1
|
Takahara K, Ouchi N, Takikawa T, Ozaki Y, Fang L, Kawanishi H, Tatsumi M, Yura Y, Kato K, Takefuji M, Murohara T, Ohashi K. Pemafibrate ameliorates renal injury through induction of FGF21 and ketone body production in male mice. Physiol Rep 2025; 13:e70135. [PMID: 39887648 PMCID: PMC11780494 DOI: 10.14814/phy2.70135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/09/2024] [Accepted: 11/08/2024] [Indexed: 02/01/2025] Open
Abstract
Chronic kidney disease is a life-threatening disease worldwide. PPARα is a crucial transcriptional regulator of lipid metabolism and inflammation. Here, we examine whether a novel selective PPARα modulator, pemafibrate modulates renal injury in a model of unilateral ureteral obstruction (UUO). Administration of pemafibrate to wild-type (WT) mice led to reduction of renal dysfunction and fibrosis after UUO with accompanying increases in plasma levels of fibroblast growth factor (FGF) 21 and ketone body β-hydroxybutyrate (BHB). Treatment of WT mice with FGF21 or BHB precursor resulted in attenuation of renal fibrotic and inflammatory responses after UUO. Treatment of proximal tubular cells with FGF21 or BHB reduced expression of epithelial-mesenchymal transition markers. These findings suggest that pemafibrate could ameliorate renal damage, at least in part, by its abilities to increase the production of FGF21 and BHB.
Collapse
Affiliation(s)
- Kunihiko Takahara
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Noriyuki Ouchi
- Department of Molecular Medicine and CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Tomonobu Takikawa
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Yuta Ozaki
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Lixin Fang
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Hiroshi Kawanishi
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Minako Tatsumi
- Department of Molecular Medicine and CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Yoshimitsu Yura
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Katsuhiro Kato
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Mikito Takefuji
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Toyoaki Murohara
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Koji Ohashi
- Department of Molecular Medicine and CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
2
|
Xu W, Gao X, Luo H, Chen Y. FGF21 attenuates salt-sensitive hypertension via regulating HNF4α/ACE2 axis in the hypothalamic paraventricular nucleus of mice. Clin Exp Hypertens 2024; 46:2361671. [PMID: 38841901 DOI: 10.1080/10641963.2024.2361671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21) has a protective effect against cardiovascular disease. However, the role of FGF21 in hypertension remains elusive. METHODS Ten-week-old male C57BL/6 mice were randomly divided into normal-salt (NS) group, NS+FGF21 group, deoxycorticosterone acetate-salt (DOCA) group and DOCA+FGF21 group. The mice in NS group underwent uninephrectomy without receiving DOCA and 1% NaCl and the mice in DOCA group were subjected to uninephrectomy and DOCA-salt (DOCA and 1% NaCl) treatment for 6 weeks. At the same time, the mice were infused with vehicle (artificial cerebrospinal fluid, aCSF) or FGF21 (1 mg/kg) into the bilateral paraventricular nucleus (PVN) of mice. RESULTS Here, we showed that FGF21 treatment lowered DOCA salt-induced inflammation and oxidative stress in the PVN, which reduced sympathetic nerve activity and hypertension. Mechanistically, FGF21 treatment decreased the expression of HNF4α and inhibited the binding activity of HNF4α to the promoter region of ACE2 in the PVN of DOCA salt-treated mice, which further up-regulated ACE2/Ang (1-7) signals in the PVN. In addition, ACE2 deficiency abolished the protective effect of FGF21 in DOCA salt-treated mice, suggesting that FGF21-mediated antihypertensive effect was dependent on ACE2. CONCLUSIONS The results demonstrate that FGF21 protects against salt-sensitive hypertension via regulating HNF4α/ACE2/Ang (1-7) axis in the PVN of DOCA salt-treated mice via multi-organ crosstalk between liver, brain and blood vessels.
