1
|
Lu Q, Jia Z, Gu H. Association between brain resting-state functional activities and migraine: a bidirectional mendelian randomization study. Sci Rep 2024; 14:23901. [PMID: 39396101 PMCID: PMC11470954 DOI: 10.1038/s41598-024-74745-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024] Open
Abstract
Researchers have conducted extensive research on the correlation between brain resting-state functional activities (RSFA) and migraine. However, we still do not fully understand the exact nature of the causal relationship between these RSFA and migraine. We conducted a bidirectional two-sample Mendelian randomization (MR) study to investigate the causal association between migraine and RSFA. We gathered summary statistics from genome-wide association studies for 191 resting-state functional magnetic resonance imaging phenotypes. We employed various analytical methods for bidirectional two-sample MR analyses. This included inverse variance weighted, weighted median, MR Egger, and the constrained maximum likelihood approaches. We also conducted pleiotropy and heterogeneity analyses to evaluate the robustness and reliability. We found the functional connectivity between the default mode and the central executive network (OR = 1.39, p = 4.77 × 10-4, FDR corrected p value = 0.040) and the intensity of spontaneous brain activity in the calcarine or lingual gyrus within the visual network (OR = 0.74, p = 5.94 × 10-4, FDR corrected p value = 0.040) having a causal effect on the risk of migraine. Our MR analysis provided genetic support for these networks, which may play an important role in influencing migraine susceptibility.
Collapse
Affiliation(s)
- Qian Lu
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Shichang west road 1399, Wujiang District, Suzhou, 215228, Jiangsu, China
| | - Zhenyu Jia
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hanqing Gu
- Department of Interventional Radiology, Suzhou Yongding Hospital, Suzhou, Jiangsu, China.
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Schramm S, Börner C, Reichert M, Hoffmann G, Kaczmarz S, Griessmair M, Jung K, Berndt MT, Zimmer C, Baum T, Heinen F, Bonfert MV, Sollmann N. Perfusion imaging by arterial spin labeling in migraine: A literature review. J Cereb Blood Flow Metab 2024; 44:1253-1270. [PMID: 38483125 PMCID: PMC11342727 DOI: 10.1177/0271678x241237733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 08/15/2024]
Abstract
Arterial spin labeling (ASL) is a non-invasive magnetic resonance imaging (MRI) method for the assessment of cerebral blood flow (CBF). This review summarizes recent ASL-based investigations in adult and pediatric patients with migraine with aura, migraine without aura, and chronic migraine. A systematic search according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was conducted within PubMed and reference sections of articles identified from April 2014 to November 2022. Out of 236 initial articles, 20 remained after filtering, encompassing data from 1155 subjects in total. Cross-sectional studies in adults showed inconsistent results, while longitudinal studies demonstrated that cerebral perfusion changes over the migraine cycle can be tracked using ASL. The most consistent findings were observed in ictal states among pediatric migraine patients, where studies showed hypoperfusion matching aura symptoms during early imaging followed by hyperperfusion. Overall, ASL is a useful but currently underutilized modality for evaluating cerebral perfusion in patients with migraine. The generalizability of results is currently limited by heterogeneities regarding study design and documentation of clinical variables (e.g., relation of attacks to scanning timepoint, migraine subtypes). Future MRI studies should consider augmenting imaging protocols with ASL to further elucidate perfusion dynamics in migraine.
Collapse
Affiliation(s)
- Severin Schramm
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Corinna Börner
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- LMU Hospital, Dr. von Hauner Children’s Hospital, Department of Pediatric Neurology and Developmental Medicine, Munich, Germany
- LMU Center for Children with Medical Complexity – iSPZ Hauner, Ludwig Maximilian University, Munich, Germany
| | - Miriam Reichert
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Gabriel Hoffmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephan Kaczmarz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Philips GmbH Market DACH, Hamburg, Germany
| | - Michael Griessmair
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Kirsten Jung
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maria T Berndt
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Florian Heinen
- LMU Hospital, Dr. von Hauner Children’s Hospital, Department of Pediatric Neurology and Developmental Medicine, Munich, Germany
| | - Michaela V Bonfert
- LMU Hospital, Dr. von Hauner Children’s Hospital, Department of Pediatric Neurology and Developmental Medicine, Munich, Germany
- LMU Center for Children with Medical Complexity – iSPZ Hauner, Ludwig Maximilian University, Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
3
|
Veréb D, Szabó N, Kincses B, Szücs-Bencze L, Faragó P, Csomós M, Antal S, Kocsis K, Tuka B, Kincses ZT. Imbalanced temporal states of cortical blood-oxygen-level-dependent signal variability during rest in episodic migraine. J Headache Pain 2024; 25:114. [PMID: 39014299 PMCID: PMC11251240 DOI: 10.1186/s10194-024-01824-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Migraine has been associated with functional brain changes including altered connectivity and activity both during and between headache attacks. Recent studies established that the variability of the blood-oxygen-level-dependent (BOLD) signal is an important attribute of brain activity, which has so far been understudied in migraine. In this study, we investigate how time-varying measures of BOLD variability change interictally in episodic migraine patients. METHODS Two independent resting state functional MRI datasets acquired on 3T (discovery cohort) and 1.5T MRI scanners (replication cohort) including 99 episodic migraine patients (n3T = 42, n1.5T=57) and 78 healthy controls (n3T = 46, n1.5T=32) were analyzed in this cross-sectional study. A framework using time-varying measures of BOLD variability was applied to derive BOLD variability states. Descriptors of BOLD variability states such as dwell time and fractional occupancy were calculated, then compared between migraine patients and healthy controls using Mann-Whitney U-tests. Spearman's rank correlation was calculated to test associations with clinical parameters. RESULTS Resting-state activity was characterized by states of high and low BOLD signal variability. Migraine patients in the discovery cohort spent more time in the low variability state (mean dwell time: p = 0.014, median dwell time: p = 0.022, maximum dwell time: p = 0.013, fractional occupancy: p = 0.013) and less time in the high variability state (mean dwell time: p = 0.021, median dwell time: p = 0.021, maximum dwell time: p = 0.025, fractional occupancy: p = 0.013). Higher uptime of the low variability state was associated with greater disability as measured by MIDAS scores (maximum dwell time: R = 0.45, p = 0.007; fractional occupancy: R = 0.36, p = 0.035). Similar results were observed in the replication cohort. CONCLUSION Episodic migraine patients spend more time in a state of low BOLD variability during rest in headache-free periods, which is associated with greater disability. BOLD variability states show potential as a replicable functional imaging marker in episodic migraine.
