1
|
Wu Y, Zhou J, Zhang J, Li H. Cytokeratin 18 in nonalcoholic fatty liver disease: value and application. Expert Rev Mol Diagn 2024:1-14. [PMID: 39387822 DOI: 10.1080/14737159.2024.2413941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION Nonalcoholic fatty liver disease (NAFLD) is a common metabolism-related disease worldwide. Although studies have shown that some medications may be effective for treating NAFLD, they do not satisfy the medical requirements, and lifestyle changes are the most basic strategy. Thus, early detection of NAFLD and timely lifestyle interventions are highly important. AREAS COVERED The traditional diagnostic methods for NAFLD are limited by accuracy, cost, and security issues. Cytokeratin 18 (CK18), which is a marker of apoptosis and overall cell death, is an excellent biomarker for NAFLD. Liver fat accumulation in NAFLD triggers the activation of caspases, which increases the CK18 cleavage and its release into the blood. CK18 can help diagnose different stages of NAFLD, especially the nonalcoholic steatohepatitis (NASH) stage. In evaluating the efficacy of the NAFLD treatment and predicting the risk of NAFLD-related diseases, CK18 plays a significant role. EXPERT OPINION CK18 can non-invasively monitor the pathological conditions of NAFLD patients and provide new hope for the early diagnosis of NAFLD. Adding CK18 to the NAFLD diagnostic criteria that are widely used in clinical settings may be efficient for the detection of NAFLD and early effective intervention.
Collapse
Affiliation(s)
- Yuan Wu
- School of Medicine, The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, China
| | - Jing Zhou
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, China
| | - Jun Zhang
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, China
| | - Hongshan Li
- School of Medicine, The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, China
| |
Collapse
|
2
|
Tirado-Garibay AC, Ruiz-Barcenas B, Rescala-Ponce de León JI, Ochoa-Zarzosa A, López-Meza JE. The GPR30 Receptor Is Involved in IL-6-Induced Metastatic Properties of MCF-7 Luminal Breast Cancer Cells. Int J Mol Sci 2024; 25:8988. [PMID: 39201674 PMCID: PMC11354767 DOI: 10.3390/ijms25168988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/12/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
Luminal breast cancer has a high incidence worldwide and poses a severe health threat. Estrogen receptor alpha (ER-α) is activated by 17β-estradiol (E2), and its overexpression promotes cancerous characteristics. Luminal breast cancer is an epithelial type; however, the cytokine IL-6, secreted by cells within the tumor microenvironment, stimulates the epithelial-to-mesenchymal transition (EMT) and promotes metastasis. Also, IL-6 decreases ER-α levels, favoring the tamoxifen (TMX) resistance development. However, genes under E2 regulation continue to be expressed even though this receptor is absent. GPR30 is an alternative E2 receptor present in both luminal and aggressive triple-negative breast cancer and is related to TMX resistance and cancer progression. The roles of GPR30 and IL-6 in metastasis have been individually established; however, their interplay remains unexplored. This study aims to elucidate the role of GPR30 in IL-6-induced metastatic properties of MCF-7 luminal breast cancer cells. Results showed that GPR30 contributes to the E2-induced MCF-7 proliferation because its inhibition with the antagonist G15 and the Pertussis toxin (PTX) reduced it. Besides, GPR30 upregulated vimentin and downregulated E-cadherin levels in MCF-7 and TMX-resistant (R-TMX) cells and is also involved in the IL-6-induced migration, invasion, and TMX resistance in MCF-7 cells. In addition, in MDA-MB-231 triple-negative cells, both basal and IL-6-induced metastatic properties were related to GPR30 activity. These results indicate that the GPR30 receptor regulates the EMT induced by IL-6 in breast cancer cells.
Collapse
Affiliation(s)
| | | | | | | | - Joel E. López-Meza
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, Morelia 58893, Michoacán, Mexico; (A.C.T.-G.); (B.R.-B.); (J.I.R.-P.d.L.); (A.O.-Z.)
| |
Collapse
|
3
|
Meng X, Zhou Y, Xu L, Hu L, Wang C, Tian X, Zhang X, Hao Y, Cheng B, Ma J, Wang L, Liu J, Xie R. O-GlcNAcylation Facilitates the Interaction between Keratin 18 and Isocitrate Dehydrogenases and Potentially Influencing Cholangiocarcinoma Progression. ACS CENTRAL SCIENCE 2024; 10:1065-1083. [PMID: 38799671 PMCID: PMC11117311 DOI: 10.1021/acscentsci.4c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/06/2024] [Accepted: 04/10/2024] [Indexed: 05/29/2024]
Abstract
Glycosylation plays a pivotal role in the intricate landscape of human cholangiocarcinoma (CCA), actively participating in key pathophysiological processes driving tumor progression. Among the various glycosylation modifications, O-linked β-N-acetyl-glucosamine modification (O-GlcNAcylation) emerges as a dynamic regulator influencing diverse tumor-associated biological activities. In this study, we employed a state-of-the-art chemical proteomic approach to analyze intact glycopeptides, unveiling the critical role of O-GlcNAcylation in orchestrating Keratin 18 (K18) and its interplay with tricarboxylic acid (TCA) cycle enzymes, specifically isocitrate dehydrogenases (IDHs), to propel CCA progression. Our findings shed light on the mechanistic intricacies of O-GlcNAcylation, revealing that site-specific modification of K18 on Ser 30 serves as a stabilizing factor, amplifying the expression of cell cycle checkpoints. This molecular event intricately fosters cell cycle progression and augments cellular growth in CCA. Notably, the interaction between O-GlcNAcylated K18 and IDHs orchestrates metabolic reprogramming by down-regulating citrate and isocitrate levels while elevating α-ketoglutarate (α-KG). These metabolic shifts further contribute to the overall tumorigenic potential of CCA. Our study thus expands the current understanding of protein O-GlcNAcylation and introduces a new layer of complexity to post-translational control over metabolism and tumorigenesis.
Collapse
Affiliation(s)
- Xiangfeng Meng
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Zhou
- Department
of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated, Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Lei Xu
- Department
of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated, Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Limu Hu
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Changjiang Wang
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiao Tian
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiang Zhang
- Department
of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated, Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yi Hao
- College
of
Chemistry and Molecular Engineering, Peking
University, Beijing 100871, China
| | - Bo Cheng
- School
of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing Ma
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, China
- Collaborative
Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Lei Wang
- Department
of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated, Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jialin Liu
- State
Key Laboratory of Medical Proteomics, Beijing Proteome Research Center,
National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ran Xie
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry
and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
- Beijing
National Laboratory for Molecular Sciences, Beijing 100191, China
| |
Collapse
|
4
|
Al Haddad M, El-Mezayen HA, El-Kassas M, Metwally F, El-Sharkawy A. Clinical Utility of Cytokeratins for Accurate Diagnosis of Hepatocellular Carcinoma Among Hepatitis C Virus High-Risk Patients. Asian Pac J Cancer Prev 2024; 25:1325-1332. [PMID: 38679993 PMCID: PMC11162728 DOI: 10.31557/apjcp.2024.25.4.1325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/10/2024] [Indexed: 05/01/2024] Open
Abstract
OBJECTIVES Hepatocellular carcinoma (HCC) is a primary malignancy of the liver and a global health problem. It is often diagnosed at advanced stage where hopeless for effective therapies. Identification of more reliable biomarkers for early detection of HCC is urgently needed. Cytokeratins are a marker of hepatic progenitor cells and act as a key player in tumor invasion. Herein, we sought to develop a novel score based on the combination of cytokeratin 18 (CK18) and cytokeratin 19 (CK19) with routine laboratory tests for accurate detection of HCC. MATERIAL & METHODS Serum CK18, CK 19, α-fetoprotein, albumin and platelets count were assayed in HCC patients (75), liver cirrhosis patients (55) and healthy control (20). Areas under receiving operating curve (AUCs) were calculated and used for construction on novel score. A novel score named CK-HCC = CK 19 (ng/ml)×0.001+ CK18 (ng/ml)×0.004 + AFP (U/L)×5.4 - Platelets count (×109)/L×0.003 - Albumin (g/L)×0.27-36 was developed. CK-HCC score produces AUC of 0.919 for differentiating patients with HCC from those with liver cirrhosis with sensitivity and specificity of a cut-off 1.3 (i.e., less than 1.3 the case is considered cirrhotic, whereas above 1.3 it is considered HCC. CONCLUSION CK-HCC score could replace AFP during screening of HCV patients and early detection of HCC.