Collapse
Affiliation(s)
- Wei Xu
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xia Gao
- Department of Geriatrics, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hao Luo
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yingmei Chen
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Zhang Y, Arzaghi H, Ma Z, Roye Y, Musah S. Epigenetics of Hypertensive Nephropathy. Biomedicines 2024; 12:2622. [PMID: 39595187 PMCID: PMC11591919 DOI: 10.3390/biomedicines12112622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Hypertensive nephropathy (HN) is a leading cause of chronic kidney disease (CKD) and end-stage renal disease (ESRD), contributing to significant morbidity, mortality, and rising healthcare costs. In this review article, we explore the role of epigenetic mechanisms in HN progression and their potential therapeutic implications. We begin by examining key epigenetic modifications-DNA methylation, histone modifications, and non-coding RNAs-observed in kidney disease. Next, we discuss the underlying pathophysiology of HN and highlight current in vitro and in vivo models used to study the condition. Finally, we compare various types of HN-induced renal injury and their associated epigenetic mechanisms with those observed in other kidney injury models, drawing inferences on potential epigenetic therapies for HN. The information gathered in this work indicate that epigenetic mechanisms can drive the progression of HN by regulating key molecular signaling pathways involved in renal damage and fibrosis. The limitations of Renin-Angiotensin-Aldosterone System (RAAS) inhibitors underscore the need for alternative treatments targeting epigenetic pathways. This review emphasizes the importance of further research into the epigenetic regulation of HN to develop more effective therapies and preventive strategies. Identifying novel epigenetic markers could provide new therapeutic opportunities for managing CKD and reducing the burden of ESRD.
Collapse
Affiliation(s)
- Yize Zhang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Hamidreza Arzaghi
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Zhehan Ma
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Yasmin Roye
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Samira Musah
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC 27708, USA
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
- Affiliate Faculty of the Developmental and Stem Cell Biology Program, Duke Regeneration Center, and Duke MEDx Initiative, Duke University, Durham, NC 27710, USA
| |
Collapse
|
4
|
Zhang J, Zhang G, Jiang L, Qiu D, Wang G, Chen C. FGF21 relieves calcium oxalate-induced cell injury, apoptosis, oxidative damage and ferroptosis of renal tubular epithelial cells through activating Nrf2 signaling pathway. Cytotechnology 2024; 76:519-531. [PMID: 39188649 PMCID: PMC11344745 DOI: 10.1007/s10616-024-00633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/19/2024] [Indexed: 08/28/2024] Open
Abstract
Nephrolithiasis is a common urological disease accompanied by high morbidity worldwide. Evidences indicate that high-level CaOx crystals in the body can lead to renal tubular epithelial cell (RTEC) injury and RTEC injury is a critical precipitating factor for the formation of kidney stones. FGF21 has recently been revealed as the considerable marker in various kidney dysfunction and exerts the nephroprotective effects in various kidney diseases. This current study was formulated to fully elucidate the biological role of FGF21 in nephrolithiasis and probe into the intrinsic mechanisms underlying the protective effects of FGF21 against RTEC injury. In this work, HK-2 cells were incubated with 100 mg/ml COM for 24 h to establish in vitro RTEC injury model. COM-treated HK-2 cells were transfected with Oe-FGF21 to perform gain-of-function experiments. For rescue experiments, HK-2 cells were pretreated with 10 μM Nrf2 inhibitor ML385 for 24 h to thoroughly discuss the role of Nrf2 signaling in FGF21-mediating nephroprotective effects. It was verified that overexpression of FGF21 relieved COM-induced proliferation inhibition, cell injury, apoptosis, oxidative damage and ferroptosis of RTECs. ML385 treatment partially abolished the protective effects of FGF21 against COM injury in RTECs. In conclusion, up-regulation of FGF21 can relieve COM-induced proliferation inhibition, cell injury, apoptosis, oxidative damage and ferroptosis of RTECs through activating Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Urology, Hangzhou Ninth People’s Hospital, Zhejiang Province, Hangzhou, 311225 China
| | - Guanding Zhang
- Department of Urology, Hangzhou Ninth People’s Hospital, Zhejiang Province, Hangzhou, 311225 China
- Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou, 310053 China
| | - Lijun Jiang
- Department of Urology, Hangzhou Ninth People’s Hospital, Zhejiang Province, Hangzhou, 311225 China
| | - Danyang Qiu
- Department of Urology, Hangzhou Ninth People’s Hospital, Zhejiang Province, Hangzhou, 311225 China
