1
|
Gao M, Yang Z, Zhang Z, Chen L, Xu B. Nervous system exposure of different classes of nanoparticles: A review on potential toxicity and mechanistic studies. ENVIRONMENTAL RESEARCH 2024; 259:119473. [PMID: 38908667 DOI: 10.1016/j.envres.2024.119473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Nanoparticles (NPs) are generally defined as very small particles in the size range of 1-100 nm. Due to the rapid development of modern society, many new materials have been developed. The widespread use of NPs in medical applications, the food industry and the textile industry has led to an increase in NPs in the environment and the possibility of human contact, which poses a serious threat to human health. The nervous system plays a leading role in maintaining the integrity and unity of the body and maintaining a harmonious balance with the external environment. Therefore, based on two categories of organic and inorganic NPs, this paper systematically summarizes the toxic effects and mechanisms of NPs released into the nervous system. The results showed that exposure to NPs may damage the nervous system, decrease learning and cognitive ability, and affect embryonic development. Finally, a remediation scheme for NPs entering the body via the environment is also introduced. This scheme aims to reduce the neurotoxicity caused by NPs by supplementing NPs with a combination of antioxidant and anti-inflammatory compounds. The results provide a valuable reference for future research in this field.
Collapse
Affiliation(s)
- Mingyang Gao
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China; Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Ziye Yang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China; School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhen Zhang
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| | - Baoshan Xu
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China.
| |
Collapse
|
2
|
Deepak V, El-Balawi L, Harris LK. Placental Drug Delivery to Treat Pre-Eclampsia and Fetal Growth Restriction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311165. [PMID: 38745536 DOI: 10.1002/smll.202311165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Pre-eclampsia and fetal growth restriction (FGR) continue to cause unacceptably high levels of morbidity and mortality, despite significant pharmaceutical and technological advances in other disease areas. The recent pandemic has also impacted obstetric care, as COVID-19 infection increases the risk of poor pregnancy outcomes. This review explores the reasons why it lacks effective drug treatments for the placental dysfunction that underlies many common obstetric conditions and describes how nanomedicines and targeted drug delivery approaches may provide the solution to the current drug drought. The ever-increasing range of biocompatible nanoparticle formulations available is now making it possible to selectively deliver drugs to uterine and placental tissues and dramatically limit fetal drug transfer. Formulations that are refractory to placental uptake offer the possibility of retaining drugs within the maternal circulation, allowing pregnant individuals to take medicines previously considered too harmful to the developing baby. Liposomes, ionizable lipid nanoparticles, polymeric nanoparticles, and adenoviral vectors have all been used to create efficacious drug delivery systems for use in pregnancy, although each approach offers distinct advantages and limitations. It is imperative that recent advances continue to be built upon and that there is an overdue investment of intellectual and financial capital in this field.
Collapse
Affiliation(s)
- Venkataraman Deepak
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9WL, UK
- St Mary's Hospital, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Lujain El-Balawi
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Lynda K Harris
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9WL, UK
- St Mary's Hospital, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
3
|
Kim NH, Choo HI, Lee YA. Effect of nanoplastic intake on the dopamine system during the development of male mice. Neuroscience 2024; 555:11-22. [PMID: 39033990 DOI: 10.1016/j.neuroscience.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Exposure to environmental microplastics has been demonstrated to impact health. However, its effect on development remains unclear. This study investigated whether consumption of nanoplastics (NPx) during development affects social and cognitive functions in rodents. In this study, we utilized male Institute of Cancer Research mice; they were divided into five subgroups based on the duration of NPx administration. NPx (100 nm) was orally administered via gavage for 6 days from gestational day (GTD) 7, representing the mid-gestation period, and for 5-6 days from GTD13 to birth, representing the late-gestation period; the male offspring were used for experiments. NPx was orally administered for 15 days starting at postnatal day (PND) 21 as the juvenile, PND38 as the adolescent, and PND56 as adulthood. On PND77, offspring were assessed for locomotion, social behavior, and nest-building tests. We observed that NPx administration altered dopamine system responses in GTD13 and PND56 groups. Social behavior was similarly affected by NPx treatment, with GTD13 and PND56 groups displaying decreased familiarity. Additionally, NPx treatment enhanced local field potentials in the prefrontal cortex, nucleus accumbens, and amygdala of GTD7 group and in the striatum of GTD13 group, while amphetamine treatment induced changes of local field potentials compared to saline treatment in the prefrontal cortex and the ventral tegmental area of CTR, GTD7, PND21, and PND56 groups. Taken together, these results showed that NPx treatment induced changes in social behavior partly depending on developmental stage, and these changes are associated with neural circuits innervated by the dopamine system.
