1
|
Mumby S, Perros F, Hui C, Xu BL, Xu W, Elyasigomari V, Hautefort A, Manaud G, Humbert M, Chung KF, Wort SJ, Adcock IM. Extracellular matrix degradation pathways and fatty acid metabolism regulate distinct pulmonary vascular cell types in pulmonary arterial hypertension. Pulm Circ 2021; 11:2045894021996190. [PMID: 34408849 PMCID: PMC8366141 DOI: 10.1177/2045894021996190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary arterial hypertension describes a group of diseases characterised by raised pulmonary vascular resistance, resulting from vascular remodelling in the pre-capillary resistance arterioles. Left untreated, patients die from right heart failure. Pulmonary vascular remodelling involves all cell types but to date the precise roles of the different cells is unknown. This study investigated differences in basal gene expression between pulmonary arterial hypertension and controls using both human pulmonary microvascular endothelial cells and human pulmonary artery smooth muscle cells. Human pulmonary microvascular endothelial cells and human pulmonary artery smooth muscle cells from pulmonary arterial hypertension patients and controls were cultured to confluence, harvested and RNA extracted. Whole genome sequencing was performed and after transcript quantification and normalisation, we examined differentially expressed genes and applied gene set enrichment analysis to the differentially expressed genes to identify putative activated pathways. Human pulmonary microvascular endothelial cells displayed 1008 significant (p ≤ 0.0001) differentially expressed genes in pulmonary arterial hypertension samples compared to controls. In human pulmonary artery smooth muscle cells, there were 229 significant (p ≤ 0.0001) differentially expressed genes between pulmonary arterial hypertension and controls. Pathway analysis revealed distinctive differences: human pulmonary microvascular endothelial cells display down-regulation of extracellular matrix organisation, collagen formation and biosynthesis, focal- and cell-adhesion molecules suggesting severe endothelial barrier dysfunction and vascular permeability in pulmonary arterial hypertension pathogenesis. In contrast, pathways in human pulmonary artery smooth muscle cells were mainly up-regulated, including those for fatty acid metabolism, biosynthesis of unsaturated fatty acids, cell–cell and adherens junction interactions suggesting a more energy-driven proliferative phenotype. This suggests that the two cell types play different mechanistic roles in pulmonary arterial hypertension pathogenesis and further studies are required to fully elucidate the role each plays and the interactions between these cell types in vascular remodelling in disease progression.
Collapse
Affiliation(s)
- Sharon Mumby
- Respiratory Science, NHLI, Imperial College London, London, UK
| | - F Perros
- UMRS 999, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, INSERM and Paris-Sud, Le Plessis Robinson, France.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec, Canada
| | - C Hui
- Centre for Respiratory & Critical Care Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - B L Xu
- Centre for Respiratory & Critical Care Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - W Xu
- Centre for Respiratory & Critical Care Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - V Elyasigomari
- Department of Computing, Data Science Institute, Imperial College London, London, UK
| | - A Hautefort
- UMRS 999, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, INSERM and Paris-Sud, Le Plessis Robinson, France
| | - G Manaud
- UMRS 999, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, INSERM and Paris-Sud, Le Plessis Robinson, France
| | - M Humbert
- Département Hospitalo-Universitaire Thorax Innovation, Centre de Référence de l'Hypertension Pulmonaire Sévère, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - K F Chung
- Respiratory Science, NHLI, Imperial College London, London, UK
| | - S J Wort
- Respiratory Science, NHLI, Imperial College London, London, UK.,National Pulmonary Hypertension Service, Royal Brompton Hospital, London, UK
| | - I M Adcock
- Respiratory Science, NHLI, Imperial College London, London, UK
| |
Collapse
|
2
|