| | - Guoping Wang
- Department of Urology, Hangzhou Ninth People’s Hospital, Zhejiang Province, Hangzhou, 311225 China
| | - Chao Chen
- Department of Urology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, No. 261 Huansha RoadZhejiang Province, Hangzhou, 310006 China
| |
Collapse
|
5
|
Gu LY, Jia CG, Sheng ZZ, Jiang WL, Xu ZW, Li WZ, Cui JY, Zhang H. Fibroblast Growth Factor 21 Suppressed Neutrophil Extracellular Traps Induced by Myocardial Ischemia/Reperfusion Injury via Adenosine Monophosphate-Activated Protein Kinase. Cardiol Res 2024; 15:404-414. [PMID: 39420979 PMCID: PMC11483118 DOI: 10.14740/cr1705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
Background Previous investigations have established the anti-inflammatory properties of fibroblast growth factor 21 (FGF21). However, the specific mechanism through which FGF21 mitigates myocardial ischemia/reperfusion (I/R) injury by inhibiting neutrophil extracellular traps (NETs) remains unclear. Methods A mice model of myocardial I/R injury was induced, and myocardial tissue was stained with immunofluorescence to assess NETs. Serum NETs levels were quantified using a PicoGreen kit. In addition, the expression levels of adenosine monophosphate (AMP)-activated protein kinase (AMPK) and FGF21 were evaluated by Wes fully automated protein blotting quantitative analysis system. Moreover, a hypoxia/reoxygenation (H/R) model was established using AMPK inhibitor and agonist pretreated H9c2 cells to further explore the relationship between FGF21 and AMPK. Results Compared with the control group, serum NETs levels were significantly higher in I/R mice, and a large number of NETs were formed in myocardial tissues (97.63 ± 11.45 vs. 69.65 ± 3.33, P < 0.05). However, NETs levels were reversed in FGF21 pretreated mice (P < 0.05). Further studies showed that FGF21 enhanced AMPK expression, which was significantly increased after inhibition of AMPK and decreased after promotion of AMPK (P < 0.05). Conclusions FGF21 may exert cardioprotective effects by inhibiting I/R injury-induced NETs via AMPK.
Collapse
Affiliation(s)
- Ling Yun Gu
- Department of Cardiology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, China
| | - Cheng Gao Jia
- The Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, China
| | - Zuo Zhen Sheng
- Department of Cardiology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, China
| | - Wen Long Jiang
- Department of Cardiology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, China
| | - Zhuo Wen Xu
- The Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, China
| | - Wei Zhang Li
- The Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, China
| | - Jun You Cui
- Department of Cardiology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, China
| | - Hua Zhang
- Department of Cardiology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, China
- The Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, China
| |
Collapse
|
6
|
Duan T, Li M, Lin Z, Meng L, Li M, Xia T, Zhang X, Lin G, Yan L, Liang M, Zhu Q, Li Z, Yang J. The Protective Effect of Vitexin on Hypertensive Nephropathy Rats. Kidney Blood Press Res 2024; 49:753-762. [PMID: 39079512 DOI: 10.1159/000540618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/18/2024] [Indexed: 09/14/2024] Open
Abstract
INTRODUCTION Vitexin is a natural flavonoid compound extracted from Vitex leaves or seeds, exhibiting various pharmacological activities including anticancer, antihypertensive, anti-inflammatory, and spasmolytic effects. However, its protective effects on hypertensive nephropathy (HN) and the underlying mechanisms remain unclear. METHODS Spontaneous hypertension rats were fed a high-sugar and high-fat diet for 8 weeks to induce the disease HN model. From the 5th week, the rats were administered vitexin via gavage. Blood pressure was measured biweekly using the tail-cuff method. Histopathological changes were assessed using HE staining, and biochemical analyses were performed to evaluate the effects of vitexin on HN rats. The underlying mechanisms of vitexin treatment were investigated through western blotting. RESULTS The data demonstrated that vitexin significantly lowered systolic, diastolic, and mean arterial pressures and ameliorated histopathological changes in HN rats. Biochemical analyses revealed that vitexin reduced the levels of creatinine (Cr), blood urea nitrogen (BUN), total cholesterol (TC), triglycerides (TG), total protein (TP), low-density lipoprotein cholesterol (LDL-C), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), malondialdehyde (MDA), and advanced glycation end products (AGEs), while increasing the levels of albumin (ALB) and superoxide dismutase (SOD). Western blotting results indicated that vitexin treatment decreased the expression of TNF-α, IL-6, and nuclear factor kappa-B (NF-κB), while increasing the expression of SOD. CONCLUSION The findings of this study suggest that vitexin exerts protective effects against HN, providing pharmacological evidence for its potential use in HN treatment.