Collapse
Affiliation(s)
| | | | - Mohamed El-Kassas
- Department of Endemic Medicine, Faculty of Medicine, Helwan University, Cairo, Egypt.
| | - Fateheya Metwally
- Department of Environmental and Occupational Medicine, National Research Center, Giza, Egypt.
| | - Aml El-Sharkawy
- Department of Clinical Pathology, Damietta Cancer Institute, Damietta, Egypt.
| |
Collapse
|
5
|
Kaczmarek K, Plage H, Furlano K, Hofbauer S, Weinberger S, Ralla B, Franz A, Fendler A, de Martino M, Roßner F, Schallenberg S, Elezkurtaj S, Kluth M, Lennartz M, Blessin NC, Marx AH, Samtleben H, Fisch M, Rink M, Slojewski M, Ecke T, Hallmann S, Koch S, Adamini N, Minner S, Simon R, Sauter G, Weischenfeldt J, Klatte T, Schlomm T, Horst D, Zecha H. Loss of Upk1a and Upk1b expression is linked to stage progression in urothelial carcinoma of the bladder. Int Urol Nephrol 2024; 56:499-508. [PMID: 37777995 PMCID: PMC10808463 DOI: 10.1007/s11255-023-03800-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/09/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Uroplakin-1a (Upk1a) and uroplakin-1b (Upk1b) have recently been identified as diagnostic markers for the distinction of urothelial carcinomas from other solid tumor entities. Both proteins play an important role in the stabilization and strengthening of epithelial cells that line the bladder. METHODS To evaluate the prognostic role of uroplakin expression in urothelial carcinomas, more than 2700 urothelial neoplasms were analyzed in a tissue microarray format by immunohistochemistry. To further assess the diagnostic role of uroplakin immunohistochemistry, results were compared with preexisting GATA3 data. RESULT The fraction of Upk1a/Upk1b positive cases decreased slightly from pTaG2 low-grade (88% positive for Upk1a/87% positive for Upk1b) and pTaG2 high-grade (92%/89%) to pTaG3 (83%/88%; p > 0.05) and was lower in muscle-invasive (pT2-4) carcinomas (42%/64%; p < 0.0001/p < 0.0001 for pTa vs. pT2-4). Within pT2-4 carcinomas, high expression of Upk1a and Upk1b was linked to nodal metastasis and lymphatic vessel infiltration (p < 0.05) but unrelated to patient outcome. There were significant associations between Upk1a, Upk1b and GATA3 immunostaining (p < 0.0001 each), but 11% of GATA3 negative cancers were Upk1a/b positive and 8% of Upk1a/b negative cancers were GATA3 positive. Absence of GATA3/Upk1a/b staining was significantly linked to poor patient survival in the subgroup of 126 pT4 carcinomas (p = 0.0004) but not in pT2 and pT3 cancers. CONCLUSIONS In summary, the results of our study demonstrate that Upk1a and/or Upk1b immunohistochemistry can complement GATA3 for the distinction of urothelial carcinomas. Furthermore, a progressive loss of Upk1a/b expression during stage progression and a prognostic role of the combination GATA3/Upk1a/Upk1b in pT4 carcinomas is evident.
Collapse
Affiliation(s)
- Krystian Kaczmarek
- Department of Urology and Urological Oncology, Pomeranian Medical University, Szczecin, Poland
| | - Henning Plage
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Kira Furlano
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sebastian Hofbauer
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sarah Weinberger
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Bernhard Ralla
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Antonia Franz
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Annika Fendler
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Michela de Martino
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Florian Roßner
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Simon Schallenberg
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sefer Elezkurtaj
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Niclas C Blessin
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Andreas H Marx
- Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Henrik Samtleben
- Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Margit Fisch
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Rink
- Department of Urology, Marienhospital Hamburg, Hamburg, Germany
| | - Marcin Slojewski
- Department of Urology and Urological Oncology, Pomeranian Medical University, Szczecin, Poland
| | - Thorsten Ecke
- Department of Urology, Helios Hospital Bad Saarow, Bad Saarow, Germany
| | - Steffen Hallmann
- Department of Urology, Helios Hospital Bad Saarow, Bad Saarow, Germany
| | - Stefan Koch
- Department of Pathology, Helios Hospital Bad Saarow, Bad Saarow, Germany
| | - Nico Adamini
- Department of Urology, Albertinen Hospital, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Joachim Weischenfeldt
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Biotech Research & Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
| | - Tobias Klatte
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - David Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Henrik Zecha
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Urology, Albertinen Hospital, Hamburg, Germany
| |
Collapse
|
6
|
Győrffy B. Transcriptome-level discovery of survival-associated biomarkers and therapy targets in non-small-cell lung cancer. Br J Pharmacol 2024; 181:362-374. [PMID: 37783508 DOI: 10.1111/bph.16257] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/06/2023] [Accepted: 09/23/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Survival rate of patients with lung cancer has increased by over 60% in the recent two decades. With longer survival, the identification of genes associated with survival has emerged as an issue of utmost importance to uncover the most promising biomarkers and therapeutic targets. EXPERIMENTAL APPROACH An integrated database was set up by combining multiple independent datasets with clinical data and transcriptome-level gene expression measurements. Univariate and multivariate survival analyses were performed to identify genes with higher expression levels linked to shorter survival. The strongest genes were filtered to include only those with known druggability. KEY RESULTS The entire database includes 2852 tumour specimens from 17 independent cohorts. Of these, 2227 have overall survival data and 1256 samples have progression-free survival time. The most significant genes associated with survival were MIF, UBC and B2M in lung adenocarcinoma and ANXA2, CSNK2A2 and KRT18 in squamous cell carcinoma. We also aimed to reveal the best druggable targets in non-smokers lung cancer. The three most promising hits in this cohort were MDK, THY1 and PADI2. The established lung cancer cohort was added to the Kaplan-Meier plotter (https://www.kmplot.com) enabling the validation of future gene expression-based biomarkers in both the present and yet unexamined subgroups of patients. CONCLUSIONS AND IMPLICATIONS In this study, we established a comprehensive database of transcriptome-level data for lung cancer. The database can be utilized to identify and rank the most promising biomarkers and therapeutic targets for different subtypes of lung cancer.
Collapse
Affiliation(s)
- Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
7
|
Yadav S, Zhou S, He B, Du Y, Garmire LX. Deep learning and transfer learning identify breast cancer survival subtypes from single-cell imaging data. COMMUNICATIONS MEDICINE 2023; 3:187. [PMID: 38114659 PMCID: PMC10730890 DOI: 10.1038/s43856-023-00414-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Single-cell multiplex imaging data have provided new insights into disease subtypes and prognoses recently. However, quantitative models that explicitly capture single-cell resolution cell-cell interaction features to predict patient survival at a population scale are currently missing. METHODS We quantified hundreds of single-cell resolution cell-cell interaction features through neighborhood calculation, in addition to cellular phenotypes. We applied these features to a neural-network-based Cox-nnet survival model to identify survival-associated features. We used non-negative matrix factorization (NMF) to identify patient survival subtypes. We identified atypical subpopulations of triple-negative breast cancer (TNBC) patients with moderate prognosis and Luminal A patients with poor prognosis and validated these subpopulations by label transferring using the UNION-COM method. RESULTS The neural-network-based Cox-nnet survival model using all cellular phenotype and cell-cell interaction features is highly predictive of patient survival in the test data (Concordance Index > 0.8). We identify seven survival subtypes using the top survival features, presenting distinct profiles of epithelial, immune, and fibroblast cells and their interactions. We reveal atypical subpopulations of TNBC patients with moderate prognosis (marked by GATA3 over-expression) and Luminal A patients with poor prognosis (marked by KRT6 and ACTA2 over-expression and CDH1 under-expression). These atypical subpopulations are validated in TCGA-BRCA and METABRIC datasets. CONCLUSIONS This work provides an approach to bridge single-cell level information toward population-level survival prediction.
Collapse
Affiliation(s)
- Shashank Yadav
- Department of Computational Medicine and Bioinformatics, University of Michigan, Michigan, MI, 48105, USA
| | - Shu Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Michigan, MI, 48105, USA
| | - Bing He
- Department of Computational Medicine and Bioinformatics, University of Michigan, Michigan, MI, 48105, USA
| | - Yuheng Du
- Department of Computational Medicine and Bioinformatics, University of Michigan, Michigan, MI, 48105, USA
| | - Lana X Garmire
- Department of Computational Medicine and Bioinformatics, University of Michigan, Michigan, MI, 48105, USA.
| |
Collapse
|
8
|
Sharma A, Liu X, Chandra V, Rai R, Benbrook DM, Woo S. Pharmacodynamics of Cyclin D1 Degradation in Ovarian Cancer Xenografts with Repeated Oral SHetA2 Dosing. AAPS J 2023; 26:5. [PMID: 38087107 DOI: 10.1208/s12248-023-00874-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
SHetA2 is a promising, orally active small molecule with anticancer properties that target heat shock proteins. In this study, we aimed to investigate the pharmacodynamic (PD) effects of SHetA2 using preclinical in vitro and in vivo models of ovarian cancer and establish a physiologically based pharmacokinetic (PBPK)/PD model to describe their relationships with SHetA2 concentrations in mice. We found that daily oral administration of 60 mg/kg SHetA2 for 7 days resulted in consistent plasma PK and tissue distribution, achieving tumor drug concentrations required for growth inhibition in ovarian cancer cell lines. SHetA2 effectively induced cyclin D1 degradation in cancer cells in a dose-dependent manner, with up to 70% reduction observed and an IC50 of 4~5 µM. We identified cyclin D1 as a potential PD marker for SHetA2, based on a well-correlated time profile with SHetA2 PK. Additionally, we examined circulating levels of ccK18 as a non-invasive PD marker for SHetA2-induced apoptotic activity and found it unsuitable due to high variability. Using a PBPK/PD model, we depicted SHetA2 levels and their promoting effects on cyclin D1 degradation in tumors following multiple oral doses. The model suggested that twice-daily dosing regimens would be effective for sustained reduction in cyclin D1 protein. Our study provides valuable insights into the PK/PD of SHetA2, facilitating future clinical trial designs and dosing schedules.