Collapse
Affiliation(s)
- Dániel Veréb
- Department of Radiology, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary.
| | - Nikoletta Szabó
- Department of Neurology, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - Bálint Kincses
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Medicine Essen, Essen, Germany
- Department of Neurology, Center for Translational Neuro- and Behavioural Sciences, University Medicine Essen, Essen, Germany
| | - Laura Szücs-Bencze
- Department of Neurology, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - Péter Faragó
- Department of Neurology, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - Máté Csomós
- Department of Radiology, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - Szabolcs Antal
- Department of Radiology, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - Krisztián Kocsis
- Department of Radiology, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - Bernadett Tuka
- Department of Radiology, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - Zsigmond Tamás Kincses
- Department of Radiology, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| |
Collapse
|
4
|
Raghuraman L, Joshi SH. Application of EEG in the Diagnosis and Classification of Migraine: A Scoping Review. Cureus 2024; 16:e64961. [PMID: 39171023 PMCID: PMC11336234 DOI: 10.7759/cureus.64961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Migraine is a chronic debilitating disease affecting a significant number of people, more often women than men. The gold standard for diagnosis is the International Classification of Headache Disorders-3 (ICHD-3). Authors have identified multiple tight spots in the present method of diagnosis. An alternative method of diagnosis has always been coveted. Electroencephalogram (EEG) is one of the most researched of such alternatives. The visually evoked potential is the most studied; auditory evoked potentials and transcranial direct current stimulation are also being studied. Cortical hyperexcitability and habituation deficit to sensory stimuli are some of the consistent findings. Alpha oscillations are among the most frequently studied bands; spectral analysis of EEG waves has often shown more reliable and consistent results than features read off the EEG directly. EEG microstate is a novel and promising method showing characteristic identifiable features that may help diagnose Migraine patients. An alternative to the ICHD-3 criterion for diagnosing Migraines would be instrumental in promptly diagnosing the disease. EEG is one of the most explored alternatives within which enumerable features can be used to identify Migraines, of which the most promising are EEG microstates.
Collapse
Affiliation(s)
- Lakshana Raghuraman
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Shiv H Joshi
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
5
|
Conti M, Bovenzi R, Palmieri MG, Placidi F, Stefani A, Mercuri NB, Albanese M. Early effect of onabotulinumtoxinA on EEG-based functional connectivity in patients with chronic migraine: A pilot study. Headache 2024; 64:825-837. [PMID: 38837259 DOI: 10.1111/head.14750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 06/07/2024]
Abstract
OBJECTIVE In this pilot prospective cohort study, we aimed to evaluate, using high-density electroencephalography (HD-EEG), the longitudinal changes in functional connectivity (FC) in patients with chronic migraine (CM) treated with onabotulinumtoxinA (OBTA). BACKGROUND OBTA is a treatment for CM. Several studies have shown the modulatory action of OBTA on the central nervous system; however, research on migraine is limited. METHODS This study was conducted at the Neurology Unit of "Policlinico Tor Vergata," Rome, Italy, and included 12 adult patients with CM treated with OBTA and 15 healthy controls (HC). Patients underwent clinical scales at enrollment (T0) and 3 months (T1) from the start of treatment. HD-EEG was recorded using a 64-channel system in patients with CM at T0 and T1. A source reconstruction method was used to identify brain activity. FC in δ-θ-α-β-low-γ bands was analyzed using the weighted phase-lag index. FC changes between HCs and CM at T0 and T1 were assessed using cross-validation methods to estimate the results' reliability. RESULTS Compared to HCs at T0, patients with CM showed hyperconnected networks in δ (p = 0.046, area under the receiver operating characteristic curve [AUC: 0.76-0.98], Cohen's κ [0.65-0.93]) and β (p = 0.031, AUC [0.68-0.95], Cohen's κ [0.51-0.84]), mainly involving orbitofrontal, occipital, temporal pole and orbitofrontal, superior temporal, occipital, cingulate areas, and hypoconnected networks in α band (p = 0.029, AUC [0.80-0.99], Cohen's κ [0.42-0.77]), predominantly involving cingulate, temporal pole, and precuneus. Patients with CM at T1, compared to T0, showed hypoconnected networks in δ band (p = 0.032, AUC [0.73-0.99], Cohen's κ [0.53-0.90]) and hyperconnected networks in α band (p = 0.048, AUC [0.58-0.93], Cohen's κ [0.37-0.78]), involving the sensorimotor, orbitofrontal, cingulate, and temporal cortex. CONCLUSION These preliminary results showed that patients with CM presented disrupted EEG-FC compared to controls restored by a single session of OBTA treatment, suggesting a primary central modulatory action of OBTA.
Collapse
Affiliation(s)
- Matteo Conti
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Roberta Bovenzi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Fabio Placidi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandro Stefani
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Maria Albanese
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Neurology Unit, Regional Referral Headache Center, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
6
|
Al-Omari A, Gaszner B, Zelena D, Gecse K, Berta G, Biró-Sütő T, Szocsics P, Maglóczky Z, Gombás P, Pintér E, Juhász G, Kormos V. Neuroanatomical evidence and a mouse calcitonin gene-related peptide model in line with human functional magnetic resonance imaging data support the involvement of peptidergic Edinger-Westphal nucleus in migraine. Pain 2024:00006396-990000000-00627. [PMID: 38875125 DOI: 10.1097/j.pain.0000000000003294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/02/2024] [Indexed: 06/16/2024]
Abstract
ABSTRACT The urocortin 1 (UCN1)-expressing centrally projecting Edinger-Westphal (EWcp) nucleus is influenced by circadian rhythms, hormones, stress, and pain, all known migraine triggers. Our study investigated EWcp's potential involvement in migraine. Using RNAscope in situ hybridization and immunostaining, we examined the expression of calcitonin gene-related peptide (CGRP) receptor components in both mouse and human EWcp and dorsal raphe nucleus (DRN). Tracing study examined connection between EWcp and the spinal trigeminal nucleus (STN). The intraperitoneal CGRP injection model of migraine was applied and validated by light-dark box, and von Frey assays in mice, in situ hybridization combined with immunostaining, were used to assess the functional-morphological changes. The functional connectivity matrix of EW was examined using functional magnetic resonance imaging in control humans and interictal migraineurs. We proved the expression of CGRP receptor components in both murine and human DRN and EWcp. We identified a direct urocortinergic projection from EWcp to the STN. Photophobic behavior, periorbital hyperalgesia, increased c-fos gene-encoded protein immunoreactivity in the lateral periaqueductal gray matter and trigeminal ganglia, and phosphorylated c-AMP-responsive element binding protein in the STN supported the efficacy of CGRP-induced migraine-like state. Calcitonin gene-related peptide administration also increased c-fos gene-encoded protein expression, Ucn1 mRNA, and peptide content in EWcp/UCN1 neurons while reducing serotonin and tryptophan hydroxylase-2 levels in the DRN. Targeted ablation of EWcp/UCN1 neurons induced hyperalgesia. A positive functional connectivity between EW and STN as well as DRN has been identified by functional magnetic resonance imaging. The presented data strongly suggest the regulatory role of EWcp/UCN1 neurons in migraine through the STN and DRN with high translational value.