Harbaum L, Rhodes CJ, Otero-Núñez P, Wharton J, Wilkins MR. The application of 'omics' to pulmonary arterial hypertension. Br J Pharmacol 2020; 178:108-120. [PMID: 32201940 DOI: 10.1111/bph.15056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/03/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
Recent genome-wide analyses of rare and common sequence variations have brought greater clarity to the genetic architecture of pulmonary arterial hypertension and implicated novel genes in disease development. Transcriptional signatures have been reported in whole lung tissue, pulmonary vascular cells and peripheral circulating cells. High-throughput platforms for plasma proteomics and metabolomics have identified novel biomarkers associated with clinical outcomes and provided molecular instruments for risk assessment. There are methodological challenges to integrating these datasets, coupled to statistical power limitations inherent to the study of a rare disease, but the expectation is that this approach will reveal novel druggable targets and biomarkers that will open the way to personalized medicine. Here, we review the current state-of-the-art and future promise of 'omics' in the field of translational medicine in pulmonary arterial hypertension. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Lars Harbaum
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Pablo Otero-Núñez
- National Heart and Lung Institute, Imperial College London, London, UK
| | - John Wharton
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Martin R Wilkins
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
3
|
Tuder RM, Stenmark KR. Perspective: pathobiological paradigms in pulmonary hypertension, time for reappraisal. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1131-L1137. [PMID: 32186206 DOI: 10.1152/ajplung.00067.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
For the past 120 years, there has been a progressive evolution of the pathobiological concepts underlying pulmonary hypertension. Conceptual frameworks, build around the paradigms of excessive vasoconstriction (vs. vasodilation) and, more recently, of the cancer-like hypothesis of pulmonary hypertension, have served to consolidate key discoveries; moreover, they have and continue contributing to innovative advances that have been translated into either successful or potential new therapies. However, those frameworks do not fully address the complexity and challenges facing pulmonary hypertension, particularly those involving the marked heterogeneity of disease presentation and the dynamic changes occurring over time in affected tissues and cells. This is particularly relevant in regards to the molecular pathways of pulmonary hypertension; the ever growing understanding of molecular and cellular pathways requires clarification if they drive distinctive pulmonary vascular lesions in a given lung and disease patients with the same group pulmonary hypertension. Novel methodologies and approaches can start dissecting this key challenge in the field as it is critical to address the key angle of heterogeneity of the disease and reappraisal of disease-modifying therapies.
Collapse
Affiliation(s)
- Rubin M Tuder
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, Anschutz Medical Campus, Aurora, Colorado
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Division of Critical Care Medicine, Departments of Pediatrics and Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
4
|
Mo Y, Jiang M, Zhang Y, Wan R, Li J, Zhong CJ, Li H, Tang S, Zhang Q. Comparative mouse lung injury by nickel nanoparticles with differential surface modification. J Nanobiotechnology 2019; 17:2. [PMID: 30616599 PMCID: PMC6322282 DOI: 10.1186/s12951-018-0436-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Previous studies have demonstrated that exposure to nickel nanoparticles (Nano-Ni) causes oxidative stress and severe, persistent lung inflammation, which are strongly associated with pulmonary toxicity. However, few studies have investigated whether surface modification of Nano-Ni could alter Nano-Ni-induced lung injury, inflammation, and fibrosis in vivo. Here, we propose that alteration of physicochemical properties of Nano-Ni through modification of Nano-Ni surface may change