs come about, as well as their potential dynamic consequences. Although the mechanism underlying MFEs cannot easily be captured by current population dynamics models, this phenomena should not be ignored during analysis; there is a growing body of evidence that such collaborative activity may be a key towards unlocking the possible functional properties of many neuronal networks.
Collapse
Affiliation(s)
- Aaditya V Rangan
- Courant Institute of Mathematical Sciences, New York University, New York, USA
| | | |
Collapse
|
45
|
Chaffiol A, Kropf J, Barrozo RB, Gadenne C, Rospars JP, Anton S. Plant odour stimuli reshape pheromonal representation in neurons of the antennal lobe macroglomerular complex of a male moth. ACTA ACUST UNITED AC 2012; 215:1670-80. [PMID: 22539734 DOI: 10.1242/jeb.066662] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Male moths are confronted with complex odour mixtures in a natural environment when flying towards a female-emitted sex pheromone source. Whereas synergistic effects of sex pheromones and plant odours have been observed at the behavioural level, most investigations at the peripheral level have shown an inhibition of pheromone responses by plant volatiles, suggesting a potential role of the central nervous system in reshaping the peripheral information. We thus investigated the interactions between sex pheromone and a behaviourally active plant volatile, heptanal, and their effects on responses of neurons in the pheromone-processing centre of the antennal lobe, the macroglomerular complex, in the moth Agrotis ipsilon. Our results show that most of these pheromone-sensitive neurons responded to the plant odour. Most neurons responded to the pheromone with a multiphasic pattern and were anatomically identified as projection neurons. They responded either with excitation or pure inhibition to heptanal, and the response to the mixture pheromone + heptanal was generally weaker than to the pheromone alone, showing a suppressive effect of heptanal. However, these neurons responded with a better resolution to pulsed stimuli. The other neurons with either purely excitatory or inhibitory responses to all three stimuli did not exhibit significant differences in responses between stimuli. Although the suppression of the pheromone responses in AL neurons by the plant odour is counter-intuitive at first glance, the observed better resolution of pulsed stimuli is probably more important than high sensitivity to the localization of a calling female.
Collapse
Affiliation(s)
- Antoine Chaffiol
- INRA, UMR 1272 Physiologie de l'Insecte: Signalisation et Communication, F-78000 Versailles, France
| | | | | | | | | | | |
Collapse
|
46
|
Rangan AV. Functional roles for synaptic-depression within a model of the fly antennal lobe. PLoS Comput Biol 2012; 8:e1002622. [PMID: 22927802 PMCID: PMC3426607 DOI: 10.1371/journal.pcbi.1002622] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 06/11/2012] [Indexed: 11/18/2022] Open
Abstract
Several experiments indicate that there exists substantial synaptic-depression at the synapses between olfactory receptor neurons (ORNs) and neurons within the drosophila antenna lobe (AL). This synaptic-depression may be partly caused by vesicle-depletion, and partly caused by presynaptic-inhibition due to the activity of inhibitory local neurons within the AL. While it has been proposed that this synaptic-depression contributes to the nonlinear relationship between ORN and projection neuron (PN) firing-rates, the precise functional role of synaptic-depression at the ORN synapses is not yet fully understood. In this paper we propose two hypotheses linking the information-coding properties of the fly AL with the network mechanisms responsible for ORNAL synaptic-depression. Our first hypothesis is related to variance coding of ORN firing-rate information — once stimulation to the ORNs is sufficiently high to saturate glomerular responses, further stimulation of the ORNs increases the regularity of PN spiking activity while maintaining PN firing-rates. The second hypothesis proposes a tradeoff between spike-time reliability and coding-capacity governed by the relative contribution of vesicle-depletion and presynaptic-inhibition to ORNAL synaptic-depression. Synaptic-depression caused primarily by vesicle-depletion will give rise to a very reliable system, whereas an equivalent amount of synaptic-depression caused primarily by presynaptic-inhibition will give rise to a less reliable system that is more sensitive to small shifts in odor stimulation. These two hypotheses are substantiated by several small analyzable toy models of the fly AL, as well as a more physiologically realistic large-scale computational model of the fly AL involving glomerular channels. Understanding the intricacies of sensory processing is a major scientific challenge. In this paper we examine the early stages of the olfactory system of the fruit-fly. Many experiments have revealed a great deal regarding the architecture of this system, including the types of neurons within it, as well as the connections those neurons make amongst one another. In this paper we examine the potential dynamics produced by this neuronal network. Specifically, we construct a computational model of this early olfactory system and study the effects of synaptic-depression within this system. We find that the dynamics and coding properties of this system depend strongly on the strength, and sources of, synaptic-depression. This work has ramifications for understanding the coding properties of other insect olfactory systems, and perhaps even other sensory modalities in other animals.
Collapse
Affiliation(s)
- Aaditya V Rangan
- Courant Institute of Mathematical Sciences, New York University, New York, New York, United States of America.
| |
Collapse
|
47
|
Abstract
Animals typically perceive their olfactory environment as a complex blend of natural odor cues. In insects, the initial processing of odors occurs in the antennal lobe (AL). Afferent peripheral input from olfactory sensory neurons (OSNs) is modified via mostly inhibitory local interneurons (LNs) and transferred by projection neurons (PNs) to higher brain centers. Here we performed optophysiological studies in the AL of the moth, Manduca sexta, and recorded odor-evoked calcium changes in response to antennal stimulation with five monomolecular host volatiles and their artificial mixture. In a double staining approach, we simultaneously measured OSN network input in concert with PN output across the glomerular array. By comparing odor-evoked activity patterns and response intensities between the two processing levels, we show that host mixtures could generally be predicted from the linear summation of their components at the input of the AL, but output neurons established a unique, nonlinear spatial pattern separate from individual component identities. We then assessed whether particularly high levels of signal modulation correspond to behavioral relevance. One of our mixture components, phenyl acetaldehyde, evoked significant levels of nonlinear input-output modulation in observed spatiotemporal activation patterns that were unique from the other individual odorants tested. This compound also accelerated behavioral activity in subsequent wind tunnel tests, whereas another compound that did not exhibit high levels of modulation also did not affect behavior. These results suggest that the high degree of input-output modulation exhibited by the AL for specific odors can correlate to behavioral output.