Collapse
Affiliation(s)
- Na-Hyun Kim
- Department of Food Science and Nutrition, Daegu Catholic University, 13-13 Hayang-Ro, Hayang-Eup, Gyeongsan, Gyeongbuk 38430, South Korea
| | - Hye-In Choo
- Department of Food Science and Nutrition, Daegu Catholic University, 13-13 Hayang-Ro, Hayang-Eup, Gyeongsan, Gyeongbuk 38430, South Korea
| | - Young-A Lee
- Department of Food Science and Nutrition, Daegu Catholic University, 13-13 Hayang-Ro, Hayang-Eup, Gyeongsan, Gyeongbuk 38430, South Korea.
| |
Collapse
|
4
|
Zhan Y, Lou H, Shou R, Li A, Shang J, Jin Y, Li L, Zhu L, Lu X, Fan X. Maternal exposure to E 551 during pregnancy leads to genome-wide DNA methylation changes and metabolic disorders in the livers of pregnant mice and their fetuses. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133233. [PMID: 38118196 DOI: 10.1016/j.jhazmat.2023.133233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/09/2023] [Accepted: 12/10/2023] [Indexed: 12/22/2023]
Abstract
The widespread use of nanoparticles in the food industry has raised concerns regarding their potential adverse effects on human health, particularly in vulnerable populations, including pregnant mothers and fetuses. However, studies evaluating the reproductive and developmental toxicity of food-grade nanomaterials are limited. This study investigated the potential risks of prenatal dietary exposure to food-grade silica nanoparticles (E 551) on maternal health and fetal growth using conventional toxicological and epigenetic methods. The results showed that prenatal exposure to a high-dose of E 551 induces fetal resorption. Moreover, E 551 significantly accumulates in maternal and fetal livers, triggering a hepatic inflammatory response. At the epigenetic level, global DNA methylation is markedly altered in the maternal and fetal livers. Genome-wide DNA methylation sequencing revealed affected mCG, mCHG, and mCHH methylation landscapes. Subsequent bioinformatic analysis of the differentially methylated genes suggests that E 551 poses a risk of inducing metabolic disorders in maternal and fetal livers. This is further evidenced by impaired glucose tolerance in pregnant mice and altered expression of key metabolism-related genes and proteins in maternal and fetal livers. Collectively, the results of this study highlighted the importance of epigenetics in characterizing the potential toxicity of maternal exposure to food-grade nanomaterials during pregnancy.
Collapse
Affiliation(s)
- Yingqi Zhan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - He Lou
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Rongshang Shou
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Anyao Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiaxin Shang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanyan Jin
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lu Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Lidan Zhu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321016, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321016, China.
| |
Collapse
|
5
|
Ahmad A. Safety and Toxicity Implications of Multifunctional Drug Delivery Nanocarriers on Reproductive Systems In Vitro and In Vivo. FRONTIERS IN TOXICOLOGY 2022; 4:895667. [PMID: 35785262 PMCID: PMC9240477 DOI: 10.3389/ftox.2022.895667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
In the recent past, nanotechnological advancements in engineered nanomaterials have demonstrated diverse and versatile applications in different arenas, including bio-imaging, drug delivery, bio-sensing, detection and analysis of biological macromolecules, bio-catalysis, nanomedicine, and other biomedical applications. However, public interests and concerns in the context of human exposure to these nanomaterials and their consequential well-being may hamper the wider applicability of these nanomaterial-based platforms. Furthermore, human exposure to these nanosized and engineered particulate materials has also increased drastically in the last 2 decades due to enormous research and development and anthropocentric applications of nanoparticles. Their widespread use in nanomaterial-based industries, viz., nanomedicine, cosmetics, and consumer goods has also raised questions regarding the potential of nanotoxicity in general and reproductive nanotoxicology in particular. In this review, we have summarized diverse aspects of nanoparticle safety and their toxicological outcomes on reproduction and developmental systems. Various research databases, including PubMed and Google Scholar, were searched for the last 20 years up to the date of inception, and nano toxicological aspects of these materials on male and female reproductive systems have been described in detail. Furthermore, a discussion has also been dedicated to the placental interaction of these nanoparticles and how these can cross the blood–placental barrier and precipitate nanotoxicity in the developing offspring. Fetal abnormalities as a consequence of the administration of nanoparticles and pathophysiological deviations and aberrations in the developing fetus have also been touched upon. A section has also been dedicated to the regulatory requirements and guidelines for the testing of nanoparticles for their safety and toxicity in reproductive systems. It is anticipated that this review will incite a considerable interest in the research community functioning in the domains of pharmaceutical formulations and development in nanomedicine-based designing of therapeutic paradigms.