Collapse
Affiliation(s)
- Tingting Duan
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| | - Minyi Li
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| | - Ziyang Lin
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
- The Second Clinical College, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Lanqing Meng
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| | - Mengqiu Li
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| | - Tao Xia
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| | - Xianlong Zhang
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
- The Second Clinical College, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Guixuan Lin
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| | - Lufeng Yan
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| | - Mingjie Liang
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| | - Quan Zhu
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| | - Zhenghai Li
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| | - Junzheng Yang
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, China
| |
Collapse
|
7
|
Bartmańska M, Wiecek A, Adamczak M. Plasma FGF21 Concentration in Kidney Transplant Patients-Results from Prospective and Cross-Sectional Studies. J Clin Med 2024; 13:4266. [PMID: 39064306 PMCID: PMC11278288 DOI: 10.3390/jcm13144266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Background/Objectives: Fibroblast growth factor 21 (FGF21) is a protein hormone involved in physiological conditions in the regulation of energy expenditure and several metabolic processes. The aim of this present study was to analyze the effect of successful kidney transplantations on the plasma FGF21 concentration and to study the factors which may influence plasma FGF21 concentration in patients in long time after kidney transplantation. Methods: This study consisted of two independent parts. The first part was a prospective observation of CKD patients in stage 5 before and then on the 14th and 30th day and 6 months after kidney transplantation. The second part of this study was the cross-sectional study completed in patients at least one year after kidney transplantation and the control group. In CKD patients directly before and during the early period after KTx, plasma FGF21 concentrations were measured four times (immediately before and 14 and 30 days and 6 months after KTx). In patients long time after kidney transplantation and in healthy subjects, plasma FGF21 concentration was measured once. Results: Forty patients with chronic kidney disease (CKD) who were either directly before or within the early period after kidney transplantation (KTx), 184 patients longtime after KTx and 50 healthy subjects were enrolled into this study. In CKD patients at the stage directly before receiving a KTx, the mean plasma FGF21 concentration was significantly higher than in the healthy subjects [1013.0 pg/mL versus 239.5 pg/mL, p < 0.001]. At 14, 30 days, and 6 months after the KTx, a significant decrease of plasma FGF21 was observed, with values of 322.5 pg/mL; 355.0 pg/mL; and 344.0 pg/mL (p < 0.001), respectively]. In patients long time after KTx, a negative correlation was found between the plasma FGF21 concentration and the estimated glomerular filtration rate and a positive correlation was found between the plasma FGF21 concentration and the BMI, the serum concentration of triglycerides, insulin, interleukin-6, CRP, and cystatin C. Conclusions: The plasma FGF21 concentration in patients with end-stage renal disease is higher than in healthy subjects and significantly decreases after a successful KTx. The plasma FGF21 concentration measured by ELISA in patients long time after kidney transplantation seems to be related to the degree of kidney function impairment and their metabolic status. The kidneys appear to be one of the main organs involved in the biodegradation and/or elimination of FGF21.
Collapse
Affiliation(s)
| | | | - Marcin Adamczak
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, 40-027 Katowice, Poland (A.W.)
| |
Collapse
|
8
|
Li J, Tang Y, Lu G, Liu Q, Guo Y, Wang J, Xiao M, Gao T, Zhang X, Gu J. Elevation of p53 sensitizes obese kidney to adriamycin-induced aberrant lipid homeostasis via repressing HNF4α-mediated FGF21 sensitivity. J Adv Res 2024:S2090-1232(24)00299-6. [PMID: 39019110 DOI: 10.1016/j.jare.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/22/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024] Open
Abstract
INTRODUCTION Lipid metabolism disorders have been confirmed to be closely related to kidney injury caused by adriamycin (ADR) and obesity, respectively. However, it has not been explored whether lipid metabolism disorders appear progressively more severe after ADR-based chemotherapy in the obese state, and the specific molecular mechanism needs to be further clarified. OBJECTIVES This study was designed to examine the role of p53-fibroblast growth factor 21 (FGF21) axis in ADR-induced renal injury aggravated by high-fat diet (HFD). METHODS We engineered Fgf21 KO mice and used long-term (4 months) and short-term (0.5 months) HFD feeding, and ADR-injected mice, as well as STZ-induced type 1 diabetic mice and type 2 (db/db) diabetic mice to produce an in vivo model of nephrotoxicity. The specific effects of p53/FGF21 on the regulation of lipid metabolism disorders and its downstream mediators in kidney were subsequently elucidated using a combination of functional and pathological analysis, RNA-sequencing, molecular biology, and in vitro approaches. RESULTS Long-term HFD feeding mice exhibited compromised effects of FGF21 on alleviation of renal dysfunction and lipid accumulation following ADR administration. However, these impairments were reversed by p53 inhibitor (pifithrin-α, PFT-α). PFT-α sensitized FGF21 actions in kidney tissues, while knockout of Fgf21 impaired the protective effects of PFT-α on lipid metabolism. Mechanistically, p53 impaired the renal expression of FGF receptor-1 (FGFR1) and thereby developed gradually into FGF21 resistance via inhibiting hepatocyte nuclear factor 4 alpha (HNF4α)-mediated transcriptional activation of Fgfr1. More importantly, exogenous supplementation of FGF21 or PFT-α could not only alleviate ADR-induced lipid metabolism disorder aggravated by HFD, but also reduce lipid accumulation caused by diabetic nephropathy. CONCLUSION Given the difficulties in developing the long-acting recombinant FGF21 analogs for therapeutic applications, sensitizing obesity-impaired FGF21 actions by suppression of p53 might be a therapeutic strategy for maintaining renal metabolic homeostasis during chemotherapy.