Collapse
Affiliation(s)
- Ammar Al-Omari
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Balázs Gaszner
- Department of Anatomy, Medical School and Research Group for Mood Disorders, Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Dóra Zelena
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
| | - Kinga Gecse
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Gergely Berta
- Department of Medical Biology, Medical School, University of Pécs, Hungary
| | - Tünde Biró-Sütő
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Szocsics
- Human Brain Research Laboratory, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Zsófia Maglóczky
- Human Brain Research Laboratory, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Péter Gombás
- Department of Pathology, St. Borbála Hospital, Tatabánya, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Gabriella Juhász
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Viktória Kormos
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
7
|
Zhao H, Zhang S, Wang Y, Zhang C, Gong Z, Zhang M, Dai W, Ran Y, Shi W, Dang Y, Liu A, Zhang Z, Yeh CH, Dong Z, Yu S. A pilot study on a patient with refractory headache: Personalized deep brain stimulation through stereoelectroencephalography. iScience 2024; 27:108847. [PMID: 38313047 PMCID: PMC10837616 DOI: 10.1016/j.isci.2024.108847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/23/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
The integration of stereoelectroencephalography with therapeutic deep brain stimulation (DBS) holds immense promise as a viable approach for precise treatment of refractory disorders, yet it has not been explored in the domain of headache or pain management. Here, we implanted 14 electrodes in a patient with refractory migraine and integrated clinical assessment and electrophysiological data to investigate personalized targets for refractory headache treatment. Using statistical analyses and cross-validated machine-learning models, we identified high-frequency oscillations in the right nucleus accumbens as a critical headache-related biomarker. Through a systematic bipolar stimulation approach and blinded sham-controlled survey, combined with real-time electrophysiological data, we successfully identified the left dorsal anterior cingulate cortex as the optimal target for the best potential treatment. In this pilot study, the concept of the herein-proposed data-driven approach to optimizing precise and personalized treatment strategies for DBS may create a new frontier in the field of refractory headache and even pain disorders.
Collapse
Affiliation(s)
- Hulin Zhao
- Department of Neurosurgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Shuhua Zhang
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
- International Headache Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Yining Wang
- School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Chuting Zhang
- School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Zihua Gong
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
- International Headache Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Mingjie Zhang
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
- International Headache Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Wei Dai
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
- International Headache Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Ye Ran
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
- International Headache Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Wenbin Shi
- School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, Beijing 100081, China
| | - Yuanyuan Dang
- Department of Neurosurgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Aijun Liu
- Department of Neurosurgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhengbo Zhang
- Center for Artificial Intelligence in Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Chien-Hung Yeh
- School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, Beijing 100081, China
| | - Zhao Dong
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
- International Headache Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Shengyuan Yu
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
- International Headache Centre, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
8
|
Qiu D, Ge Z, Mei Y, Wang W, Xiong Z, Li X, Yuan Z, Zhang P, Zhang M, Liu X, Zhang Y, Yu X, Tang H, Wang Y. Mapping brain functional networks topological characteristics in new daily persistent headache: a magnetoencephalography study. J Headache Pain 2023; 24:161. [PMID: 38053071 DOI: 10.1186/s10194-023-01695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND The brain functional network topology in new daily persistent headache (NDPH) is not well understood. In this study, we aim to assess the cortical functional network topological characteristics of NDPH using non-invasive neural signal recordings. METHODS Resting-state magnetoencephalography (MEG) was used to measure power fluctuations in neuronal oscillations from distributed cortical parcels in 35 patients with NDPH and 40 healthy controls (HCs). Their structural data were collected by 3T MRI. Functional connectivity (FC) of neural networks from 1 to 80 Hz frequency ranges was analyzed with topographic patterns and calculated network topological parameters with graph theory. RESULTS In the delta (1-4 Hz) and beta (13-30 Hz) bands, the lateral occipital cortex and superior frontal gyrus FC were increased in NDPH groups compared to HCs. Graph theory analysis revealed that the NDPH had significantly increased global efficiency in the delta band and decreased nodal clustering coefficient (left medial orbitofrontal cortex) in the theta (4-8 Hz) band. The clinical characteristics had a significant correlation with network topological parameters. Age at onset of patients showed a positive correlation with global efficiency in the delta band. The degree of depression of patients showed a negative correlation with the nodal clustering coefficient (left medial orbitofrontal cortex) in the theta band. CONCLUSION The FC and topology of NDPH in brain networks may be altered, potentially leading to cortical hyperexcitability. Moreover, medial orbitofrontal cortex is involved in the pathophysiological mechanism of depression in patients with NDPH. Increased FC observed in the lateral occipital cortex and superior frontal gyrus during resting-state MEG could serve as one of the imaging characteristics associated with NDPH.
Collapse
Affiliation(s)
- Dong Qiu
- Department of Neurology, Headache Center, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Zhaoli Ge
- Department of Neurology, Shenzhen Second People's Hospital, Shenzhen, 518000, Guangdong, China
| | - Yanliang Mei
- Department of Neurology, Headache Center, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Wei Wang
- Department of Neurology, Headache Center, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Zhonghua Xiong
- Department of Neurology, Headache Center, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Xiaoshuang Li
- Department of Neurology, Headache Center, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Ziyu Yuan
- Department of Neurology, Headache Center, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Peng Zhang
- Department of Neurology, Headache Center, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Mantian Zhang
- Department of Neurology, Headache Center, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Xin Liu
- Department of Neurology, Headache Center, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Yaqing Zhang
- Department of Neurology, Headache Center, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Xueying Yu
- Department of Neurology, Headache Center, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Hefei Tang
- Department of Neurology, Headache Center, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Yonggang Wang
- Department of Neurology, Headache Center, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
9
|
Dobos D, Kökönyei G, Gyebnár G, Szabó E, Kocsel N, Galambos A, Gecse K, Baksa D, Kozák LR, Juhász G. Microstructural differences in migraine: A diffusion-tensor imaging study. Cephalalgia 2023; 43:3331024231216456. [PMID: 38111172 DOI: 10.1177/03331024231216456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
BACKGROUND Diffusion-tensor imaging can be applied to describe the microstructural integrity of the whole brain. As findings about microstructural alterations in migraine are inconsistent, we aimed to replicate the most frequent results and assess a relationship between migraine parameters and changes in microstructure. METHODS Diffusion-weighted MRI data of 37 migraine patients and 40 controls were collected. Two indices of diffusion of water molecules, fractional anisotropy and mean diffusivity were used in a voxel-wise analysis. Group comparisons were carried out in SPM12 using age and sex as covariates. Statistically significant results survived family-wise error correction (pFWE < 0.05). Migraine intensity, frequency, and duration were self-reported and correlated with mean fractional anisotropy and mean diffusivity values across clusters. RESULTS Migraine patients showed significantly lower fractional anisotropy in occipital regions, and significantly higher fractional anisotropy in thirteen clusters across the brain. Mean diffusivity of migraine patients was significantly decreased in the cerebellum and pons, but it was not increased in any area. Correlation between migraine duration and fractional anisotropy was significantly positive in the frontal cortex and significantly negative in the superior parietal lobule. CONCLUSION We suggest that microstructural integrity of the migraine brain is impaired in visual areas and shows duration-related alterations in regions of the default mode network.