Nano-Ni-induced lung injury, inflammation, and fibrosis. METHODS At first, dose-response and time-response studies were performed to observe lung inflammation and injury caused by Nano-Ni. In the dose-response studies, mice were intratracheally instilled with 0, 10, 20, 50, and 100 μg per mouse of Nano-Ni and sacrificed at day 3 post-exposure. In the time-response studies, mice were intratracheally instilled with 50 µg per mouse of Nano-Ni and sacrificed at days 1, 3, 7, 14, 28, and 42 post-instillation. At the end of the experiment, mice were bronchoalveolar lavaged (BAL) and the neutrophil count, CXCL1/KC level, LDH activity, and concentration of total protein in the BAL fluid (BALF) were determined. In the comparative studies, mice were intratracheally instilled with 50 μg per mouse of Nano-Ni or with the same molar concentration of Ni as Nano-Ni of either partially [O]-passivated Nano-Ni (Nano-Ni-P) or carbon-coated Nano-Ni (Nano-Ni-C). At day 3 post-exposure, BAL was performed and the above cellular and biochemical parameters in the BALF were analyzed. The MMP-2/9 protein levels and activities in the BALF and mouse lung tissues were also determined. Mouse lung tissues were also collected for H&E staining, and measurement of thiobarbituric acid reactive substances (TBARS) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in the genomic DNA. At day 42 post-exposure, mouse right lung tissues were collected for H&E and Trichrome stainings, and left lung tissues were collected to determine the hydroxyproline content. RESULTS Exposure of mice to Nano-Ni resulted in a dose-response increase in acute lung inflammation and injury reflected by increased neutrophil count, CXCL1/KC level, LDH activity, and concentration of total protein in the BALF. The time-response study showed that Nano-Ni-induced acute lung inflammation and injury appeared as early as day 1, peaked at day 3, and attenuated at day 7 post-instillation. Although the neutrophil count, CXCL1/KC level, LDH activity, and concentration of total protein in the BALF dramatically decreased over the time, their levels were still higher than those of the controls even at day 42 post-exposure. Based on the results of the dose- and time-response studies, we chose a dose of 50 µg per mouse of Nano-Ni, and day 3 post-exposure as short-term and day 42 post-exposure as long-term to compare the effects of Nano-Ni, Nano-Ni-P, and Nano-Ni-C on mouse lungs. At day 3 post-exposure, 50 μg per mouse of Nano-Ni caused acute lung inflammation and injury that were reflected by increased neutrophil count, CXCL1/KC level, LDH activity, concentration of total protein, and MMP-2/9 protein levels and activities in the BALF. Nano-Ni exposure also caused increased MMP-2/9 activities in the mouse lung tissues. Histologically, infiltration of large numbers of neutrophils and macrophages in the alveolar space and interstitial tissues was observed in mouse lungs exposed to Nano-Ni. Nano-Ni-P exposure caused similar acute lung inflammation and injury as Nano-Ni. However, exposure to Nano-Ni-C only caused mild acute lung inflammation and injury. At day 42 post-exposure, Nano-Ni caused extensive interstitial fibrosis and proliferation of interstitial cells with inflammatory cells infiltrating the alveolar septa and alveolar space. Lung fibrosis was also observed in Nano-Ni-P-exposed lungs, but to a much lesser degree. Only slight or no lung fibrosis was observed in Nano-Ni-C-exposed lungs. Nano-Ni and Nano-Ni-P, but not Nano-Ni-C, caused significantly elevated levels of TBARS in mouse lung tissues and 8-OHdG in mouse lung tissue genomic DNA, suggesting that Nano-Ni and Nano-Ni-P induce lipid peroxidation and oxidative DNA damage in mouse lung tissues, while Nano-Ni-C does not. CONCLUSION Our results demonstrate that short-term Nano-Ni exposure causes acute lung inflammation and injury, while long-term Nano-Ni exposure causes chronic lung inflammation and fibrosis. Surface modification of Nano-Ni alleviates Nano-Ni-induced pulmonary effects; partially passivated Nano-Ni causes similar effects as Nano-Ni, but the chronic inflammation and fibrosis were at a much lesser degree. Carbon coating significantly alleviates Nano-Ni-induced acute and chronic lung inflammation and injury.