Collapse
Affiliation(s)
- Jiahao Li
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qingbo Liu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Mengjie Xiao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ting Gao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaohui Zhang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
9
|
Hasbal NB, Bakir CN, Incir S, Siriopol D, Sanchez-Lozada LG, Lanaspa MA, Johnson RJ, Kanbay M. A study on the early metabolic effects of salt and fructose consumption: the protective role of water. Hypertens Res 2024; 47:1797-1810. [PMID: 38750219 PMCID: PMC11224018 DOI: 10.1038/s41440-024-01686-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/22/2024] [Accepted: 03/17/2024] [Indexed: 07/06/2024]
Abstract
Increasing serum osmolality has recently been linked with acute stress responses, which over time can lead to increased risk for obesity, hypertension, and other chronic diseases. Salt and fructose are two major stimuli that can induce acute changes in serum osmolality. Here we investigate the early metabolic effects of sodium and fructose consumption and determine whether the effects of sodium or fructose loading can be mitigated by blocking the change in osmolality with hydration. Forty-four healthy subjects without disease and medication were recruited into four groups. After overnight fasting, subjects in Group 1 drank 500 mL of salty soup, while those in Group 2 drank 500 mL of soup without salt for 15 min. Subjects in Group 3 drank 500 mL of 100% apple juice in 5 min, while subjects in Group 4 drank 500 mL of 100% apple juice and 500 mL of water in 5 min. Blood pressure (BP), plasma sodium, and glucose levels were measured every 15 min in the first 2 h. Serum and urine osmolarity, serum uric acid, cortisol, fibroblast growth factor 21 (FGF21), aldosterone, adrenocorticotropic hormone (ACTH) level, and plasma renin activity (PRA) were measured at the baseline and 2 h. Both acute intake of salt or fructose increased serum osmolality (maximum ∼4 mOsm/L peaking at 75 min) associated with a rise in systolic and diastolic BP, PRA, aldosterone, ACTH, cortisol, plasma glucose, uric acid, and FGF21. Salt tended to cause greater activation of the renin-angiotensin-system (RAS), while fructose caused a greater rise in glucose and FGF21. In both cases, hydration could prevent the osmolality and largely block the acute stress response. Acute changes in serum osmolality can induce remarkable activation of the ACTH-cortisol, RAS, glucose metabolism, and uric acid axis that is responsive to hydration. In addition to classic dehydration, salt, and fructose-containing sugars can activate these responses. Staying well hydrated may provide benefits despite exposure to sugar and salt. More studies are needed to investigate whether hydration can block the chronic effects of sugar and salt on disease.
Collapse
Affiliation(s)
- Nuri Baris Hasbal
- Division of Nephrology, Department of Internal Medicine, Koc University School of Medicine, İstanbul, Turkey.