Collapse
Affiliation(s)
- Dóra Dobos
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- SE NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
| | - Gyöngyi Kökönyei
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- SE NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gyula Gyebnár
- Magnetic Resonance Research Centre, Semmelweis University, Budapest, Hungary
| | - Edina Szabó
- SE NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Natália Kocsel
- SE NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Attila Galambos
- SE NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Kinga Gecse
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- SE NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
| | - Dániel Baksa
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- SE NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
- Department of Personality and Clinical Psychology, Institute of Psychology, Faculty of Humanities and Social Sciences, Pazmany Peter Catholic University, Budapest, Hungary
| | - Lajos R Kozák
- Magnetic Resonance Research Centre, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhász
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- SE NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
10
|
Mäki-Marttunen V, Kies DA, Pijpers JA, Louter MA, van der Wee NJ, Rombouts SARB, Nieuwenhuis S, Kruit M, Terwindt GM. Functional connectivity of the visual cortex in chronic migraine before and after medication withdrawal therapy. Neuroimage Clin 2023; 40:103543. [PMID: 37988998 PMCID: PMC10701079 DOI: 10.1016/j.nicl.2023.103543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/23/2023]
Abstract
Acute withdrawal of headache medication in chronic migraine patients with medication overuse may lead to a dramatic reduction in headache frequency and severity. However, the brain networks underlying chronic migraine and a favorable response to acute withdrawal are still poorly understood. The goal of the present study was to characterize the pattern of intrinsic magnetic resonance imaging (MRI) functional connectivity (FC) specific to chronic migraine and to identify changes in FC that characterize subjects with CM reverting to less frequent headaches. Subjects with chronic migraine (N = 99) underwent a resting-state functional MRI scan before and after three months of medication withdrawal therapy. In addition, we included four control groups who were scanned once: healthy participants (N = 27), patients with episodic migraine (N = 25), patients with chronic back pain (N = 22), and patients with clinical depression (N = 17). Using dual regression analysis, we compared whole-brain voxel-level functional connectivity with ten well-known resting-state networks between chronic migraine and control groups, and between responders to treatment (≥50 % reduction in monthly headache days) and non-responders (<50 % reduction), before and after treatment. Subjects with chronic migraine showed differences in FC with a number of RS-networks, most of which involved the visual cortex, compared with healthy controls. A comparison with patients with episodic migraine, chronic pain and depression showed differences in the same direction, suggesting that altered patterns of functional connectivity in chronic migraine patients could to some extent be explained by shared symptomatology with other pain, depression, or migraine conditions. A comparison between responders and non-responders indicated that effective withdrawal reduced FC with the visual cortex for responders. Interestingly, responders already differed in functional connectivity of the visual cortex at baseline compared with non-responders. Altogether, we show that chronic migraine and successful medication withdrawal therapy are linked to changes in the functional connectivity of the visual cortex. These neuroimaging findings provide new insights into the pathways underlying migraine chronification and its reversibility.
Collapse
Affiliation(s)
- Veronica Mäki-Marttunen
- Cognitive Psychology Unit, Institute of Psychology, Leiden University, Leiden, The Netherlands; Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands
| | - Dennis A Kies
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Judith A Pijpers
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mark A Louter
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands; Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
| | - Nic J van der Wee
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands; Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
| | - Serge A R B Rombouts
- Cognitive Psychology Unit, Institute of Psychology, Leiden University, Leiden, The Netherlands; Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands; Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sander Nieuwenhuis
- Cognitive Psychology Unit, Institute of Psychology, Leiden University, Leiden, The Netherlands; Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands
| | - Mark Kruit
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
11
|
Araújo RP, Figueiredo P, Pinto J, Vilela P, Martins IP, Gil-Gouveia R. Altered functional connectivity in a sensorimotor-insular network during spontaneous migraine attacks: A resting-state FMRI study. Brain Res 2023; 1818:148513. [PMID: 37499729 DOI: 10.1016/j.brainres.2023.148513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/01/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Previous functional magnetic resonance imaging studies have identified brain-connectivity alterations across multiple regions in people with migraine when compared to healthy controls. Few studies have focused on such changes throughout the different phases of the migraine cycle. We aimed to investigate functional connectivity during spontaneous occurring episodic migraine attacks, in comparison to interictal periods. METHODS Eleven women with episodic migraine without aura underwent two sessions of resting-state fMRI, during and outside of a spontaneous migraine attack. Functional connectivity changes were assessed across canonical resting-state networks, identified by independent component analysis. Significantly altered connectivity was correlated with migraine attack symptoms. RESULTS Decreased functional connectivity between subregions of the sensorimotor network (specifically, the primary somatosensory and motor cortices) and the posterior insula, bilaterally, was found during attacks. In both sessions, the functional connectivity between these regions was lower in patients who usually suffered longer attacks. DISCUSSION The sensorimotor and insular regions are involved in nociceptive, autonomic, and somatosensory processing so the finding of reduced connectivity between these structures within a migraine attack is likely associated to the perception of pain and the heighten sensitivity to stimuli experienced in this disorder.
Collapse
Affiliation(s)
- Raquel Pestana Araújo
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Patrícia Figueiredo
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joana Pinto
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford
| | - Pedro Vilela
- Neuroradiology Department, Hospital da Luz, Lisbon, Portugal
| | - Isabel Pavão Martins
- Centro de Estudos Egas Moniz, Department of Clinical Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Raquel Gil-Gouveia
- Headache Center, Neurology Department, Hospital da Luz, Lisboa, Portugal; Universidade Católica Portuguesa, Institute of Health Sciences, Center for Interdisciplinary Research in Health, Lisbon, Portugal.
| |
Collapse
|
12
|
Hougaard A, Gaist D, Garde E, Iversen P, Madsen CG, Kyvik KO, Ashina M, Siebner HR, Madsen KH. Lack of reproducibility of resting-state functional MRI findings in migraine with aura. Cephalalgia 2023; 43:3331024231212574. [PMID: 37950678 DOI: 10.1177/03331024231212574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2023]
Abstract
BACKGROUND Several studies have applied resting-state functional MRI to examine whether functional brain connectivity is altered in migraine with aura patients. These studies had multiple limitations, including small sample sizes, and reported conflicting results. Here, we performed a large, cross-sectional brain imaging study to reproduce previous findings. METHODS We recruited women aged 30-60 years from the nationwide Danish Twin Registry. Resting-state functional MRI of women with migraine with aura, their co-twins, and unrelated migraine-free twins was performed at a single centre. We carried out an extensive series of brain connectivity data analyses. Patients were compared to migraine-free controls and to co-twins. RESULTS Comparisons were based on data from 160 patients, 30 co-twins, and 136 controls. Patients were similar to controls with regard to age, and several lifestyle characteristics. We replicated clear effects of age on resting-state networks. In contrast, we failed to detect any differences, and to replicate previously reported differences, in functional connectivity between migraine patients with aura and non-migraine controls or their co-twins in any of the analyses. CONCLUSION Given the large sample size and the unbiased population-based design of our study, we conclude that women with migraine with aura have normal resting-state brain connectivity outside of migraine attacks.