Collapse
Affiliation(s)
- Anas Ahmad
- Department of Pharmacology, Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Mohali, India
- Julia McFarlane Diabetes Research Centre and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- *Correspondence: Anas Ahmad,
| |
Collapse
|
6
|
Hu B, Cheng Z, Liang S. Advantages and prospects of stem cells in nanotoxicology. CHEMOSPHERE 2022; 291:132861. [PMID: 34774913 DOI: 10.1016/j.chemosphere.2021.132861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Nanomaterials have been widely used in many fields, especially in biomedical and stem cell therapy. However, the potential risks associated with nanomaterials applications are also gradually increasing. Therefore, effective and robust toxicology models are critical to evaluate the developmental toxicity of nanomaterials. The development of stem cell research provides a new idea of developmental toxicology. Recently, many researchers actively investigated the effects of nanomaterials with different sizes and surface modifications on various stem cells (such as embryonic stem cells (ESCs), adult stem cells, etc.) to study the toxic effects and toxic mechanisms. In this review, we summarized the effects of nanomaterials on the proliferation and differentiation of ESCs, mesenchymal stem cells and neural stem cells. Moreover, we discussed the advantages of stem cells in nanotoxicology compared with other cell lines. Finally, combined with the latest research methods and new molecular mechanisms, we analyzed the application of stem cells in nanotoxicology.
Collapse
Affiliation(s)
- Bowen Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, 830017, China.
| | - Zhanwen Cheng
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shengxian Liang
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding, 071000, China
| |
Collapse
|
7
|
An On-Demand Drug Delivery System for Control of Epileptiform Seizures. Pharmaceutics 2022; 14:pharmaceutics14020468. [PMID: 35214199 PMCID: PMC8879600 DOI: 10.3390/pharmaceutics14020468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/03/2023] Open
Abstract
Drug delivery systems have the potential to deliver high concentrations of drug to target areas on demand, while elsewhere and at other times encapsulating the drug, to limit unwanted actions. Here we show proof of concept in vivo and ex vivo tests of a novel drug delivery system based on hollow-gold nanoparticles tethered to liposomes (HGN-liposomes), which become transiently permeable when activated by optical or acoustic stimulation. We show that laser or ultrasound simulation of HGN-liposomes loaded with the GABAA receptor agonist, muscimol, triggers rapid and repeatable release in a sufficient concentration to inhibit neurons and suppress seizure activity. In particular, laser-stimulated release of muscimol from previously injected HGN-liposomes caused subsecond hyperpolarizations of the membrane potential of hippocampal pyramidal neurons, measured by whole cell intracellular recordings with patch electrodes. In hippocampal slices and hippocampal–entorhinal cortical wedges, seizure activity was immediately suppressed by muscimol release from HGN-liposomes triggered by laser or ultrasound pulses. After intravenous injection of HGN-liposomes in whole anesthetized rats, ultrasound stimulation applied to the brain through the dura attenuated the seizure activity induced by pentylenetetrazol. Ultrasound alone, or HGN-liposomes without ultrasound stimulation, had no effect. Intracerebrally-injected HGN-liposomes containing kainic acid retained their contents for at least one week, without damage to surrounding tissue. Thus, we demonstrate the feasibility of precise temporal control over exposure of neurons to the drug, potentially enabling therapeutic effects without continuous exposure. For future application, studies on the pharmacokinetics, pharmacodynamics, and toxicity of HGN-liposomes and their constituents, together with improved methods of targeting, are needed, to determine the utility and safety of the technology in humans.