Collapse
Affiliation(s)
- Yiqun Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40209 USA
| | - Mizu Jiang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40209 USA
- Department of Gastroenterology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. of China
| | - Yue Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40209 USA
| | - Rong Wan
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40209 USA
- Department of Pathology, Fujian Medical University, Fuzhou, P. R. of China
| | - Jing Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902 USA
| | - Chuan-Jian Zhong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902 USA
| | - Huangyuan Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, P. R. of China
| | - Shichuan Tang
- Beijing Municipal Institute of Labor Protection, Beijing, P. R. of China
| | - Qunwei Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40209 USA
- Beijing Municipal Institute of Labor Protection, Beijing, P. R. of China
| |
Collapse
|
5
|
Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders. Pharmacol Rev 2016; 68:476-532. [PMID: 27037223 PMCID: PMC4819215 DOI: 10.1124/pr.115.010652] [Citation(s) in RCA: 321] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function.
Collapse
Affiliation(s)
- F V Brozovich
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C J Nicholson
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C V Degen
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - Yuan Z Gao
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - M Aggarwal
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - K G Morgan
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| |
Collapse
|
6
|
Rhodes CJ, Im H, Cao A, Hennigs JK, Wang L, Sa S, Chen PI, Nickel NP, Miyagawa K, Hopper RK, Tojais NF, Li CG, Gu M, Spiekerkoetter E, Xian Z, Chen R, Zhao M, Kaschwich M, Del Rosario PA, Bernstein D, Zamanian RT, Wu JC, Snyder MP, Rabinovitch M. RNA Sequencing Analysis Detection of a Novel Pathway of Endothelial Dysfunction in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2015; 192:356-66. [PMID: 26030479 DOI: 10.1164/rccm.201408-1528oc] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Pulmonary arterial hypertension is characterized by endothelial dysregulation, but global changes in gene expression have not been related to perturbations in function. OBJECTIVES RNA sequencing was used to discriminate changes in transcriptomes of endothelial cells cultured from lungs of patients with idiopathic pulmonary arterial hypertension versus control subjects and to assess the functional significance of major differentially expressed transcripts. METHODS The endothelial transcriptomes from the lungs of seven control subjects and six patients with idiopathic pulmonary arterial hypertension were analyzed. Differentially expressed genes were related to bone morphogenetic protein type 2 receptor (BMPR2) signaling. Those down-regulated were assessed for function in cultured cells and in a transgenic mouse. MEASUREMENTS AND MAIN RESULTS Fold differences in 10 genes were significant (P < 0.05), four increased and six decreased in patients versus control subjects. No patient was mutant for BMPR2. However, knockdown of BMPR2 by siRNA in control pulmonary arterial endothelial cells recapitulated 6 of 10 patient-related gene changes, including decreased collagen IV (COL4A1, COL4A2) and ephrinA1 (EFNA1). Reduction of BMPR2-regulated transcripts was related to decreased β-catenin. Reducing COL4A1, COL4A2, and EFNA1 by siRNA inhibited pulmonary endothelial adhesion, migration, and tube formation. In mice null for the EFNA1 receptor, EphA2, versus control animals, vascular endothelial growth factor receptor blockade and hypoxia caused more severe pulmonary hypertension, judged by elevated right ventricular systolic pressure, right ventricular hypertrophy, and loss of small arteries. CONCLUSIONS The novel relationship between BMPR2 dysfunction and reduced expression of endothelial COL4 and EFNA1 may underlie vulnerability to injury in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Christopher J Rhodes
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,3 Department of Pediatrics
| | - Hogune Im
- 2 Cardiovascular Institute.,4 Department of Genetics, and
| | - Aiqin Cao
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,3 Department of Pediatrics
| | - Jan K Hennigs
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,3 Department of Pediatrics
| | - Lingli Wang
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,3 Department of Pediatrics
| | - Silin Sa
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,3 Department of Pediatrics
| | - Pin-I Chen