| | | | - Said Incir
- Department of Biochemistry, Koc University School of Medicine, Istanbul, Turkey
| | - Dimitrie Siriopol
- Department of Nephrology, "Saint John the New" County Hospital, Stefan cel Mare University, Suceava, Romania
| | - Laura G Sanchez-Lozada
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología "Ignacio Chavez", Mexico City, Mexico
| | - Miguel A Lanaspa
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Richard J Johnson
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Mehmet Kanbay
- Division of Nephrology, Department of Internal Medicine, Koc University School of Medicine, İstanbul, Turkey
| |
Collapse
|
10
|
Li R, Liu X. FGF21 Inhibits Hypoxia/Reoxygenation-induced Renal Tubular Epithelial Cell Injury by Regulating the PPARγ/NF-κB Signaling Pathway. Cell Biochem Biophys 2024; 82:909-918. [PMID: 38459267 DOI: 10.1007/s12013-024-01242-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 03/10/2024]
Abstract
As a predominant trigger of acute kidney injury, renal ischemia-reperfusion injury can cause permanent renal impairment, and the effective therapies are lacking. Fibroblast growth factor 21 (FGF21) plays a critical regulatory role in a variety of biological activities. This study was conducted to explore the functional of FGF21 in renal ischemia-reperfusion injury and to discuss the hidden reaction mechanism. To simulate renal ischemia-reperfusion injury in vitro, HK2 cells were induced by hypoxia/reoxygenation (H/R). The effects of FGF21 on H/R-induced HK2 cell viability were evaluated utilizing cell counting kit-8 (CCK-8). The levels of lactate dehydrogenase (LDH) and inflammatory cytokines in H/R-induced HK2 cells were assessed by means of LDH assay and enzyme-linked immunosorbent assay (ELISA). The levels of oxidative stress markers were appraised with corresponding assay kits and western blot was applied to estimate the expressions of oxidative stress-related proteins. The apoptosis of H/R-induced HK2 cells was assessed by virtue of flow cytometry. The expressions of apoptosis- and PPARγ/NF-κB signaling pathway-related proteins were evaluated with western blot. To discuss the reaction mechanism of PPARγ/NF-κB pathway in H/R-induced HK2 cells, PPARγ inhibitor GW9662 was employed to treat cells and the above experiments were then conducted again. This study found that FGF21 treatment inhibited the inflammatory response, oxidative stress and apoptosis in H/R-induced HK2 cells. Moreover, FGF21 regulated PPARγ/NF-κB signaling pathway and GW9662 partially reversed the impacts of FGF21 on the inflammatory response, oxidative stress and apoptosis in H/R-exposed HK2 cells. Collectively, FGF21 protected against H/R-induced renal tubular epithelial cell injury by regulating the PPARγ/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ruixue Li
- Nephrology Department, The People's Hospital of Yubei District of Chongqing, Chongqing, 401120, PR China.
| | - Xi Liu
- Nephrology Department, The People's Hospital of Yubei District of Chongqing, Chongqing, 401120, PR China
| |
Collapse
|
11
|
Zhong W, Jiang Y, Wang H, Luo X, Zeng T, Huang H, Xiao L, Jia N, Li A. Fibroblast growth factor 21 alleviates unilateral ureteral obstruction-induced renal fibrosis by inhibiting Wnt/β-catenin signaling pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119620. [PMID: 37926157 DOI: 10.1016/j.bbamcr.2023.119620] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Fibroblast growth factor 21 (FGF21) is a key regulator of energy metabolism. Recent studies suggested that serum FGF21 levels increase with declining renal function. However, the link between FGF21 and kidney diseases and the direct effect of FGF21 in renal fibrosis remains unclear. In this study, FGF21 was upregulated in unilateral ureteral obstruction (UUO)-induced renal fibrosis and cellular fibrosis induced by transforming growth factor-β, and renal expression of FGF21 was positively correlated with fibrosis markers. Additionally, FGF21 was regulated by Wnt/β-catenin signaling pathway. The knockdown and overexpression of FGF21 in mouse tubular epithelial cells demonstrated that FGF21 alleviates renal fibrosis by inhibiting the Wnt/β-catenin signaling pathway. To investigate the effect of FGF21 on renal fibrosis in vivo, we established an overexpression model by injecting the plasmid in mice and found that FGF21 overexpression relieved UUO-induced renal fibrosis and renal inflammatory response. Taken together, FGF21 is upregulated with the activation of Wnt/β-catenin signaling pathway and alleviates renal fibrosis by inhibiting the activation of Wnt/β-catenin signaling pathway in a negative feedback mode. These results provide a new understanding for the source of elevated serum FGF21 in patients with chronic kidney disease and prove that FGF21 is a direct inhibitor of the progression of renal fibrosis, thus providing novel therapeutic intervention insights for renal fibrosis.