Collapse
Affiliation(s)
- Anders Hougaard
- Danish Headache Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet Glostrup, Glostrup, Denmark
- Department of Neurology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David Gaist
- Research Unit for Neurology, Odense University Hospital, Odense, Denmark; University of Southern Denmark, Odense, Denmark
| | - Ellen Garde
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - Pernille Iversen
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - Camilla G Madsen
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Radiology, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - Kirsten O Kyvik
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
- The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography, Institute of Public Health, University of Southern Denmark, Odense, Denmark
- Odense Patient data Explorative Network (OPEN), Odense University Hospital, Odense, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet Glostrup, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hartwig R Siebner
- Department of Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Neurology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Kristoffer H Madsen
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
13
|
Chou BC, Lerner A, Barisano G, Phung D, Xu W, Pinto SN, Sheikh-Bahaei N. Functional MRI and Diffusion Tensor Imaging in Migraine: A Review of Migraine Functional and White Matter Microstructural Changes. J Cent Nerv Syst Dis 2023; 15:11795735231205413. [PMID: 37900908 PMCID: PMC10612465 DOI: 10.1177/11795735231205413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 09/14/2023] [Indexed: 10/31/2023] Open
Abstract
Migraine is a complex and heterogenous disorder whose disease mechanisms remain disputed. This narrative review summarizes functional MRI (fMRI) and diffusion tensor imaging (DTI) findings and interprets their association with migraine symptoms and subtype to support and expand our current understanding of migraine pathophysiology. Our PubMed search evaluated and included fMRI and DTI studies involving comparisons between migraineurs vs healthy controls, migraineurs with vs without aura, and episodic vs chronic migraineurs. Migraineurs demonstrate changes in functional connectivity (FC) and regional activation in numerous pain-related networks depending on migraine phase, presence of aura, and chronicity. Changes to diffusion indices are observed in major cortical white matter tracts extending to the brainstem and cerebellum, more prominent in chronic migraine and associated with FC changes. Reported changes in FC and regional activation likely relate to pain processing and sensory hypersensitivities. Diffuse white matter microstructural changes in dysfunctional cortical pain and sensory pathways complement these functional differences. Interpretations of reported fMRI and DTI measure trends have not achieved a clear consensus due to inconsistencies in the migraine neuroimaging literature. Future fMRI and DTI studies should establish and implement a uniform methodology that reproduces existing results and directly compares migraineurs with different subtypes. Combined fMRI and DTI imaging may provide better pathophysiological explanations for nonspecific FC and white matter microstructural differences.
Collapse
Affiliation(s)
- Brendon C. Chou
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alexander Lerner
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Daniel Phung
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wilson Xu
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Soniya N. Pinto
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nasim Sheikh-Bahaei
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
14
|
Bai X, Wang W, Zhang X, Hu Z, Zhang X, Zhang Y, Tang H, Zhang Y, Yu X, Yuan Z, Zhang P, Li Z, Pei X, Wang Y, Sui B. Hyperperfusion of bilateral amygdala in patients with chronic migraine: an arterial spin-labeled magnetic resonance imaging study. J Headache Pain 2023; 24:138. [PMID: 37848831 PMCID: PMC10583377 DOI: 10.1186/s10194-023-01668-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Amygdala, an essential element of the limbic system, has served as an important structure in pain modulation. There is still a lack of clarity about altered cerebral perfusion of amygdala in migraine. This study aimed to investigate the perfusion variances of bilateral amygdala in episodic migraine (EM) and chronic migraine (CM) using multi-delay pseudo-continuous arterial spin-labeled magnetic resonance imaging (pCASL-MRI). METHODS Twenty-six patients with EM, 55 patients with CM (33 CM with medication overuse headache (MOH)), and 26 age- and sex-matched healthy controls (HCs) were included. All participants underwent 3D multi-delay pCASL MR imaging to obtain cerebral perfusion data, including arrival-time-corrected cerebral blood flow (CBF) and arterial cerebral blood volume (aCBV). The CBF and aCBV values in the bilateral amygdala were compared among the three groups. Correlation analyses between cerebral perfusion parameters and clinical variables were performed. RESULTS Compared with HC participants, patients with CM were found to have increased CBF and aCBV values in the left amygdala, as well as increased CBF values in the right amygdala (all P < 0.05). There were no significant differences of CBF and aCBV values in the bilateral amygdala between the HC and EM groups, the EM and CM groups, as well as the CM without and with MOH groups (all P > 0.05). In patients with CM, the increased perfusion parameters of bilateral amygdala were positively correlated with MIDAS score after adjustments for age, sex, and body mass index (BMI). CONCLUSION Hyperperfusion of bilateral amygdala might provide potential hemodynamics evidence in the neurolimbic pain network of CM.
Collapse
Affiliation(s)
- Xiaoyan Bai
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital and Beijing Neurosurgical Institute, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Xueyan Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Xue Zhang
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital and Beijing Neurosurgical Institute, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yingkui Zhang
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital and Beijing Neurosurgical Institute, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Hefei Tang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Yaqing Zhang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Xueying Yu
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Ziyu Yuan
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Peng Zhang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Zhiye Li
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital and Beijing Neurosurgical Institute, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xun Pei
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital and Beijing Neurosurgical Institute, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yonggang Wang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| | - Binbin Sui
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital and Beijing Neurosurgical Institute, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
15
|
Lei X, Wei M, Wang L, Liu C, Liu Q, Wu X, Wang Q, Sun X, Luo G, Qi Y. Resting-state electroencephalography microstate dynamics altered in patients with migraine with and without aura-A pilot study. Headache 2023; 63:1087-1096. [PMID: 37655618 DOI: 10.1111/head.14622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023]
Abstract
OBJECTIVE To evaluate electroencephalography (EEG) microstate differences between patients with migraine with aura (MWA), patients with migraine without aura (MWoA), and healthy controls (HC). BACKGROUND Previous research employing microstate analysis found unique microstate alterations in patients with MWoA; however, it is uncertain how microstates appear in patients with MWA. METHODS This study was conducted at the Headache Clinic of the First Affiliated Hospital of Xi'an Jiaotong University. In total, 30 patients with MWA, 30 with MWoA, and 30 HC were enrolled in this cross-sectional study. An EEG was recorded for all participants under resting state. The microstate parameters of four widely recognized microstate classes A-D were calculated and compared across the three groups. RESULTS The occurrence of microstate B (MsB) in the MWoA group was significantly higher than in the HC (p = 0.006, Cohen's d = 0.72) and MWA (p = 0.016, Cohen's d = 0.57) groups, while the contribution of MsB was significantly increased in the MWoA group compared to the HC group (p = 0.016, Cohen's d = 0.64). Microstate A (MsA) displayed a longer duration in the MWA group compared to the MWoA group (p = 0.007, Cohen's d = 0.69). Furthermore, the transition probability between MsB and microstate D was significantly increased in the MWoA group compared to the HC group (p = 0.009, Cohen's d = 0.68 for B to D; p = 0.007, Cohen's d = 0.71 for D to B). Finally, the occurrence and contribution of MsB were positively related to headache characteristics in the MWoA group but negatively in the MWA group, whereas the duration of MsA was positively related to the visual analog scale in the MWA group (all p < 0.05). CONCLUSIONS Patients with MWA and MWoA have altered microstate dynamics, indicating that resting-state brain network disorders may play a role in migraine pathogenesis. Microstate parameters may have the potential to aid clinical management, which needs to be investigated further.