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,3 Department of Pediatrics
| | - Nils P Nickel
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,3 Department of Pediatrics
| | - Kazuya Miyagawa
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,3 Department of Pediatrics
| | - Rachel K Hopper
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,3 Department of Pediatrics
| | - Nancy F Tojais
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,3 Department of Pediatrics
| | - Caiyun G Li
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,3 Department of Pediatrics
| | - Mingxia Gu
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,3 Department of Pediatrics
| | - Edda Spiekerkoetter
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,5 Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Zhaoying Xian
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,3 Department of Pediatrics
| | - Rui Chen
- 2 Cardiovascular Institute.,4 Department of Genetics, and
| | - Mingming Zhao
- 2 Cardiovascular Institute.,3 Department of Pediatrics
| | - Mark Kaschwich
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,3 Department of Pediatrics
| | - Patricia A Del Rosario
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,5 Department of Medicine, Stanford University School of Medicine, Stanford, California
| | | | - Roham T Zamanian
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,5 Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Joseph C Wu
- 2 Cardiovascular Institute.,5 Department of Medicine, Stanford University School of Medicine, Stanford, California
| | | | - Marlene Rabinovitch
- 1 Vera Moulton Wall Center for Pulmonary Vascular Diseases.,2 Cardiovascular Institute.,3 Department of Pediatrics
| |
Collapse
|
7
|
Mura M, Anraku M, Yun Z, McRae K, Liu M, Waddell TK, Singer LG, Granton JT, Keshavjee S, de Perrot M. Gene Expression Profiling in the Lungs of Patients With Pulmonary Hypertension Associated With Pulmonary Fibrosis. Chest 2012; 141:661-673. [DOI: 10.1378/chest.11-0449] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
8
|
Baron RM, Choi AJS, Owen CA, Choi AMK. Genetically manipulated mouse models of lung disease: potential and pitfalls. Am J Physiol Lung Cell Mol Physiol 2011; 302:L485-97. [PMID: 22198907 DOI: 10.1152/ajplung.00085.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Gene targeting in mice (transgenic and knockout) has provided investigators with an unparalleled armamentarium in recent decades to dissect the cellular and molecular basis of critical pathophysiological states. Fruitful information has been derived from studies using these genetically engineered mice with significant impact on our understanding, not only of specific biological processes spanning cell proliferation to cell death, but also of critical molecular events involved in the pathogenesis of human disease. This review will focus on the use of gene-targeted mice to study various models of lung disease including airways diseases such as asthma and chronic obstructive pulmonary disease, and parenchymal lung diseases including idiopathic pulmonary fibrosis, pulmonary hypertension, pneumonia, and acute lung injury. We will attempt to review the current technological approaches of generating gene-targeted mice and the enormous dataset derived from these studies, providing a template for lung investigators.
Collapse
Affiliation(s)
- Rebecca M Baron
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
9
|
Wu W, Kaminski N. Chronic lung diseases. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 1:298-308. [PMID: 20835999 DOI: 10.1002/wsbm.23] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chronic lung diseases often have high morbidity and mortality rate and have posed a serious threat to human health. The incidence of many chronic lung diseases such as asthma has been on the rise in the past decade, which causes serious economic burden. Despite many efforts which employed traditional experimental approaches to elucidate the mechanisms of the diseases have been made, little is known about the pathogenesis of complex lung diseases. Systems biology approaches which aim to integrate and analyze information gathered from multiple sources offer a great opportunity to examine complex human diseases from a new angle. Many attempts have been made using high-throughput technologies such as microarrays to study chronic lung diseases; although compared with the full-fledged systems biology approach, research strategies employed in most of these investigations still have much room to improve, promising findings have already emerged from these efforts, which demonstrates the potential of implementing systems biology in pulmonary biomedical research.