Collapse
Affiliation(s)
- Wenhui Zhong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, 510005 Guangzhou, China
| | - Yuheng Jiang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, 510005 Guangzhou, China
| | - Huizhen Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, 510005 Guangzhou, China
| | - Xiang Luo
- Xingguo Hospital Affiliated to Gannan Medical University, Xingguo People's Hospital, 342400 Ganzhou, China.
| | - Tao Zeng
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, 510005 Guangzhou, China
| | - Huimi Huang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, 510005 Guangzhou, China
| | - Ling Xiao
- Xingguo Hospital Affiliated to Gannan Medical University, Xingguo People's Hospital, 342400 Ganzhou, China
| | - Nan Jia
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, 510005 Guangzhou, China.
| | - Aiqing Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, 510005 Guangzhou, China.
| |
Collapse
|
12
|
Liang Y, Chen Q, Chang Y, Han J, Yan J, Chen Z, Zhou J. Critical role of FGF21 in diabetic kidney disease: from energy metabolism to innate immunity. Front Immunol 2024; 15:1333429. [PMID: 38312833 PMCID: PMC10834771 DOI: 10.3389/fimmu.2024.1333429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
Diabetic kidney disease (DKD) stands as the predominant cause of chronic kidney disease (CKD) on a global scale, with its incidence witnessing a consistent annual rise, thereby imposing a substantial burden on public health. The pathogenesis of DKD is primarily rooted in metabolic disorders and inflammation. Recent years have seen a surge in studies highlighting the regulatory impact of energy metabolism on innate immunity, forging a significant area of research interest. Within this context, fibroblast growth factor 21 (FGF21), recognized as an energy metabolism regulator, assumes a pivotal role. Beyond its role in maintaining glucose and lipid metabolism homeostasis, FGF21 exerts regulatory influence on innate immunity, concurrently inhibiting inflammation and fibrosis. Serving as a nexus between energy metabolism and innate immunity, FGF21 has evolved into a therapeutic target for diabetes, nonalcoholic steatohepatitis, and cardiovascular diseases. While the relationship between FGF21 and DKD has garnered increased attention in recent studies, a comprehensive exploration of this association has yet to be systematically addressed. This paper seeks to fill this gap by summarizing the mechanisms through which FGF21 operates in DKD, encompassing facets of energy metabolism and innate immunity. Additionally, we aim to assess the diagnostic and prognostic value of FGF21 in DKD and explore its potential role as a treatment modality for the condition.
Collapse
Affiliation(s)
- Yingnan Liang
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Chen
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Chang
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Junsong Han
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaxin Yan
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenjie Chen
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingwei Zhou
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Sun Z, Wang W, Liu J, Zou S, Yin D, Lyu C, Yu J, Wei Y. Bioactive Peptides from Ruditapes philippinarum Attenuate Hypertension and Cardiorenal Damage in Deoxycorticosterone Acetate-Salt Hypertensive Rats. Molecules 2023; 28:7610. [PMID: 38005332 PMCID: PMC10675683 DOI: 10.3390/molecules28227610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Hypertension is a common disease that affects human health and can lead to damage to the heart, kidneys, and other important organs. In this study, we investigated the regulatory effects of bioactive peptides derived from Ruditapes philippinarum (RPP) on hypertension and organ protection in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. We found that RPPs exhibited significant blood pressure-lowering properties. Furthermore, the results showed that RPPs positively influenced vascular remodeling and effectively maintained a balanced water-sodium equilibrium. Meanwhile, RPPs demonstrated anti-inflammatory potential by reducing the serum levels of inflammatory cytokines (TNF-α, IL-2, and IL-6). Moreover, we observed the strong antioxidant activity of RPPs, which played a critical role in reducing oxidative stress and alleviating hypertension-induced damage to the aorta, heart, and kidneys. Additionally, our study explored the regulatory effects of RPPs on the gut microbiota, suggesting a possible correlation between their antihypertensive effects and the modulation of gut microbiota. Our previous studies have demonstrated that RPPs can significantly reduce blood pressure in SHR rats. This suggests that RPPs can significantly improve both essential hypertension and DOAC-salt-induced secondary hypertension and can ameliorate cardiorenal damage caused by hypertension. These findings further support the possibility of RPPs as an active ingredient in functional anti-hypertensive foods.