Collapse
Affiliation(s)
- Xiangyu Lei
- Department of Neurology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Wei
- Department of Neurology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liang Wang
- Department of Neurology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chenyu Liu
- Department of Neurology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qin Liu
- Department of Neurology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyu Wu
- Department of Neurology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qingfan Wang
- Department of Neurology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinyue Sun
- Department of Neurology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guogang Luo
- Department of Neurology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Qi
- Department of Neurology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
16
|
Mastria G, Mancini V, Viganò A, Piervincenzi C, Petsas N, Puma M, Giannì C, Pantano P, Di Piero V. Neuroimaging markers of Alice in Wonderland syndrome in patients with migraine with aura. Front Neurol 2023; 14:1210811. [PMID: 37767534 PMCID: PMC10520557 DOI: 10.3389/fneur.2023.1210811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023] Open
Abstract
Background The Alice in Wonderland syndrome (AIWS) is a transient neurological disturbance characterized by sensory distortions most frequently associated with migraine in adults. Some lines of evidence suggest that AIWS and migraine might share common pathophysiological mechanisms, therefore we set out to investigate the common and distinct neurophysiological alterations associated with these conditions in migraineurs. Methods We conducted a case-control study acquiring resting-state fMRI data from 12 migraine patients with AIWS, 12 patients with migraine with typical aura (MA) and 24 age-matched healthy controls (HC). We then compared the interictal thalamic seed-to-voxel and ROI-to-ROI cortico-cortical resting-state functional connectivity between the 3 groups. Results We found a common pattern of altered thalamic connectivity in MA and AIWS, compared to HC, with more profound and diffuse alterations observed in AIWS. The ROI-to-ROI functional connectivity analysis highlighted an increased connectivity between a lateral occipital region corresponding to area V3 and the posterior part of the superior temporal sulcus (STS) in AIWS, compared to both MA and HC. Conclusion The posterior STS is a multisensory integration area, while area V3 is considered the starting point of the cortical spreading depression (CSD), the neural correlate of migraine aura. This interictal hyperconnectivity might increase the probability of the CSD to directly diffuse to the posterior STS or deactivating it, causing the AIWS symptoms during the ictal phase. Taken together, these results suggest that AIWS in migraineurs might be a form of complex migraine aura, characterized by the involvement of associative and multisensory integration areas.
Collapse
Affiliation(s)
- Giulio Mastria
- My Space Lab, Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Valentina Mancini
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | | | | | | | - Marta Puma
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Costanza Giannì
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Patrizia Pantano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Vittorio Di Piero
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
17
|
Karlsson WK, Ashina H, Cullum CK, Christensen RH, Al-Khazali HM, Amin FM, Ashina M. The Registry for Migraine (REFORM) study: methodology, demographics, and baseline clinical characteristics. J Headache Pain 2023; 24:70. [PMID: 37303034 DOI: 10.1186/s10194-023-01604-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/29/2023] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND Erenumab has demonstrated effectiveness for prevention of migraine attacks, but the treatment is costly, and a considerable proportion of patients do not respond to it. The Registry for Migraine study (REFORM) was initiated to discover biomarkers that can predict response to erenumab in patients with migraine. The specific objective was to investigate differences in erenumab efficacy based on clinical information, blood-based biomarkers, structural and functional magnetic resonance imaging (MRI), and response to intravenous infusion of calcitonin gene-related peptide (CGRP). In this first report of the REFORM study, we provide a comprehensive description of the study methodology, and present the baseline characteristics of the study population. METHODS The REFORM study was a single-center, prospective, longitudinal cohort study in adults with migraine who were scheduled to receive preventive treatment with erenumab as part of a separate, open-label, single-arm phase IV trial. The study included four periods: a 2-week screening period (Weeks -6 to -5), 4-week baseline period (Week -4 to Day 1), 24-week treatment period (Day 1 to Week 24), and a 24-week follow-up period without treatment (Week 25 to Week 48). Demographic and clinical characteristics were recorded using a semi-structured interview, whilst outcome data were obtained using a headache diary, patient-reported outcomes, blood sampling, brain MRI, and responsiveness to intravenous infusion of CGRP. RESULTS The study enrolled 751 participants, with a mean age ± SD of 43.8 ± 12.2 years, of which 88.8% (n = 667) were female. At enrollment, 64.7% (n = 486) were diagnosed with chronic migraine, and 30.2% (n = 227) had history of aura. The mean monthly migraine days (MMDs) was 14.5 ± 7.0. Concomitant preventive medications were used by 48.5% (n = 364) of the participants, and 39.9% (n = 300) had failed ≥ 4 preventive medications. CONCLUSION The REFORM study enrolled a population with a high migraine burden and frequent use of concomitant medications. The baseline characteristics were representative of patients with migraine in specialized headache clinics. Future publications will report the results of the investigations presented in this article. TRIAL REGISTRATION The study and sub-studies were registered on ClinicalTrials.gov (NCT04592952; NCT04603976; and NCT04674020).
Collapse
Affiliation(s)
- William Kristian Karlsson
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 5, Glostrup, 2600, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Håkan Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 5, Glostrup, 2600, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Brain and Spinal Cord Injury, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Christopher Kjær Cullum
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 5, Glostrup, 2600, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune Häckert Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 5, Glostrup, 2600, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Haidar Muhsen Al-Khazali
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 5, Glostrup, 2600, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Faisal Mohammad Amin
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 5, Glostrup, 2600, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Brain and Spinal Cord Injury, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 5, Glostrup, 2600, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
18
|
Wang W, Yuan Z, Zhang X, Bai X, Tang H, Mei Y, Qiu D, Zhang Y, Zhang P, Zhang X, Zhang Y, Yu X, Sui B, Wang Y. Mapping the aberrant brain functional connectivity in new daily persistent headache: a resting-state functional magnetic resonance imaging study. J Headache Pain 2023; 24:46. [PMID: 37098469 PMCID: PMC10131335 DOI: 10.1186/s10194-023-01577-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/13/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND AND PURPOSE The pathogenesis of new daily persistent headache (NDPH) is not fully understood. We aim to map aberrant functional connectivity (FC) in patients with NDPH using resting-state functional magnetic resonance imaging (MRI). METHODS Brain structural and functional MRI data were acquired from 29 patients with NDPH and 37 well-matched healthy controls (HCs) in this cross-sectional study. Region of interest (ROI) based analysis was used to compare FC between patients and HCs, with 116 brain regions in the automated anatomical labeling (AAL) atlas were defined as seeds. The correlations between aberrant FC and patients' clinical characteristics, and neuropsychological evaluation were also investigated. RESULTS Compared with HCs, patients with NDPH showed increased FC in the left inferior occipital gyrus, right thalamus and decreased FC in right lingual gyrus, left superior occipital gyrus, right middle occipital gyrus, left inferior occipital gyrus, right inferior occipital gyrus, right fusiform gyrus, left postcentral gyrus, right postcentral gyrus, right thalamus and right superior temporal gyrus. There were no correlation between FC of these brain regions and clinical characteristics, neuropsychological evaluation after Bonferroni correction (p > 0.05/266). CONCLUSIONS Patients with NDPH showed aberrant FC in multiple brain regions involved in perception and regulation of emotion and pain. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05334927.