Collapse
Affiliation(s)
- Wei Wu
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Naftali Kaminski
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
10
|
Moreno-Vinasco L, Garcia JGN. Receptor tyrosine kinase inhibitors in rodent pulmonary hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 661:419-34. [PMID: 20204746 DOI: 10.1007/978-1-60761-500-2_27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pulmonary hypertension (PH) is a disorder characterized by vascular remodeling and proliferation, a phenotype dependent upon unimpeded growth factor and kinase pathway activation with strong similarities to malignant tumors. This chapter details our novel application of the multikinase inhibitor, sorafenib, in rodent models of PH to improved hemodynamic parameters and attenuates PH structural changes1. Sorafenib is a Raf kinase inhibitor and our biochemical and genomic evidence supported the potential involvement of the MAPK cascade system and TGFB3 in PH development and the response to therapy. Integration of expression genomic analyses coupled with intense bioinformatics identified gene expression and ontology signatures in the development of PH and implicated the role of cytoskeletal protein such as caldesmon or nmMLCK as potentially key participants in PH-induced vascular remodeling and proliferation. Our studies suggest the PKI sorafenib as a potentially novel treatment for severe PH with the MAPK cascade a potential canonical target profoundly effecting vascular cytoskeletal -rearrangements and remodeling1.
Collapse
Affiliation(s)
- Liliana Moreno-Vinasco
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, IL, 60637, USA.
| | | |
Collapse
|
11
|
Moreno-Vinasco L, Gomberg-Maitland M, Maitland ML, Desai AA, Singleton PA, Sammani S, Sam L, Liu Y, Husain AN, Lang RM, Ratain MJ, Lussier YA, Garcia JGN. Genomic assessment of a multikinase inhibitor, sorafenib, in a rodent model of pulmonary hypertension. Physiol Genomics 2008; 33:278-91. [PMID: 18303084 PMCID: PMC3616402 DOI: 10.1152/physiolgenomics.00169.2007] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Pulmonary hypertension (PH) and cancer pathology share growth factor- and MAPK stress-mediated signaling pathways resulting in endothelial and smooth muscle cell dysfunction and angioproliferative vasculopathy. In this study, we assessed sorafenib, an antineoplastic agent and inhibitor of multiple kinases important in angiogenesis [VEGF receptor (VEGFR)-1-3, PDGF receptor (PDGFR)-beta, Raf-1 kinase] as a potential PH therapy. Two PH rat models were used: a conventional hypoxia-induced PH model and an augmented PH model combining dual VEGFR-1 and -2 inhibition (SU-5416, single 20 mg/kg injection) with hypoxia. In addition to normoxia-exposed control animals, four groups were maintained at 10% inspired O(2) fraction for 3.5 wk (hypoxia/vehicle, hypoxia/SU-5416, hypoxia/sorafenib, and hypoxia/SU-5416/sorafenib). Compared with normoxic control animals, rats exposed to hypoxia/SU-5416 developed hemodynamic and histological evidence of severe PH while rats exposed to hypoxia alone displayed only mild elevations in hemodynamic values (pulmonary vascular and right ventricular pressures). Sorafenib treatment (daily gavage, 2.5 mg/kg) prevented hemodynamic changes and demonstrated dramatic attenuation of PH-associated vascular remodeling. Compared with normoxic control rats, expression profiling (Affymetrix platform) of lung RNA obtained from hypoxia [false discovery rate (FDR) 6.5%]- and hypoxia/SU-5416 (FDR 1.6%)-challenged rats yielded 1,019 and 465 differentially regulated genes (fold change >1.4), respectively. A novel molecular signature consisting of 38 differentially expressed genes between hypoxia/SU-5416 and hypoxia/SU-5416/sorafenib (FDR 6.7%) was validated by either real-time RT-PCR or immunoblotting. Finally, immunoblotting studies confirmed the upregulation of the MAPK cascade in both PH models, which was abolished by sorafenib. In summary, sorafenib represents a novel potential treatment for severe PH with the MAPK cascade a potential canonical target.