Collapse
|
8
|
Behroozi Z, Rahimi B, Kookli K, Safari MS, Hamblin MR, Razmgir M, Janzadeh A, Ramezani F. Distribution of gold nanoparticles into the brain: a systematic review and meta-analysis. Nanotoxicology 2021; 15:1059-1072. [PMID: 34591733 DOI: 10.1080/17435390.2021.1966116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite the widespread use of gold nanoparticles (GNPs), there is no consensus on their distribution to different tissues and organs. The present systematic review and meta-analysis addresses the accumulation of GNPs in brain tissue. Extensive searches were conducted in electronic databases, Medline, Web of Science, EMBASE, and Scopus. Based on inclusion and exclusion criteria, primary and secondary screening was performed. The value of brain accumulation of gold nanoparticle (the percentage of the injection dose of GNPs/gram of brain tissue that applied as effect size (ES) in analysis) and the standard error of the mean were extracted from articles and analyzed by calculating the pooled ES and the pooled confidence interval (CI) using STATA software. p ≤ 0.05 was considered significant. Thirty-eight studies were included in the meta-analysis. The results showed that the amount of GNPs was 0.06% of the injection dose/gram of brain tissue (ES = 0.06, %95 CI: 0.06-0.06, p < 0.0001). Considering the time between injection and tissue harvest (follow-up time), after 1 h the GNPs in brain tissue was 0.288% of the injection dose/gram of tissue (ES = 0.29, 95% CI: 0.25-0.33, p < 0.0001), while after four weeks it was only 0.02% (ES = 0.02, 95% CI: 0.01-0.03, p < 0.0001) of the injection dose/gram of tissue. The amount of GNPs in brain tissue was higher for PEG-coated GNPs compared to uncoated GNPs, and it was 5.6 times higher for rod-shaped GNPs compared to spherical GNPs. The mean amount of GNPs in the brain tissues of animals bearing a tumor was 5.8 times higher than in normal animals.
Collapse
Affiliation(s)
- Zahra Behroozi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Rahimi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Keihan Kookli
- International campus, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad S Safari
- Veterinary Faculty of Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Maryam Razmgir
- Medical Librarianship and Information Science, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Janzadeh
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Ku T, Hao F, Yang X, Rao Z, Liu QS, Sang N, Faiola F, Zhou Q, Jiang G. Graphene Quantum Dots Disrupt Embryonic Stem Cell Differentiation by Interfering with the Methylation Level of Sox2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3144-3155. [PMID: 33569944 DOI: 10.1021/acs.est.0c07359] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The tremendous potential for graphene quantum dots (GQDs) in biomedical applications has led to growing concerns of their health risks in human beings. However, present studies mainly focused on oxidative stress, apoptosis, and other general toxicity effects; the knowledge on the developmental toxicity and the related regulatory mechanisms is still far from sufficient. Our study revealed the development retardation of mouse embryonic stem cells (mESCs) caused by GQDs with a novel DNA methylation epigenetic mechanism. Specifically, GQDs were internalized into cells mainly via energy-dependent endocytosis, and a significant fraction of internalized GQDs remained in the cells even after a 48-h clearance period. Albeit with unobservable cytotoxicity or any influences on cell pluripotency, significant retardation was found in the in vitro differentiation of the mESCs into embryoid bodies (EBs) with the upregulation of Sox2 levels in GQD pretreatment groups. Importantly, this effect could be contributed by GQD-induced inhibition in CpG methylation of Sox2 through altering methyltransferase and demethyltransferase transcriptional expressions, and the demethyltransferase inhibitor, bobcat339 hydrochloride, reduced GQD-induced upregulation of Sox2. The current study first demonstrated that GQDs compromised the differentiation program of the mESCs, potentially causing development retardation. Exposure to this nanomaterial during gestation or early developmental period would cause adverse health risks and is worthy of more attention.