Collapse
Affiliation(s)
- Ankur Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave., Oklahoma City, Oklahoma, 73117-1200, USA
| | - Xin Liu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, 352 Pharmacy Building, Buffalo, New York, 14214, USA
| | - Vishal Chandra
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St, BRC 1217A, Oklahoma City, Oklahoma, 73104, USA
| | - Rajani Rai
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St, BRC 1217A, Oklahoma City, Oklahoma, 73104, USA
| | - Doris M Benbrook
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th St, BRC 1217A, Oklahoma City, Oklahoma, 73104, USA
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, 352 Pharmacy Building, Buffalo, New York, 14214, USA.
| |
Collapse
|
9
|
Katsa ME, Kostopoulou E, Nomikos T, Ioannidis A, Sarris V, Papadogiannis S, Spiliotis BE, Rojas Gil AP. The Response of Antioxidant Enzymes and Antiapoptotic Markers to an Oral Glucose Tolerance Test (OGTT) in Children and Adolescents with Excess Body Weight. Int J Mol Sci 2023; 24:16517. [PMID: 38003707 PMCID: PMC10672007 DOI: 10.3390/ijms242216517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Oxidative stress and apoptosis are involved in the pathogenesis of obesity-related diseases. This observational study investigates the antioxidant and apoptotic markers response to an oral glucose tolerance test (OGTT) in a population of overweight children and adolescents, with normal (NGT) or impaired glucose tolerance (IGT). Glucose, insulin, and C-peptide concentrations, as well as oxidative stress (SOD, GPx3) and apoptotic markers (Apo1fas, cck18), were determined at T = 0, 30, 60, 90, 120, and 180 min after glucose intake during OGTT. The lipid profile, thyroid function, insulin-like growth factor1, leptin, ghrelin, and adiponectin were also measured at baseline. The 45 participants, with a mean age of 12.15 (±2.3) years old, were divided into two subcategories: those with NGΤ (n = 31) and those with IGT (n = 14). The area under the curve (AUC) of glucose, insulin, and C-peptide was greater in children with IGT; however, only glucose differences were statistically significant. SOD and GPx3 levels were higher at all time points in the IGT children. Apo1fas and cck18 levels were higher in the NGT children at most time points, whereas Adiponectin was lower in the IGT group. Glucose increased during an OGTT accompanied by a simultaneous increase in antioxidant factors, which may reflect a compensatory mechanism against the impending increase in oxidative stress in children with IGT.
Collapse
Affiliation(s)
- Maria Efthymia Katsa
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, 22100 Tripoli, Greece; (M.E.K.); (A.I.); (V.S.); (S.P.)
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Athens, Greece;
| | - Eirini Kostopoulou
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, University of Patras, 26504 Patras, Greece; (E.K.); (B.E.S.)
| | - Tzortzis Nomikos
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Athens, Greece;
| | - Anastasios Ioannidis
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, 22100 Tripoli, Greece; (M.E.K.); (A.I.); (V.S.); (S.P.)
| | - Vasileios Sarris
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, 22100 Tripoli, Greece; (M.E.K.); (A.I.); (V.S.); (S.P.)
| | - Spyridon Papadogiannis
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, 22100 Tripoli, Greece; (M.E.K.); (A.I.); (V.S.); (S.P.)
| | - Bessie E. Spiliotis
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, University of Patras, 26504 Patras, Greece; (E.K.); (B.E.S.)
| | - Andrea Paola Rojas Gil
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, 22100 Tripoli, Greece; (M.E.K.); (A.I.); (V.S.); (S.P.)
| |
Collapse
|
10
|
Batalha S, Gomes CM, Brito C. Immune microenvironment dynamics of HER2 overexpressing breast cancer under dual anti-HER2 blockade. Front Immunol 2023; 14:1267621. [PMID: 38022643 PMCID: PMC10643871 DOI: 10.3389/fimmu.2023.1267621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The clinical prognosis of the HER2-overexpressing (HER2-OE) subtype of breast cancer (BC) is influenced by the immune infiltrate of the tumor. Specifically, monocytic cells, which are promoters of pro-tumoral immunosuppression, and NK cells, whose basal cytotoxic function may be enhanced with therapeutic antibodies. One of the standards of care for HER2+ BC patients includes the combination of the anti-HER2 antibodies trastuzumab and pertuzumab. This dual combination was a breakthrough against trastuzumab resistance; however, this regimen does not yield complete clinical benefit for a large fraction of patients. Further therapy refinement is still hampered by the lack of knowledge on the immune mechanism of action of this antibody-based dual HER2 blockade. Methods To explore how the dual antibody challenge influences the phenotype and function of immune cells infiltrating the HER2-OE BC microenvironment, we developed in vitro 3D heterotypic cell models of this subtype. The models comprised aggregates of HER2+ BC cell lines and human peripheral blood mononuclear cells. Cells were co-encapsulated in a chemically inert alginate hydrogel and maintained in agitation-based culture system for up to 7 days. Results The 3D models of the HER2-OE immune microenvironment retained original BC molecular features; the preservation of the NK cell compartment was achieved upon optimization of culture time and cytokine supplementation. Challenging the models with the standard-of-care combination of trastuzumab and pertuzumab resulted in enhanced immune cytotoxicity compared with trastuzumab alone. Features of the response to therapy within the immune tumor microenvironment were recapitulated, including induction of an immune effector state with NK cell activation, enhanced cell apoptosis and decline of immunosuppressive PD-L1+ immune cells. Conclusions This work presents a unique human 3D model for the study of immune effects of anti-HER2 biologicals, which can be used to test novel therapy regimens and improve anti-tumor immune function.
Collapse
Affiliation(s)
- Sofia Batalha
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Monteiro Gomes
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
11
|
Menz A, Gorbokon N, Viehweger F, Lennartz M, Hube-Magg C, Hornsteiner L, Kluth M, Völkel C, Luebke AM, Fraune C, Uhlig R, Minner S, Dum D, Höflmayer D, Sauter G, Simon R, Burandt E, Clauditz TS, Lebok P, Jacobsen F, Steurer S, Krech T, Marx AH, Bernreuther C. Pan-keratin Immunostaining in Human Tumors: A Tissue Microarray Study of 15,940 Tumors. Int J Surg Pathol 2023; 31:927-938. [PMID: 35946088 PMCID: PMC10492441 DOI: 10.1177/10668969221117243] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/20/2022] [Accepted: 07/15/2022] [Indexed: 11/15/2022]
Abstract
To evaluate the efficiency of pan-keratin immunostaining, tissue microarrays of 13,501 tumor samples from 121 different tumor types and subtypes as well as 608 samples of 76 different normal tissue types were analyzed by immunohistochemistry. In normal tissues, strong pan-keratin immunostaining was seen in epithelial cells. Staining intensity was lower in hepatocytes, islets of Langerhans, and pneumocytes but markedly reduced in the adrenal cortex. Pan-keratin was positive in ≥98% of samples in 62 (83%) of 75 epithelial tumor entities, including almost all adenocarcinomas, squamous cell and urothelial carcinomas. Only 17 of 121 tumor entities (13%) had a pan-keratin positivity rate between 25% and 98%, including tumors with mixed differentiation, endocrine/neuroendocrine tumors, renal cell carcinomas, adrenocortical tumors, and particularly poorly differentiated carcinoma subtypes. The 15 entities with pan-keratin positivity in 0.9%-25% were mostly of mesenchymal origin. Reduced/absent pan-keratin immunostaining was associated with high UICC stage (p = 0.0001), high Thoenes grade (p = 0.0183), high Fuhrman grade (p = 0.0049), advanced tumor stage (p < 0.0001) and lymph node metastasis (p = 0.0114) in clear cell renal cell carcinoma, advanced pT stage (p = 0.0007) in papillary renal cell carcinoma, and with advanced stage (p = 0.0023), high grade (p = 0.0005) as well as loss of ER and PR expression (each p < 0.0001) in invasive breast carcinoma of no special type (NST). In summary, pan-keratin can consistently be detected in the vast majority of epithelial tumors, although pan-keratin can be negative a fraction of renal cell, adrenocortical and neuroendocrine neoplasms. The data also link reduced pan-keratin immunostaining to unfavorable tumor phenotype in in epithelial neoplasms.
Collapse
Affiliation(s)
- Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Viehweger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Hornsteiner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cosima Völkel
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M. Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till S. Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Krech
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Andreas H. Marx
- Department of Pathology, Academic Hospital Fuerth, Fuerth Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Rosiek V, Janas K, Witkowska M, Kos-Kudła B. Role of Selected Circulating Tumor Biomarkers in Patients with Skeletal Metastatic Pancreatic Neuroendocrine Neoplasms. J Clin Med 2023; 12:4687. [PMID: 37510802 PMCID: PMC10380808 DOI: 10.3390/jcm12144687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
We investigated the diagnostic capacity of selected circulating biomarkers (CBMs) for the early detection of bone metastasis (BMets) in patients with pancreatic neuroendocrine neoplasms (PanNENs). A total of 115 patients with PanNENs and 40 controls were enrolled. We measured the serum levels of ferritin, cytokeratin 18 (CY18), CA19-9, CA125, AFP, CEA, and beta-2 microglobulin (B2M). A total of eight PanNEN patients developed BMets, and one hundred seven remained BMets-free. We observed a significantly higher level of CA125 and CY18 in BMets patients vs. non-BMets patients (p = 0.01 and p = 0.04, respectively). CA125, CY18, and B2M area under receiver operator characteristic (AUROC) analyses differentiated both patients groups; CA125 area under the curve (AUC) 0.77, p < 0.01; CY18 AUC data were 0.72, p = 0.03, and B2M AUC 0.67, p = 0.02. On the basis of CBM metrics in both subgroups, we reached a sensitivity/specificity for CA125 of 75/76%; for CY18 of 75/69%, for B2M of 100/50%, for CA125, and the CY18 combination of 93/90%, respectively. According to current results, CA125 and CY18 seem to have the potential capacity as fair biomarkers for BMets detection, despite the small number of cases. Further studies are warranted in the larger PanNEN patient group.