Collapse
Affiliation(s)
- Liliana Moreno-Vinasco
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The secondary role of pathology in the present clinical management of pulmonary hypertension (PH) reflects to some extent the limitations of the current understanding of the disease. Ample room exists for the diagnostic translation of the pathobiologic studies, with the goal of improving the diagnostic and prognostic power of the pathologic assessment of pulmonary vascular remodeling. This article seeks to show the complementarities of the pathology and pathobiology of PH.
Collapse
Affiliation(s)
- Rubin M Tuder
- Division of Cardiopulmonary Pathology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Baltimore, MD 21217, USA.
| | | | | | | | | |
Collapse
|
13
|
Gibbons GH, Liew CC, Goodarzi MO, Rotter JI, Hsueh WA, Siragy HM, Pratt R, Dzau VJ. Genetic markers: progress and potential for cardiovascular disease. Circulation 2004; 109:IV47-58. [PMID: 15226250 DOI: 10.1161/01.cir.0000133440.86427.26] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Gary H Gibbons
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Ga, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Tuder RM, McGrath S, Voelkel NF, Geraci MW. Oxygen-Dependent Regulation of Pulmonary Circulation. Methods Enzymol 2004; 381:87-106. [PMID: 15063667 DOI: 10.1016/s0076-6879(04)81005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Rubin M Tuder
- Division of Cardiopulmonary Pathology, Department of Pathology, The Johns Hopkinds University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
15
|
Abstract
Pulmonary involvement is common in patients with portal hypertension and can manifest in diverse manners. Changes in pulmonary arterial resistance, manifesting either as the hepatopulmonary syndrome or portopulmonary hypertension (PPHTN), have been increasingly recognized in these patients in recent years. This review summarizes the clinicopathologic features, diagnostic criteria, as well as the latest concepts in the pathogenesis and management of PPHTN, which is defined as an elevated pulmonary artery pressure in the setting of an increased pulmonary vascular resistance and a normal wedge pressure in a patient with portal hypertension.
Collapse
Affiliation(s)
- Rohit Budhiraja
- Pulmonary and Critical Care Division, Department of Medicine, Tufts-New England Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
16
|
Abstract
Pulmonary arterial hypertension (PAH) is a recognized complication of congenital systemic to pulmonary arterial cardiac shunts. The prognosis of PAH in this situation is better than primary or other secondary forms of PAH. Our knowledge of the pathophysiology of PAH complicating congenital heart disease has evolved over the past decade. Despite differences in etiology and pathobiology, therapies that have proven successful for primary PAH may benefit this group of patients.
Collapse
Affiliation(s)
- John T Granton
- Department of Medicine, University of Toronto, Division of Respirology and Critical Care Medicine Programme, University Health Network, 10 EN-220, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4.
| | | |
Collapse
|
17
|
Ye SQ, Lavoie T, Usher DC, Zhang LQ. Microarray, SAGE and their applications to cardiovascular diseases. Cell Res 2002; 12:105-15. [PMID: 12118936 DOI: 10.1038/sj.cr.7290116] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The wealth of DNA data generated by the human genome project coupling with recently invented high-throughput gene expression profiling techniques has dramatically sped up the process for biomedical researchers on elucidating the role of genes in human diseases. One powerful method to reveal insight into gene functions is the systematic analysis of gene expression. Two popular high-throughput gene expression technologies, microarray and Serial Analysis of Gene Expression (SAGE) are capable of producing large amounts of gene expression data with the potential of providing novel insights into fundamental disease processes, especially complex syndromes such as cardiovascular disease, whose etiologies are due to multiple genetic factors and their interplay with the environment. Microarray and SAGE have already been used to examine gene expression patterns of cell-culture, animal and human tissues models of cardiovascular diseases. In this review, we will first give a brief introduction of microarray and SAGE technologies and point out their limitations. We will then discuss the major discoveries and the new biological insights that have emerged from their applications to cardiovascular diseases. Finally we will touch upon potential challenges and future developments in this area.
Collapse
Affiliation(s)
- Shui Qing Ye
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21224, USA.
| | | | | | | |
Collapse
|