Collapse
Affiliation(s)
- Tingting Ku
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Fang Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ziyu Rao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| |
Collapse
|
10
|
Bongaerts E, Nawrot TS, Van Pee T, Ameloot M, Bové H. Translocation of (ultra)fine particles and nanoparticles across the placenta; a systematic review on the evidence of in vitro, ex vivo, and in vivo studies. Part Fibre Toxicol 2020; 17:56. [PMID: 33138843 PMCID: PMC7607677 DOI: 10.1186/s12989-020-00386-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Fetal development is a crucial window of susceptibility in which exposure may lead to detrimental health outcomes at birth and later in life. The placenta serves as a gatekeeper between mother and fetus. Knowledge regarding the barrier capacity of the placenta for nanoparticles is limited, mostly due to technical obstacles and ethical issues. We systematically summarize and discuss the current evidence and define knowledge gaps concerning the maternal-fetal transport and fetoplacental accumulation of (ultra)fine particles and nanoparticles. We included 73 studies on placental translocation of particles, of which 21 in vitro/ex vivo studies, 50 animal studies, and 2 human studies on transplacental particle transfer. This systematic review shows that (i) (ultra)fine particles and engineered nanoparticles can bypass the placenta and reach fetal units as observed for all the applied models irrespective of the species origin (i.e., rodent, rabbit, or human) or the complexity (i.e., in vitro, ex vivo, or in vivo), (ii) particle size, particle material, dose, particle dissolution, gestational stage of the model, and surface composition influence maternal-fetal translocation, and (iii) no simple, standardized method for nanoparticle detection and/or quantification in biological matrices is available to date. Existing evidence, research gaps, and perspectives of maternal-fetal particle transfer are highlighted.
Collapse
Affiliation(s)
- Eva Bongaerts
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
- Department of Public Health and Primary Care, KU Leuven, Herestraat 49, Box 703, 3000, Leuven, Belgium
| | - Thessa Van Pee
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590, Diepenbeek, Belgium
| | - Hannelore Bové
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.
- Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590, Diepenbeek, Belgium.
| |
Collapse
|
11
|
Xu Q, Zhu B, Dong X, Li S, Song X, Xiao X, Zhang C, Lv Y, Zhang X, Li Y. Pyrethroid pesticide exposure during early pregnancy and birth outcomes in southwest China: a birth cohort study. J Toxicol Sci 2020; 45:281-291. [PMID: 32404560 DOI: 10.2131/jts.45.281] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Despite the developmental toxicity reported in animals, few epidemiologic studies have investigated the potential effects of prenatal exposure to pyrethroid pesticides (PYRs) on fetal growth. A birth cohort study was conducted to examine the association between prenatal exposure to PYRs and birth outcomes, and a nested case-control study was conducted in this cohort to evaluate the effects of PYR on congenital defects. The assessment of PYR exposure was based on self-reported household pesticide use and urinary PYR metabolite levels. We found that pregnant women in this region were ubiquitously exposed to low-level PYRs, although few reported household pesticide use. Women who often ate bananas or cantaloupes had a higher level of urinary 3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (DBCA), and the number of fruit types consumed by pregnant women was positively related to the concentrations of 3-phenoxybenzoic acid (3PBA) and total PYR metabolites (P < 0.05). Increased urinary 4-fluoro-3-phenoxybenzoic acid (4F3PBA), DBCA, and total PYR metabolites were associated with increased birth weight, length, and gestational age, and with decreased risk of small for gestational age (SGA) and/or premature birth. However, maternal household pesticides use was related to congenital anomalies. Thus, although prenatal exposure to low-dose PYRs promoted the fetal growth, the beneficial effects of fruit intake may outweigh the adverse effects of pesticide exposure. This study provided us an insight into the biological mechanisms for the effect of prenatal PYR exposure on fetal development, and suggested that further investigations in a larger study population with low-dose PYR exposure is needed.