Collapse
Affiliation(s)
- Violetta Rosiek
- Department of Endocrinology and Neuroendocrine Tumours, Department of Pathophysiology and Endocrinology, Medical University of Silesia, 40-014 Katowice, Poland
| | - Ksenia Janas
- Department of Endocrinology and Neuroendocrine Tumours, Department of Pathophysiology and Endocrinology, Medical University of Silesia, 40-014 Katowice, Poland
| | - Magdalena Witkowska
- Department of Endocrinology and Neuroendocrine Tumours, Medical University of Silesia, 40-014 Katowice, Poland
| | - Beata Kos-Kudła
- Department of Endocrinology and Neuroendocrine Tumours, Department of Pathophysiology and Endocrinology, Medical University of Silesia, 40-014 Katowice, Poland
| |
Collapse
|
13
|
Pazaitis N, Kaiser A. TMA-Mate: An open-source modular toolkit for constructing tissue microarrays of arbitrary layouts. HARDWAREX 2023; 14:e00419. [PMID: 37128356 PMCID: PMC10148229 DOI: 10.1016/j.ohx.2023.e00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Biomedical research and quality control procedures often demand a variety of microscopic analysis of numerous formalin-fixed and paraffin-embedded (FFPE) tissue samples from different individuals of both healthy and diseased regions of interest. Depending on the number of samples to be analyzed, conventional processing of each FFPE block separately can be laborious or impracticable. This effort can be drastically reduced by using tissue microarrays (TMAs). TMAs have a wide range of applications and can be considered as a high-throughput method to process up to hundreds of miniaturized tissue samples simultaneously on a single microscopy slide, in order to reduce labor, costs and sample consumption, and to increase results comparability. Several commercial and self-made solutions to fabricate TMAs with varying degrees of automation are available. However, these solutions may not be suitable for every situation, either due to high costs, high complexity, lack of precision or lack of flexibility, especially when diagnostically oriented pathology institutes or laboratories with constrained resources are considered. This article introduces the TMA-Mate, an open-source 3D printable modular toolkit for constructing high-density TMAs of arbitrary layouts, providing an affordable, lightweight, and accessible procedure to implement TMAs into existing histology processing pipelines. Step-by-step demonstrations for replicating the hardware and constructing TMAs are included.
Collapse
|
14
|
El-Sharkawy A, Atef S, Abdel-Megied A, Eldaly U, Elsherbiny ES, Metwally FM, El-Mezayen H. Circulating Tumor Cells in Breast Cancer: A Step Toward Precision Medicine for Real-Time Monitoring of Metastasis. Asian Pac J Cancer Prev 2023; 24:1725-1730. [PMID: 37247294 PMCID: PMC10495910 DOI: 10.31557/apjcp.2023.24.5.1725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND/AIMS Tumor metastasis involves the dissemination of malignant cells into the basement membrane and vascular system contributes to the circulating pool of these markers. In this context our aim has been focused on development of a non-invasive score based on degradation of glycosaminoglycans in the extracellular matrix for assessment of metastasis in patients with breast cancer. Circulating tumor cells (CTCs) represent a unique liquid biopsy carrying comprehensive biological information of the primary tumor. Herein, we sought to develop a novel score based on the combination of the most significant CTCs biomarkers with and routine laboratory tests for accurate detection of Metastases in patients with breast cancer. MATERIAL & METHODS Cytokeratin 18 (CK18), Cytokeratin 19 (CK19) and CA15.3 were assayed in metastatic breast cancer patients (88), non-metastatic breast cancer patients (129) and healthy control (32). Areas under receiving operating curve (AUCs) were calculated and used for construction on novel score. A novel score named CTC-MBS = CA15.3 (U/L) × 0.08 + CK 18 % × 2.9 + CK19 × 3.1. CTC-MBS score produces AUC of 1 for differentiate patients with metastatic breast cancer from those with non-metastatic breast cancer with sensitivity and specificity of a cut-off 0 (i.e., less than 0 the case is considered metastatic, whereas above 0 it is considered non-metastatic. CONCLUSION CTC-MBS score is a novel, non-invasive and simple can applied to discriminate patients with metastatic breast cancer and could replace CA15.3 during screening and follow-up of breast cancer patients.
Collapse
Affiliation(s)
- Aml El-Sharkawy
- Clinical Pathology Department, Damietta Cancer Institute, Damietta, Egypt.
| | - Salwa Atef
- Chemistry Department, Faculty of Science, Menoufia University, Shebin el-kom, Egypt.
| | - Ahmed Abdel-Megied
- Chemistry Department, Faculty of Science, Menoufia University, Shebin el-kom, Egypt.
| | - Usama Eldaly
- Medical Oncology Department, Damietta Cancer Institute, Damietta, Egypt.
| | | | - Fateheya M. Metwally
- Environmental and Occupational Medicine Department, National Research Center, Giza, Egypt.
| | | |
Collapse
|
15
|
Khadivar P, Alipour M. Synergic effect of bone marrow derived mesenchymal stem cells and differentiated keratinocytes-like cells with a novel cellulose and collagen nanoscaffold on wound healing in rats. Biomed Pharmacother 2023. [DOI: 10.1016/j.biopha.2023.114404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
|
16
|
Takan I, Karakülah G, Louka A, Pavlopoulou A. "In the light of evolution:" keratins as exceptional tumor biomarkers. PeerJ 2023; 11:e15099. [PMID: 36949761 PMCID: PMC10026720 DOI: 10.7717/peerj.15099] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Keratins (KRTs) are the intermediate filament-forming proteins of epithelial cells, classified, according to their physicochemical properties, into "soft" and "hard" keratins. They have a key role in several aspects of cancer pathophysiology, including cancer cell invasion and metastasis, and several members of the KRT family serve as diagnostic or prognostic markers. The human genome contains both, functional KRT genes and non-functional KRT pseudogenes, arranged in two uninterrupted clusters on chromosomes 12 and 17. This characteristic renders KRTs ideal for evolutionary studies. Herein, comprehensive phylogenetic analyses of KRT homologous proteins in the genomes of major taxonomic divisions were performed, so as to fill a gap in knowledge regarding the functional implications of keratins in cancer biology among tumor-bearing species. The differential expression profiles of KRTs in diverse types of cancers were investigated by analyzing high-throughput data, as well. Several KRT genes, including the phylogenetically conserved ones, were found to be deregulated across several cancer types and to participate in a common protein-protein interaction network. This indicates that, at least in cancer-bearing species, these genes might have been under similar evolutionary pressure, perhaps to support the same important function(s). In addition, semantic relations between KRTs and cancer were detected through extensive text mining. Therefore, by applying an integrative in silico pipeline, the evolutionary history of KRTs was reconstructed in the context of cancer, and the potential of using non-mammalian species as model organisms in functional studies on human cancer-associated KRT genes was uncovered.
Collapse
Affiliation(s)
- Işıl Takan
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Aikaterini Louka
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens, Greece
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| |
Collapse
|
17
|
Mykhaliuk VV, Havryliak VV, Salyha YT. The Role of Cytokeratins in Ensuring the Basic Cellular Functions and in Dignosis of Disorders. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722060093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Lycopene protects against Bisphenol A induced toxicity on the submandibular salivary glands via the upregulation of PPAR-γ and modulation of Wnt/β-catenin signaling. Int Immunopharmacol 2022; 112:109293. [DOI: 10.1016/j.intimp.2022.109293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/20/2022] [Accepted: 09/25/2022] [Indexed: 11/13/2022]
|
19
|
Charbonneau M, Harper K, Brochu-Gaudreau K, Perreault A, McDonald PP, Ekindi-Ndongo N, Jeldres C, Dubois CM. Establishment of a ccRCC patient-derived chick chorioallantoic membrane model for drug testing. Front Med (Lausanne) 2022; 9:1003914. [PMID: 36275794 PMCID: PMC9582329 DOI: 10.3389/fmed.2022.1003914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is an aggressive subtype of renal cell carcinoma accounting for the majority of deaths in kidney cancer patients. Advanced ccRCC has a high mortality rate as most patients progress and develop resistance to currently approved targeted therapies, highlighting the ongoing need for adequate drug testing models to develop novel therapies. Current animal models are expensive and time-consuming. In this study, we investigated the use of the chick chorioallantoic membrane (CAM), a rapid and cost-effective model, as a complementary drug testing model for ccRCC. Our results indicated that tumor samples from ccRCC patients can be successfully cultivated on the chick chorioallantoic membrane (CAM) within 7 days while retaining their histopathological characteristics. Furthermore, treatment of ccRCC xenografts with sunitinib, a tyrosine kinase inhibitor used for the treatment of metastatic RCC, allowed us to evaluate differential responses of individual patients. Our results indicate that the CAM model is a complementary in vivo model that allows for rapid and cost-effective evaluation of ccRCC patient response to drug therapy. Therefore, this model has the potential to become a useful platform for preclinical evaluation of new targeted therapies for the treatment of ccRCC.