Collapse
|
48
|
Dacks AM, Riffell JA, Martin JP, Gage SL, Nighorn AJ. Olfactory modulation by dopamine in the context of aversive learning. J Neurophysiol 2012; 108:539-50. [PMID: 22552185 DOI: 10.1152/jn.00159.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The need to detect and process sensory cues varies in different behavioral contexts. Plasticity in sensory coding can be achieved by the context-specific release of neuromodulators in restricted brain areas. The context of aversion triggers the release of dopamine in the insect brain, yet the effects of dopamine on sensory coding are unknown. In this study, we characterize the morphology of dopaminergic neurons that innervate each of the antennal lobes (ALs; the first synaptic neuropils of the olfactory system) of the moth Manduca sexta and demonstrate with electrophysiology that dopamine enhances odor-evoked responses of the majority of AL neurons while reducing the responses of a small minority. Because dopamine release in higher brain areas mediates aversive learning we developed a naturalistic, ecologically inspired aversive learning paradigm in which an innately appetitive host plant floral odor is paired with a mimic of the aversive nectar of herbivorized host plants. This pairing resulted in a decrease in feeding behavior that was blocked when dopamine receptor antagonists were injected directly into the ALs. These results suggest that a transient dopaminergic enhancement of sensory output from the AL contributes to the formation of aversive memories. We propose a model of olfactory modulation in which specific contexts trigger the release of different neuromodulators in the AL to increase olfactory output to downstream areas of processing.
Collapse
Affiliation(s)
- Andrew M Dacks
- Department of Neuroscience, The University of Arizona, Tucson, Arizona, USA.
| | | | | | | | | |
Collapse
|
49
|
Capurro A, Baroni F, Olsson SB, Kuebler LS, Karout S, Hansson BS, Pearce TC. Non-linear blend coding in the moth antennal lobe emerges from random glomerular networks. FRONTIERS IN NEUROENGINEERING 2012; 5:6. [PMID: 22529799 PMCID: PMC3329896 DOI: 10.3389/fneng.2012.00006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/14/2012] [Indexed: 01/01/2023]
Abstract
Neural responses to odor blends often exhibit non-linear interactions to blend components. The first olfactory processing center in insects, the antennal lobe (AL), exhibits a complex network connectivity. We attempt to determine if non-linear blend interactions can arise purely as a function of the AL network connectivity itself, without necessitating additional factors such as competitive ligand binding at the periphery or intrinsic cellular properties. To assess this, we compared blend interactions among responses from single neurons recorded intracellularly in the AL of the moth Manduca sexta with those generated using a population-based computational model constructed from the morphologically based connectivity pattern of projection neurons (PNs) and local interneurons (LNs) with randomized connection probabilities from which we excluded detailed intrinsic neuronal properties. The model accurately predicted most of the proportions of blend interaction types observed in the physiological data. Our simulations also indicate that input from LNs is important in establishing both the type of blend interaction and the nature of the neuronal response (excitation or inhibition) exhibited by AL neurons. For LNs, the only input that significantly impacted the blend interaction type was received from other LNs, while for PNs the input from olfactory sensory neurons and other PNs contributed agonistically with the LN input to shape the AL output. Our results demonstrate that non-linear blend interactions can be a natural consequence of AL connectivity, and highlight the importance of lateral inhibition as a key feature of blend coding to be addressed in future experimental and computational studies.
Collapse
Affiliation(s)
- Alberto Capurro
- Department of Engineering, Centre for Bioengineering, University of Leicester Leicester, UK
| | | | | | | | | | | | | |
Collapse
|
50
|
Takasaki T, Namiki S, Kanzaki R. Use of bilateral information to determine the walking direction during orientation to a pheromone source in the silkmoth Bombyx mori. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012; 198:295-307. [PMID: 22227850 DOI: 10.1007/s00359-011-0708-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 12/04/2011] [Accepted: 12/13/2011] [Indexed: 11/26/2022]
Abstract
Odor source localization is an important animal behavior. Male moths locate mates by tracking sex pheromone emitted by conspecific females. During this type of behavior, males exhibit a combination of upwind surge and zigzagging flight. Similarly, the male walking moth Bombyx mori responds to transient pheromone exposure with a surge in movement, followed by sustained zigzagging walking. The initial surge direction is known to be influenced by the pheromone input pattern. Here, we identified the sensory input patterns that determine the initial walking direction of males. We first quantified the stimulus by measuring electroantennogram values, which were used as a reference for subsequent tests. We used a brief stimulus pulse to examine the relationship between sensory stimulus patterns and the turning direction of initial surge. We found that the difference in input timing and intensity between left and right antennae affected the walking direction, indicating that B. mori integrate bilateral pheromone information during orientation behavior. When we tested pheromone stimulation for longer periods, turning behavior was suppressed, which was induced by stimulus cessation. This study contributes toward understanding efficient strategies for odor-source localization that is utilized by walking insects.
Collapse
Affiliation(s)
- Tetsuya Takasaki
- Institute of Biological Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | | | | |
Collapse
|