Collapse
Affiliation(s)
- Wei Wang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Ziyu Yuan
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xueyan Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Xiaoyan Bai
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing Neurosurgical Institute, Beijing, 100070, China
| | - Hefei Tang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yanliang Mei
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Dong Qiu
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yingkui Zhang
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Peng Zhang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xue Zhang
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing Neurosurgical Institute, Beijing, 100070, China
| | - Yaqing Zhang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xueying Yu
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Binbin Sui
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| | - Yonggang Wang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
19
|
Gou C, Yang S, Hou Q, Rudder P, Tanglay O, Young I, Peng T, He W, Yang L, Osipowicz K, Doyen S, Mansouri N, Sughrue ME, Wang X. Functional connectivity of the language area in migraine: a preliminary classification model. BMC Neurol 2023; 23:142. [PMID: 37016325 PMCID: PMC10071619 DOI: 10.1186/s12883-023-03183-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/25/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Migraine is a complex disorder characterized by debilitating headaches. Despite its prevalence, its pathophysiology remains unknown, with subsequent gaps in diagnosis and treatment. We combined machine learning with connectivity analysis and applied a whole-brain network approach to identify potential targets for migraine diagnosis and treatment. METHODS Baseline anatomical T1 magnetic resonance imaging (MRI), resting-state functional MRI(rfMRI), and diffusion weighted scans were obtained from 31 patients with migraine, and 17 controls. A recently developed machine learning technique, Hollow Tree Super (HoTS) was used to classify subjects into diagnostic groups based on functional connectivity (FC) and derive networks and parcels contributing to the model. PageRank centrality analysis was also performed on the structural connectome to identify changes in hubness. RESULTS Our model attained an area under the receiver operating characteristic curve (AUC-ROC) of 0.68, which rose to 0.86 following hyperparameter tuning. FC of the language network was most predictive of the model's classification, though patients with migraine also demonstrated differences in the accessory language, visual and medial temporal regions. Several analogous regions in the right hemisphere demonstrated changes in PageRank centrality, suggesting possible compensation. CONCLUSIONS Although our small sample size demands caution, our preliminary findings demonstrate the utility of our method in providing a network-based perspective to diagnosis and treatment of migraine.
Collapse
Affiliation(s)
- Chen Gou
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, 637000, China
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Shuangfeng Yang
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, 637000, China
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Qianmei Hou
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, 637000, China
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Peter Rudder
- Omniscient Neurotechnology, Sydney, NSW, 2000, Australia
| | - Onur Tanglay
- Omniscient Neurotechnology, Sydney, NSW, 2000, Australia
| | - Isabella Young
- Omniscient Neurotechnology, Sydney, NSW, 2000, Australia
| | - Tingting Peng
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, 637000, China
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Weiwei He
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, 637000, China
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Liuyi Yang
- Shenzhen Xijia Medical Technology Company, Shenzhen, Guangdong Province, 518052, China
| | | | - Stephane Doyen
- Omniscient Neurotechnology, Sydney, NSW, 2000, Australia
| | - Negar Mansouri
- Omniscient Neurotechnology, Sydney, NSW, 2000, Australia
| | | | - Xiaoming Wang
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, 637000, China.
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
20
|
Gazerani P. Human Brain Organoids in Migraine Research: Pathogenesis and Drug Development. Int J Mol Sci 2023; 24:3113. [PMID: 36834522 PMCID: PMC9961184 DOI: 10.3390/ijms24043113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Human organoids are small, self-organized, three-dimensional (3D) tissue cultures that have started to revolutionize medical science in terms of understanding disease, testing pharmacologically active compounds, and offering novel ways to treat disease. Organoids of the liver, kidney, intestine, lung, and brain have been developed in recent years. Human brain organoids are used for understanding pathogenesis and investigating therapeutic options for neurodevelopmental, neuropsychiatric, neurodegenerative, and neurological disorders. Theoretically, several brain disorders can be modeled with the aid of human brain organoids, and hence the potential exists for understanding migraine pathogenesis and its treatment with the aid of brain organoids. Migraine is considered a brain disorder with neurological and non-neurological abnormalities and symptoms. Both genetic and environmental factors play essential roles in migraine pathogenesis and its clinical manifestations. Several types of migraines are classified, for example, migraines with and without aura, and human brain organoids can be developed from patients with these types of migraines to study genetic factors (e.g., channelopathy in calcium channels) and environmental stressors (e.g., chemical and mechanical). In these models, drug candidates for therapeutic purposes can also be tested. Here, the potential and limitations of human brain organoids for studying migraine pathogenesis and its treatment are communicated to generate motivation and stimulate curiosity for further research. This must, however, be considered alongside the complexity of the concept of brain organoids and the neuroethical aspects of the topic. Interested researchers are invited to join the network for protocol development and testing the hypothesis presented here.
Collapse
Affiliation(s)
- Parisa Gazerani
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, 0130 Oslo, Norway; or
- Centre for Intelligent Musculoskeletal Health (CIM), Faculty of Health Sciences, Oslo Metropolitan University, 0130 Oslo, Norway
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, 9220 Aalborg East, Denmark
| |
Collapse
|
21
|
Hu S, Hao Z, Li M, Zhao M, Wen J, Gao Y, Wang Q, Xi H, Antwi CO, Jia X, Ren J. Resting-state abnormalities in functional connectivity of the default mode network in migraine: A meta-analysis. Front Neurosci 2023; 17:1136790. [PMID: 36937687 PMCID: PMC10014826 DOI: 10.3389/fnins.2023.1136790] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
Migraine-a disabling neurological disorder, imposes a tremendous burden on societies. To reduce the economic and health toll of the disease, insight into its pathophysiological mechanism is key to improving treatment and prevention. Resting-state functional magnetic resonance imaging (rs-fMRI) studies suggest abnormal functional connectivity (FC) within the default mode network (DMN) in migraine patients. This implies that DMN connectivity change may represent a biomarker for migraine. However, the FC abnormalities appear inconsistent which hinders our understanding of the potential neuropathology. Therefore, we performed a meta-analysis of the FC within the DMN in migraine patients in the resting state to identify the common FC abnormalities. With efficient search and selection strategies, nine studies (published before July, 2022) were retrieved, containing 204 migraine patients and 199 healthy subjects. We meta-analyzed the data using the Anisotropic Effect Size version of Signed Differential Mapping (AES-SDM) method. Compared with healthy subjects, migraine patients showed increased connectivity in the right calcarine gyrus, left inferior occipital gyrus, left postcentral gyrus, right cerebellum, right parahippocampal gyrus, and right posterior cingulate gyrus, while decreased connectivity in the right postcentral gyrus, left superior frontal gyrus, right superior occipital gyrus, right orbital inferior frontal gyrus, left middle occipital gyrus, left middle frontal gyrus and left inferior frontal gyrus. These results provide a new perspective for the study of the pathophysiology of migraine and facilitate a more targeted treatment of migraine in the future.