Collapse
Affiliation(s)
- Martine Charbonneau
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Kelly Harper
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Karine Brochu-Gaudreau
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alexis Perreault
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | - Claudio Jeldres
- Division of Urology, Department of Surgery, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Claire M. Dubois
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada,*Correspondence: Claire M. Dubois
| |
Collapse
|
20
|
Arutyunyan IV, Soboleva AG, Gordon KB, Kudashkina DS, Miroshnichenko DA, Polyakov AP, Rebrikova IV, Makarov AV, Lokhonina AV, Fatkhudinov TK. Differential Markers of Subpopulations of Epithelial Cells of the Larynx in Squamous Cell Carcinoma. Bull Exp Biol Med 2022; 173:553-559. [DOI: 10.1007/s10517-022-05588-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 10/14/2022]
|
21
|
Roles of Keratins in Intestine. Int J Mol Sci 2022; 23:ijms23148051. [PMID: 35887395 PMCID: PMC9317181 DOI: 10.3390/ijms23148051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/02/2022] Open
Abstract
Keratins make up a major portion of epithelial intermediate filament proteins. The widely diverse keratins are found in both the small and large intestines. The human intestine mainly expresses keratins 8, 18, 19, and 20. Many of the common roles of keratins are for the integrity and stability of the epithelial cells. The keratins also protect the cells and tissue from stress and are biomarkers for some diseases in the organs. Although an increasing number of studies have been performed regarding keratins, the roles of keratin in the intestine have not yet been fully understood. This review focuses on discussing the roles of keratins in the intestine. Diverse studies utilizing mouse models and samples from patients with intestinal diseases in the search for the association of keratin in intestinal diseases have been summarized.
Collapse
|
22
|
Wang CW, Lee YC, Khalil MA, Lin KY, Yu CP, Lien HC. Fast cross-staining alignment of gigapixel whole slide images with application to prostate cancer and breast cancer analysis. Sci Rep 2022; 12:11623. [PMID: 35803996 PMCID: PMC9270377 DOI: 10.1038/s41598-022-15962-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/01/2022] [Indexed: 12/24/2022] Open
Abstract
Joint analysis of multiple protein expressions and tissue morphology patterns is important for disease diagnosis, treatment planning, and drug development, requiring cross-staining alignment of multiple immunohistochemical and histopathological slides. However, cross-staining alignment of enormous gigapixel whole slide images (WSIs) at single cell precision is difficult. Apart from gigantic data dimensions of WSIs, there are large variations on the cell appearance and tissue morphology across different staining together with morphological deformations caused by slide preparation. The goal of this study is to build an image registration framework for cross-staining alignment of gigapixel WSIs of histopathological and immunohistochemical microscopic slides and assess its clinical applicability. To the authors' best knowledge, this is the first study to perform real time fully automatic cross staining alignment of WSIs with 40× and 20× objective magnification. The proposed WSI registration framework consists of a rapid global image registration module, a real time interactive field of view (FOV) localization model and a real time propagated multi-level image registration module. In this study, the proposed method is evaluated on two kinds of cancer datasets from two hospitals using different digital scanners, including a dual staining breast cancer data set with 43 hematoxylin and eosin (H&E) WSIs and 43 immunohistochemical (IHC) CK(AE1/AE3) WSIs, and a triple staining prostate cancer data set containing 30 H&E WSIs, 30 IHC CK18 WSIs, and 30 IHC HMCK WSIs. In evaluation, the registration performance is measured by not only registration accuracy but also computational time. The results show that the proposed method achieves high accuracy of 0.833 ± 0.0674 for the triple-staining prostate cancer data set and 0.931 ± 0.0455 for the dual-staining breast cancer data set, respectively, and takes only 4.34 s per WSI registration on average. In addition, for 30.23% data, the proposed method takes less than 1 s for WSI registration. In comparison with the benchmark methods, the proposed method demonstrates superior performance in registration accuracy and computational time, which has great potentials for assisting medical doctors to identify cancerous tissues and determine the cancer stage in clinical practice.
Collapse
Affiliation(s)
- Ching-Wei Wang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan. .,Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
| | - Yu-Ching Lee
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Muhammad-Adil Khalil
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Kuan-Yu Lin
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Cheng-Ping Yu
- Department of Pathology, Tri-Service General Hospital, Taipei, Taiwan.,Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, Taiwan
| | - Huang-Chun Lien
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
23
|
Howard M, Erickson J, Cuba Z, Kim S, Zhou W, Gade P, Carter R, Mitchell K, Branscome H, Siddhi D, Alanazi F, Kim Y, Araujo RP, Haymond A, Luchini A, Kashanchi F, Liotta LA. A secretory form of Parkin-independent mitophagy contributes to the repertoire of extracellular vesicles released into the tumour interstitial fluid in vivo. J Extracell Vesicles 2022; 11:e12244. [PMID: 35879267 PMCID: PMC9314315 DOI: 10.1002/jev2.12244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 04/29/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
We characterized the in vivo interstitial fluid (IF) content of extracellular vesicles (EVs) using the GFP-4T1 syngeneic murine cancer model to study EVs in-transit to the draining lymph node. GFP labelling confirmed the IF EV tumour cell origin. Molecular analysis revealed an abundance of IF EV-associated proteins specifically involved in mitophagy and secretory autophagy. A set of proteins required for sequential steps of fission-induced mitophagy preferentially populated the CD81+/PD-L1+ IF EVs; PINK1, TOM20, and ARIH1 E3 ubiquitin ligase (required for Parkin-independent mitophagy), DRP1 and FIS1 (mitochondrial peripheral fission), VDAC-1 (ubiquitination state triggers mitophagy away from apoptosis), VPS35, SEC22b, and Rab33b (vacuolar sorting). Comparing in vivo IF EVs to in vitro EVs revealed 40% concordance, with an elevation of mitophagy proteins in the CD81+ EVs for both murine and human cell lines subjected to metabolic stress. The export of cellular mitochondria proteins to CD81+ EVs was confirmed by density gradient isolation from the bulk EV isolate followed by anti-CD81 immunoprecipitation, molecular sieve chromatography, and MitoTracker export into CD81+ EVs. We propose the 4T1 in vivo model as a versatile tool to functionally characterize IF EVs. IF EV export of fission mitophagy proteins has broad implications for mitochondrial function and cellular immunology.
Collapse
Affiliation(s)
- Marissa Howard
- Center for Applied Proteomics and Molecular MedicineGeorge Mason UniversityManassasVirginiaUSA
| | - James Erickson
- Laboratory of Molecular VirologySchool of Systems BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Zachary Cuba
- Laboratory of Molecular VirologySchool of Systems BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Shawn Kim
- Center for Applied Proteomics and Molecular MedicineGeorge Mason UniversityManassasVirginiaUSA
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular MedicineGeorge Mason UniversityManassasVirginiaUSA
| | - Purva Gade
- Center for Applied Proteomics and Molecular MedicineGeorge Mason UniversityManassasVirginiaUSA
| | - Rachel Carter
- Center for Applied Proteomics and Molecular MedicineGeorge Mason UniversityManassasVirginiaUSA
| | - Kelsey Mitchell
- Center for Applied Proteomics and Molecular MedicineGeorge Mason UniversityManassasVirginiaUSA
| | - Heather Branscome
- Laboratory of Molecular VirologySchool of Systems BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Daivik Siddhi
- Center for Applied Proteomics and Molecular MedicineGeorge Mason UniversityManassasVirginiaUSA
| | - Fatimah Alanazi
- Center for Applied Proteomics and Molecular MedicineGeorge Mason UniversityManassasVirginiaUSA
| | - Yuriy Kim
- Laboratory of Molecular VirologySchool of Systems BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Robyn P. Araujo
- School of Mathematical SciencesQueensland University of TechnologyBrisbaneAustralia
| | - Amanda Haymond
- Center for Applied Proteomics and Molecular MedicineGeorge Mason UniversityManassasVirginiaUSA
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular MedicineGeorge Mason UniversityManassasVirginiaUSA
| | - Fatah Kashanchi
- Laboratory of Molecular VirologySchool of Systems BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Lance A. Liotta
- Center for Applied Proteomics and Molecular MedicineGeorge Mason UniversityManassasVirginiaUSA
| |
Collapse
|
24
|
Perreault A, Harper K, Lebel M, Charbonneau M, Adam D, Brochiero E, Cantin AM, Leduc M, Gagnon L, Dubois CM. Human Lung Tissue Implanted on the Chick Chorioallantoic Membrane as a Novel In Vivo Model of IPF. Am J Respir Cell Mol Biol 2022; 67:164-172. [PMID: 35612953 DOI: 10.1165/rcmb.2022-0037ma] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with no curative pharmacological treatment. Current preclinical models fail to accurately reproduce human pathophysiology and are therefore poor predictors of clinical outcomes. Here, we investigated whether the chick embryo chorioallantoic membrane (CAM) assay supports the implantation of xenografts derived from IPF lung tissue and primary IPF lung fibroblasts and can be used to evaluate the efficacy of antifibrotic drugs. We demonstrate that IPF xenografts maintain their integrity and are perfused with chick embryo blood. Size measurements indicate that the xenografts amplify on the CAM, and Ki67 and pro-collagen type I immunohistochemical staining highlight the presence of proliferative and functional cells in the xenografts. Moreover, the IPF phenotype and immune microenvironment of lung tissues are retained when cultivated on the CAM and the fibroblast xenografts mimic invasive IPF fibroblastic foci. Daily treatments of the xenografts with nintedanib and PBI-4050 significantly reduce their size, fibrosis-associated gene expression, and collagen deposition. Similar effects are found with GLPG1205 and fenofibric acid, two drugs that target the immune microenvironment. Our CAM-IPF model represents the first in vivo model of IPF that uses human lung tissue. This rapid and cost-effective assay could become a valuable tool for predicting the efficacy of antifibrotic drug candidates for IPF.