Collapse
Affiliation(s)
- Zonghui Sun
- College of Life Sciences, Qingdao University, Qingdao 266071, China;
| | - Weixia Wang
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266061, China; (W.W.); (J.L.); (S.Z.); (D.Y.); (C.L.)
| | - Jinli Liu
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266061, China; (W.W.); (J.L.); (S.Z.); (D.Y.); (C.L.)
| | - Shengcan Zou
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266061, China; (W.W.); (J.L.); (S.Z.); (D.Y.); (C.L.)
| | - Dongli Yin
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266061, China; (W.W.); (J.L.); (S.Z.); (D.Y.); (C.L.)
| | - Chenghan Lyu
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266061, China; (W.W.); (J.L.); (S.Z.); (D.Y.); (C.L.)
| | - Jia Yu
- College of Life Sciences, Qingdao University, Qingdao 266071, China;
| | - Yuxi Wei
- College of Life Sciences, Qingdao University, Qingdao 266071, China;
| |
Collapse
|
14
|
Badmus OO, Hinds TD, Stec DE. Mechanisms Linking Metabolic-Associated Fatty Liver Disease (MAFLD) to Cardiovascular Disease. Curr Hypertens Rep 2023; 25:151-162. [PMID: 37191842 PMCID: PMC10839567 DOI: 10.1007/s11906-023-01242-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 05/17/2023]
Abstract
PURPOSE OF REVIEW Metabolic-associated fatty liver disease (MAFLD) is a condition of fat accumulation in the liver that occurs in the majority of patients in combination with metabolic dysfunction in the form of overweight or obesity. In this review, we highlight the cardiovascular complications in MAFLD patients as well as some potential mechanisms linking MAFLD to the development of cardiovascular disease and highlight potential therapeutic approaches to treating cardiovascular diseases in patients with MAFLD. RECENT FINDINGS MAFLD is associated with an increased risk of cardiovascular diseases (CVD), including hypertension, atherosclerosis, cardiomyopathies, and chronic kidney disease. While clinical data have demonstrated the link between MAFLD and the increased risk of CVD development, the mechanisms responsible for this increased risk remain unknown. MAFLD can contribute to CVD through several mechanisms including its association with obesity and diabetes, increased levels of inflammation, and oxidative stress, as well as alterations in hepatic metabolites and hepatokines. Therapies to potentially treat MAFLD-induced include statins and lipid-lowering drugs, glucose-lowering agents, antihypertensive drugs, and antioxidant therapy.
Collapse
Affiliation(s)
- Olufunto O Badmus
- Department of Physiology & Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, Barnstable Brown Diabetes Center, Markey Cancer Center, University of Kentucky, Lexington, KY, 40508, USA
| | - David E Stec
- Department of Physiology & Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
15
|
Bao M, Song Y, Wu S, Li J. Influence of Hypersensitive C-Reactive Protein on the Effect of Continuous Antihypertensive Pharmacological Therapy. J Cardiovasc Pharmacol 2022; 80:62-69. [PMID: 35384909 PMCID: PMC9249075 DOI: 10.1097/fjc.0000000000001267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/06/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Systemic chronic inflammation, represented by hypersensitive C-reactive protein (hsCRP), is an essential contributing factor to hypertension. However, the influence of hsCRP levels on the effect of antihypertensive pharmacological therapy remains unknown. We evaluated hsCRP levels in 3756 newly diagnosed, untreated hypertensive subjects. Participants were grouped by tertiles of hsCRP and were randomly treated with nitrendipine + captopril, nitrendipine + spironolactone hydrochlorothiazide + captopril, and hydrochlorothiazide + spironolactone. Blood pressure (BP) was recorded every 2 weeks. A multivariate mixed linear model was used to evaluate the impact of baseline hsCRP levels on the continuous antihypertensive effect. After 3, 6, 9, and 12 months of continuous antihypertensive treatment, no significant difference was observed in BP decline among the different hsCRP groups. We identified interactions between baseline hsCRP levels and follow-up time. After adjusting for conventional risk factors and the interactions between hsCRP and follow-up time, there was no significant association between baseline hsCRP level and antihypertensive effects at 0-6 months of follow-up. However, from 6 to 12 months, subjects with higher baseline hsCRP levels exhibited a more marked BP-lowering effect ( P < 0.001 at 9 months, P = 0.002 at 12 months). Overall, there exist interaction effects between baseline hsCRP levels and follow-up time. Individuals with higher baseline hsCRP levels may exhibit a better response to antihypertensive therapy.
Collapse
Affiliation(s)
- Minghui Bao
- Department of Cardiology, Peking University First Hospital, Peking University, Beijing, China
| | - Yongjian Song
- Department of Cardiology, Zhangjiakou First Hospital, Hebei, China; and
| | - Shouling Wu
- Department of Cardiology, Kailuan Hospital, North China University of Science and Technology, Tangshan, China
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Peking University, Beijing, China
| |
Collapse
|