Collapse
Affiliation(s)
- Qinghua Xu
- School of Public Health, Kunming Medical University, China
| | - Baosheng Zhu
- The First People's Hospital of Yunnan Province, China
| | - Xudong Dong
- The First People's Hospital of Yunnan Province, China
| | - Suyun Li
- The First People's Hospital of Yunnan Province, China
| | - Xiaoxiao Song
- School of Public Health, Kunming Medical University, China
| | - Xia Xiao
- School of Public Health, Kunming Medical University, China
| | - Chao Zhang
- School of Public Health, Kunming Medical University, China
| | - Yan Lv
- School of Public Health, Kunming Medical University, China
| | - Xiong Zhang
- School of Public Health, Kunming Medical University, China
| | - Yan Li
- School of Public Health, Kunming Medical University, China
| |
Collapse
|
12
|
Irvin-Choy NS, Nelson KM, Gleghorn JP, Day ES. Design of nanomaterials for applications in maternal/fetal medicine. J Mater Chem B 2020; 8:6548-6561. [PMID: 32452510 PMCID: PMC7429305 DOI: 10.1039/d0tb00612b] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pregnancy complications are commonplace and the challenges of treatment during pregnancy with few options available pose a risk to the health of both the mother and baby. Patients suffering from conditions such as preeclampsia, placenta accreta, and intrauterine growth restriction have few treatment options apart from emergency caesarean section. Fortunately, researchers are beginning to develop nanomedicine-based therapies that could be utilized to treat conditions affecting the mother, placenta, or fetus to improve the prognosis for mothers and their unborn children. This review summarizes the field's current understanding of nanoparticle biodistribution and therapeutic effect following systemic or vaginal administration and overviews the design parameters researchers should consider when developing nanomedicines for maternal/fetal health. It also describes safety considerations for nanomedicines to limit undesirable maternal or fetal side effects and discusses future work that should be performed to advance nanomedicine for maternal/fetal health. With additional development and implementation, the application of nanomedicine to treat pregnancy complications may mitigate the need for emergency caesarean sections and allow pregnancies to extend to term.
Collapse
Affiliation(s)
- N'Dea S Irvin-Choy
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA.
| | | | | | | |
Collapse
|
13
|
Ahmed DS, Mohammed MKA. Studying the bactericidal ability and biocompatibility of gold and gold oxide nanoparticles decorating on multi-wall carbon nanotubes. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01223-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Zhang X, Guo X, Kang X, Yang H, Guo W, Guan L, Wu H, Du L. Surface Functionalization of Pegylated Gold Nanoparticles with Antioxidants Suppresses Nanoparticle-Induced Oxidative Stress and Neurotoxicity. Chem Res Toxicol 2020; 33:1195-1205. [PMID: 32125152 DOI: 10.1021/acs.chemrestox.9b00368] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Because of their biocompatibility and biosafety, pegylated Au NPs (Au@PEG), as a nanodrug-carrier, have been widely applied in different biomedical applications, including imaging and drug delivery systems. Under such conditions, the biosafety of Au@PEG has attracted tremendous attention. However, only a small number of studies focused on the neurotoxicity of Au@PEG used as drug delivery carriers not to mention reducing the neurotoxicity of Au@PEG. To address this issue, the adverse effects of Au@PEG on human neuroblastoma SHSY5Y cells were first investigated. The results showed that 4.5 nm Au@PEG significantly induced cell apoptosis through upregulating reactive oxygen species (ROS) production and disordering the mitochondrial membrane potential. To further evaluate whether the neurotoxicity of Au@PEG could be improved through conjugating antioxidants on the surface of Au@PEG, Trolox (a vitamin E analogue)-functionalized Au@PEG (Au@Trolox) was synthesized. The results showed that the neurotoxicity of Au@PEG on SHSY5Y cells could be significantly improved by Au@Trolox. Next, mice were subjected to administration of 4.5 nm Au@PEG and Au@Trolox for 3 months. An increase of oxidative stress and a decrease in the activity of key antioxidant enzymes including glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) were observed after long-term injection of Au@PEG. More importantly, both the apoptosis of neurons and the activation of astrocytes were observed in the hippocampus of mice injected with Au@PEG. In contrast, the adverse effects of Au@PEG could be improved when injected with Au@Trolox. In short, the present study provided new insights into the toxicity evaluation of nanoparticles and would help to better understand and prevent the neurotoxicity of nanomaterials used in pharmaceutics.
Collapse
Affiliation(s)
- Xiaojie Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xueling Guo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiaoxuan Kang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Hui Yang
- Immunology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Weiyi Guo
- College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lingmei Guan
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hai Wu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Libo Du
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
15
|
Kini S, Badekila AK, Barh D, Sharma A. Cellular and Organismal Toxicity of Nanoparticles and Its Associated Health Concerns. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|