Collapse
Affiliation(s)
- Alexis Perreault
- Université de Sherbrooke, 7321, Department of Immunology and Cell Biology, Sherbrooke, Quebec, Canada
| | - Kelly Harper
- Université de Sherbrooke, 7321, Department of Immunology and Cell Biology, Sherbrooke, Quebec, Canada
| | - Mégane Lebel
- Université de Sherbrooke, 7321, Department of Medicine, Pulmonary Division, Sherbrooke, Quebec, Canada
| | - Martine Charbonneau
- Université de Sherbrooke, 7321, Department of Immunology and Cell Biology, Sherbrooke, Quebec, Canada
| | - Damien Adam
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Medicine, Montreal, Quebec, Canada
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Medicine, Montréal, Quebec, Canada
| | - André M Cantin
- University of Sherbrooke, Department of Medicine, Pulmonary Division, Sherbrooke, Quebec, Canada
| | - Martin Leduc
- Liminal BioSciences Inc, 262159, Laval, Quebec, Canada
| | - Lyne Gagnon
- Liminal BioSciences Inc, 262159, Laval, Quebec, Canada
| | - Claire M Dubois
- Université de Sherbrooke, 7321, Department of Immunology and Cell Biology, Sherbrooke, Quebec, Canada;
| |
Collapse
|
25
|
Majidnia E, Ahmadian M, Salehi H, Amirpour N. Development of an electrospun poly(ε-caprolactone)/collagen-based human amniotic membrane powder scaffold for culturing retinal pigment epithelial cells. Sci Rep 2022; 12:6469. [PMID: 35440610 PMCID: PMC9018818 DOI: 10.1038/s41598-022-09957-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
The common retinal diseases are age-related macular degeneration (AMD) and retinitis pigmentosa (RP). They are usually associated with the dysfunction of retinal pigment epithelial (RPE) cells and degeneration of underlying Bruch’s membrane. The RPE cell transplantation is the most promising therapeutic option to restore lost vision. This study aimed to construct an ultrathin porous fibrous film with properties similar to that of native Bruch’s membrane as carriers for the RPE cells. Human amniotic membrane powder (HAMP)/Polycaprolactone (PCL) scaffolds containing different concentrations of HAMP were fabricated by electrospinning technique. The results showed that with increasing the concentration of HAMP, the diameter of fibers increased. Moreover, hydrophilicity and degradation rate were improved from 119° to 92° and 14 to 56% after 28 days immersion in phosphate-buffered saline (PBS) solution, respectively. All scaffolds had a porosity above 85%. Proper cell adhesion was obtained one day after culture and no toxicity was observed. However, after seven days, the rate of growth and proliferation of ARPE-19 cells, a culture model of RPE, on the PCL-30HAMP scaffold (HAMP concentration in PCL 7.2% by weight) was higher compared to other scaffolds. These results indicated that PCL-30HAMP fibrous scaffold has a great potential to be used in retinal tissue engineering applications.
Collapse
Affiliation(s)
- Elahe Majidnia
- Department of Materials Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran
| | - Mehdi Ahmadian
- Department of Materials Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran.
| | - Hossein Salehi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| | - Noushin Amirpour
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| |
Collapse
|
26
|
Kavitha L, Ranganathan K, Shyam S, Fathima JHS, Umesh W, Warnakulasuriya S. Immunohistochemical Biomarkers in Oral Submucous Fibrosis - A Scoping Review. J Oral Pathol Med 2022; 51:594-602. [PMID: 35102645 DOI: 10.1111/jop.13280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/19/2021] [Accepted: 01/04/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION This scoping review was done to study the immunohistochemical biomarkers involved in pathogenesis and malignant transformation (MT) of oral submucous fibrosis (OSF), in literature published from 2010 to 2021. METHOD The protocol was adapted from the Joanna Briggs Institute Reviewer's Manual (2017, and reported according to the PRISMA guidelines for Scoping Reviews (PRISMA-ScR). RESULTS Eighty-six studies included in this review reported 84 immunohistochemical (IHC) biomarkers in OSF: 9 epithelial markers, 29 connective tissue markers, 22 proliferative markers, and 24 other biomarkers that are transcription factors, cancer stem cell markers, cell signaling markers, proteins, and enzymes. The commonly reported IHC biomarkers were alpha-smooth muscle actin (α-SMA) and E-cadherin (7 articles each) followed by vascular endothelial growth factor (VEGF) and CD34 (6 articles each), p53, p63 and Ki67 (5 articles each). α-SMA, Ki67, CD105, and hTERT were significantly increased in oral squamous cell carcinoma arising in a background of OSF (OSCC-OSF) compared to OSF and normal subjects. CONCLUSION The identified surrogate IHC biomarkers reported in OSF in this scoping review require validation with long-term prospective studies to facilitate early diagnosis, for use in risk assessment, and plan appropriate treatment for OSF in clinical practice.
Collapse
Affiliation(s)
- Loganathan Kavitha
- Department of Oral and Maxillofacial Pathology, Ragas Dental College and Hospital, ECR, Uthandi, Chennai, 600119, Tamil Nadu, India.,Affiliated to The Tamil Nadu Dr, MGR Medical University, Guindy, Chennai, 600032, Tamil Nadu, India
| | - Kannan Ranganathan
- Department of Oral and Maxillofacial Pathology, Ragas Dental College and Hospital, ECR, Uthandi, Chennai, 600119, Tamil Nadu, India.,Affiliated to The Tamil Nadu Dr, MGR Medical University, Guindy, Chennai, 600032, Tamil Nadu, India
| | - Sivasamy Shyam
- Faculty of Dentistry - Meenakshi Academy of Higher Education and Research, Alapakkam Main Rd, Maduravoyal, Chennai, Tamil Nadu, 600095, India
| | - Jaffer Hussain Shazia Fathima
- Department of Oral and Maxillofacial Pathology, Ragas Dental College and Hospital, ECR, Uthandi, Chennai, 600119, Tamil Nadu, India.,Affiliated to The Tamil Nadu Dr, MGR Medical University, Guindy, Chennai, 600032, Tamil Nadu, India
| | - Wadgave Umesh
- Department of Public Health Dentistry, ESIC Dental College, Kalaburagi, Karnataka, 585102, India
| | - Saman Warnakulasuriya
- Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, WHO Collaborating Centre for Oral Cancer, London, United Kingdom
| |
Collapse
|
27
|
Urano-Takaoka M, Sumida H, Miyagawa T, Awaji K, Nagai K, Omatsu J, Miyake T, Sato S. Serum Cytokeratin 18 as a Metastatic and Therapeutic Marker for Extramammary Paget's Disease. Acta Derm Venereol 2021; 102:adv00636. [PMID: 34904690 DOI: 10.2340/actadv.v101.866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Extramammary Paget's disease (EMPD) is a rare cutaneous adenocarcinoma with unfavorable prognosis once it becomes invasive. A tumor marker that reflects disease progression is required for adequate management of this disease. Cytokeratin 18 is highly expressed in many types of cancer and its soluble forms are detected by M30 (for caspase-cleaved form) and M65 (for both caspase-cleaved and intact forms) assays. Here, we report that tumor cells of EMPD in both lesional skin and lymph node metastasis are positive for CK18 immunohistochemically and the baseline serum M30 and M65 levels in metastatic EMPD patients are significantly higher than those in non-metastatic patients. In addition, serial serum M30 and M65 levels might reflect recurrence of EMPD and response to chemotherapy. These results suggest that serum CK18 levels may be a useful tumor marker for advanced EMPD.
Collapse
Affiliation(s)
| | - Hayakazu Sumida
- Department of Dermatology, Faculty of Medicine, The University of Tokyo, 113-8655 Tokyo, Japan.
| | - Takuya Miyagawa
- Department of Dermatology, Faculty of Medicine, The University of Tokyo, , Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Meiners J, Jansen K, Gorbokon N, Büscheck F, Luebke AM, Kluth M, Hube-Magg C, Höflmayer D, Weidemann S, Fraune C, Möller K, Bernreuther C, Lebok P, Menz A, Jacobsen F, Clauditz T, Sauter G, Uhlig R, Wilczak W, Izbicki J, Perez D, Minner S, Burandt E, Krech T, Marx A, Simon R, Steurer S. Angiotensin-Converting Enzyme 2 Protein Is Overexpressed in a Wide Range of Human Tumour Types: A Systematic Tissue Microarray Study on >15,000 Tumours. Biomedicines 2021; 9:biomedicines9121831. [PMID: 34944647 PMCID: PMC8698714 DOI: 10.3390/biomedicines9121831] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a regulator in the renin-angiotensin system. ACE2 expression was analysed immunohistochemically in 15,306 samples from 119 tumour types and in 608 samples of 76 normal tissue types. In normal tissue, ACE2 was most abundant in testis and corpus luteum, kidney, small intestine and capillaries of selected organs. At least an occasional weak ACE2 positivity of tumour cells was seen in 83 of 119 (70%) tumour types. ACE2 tumour cell positivity was particularly frequent in papillary (94%) and clear cell (86%) renal cell carcinoma, colorectal adenocarcinoma (81%), mucinous ovarian cancer (61%), cholangiocarcinoma (58%), hepatocellular carcinoma (56%), and in adenocarcinomas of the stomach (47%), pancreas (42%), and the lung (35%). ACE2-positive capillaries were found in 409/12,644 (3%) of analysable tumours, most frequently in tumours with endocrine/neuroendocrine activity. Presence of ACE2-positive capillaries was linked to low stage in papillary thyroid cancer and low grade in neuroendocrine neoplasms. In conclusion, ACE2 expression can occur both in tumour cells and tumour-associated capillaries in a broad variety of different tumour types at highly variable frequencies.
Collapse
Affiliation(s)
- Jan Meiners
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (J.M.); (K.J.); (J.I.); (D.P.)
| | - Kristina Jansen
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (J.M.); (K.J.); (J.I.); (D.P.)
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.G.); (F.B.); (A.M.L.); (M.K.); (C.H.-M.); (D.H.); (S.W.); (C.F.); (K.M.); (C.B.); (P.L.); (A.M.); (F.J.); (T.C.); (G.S.); (R.U.); (W.W.); (S.M.); (E.B.); (T.K.); (A.M.); (S.S.)
| | - Franziska Büscheck
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.G.); (F.B.); (A.M.L.); (M.K.); (C.H.-M.); (D.H.); (S.W.); (C.F.); (K.M.); (C.B.); (P.L.); (A.M.); (F.J.); (T.C.); (G.S.); (R.U.); (W.W.); (S.M.); (E.B.); (T.K.); (A.M.); (S.S.)
| | - Andreas M. Luebke
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.G.); (F.B.); (A.M.L.); (M.K.); (C.H.-M.); (D.H.); (S.W.); (C.F.); (K.M.); (C.B.); (P.L.); (A.M.); (F.J.); (T.C.); (G.S.); (R.U.); (W.W.); (S.M.); (E.B.); (T.K.); (A.M.); (S.S.)
| | - Martina Kluth
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.G.); (F.B.); (A.M.L.); (M.K.); (C.H.-M.); (D.H.); (S.W.); (C.F.); (K.M.); (C.B.); (P.L.); (A.M.); (F.J.); (T.C.); (G.S.); (R.U.); (W.W.); (S.M.); (E.B.); (T.K.); (A.M.); (S.S.)
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.G.); (F.B.); (A.M.L.); (M.K.); (C.H.-M.); (D.H.); (S.W.); (C.F.); (K.M.); (C.B.); (P.L.); (A.M.); (F.J.); (T.C.); (G.S.); (R.U.); (W.W.); (S.M.); (E.B.); (T.K.); (A.M.); (S.S.)
| | - Doris Höflmayer
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.G.); (F.B.); (A.M.L.); (M.K.); (C.H.-M.); (D.H.); (S.W.); (C.F.); (K.M.); (C.B.); (P.L.); (A.M.); (F.J.); (T.C.); (G.S.); (R.U.); (W.W.); (S.M.); (E.B.); (T.K.); (A.M.); (S.S.)
| | - Sören Weidemann
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.G.); (F.B.); (A.M.L.); (M.K.); (C.H.-M.); (D.H.); (S.W.); (C.F.); (K.M.); (C.B.); (P.L.); (A.M.); (F.J.); (T.C.); (G.S.); (R.U.); (W.W.); (S.M.); (E.B.); (T.K.); (A.M.); (S.S.)
| | - Christoph Fraune
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.G.); (F.B.); (A.M.L.); (M.K.); (C.H.-M.); (D.H.); (S.W.); (C.F.); (K.M.); (C.B.); (P.L.); (A.M.); (F.J.); (T.C.); (G.S.); (R.U.); (W.W.); (S.M.); (E.B.); (T.K.); (A.M.); (S.S.)
| | - Katharina Möller
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.G.); (F.B.); (A.M.L.); (M.K.); (C.H.-M.); (D.H.); (S.W.); (C.F.); (K.M.); (C.B.); (P.L.); (A.M.); (F.J.); (T.C.); (G.S.); (R.U.); (W.W.); (S.M.); (E.B.); (T.K.); (A.M.); (S.S.)
| | - Christian Bernreuther
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.G.); (F.B.); (A.M.L.); (M.K.); (C.H.-M.); (D.H.); (S.W.); (C.F.); (K.M.); (C.B.); (P.L.); (A.M.); (F.J.); (T.C.); (G.S.); (R.U.); (W.W.); (S.M.); (E.B.); (T.K.); (A.M.); (S.S.)
| | - Patrick Lebok
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.G.); (F.B.); (A.M.L.); (M.K.); (C.H.-M.); (D.H.); (S.W.); (C.F.); (K.M.); (C.B.); (P.L.); (A.M.); (F.J.); (T.C.); (G.S.); (R.U.); (W.W.); (S.M.); (E.B.); (T.K.); (A.M.); (S.S.)
| | - Anne Menz
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.G.); (F.B.); (A.M.L.); (M.K.); (C.H.-M.); (D.H.); (S.W.); (C.F.); (K.M.); (C.B.); (P.L.); (A.M.); (F.J.); (T.C.); (G.S.); (R.U.); (W.W.); (S.M.); (E.B.); (T.K.); (A.M.); (S.S.)
| | - Frank Jacobsen
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.G.); (F.B.); (A.M.L.); (M.K.); (C.H.-M.); (D.H.); (S.W.); (C.F.); (K.M.); (C.B.); (P.L.); (A.M.); (F.J.); (T.C.); (G.S.); (R.U.); (W.W.); (S.M.); (E.B.); (T.K.); (A.M.); (S.S.)
| | - Till Clauditz
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.G.); (F.B.); (A.M.L.); (M.K.); (C.H.-M.); (D.H.); (S.W.); (C.F.); (K.M.); (C.B.); (P.L.); (A.M.); (F.J.); (T.C.); (G.S.); (R.U.); (W.W.); (S.M.); (E.B.); (T.K.); (A.M.); (S.S.)
| | - Guido Sauter
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.G.); (F.B.); (A.M.L.); (M.K.); (C.H.-M.); (D.H.); (S.W.); (C.F.); (K.M.); (C.B.); (P.L.); (A.M.); (F.J.); (T.C.); (G.S.); (R.U.); (W.W.); (S.M.); (E.B.); (T.K.); (A.M.); (S.S.)
| | - Ria Uhlig
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.G.); (F.B.); (A.M.L.); (M.K.); (C.H.-M.); (D.H.); (S.W.); (C.F.); (K.M.); (C.B.); (P.L.); (A.M.); (F.J.); (T.C.); (G.S.); (R.U.); (W.W.); (S.M.); (E.B.); (T.K.); (A.M.); (S.S.)
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.G.); (F.B.); (A.M.L.); (M.K.); (C.H.-M.); (D.H.); (S.W.); (C.F.); (K.M.); (C.B.); (P.L.); (A.M.); (F.J.); (T.C.); (G.S.); (R.U.); (W.W.); (S.M.); (E.B.); (T.K.); (A.M.); (S.S.)
| | - Jakob Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (J.M.); (K.J.); (J.I.); (D.P.)
| | - Daniel Perez
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (J.M.); (K.J.); (J.I.); (D.P.)
| | - Sarah Minner
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.G.); (F.B.); (A.M.L.); (M.K.); (C.H.-M.); (D.H.); (S.W.); (C.F.); (K.M.); (C.B.); (P.L.); (A.M.); (F.J.); (T.C.); (G.S.); (R.U.); (W.W.); (S.M.); (E.B.); (T.K.); (A.M.); (S.S.)
| | - Eike Burandt
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.G.); (F.B.); (A.M.L.); (M.K.); (C.H.-M.); (D.H.); (S.W.); (C.F.); (K.M.); (C.B.); (P.L.); (A.M.); (F.J.); (T.C.); (G.S.); (R.U.); (W.W.); (S.M.); (E.B.); (T.K.); (A.M.); (S.S.)
| | - Till Krech
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.G.); (F.B.); (A.M.L.); (M.K.); (C.H.-M.); (D.H.); (S.W.); (C.F.); (K.M.); (C.B.); (P.L.); (A.M.); (F.J.); (T.C.); (G.S.); (R.U.); (W.W.); (S.M.); (E.B.); (T.K.); (A.M.); (S.S.)
- Clinical Centre Osnabrueck, Institute of Pathology, 49074 Osnabrueck, Germany
| | - Andreas Marx
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.G.); (F.B.); (A.M.L.); (M.K.); (C.H.-M.); (D.H.); (S.W.); (C.F.); (K.M.); (C.B.); (P.L.); (A.M.); (F.J.); (T.C.); (G.S.); (R.U.); (W.W.); (S.M.); (E.B.); (T.K.); (A.M.); (S.S.)
- Department of Pathology, Academic Hospital Fuerth, 90766 Fuerth, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.G.); (F.B.); (A.M.L.); (M.K.); (C.H.-M.); (D.H.); (S.W.); (C.F.); (K.M.); (C.B.); (P.L.); (A.M.); (F.J.); (T.C.); (G.S.); (R.U.); (W.W.); (S.M.); (E.B.); (T.K.); (A.M.); (S.S.)
- Correspondence: ; Tel.: +49-40-7410-57214
| | - Stefan Steurer
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.G.); (F.B.); (A.M.L.); (M.K.); (C.H.-M.); (D.H.); (S.W.); (C.F.); (K.M.); (C.B.); (P.L.); (A.M.); (F.J.); (T.C.); (G.S.); (R.U.); (W.W.); (S.M.); (E.B.); (T.K.); (A.M.); (S.S.)
| |
Collapse
|
29
|
Mohd Yunus MH, Rashidbenam Z, Fauzi MB, Bt Hj Idrus R, Bin Saim A. Evaluating Feasibility of Human Tissue Engineered Respiratory Epithelium Construct as a Potential Model for Tracheal Mucosal Reconstruction. Molecules 2021; 26:molecules26216724. [PMID: 34771136 PMCID: PMC8587409 DOI: 10.3390/molecules26216724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022] Open
Abstract
The normal function of the airway epithelium is vital for the host’s well-being. Conditions that might compromise the structure and functionality of the airway epithelium include congenital tracheal anomalies, infection, trauma and post-intubation injuries. Recently, the onset of COVID-19 and its complications in managing respiratory failure further intensified the need for tracheal tissue replacement. Thus far, plenty of naturally derived, synthetic or allogeneic materials have been studied for their applicability in tracheal tissue replacement. However, a reliable tracheal replacement material is missing. Therefore, this study used a tissue engineering approach for constructing tracheal tissue. Human respiratory epithelial cells (RECs) were isolated from nasal turbinate, and the cells were incorporated into a calcium chloride-polymerized human blood plasma to form a human tissue respiratory epithelial construct (HTREC). The quality of HTREC in vitro, focusing on the cellular proliferation, differentiation and distribution of the RECs, was examined using histological, gene expression and immunocytochemical analysis. Histological analysis showed a homogenous distribution of RECs within the HTREC, with increased proliferation of the residing RECs within 4 days of investigation. Gene expression analysis revealed a significant increase (p < 0.05) in gene expression level of proliferative and respiratory epithelial-specific markers Ki67 and MUC5B, respectively, within 4 days of investigation. Immunohistochemical analysis also confirmed the expression of Ki67 and MUC5AC markers in residing RECs within the HTREC. The findings show that calcium chloride-polymerized human blood plasma is a suitable material, which supports viability, proliferation and mucin secreting phenotype of RECs, and this suggests that HTREC can be a potential candidate for respiratory epithelial tissue reconstruction.
Collapse
Affiliation(s)
- Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia;
- Correspondence: ; Tel.: +60-123-137-644
| | - Zahra Rashidbenam
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Z.R.); (M.B.F.)
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Z.R.); (M.B.F.)
| | - Ruszymah Bt Hj Idrus
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia;
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Z.R.); (M.B.F.)
| | - Aminuddin Bin Saim
- Ear, Nose & Throat Consultation Clinic, Ampang Puteri Specialist Hospital, Ampang 68000, Selangor, Malaysia;
| |
Collapse
|
30
|
Kawashima Y, Fujimoto A, Saito M, Mikami O, Ishikawa Y, Kadota K. Histological comparison of malignant epithelioid mesothelioma in young and adult cattle. J Vet Med Sci 2021; 83:968-972. [PMID: 34078754 PMCID: PMC8267194 DOI: 10.1292/jvms.20-0467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The histology and immunohistochemistry of pleomorphic and conventional epithelioid mesotheliomas were examined. The former was detected in two young calves aged 2 and 4 months and was characterized by pleomorphic and atypical cells with decreased expression of cytokeratin 7 (CK7). In contrast, the latter was found in a 31-month-old heifer, consisting of tumor cells uniform in size and shape with CK7 expression in nearly all cells. Production of collagen by tumor cells was demonstrated in both histological types, and was considered to be characteristic of bovine epithelioid mesothelioma. Pleomorphic mesothelioma is far more pleomorphic and mitotically active than conventional mesothelioma, and its normal counterpart may be immature mesothelial cells with high proliferation potential, which exist in fetal life and early calfhood.
Collapse
Affiliation(s)
- Yuuto Kawashima
- Sorachi Livestock Hygiene Service Center, 12-37 Okayamacho, Iwamizawa, Hokkaido 079-0181, Japan
| | - Ayako Fujimoto
- Hidaka Livestock Hygiene Service Center, 2-88-5 Shizunai-asahicho, Shinhidaka, Hokkaido 056-0003, Japan
| | - Morihiro Saito
- College of Nutritional Science, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado, Saitama 350-0288, Japan
| | - Osamu Mikami
- Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-0045, Japan
| | - Yoshiharu Ishikawa
- Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-0045, Japan
| | - Koichi Kadota
- Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-0045, Japan
| |
Collapse
|
31
|
Kanaki Z, Voutsina A, Markou A, Pateras IS, Potaris K, Avgeris M, Makrythanasis P, Athanasiadis EI, Vamvakaris I, Patsea E, Vachlas K, Lianidou E, Georgoulias V, Kotsakis A, Klinakis A. Generation of Non-Small Cell Lung Cancer Patient-Derived Xenografts to Study Intratumor Heterogeneity. Cancers (Basel) 2021; 13:cancers13102446. [PMID: 34070013 PMCID: PMC8157865 DOI: 10.3390/cancers13102446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary It is widely thought that tumors are composed of different subpopulations of cancer cells carrying genetic alterations with some of them being common among all cells while others are unique for each subpopulation. This variable genetic profile of tumor cells is a component of what is collectively described as intratumor heterogeneity (ITH). Surviving the immune system and therapies, and establishing metastases are forces of natural selection that act upon ITH and drive tumor evolution and, eventually, the clinical presentation of patients. The aim of this prospective study was to investigate ITH in early-stage operable non-small cell lung cancer. We directly grafted human tumors in immunosuppressed mice and compared the genetic profile of the tumors grown in mice with that of the original human tumors. We identified clinical factors that affected the ability of human tumors to grow as mouse xenografts. Abstract Recent advances in sequencing technologies have allowed the in-depth molecular study of tumors, even at the single cell level. Sequencing efforts have uncovered a previously unappreciated heterogeneity among tumor cells, which has been postulated to be the driving force of tumor evolution and to facilitate recurrence, metastasis, and drug resistance. In the current study, focused on early-stage operable non-small cell lung cancer, we used tumor growth in patient-derived xenograft (PDX) models in mice as a fast-forward tumor evolution process to investigate the molecular characteristics of tumor cells that grow in mice, as well as the parameters that affect the grafting efficiency. We found that squamous cell carcinomas grafted significantly more efficiently compared with adenocarcinomas. Advanced stage, patient age and primary tumor size were positively correlated with grafting. Additionally, we isolated and characterized circulating tumor cells (CTC) from patients’ peripheral blood and found that the presence of CTCs expressing epithelial-to-mesenchymal (EMT) markers correlated with the grafting potential. Interestingly, exome sequencing of the PDX tumor identified genetic alterations in DNA repair and genome integrity genes that were under-represented in the human primary counterpart. In conclusion, through the generation of a PDX biobank of NSCLC, we identified the clinical and molecular properties of tumors that affected growth in mice.
Collapse
Affiliation(s)
- Zoi Kanaki
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (Z.K.); (A.V.); (P.M.)
| | - Alexandra Voutsina
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (Z.K.); (A.V.); (P.M.)
| | - Athina Markou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.M.); (E.L.)
| | - Ioannis S. Pateras
- Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Konstantinos Potaris
- Department of Thoracic Surgery, Sotiria Hospital for Chest Diseases, 11527 Athens, Greece; (K.P.); (K.V.)
| | - Margaritis Avgeris
- Laboratory of Clinical Biochemistry–Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “P. & A. Kyriakou” Children’s Hospital, 11527 Athens, Greece;
| | - Periklis Makrythanasis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (Z.K.); (A.V.); (P.M.)
| | | | - Ioannis Vamvakaris
- Pathology Department, Athens Chest Hospital “Sotiria”, 11527 Athens, Greece;
| | - Eleni Patsea
- Department of Pathology, Metropolitan Hospital, 18547 Cholargos, Greece;
| | - Konstantinos Vachlas
- Department of Thoracic Surgery, Sotiria Hospital for Chest Diseases, 11527 Athens, Greece; (K.P.); (K.V.)
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.M.); (E.L.)
| | | | - Athanasios Kotsakis
- Department of Medical Oncology, General University Hospital of Larissa, 41110 Larissa, Greece;
| | - Apostolos Klinakis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (Z.K.); (A.V.); (P.M.)
- Correspondence:
| |
Collapse
|