Collapse
Affiliation(s)
- Su Hu
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Zeqi Hao
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Mengting Li
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Mengqi Zhao
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Jianjie Wen
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Yanyan Gao
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Qing Wang
- Department of Radiology, Changshu No.2 People’s Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Hongyu Xi
- School of Western Languages, Heilongjiang University, Harbin, China
| | - Collins Opoku Antwi
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Xize Jia
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Jun Ren
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
- *Correspondence: Jun Ren,
| |
Collapse
|
22
|
Begasse de Dhaem O, Wattiez AS, de Boer I, Pavitt S, Powers SW, Pradhan A, Gelfand AA, Nahman-Averbuch H. Bridging the gap between preclinical scientists, clinical researchers, and clinicians: From animal research to clinical practice. Headache 2023; 63:25-39. [PMID: 36633108 DOI: 10.1111/head.14441] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/02/2022] [Accepted: 08/26/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Collaborations amongst researchers and clinicians with complementary areas of expertise enhance knowledge for everyone and can lead to new discoveries. To facilitate these interactions, shared language and a general understanding of how colleagues in different subfields of headache and headache research approach their work are needed. METHODS This narrative review focuses on research methods applied in animal studies, human studies including clinical trials, and provides an overview of clinical practice. RESULTS For animal studies, we describe concepts needed to evaluate the quality and relevance of preclinical studies. For human research, fundamental concepts of neuroimaging, quantitative sensory testing, genetic and epidemiological research methods, and clinical research methodology that are commonly used in headache research are summarized. In addition, we provide an understanding of what guides headache clinicians, and summarize the practical approach to migraine management in adults and children. CONCLUSIONS It is hoped that this review facilitates further dialogue between clinicians and researchers that will help guide future research efforts and implementation of research findings into clinical practice.
Collapse
Affiliation(s)
| | - Anne-Sophie Wattiez
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA.,Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Iowa City, Iowa, USA
| | - Irene de Boer
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Sara Pavitt
- Child & Adolescent Headache Program, University of California, San Francisco, California, USA
| | - Scott W Powers
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA.,Center for Understanding Pediatric Pain, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Amynah Pradhan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Amy A Gelfand
- Child & Adolescent Headache Program, University of California, San Francisco, California, USA
| | - Hadas Nahman-Averbuch
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
23
|
Maddahi A, Edvinsson L, Warfvinge K. Expression of vasopressin and its receptors in migraine-related regions in CNS and the trigeminal system: influence of sex. J Headache Pain 2022; 23:152. [PMID: 36456902 PMCID: PMC9713967 DOI: 10.1186/s10194-022-01524-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/21/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Hypothalamus is a key region in migraine attacks. In addition, women are disproportionately affected by migraine. The calcitonin gene-related peptide (CGRP) system is an important key player in migraine pathophysiology. CGRP signaling could be a target of hormones that influence migraine. Our aim is to identify the expression of vasopressin and its receptors in the brain and in the trigeminovascular system with focus on the migraine-related regions and, furthermore, to examine the role of sex on the expression of neurohormones in the trigeminal ganglion. METHODS Rat brain and trigeminal ganglia were carefully harvested, and protein and mRNA levels were analyzed by immunohistochemistry and real-time PCR, respectively. RESULTS Vasopressin and its receptors immunoreactivity were found in migraine-related areas within the brain and, in the trigeminal ganglion, predominantly in neuronal cytoplasm. There were no differences in the number of positive immunoreactivity cells expression of CGRP and vasopressin in the trigeminal ganglion between male and female rats. In contrast, the number of RAMP1 (CGRP receptor), oxytocin (molecular relative to vasopressin), oxytocin receptor and vasopressin receptors (V1aR and V1bR) immunoreactive cells were higher in female compared to male rats. Vasopressin and its receptors mRNA were expressed in both hypothalamus and trigeminal ganglion; however, the vasopressin mRNA level was significantly higher in the hypothalamus. CONCLUSIONS A better understanding of potential hormonal influences on migraine mechanisms is needed to improve treatment of female migraineurs. It is intriguing that vasopressin is an output of hypothalamic neurons that influences areas associated with migraine. Therefore, vasopressin and the closely related oxytocin might be important hypothalamic components that contribute to migraine pathophysiology.
Collapse
Affiliation(s)
- Aida Maddahi
- grid.411843.b0000 0004 0623 9987Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Lars Edvinsson
- grid.411843.b0000 0004 0623 9987Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden ,grid.475435.4Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
| | - Karin Warfvinge
- grid.411843.b0000 0004 0623 9987Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden ,grid.475435.4Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
24
|
Impaired Inter-Hemispheric Functional Connectivity during Resting State in Female Patients with Migraine. Brain Sci 2022; 12:brainsci12111505. [PMID: 36358431 PMCID: PMC9688662 DOI: 10.3390/brainsci12111505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
The application of voxel-mirrored homotopic connectivity (VMHC) analysis to study the central mechanism of migraine has been limited. Furthermore, little is known about inter-hemispheric functional connectivity (FC) alterations during resting state in female patients with migraine. This study aimed to investigate potential interictal VMHC impairments in migraine without aura (MwoA) patients and the relationship between connectivity alterations and clinical parameters. Resting-state functional magnetic resonance imaging data and clinical information were acquired from 43 female MwoA patients and 43 matched healthy controls. VMHC analysis was used to compare differences between these two groups, and brain regions showing significant differences were chosen as a mask to perform a seed-based FC group comparison. Subsequent correlation analysis was conducted to explore the relationship between abnormal inter-hemispheric FC and clinical data. Compared with healthy controls, female MwoA patients revealed significantly decreased VMHC in the bilateral cerebellum; cuneus; and lingual, middle occipital, precentral and postcentral gyri. Seed-based FC analysis indicated disrupted intrinsic connectivity in the cerebellum, and default mode, visual and sensorimotor network. These VMHC and FC abnormalities were negatively correlated with clinical indexes including duration of disease, migraine days and visual analogue scale. These inter-hemispheric FC impairments and correlations between abnormal VMHC and FC and clinical scores may improve our understanding of the central mechanism of female-specific migraine.
Collapse
|
25
|
Liu L, Lyu TL, Fu MY, Wang LP, Chen Y, Hong JH, Chen QY, Zhu YP, Tan ZJ, Liu DP, Chen ZW, Kong YZ, Li B. Changes in brain connectivity linked to multisensory processing of pain modulation in migraine with acupuncture treatment. Neuroimage Clin 2022; 36:103168. [PMID: 36067612 PMCID: PMC9468576 DOI: 10.1016/j.nicl.2022.103168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022]
Abstract
Migraine without aura (MWoA) is a major neurological disorder with unsatisfactory adherence to current medications. Acupuncture has emerged as a promising method for treating MWoA. However, the brain mechanism underlying acupuncture is yet unclear. The present study aimed to examine the effects of acupuncture in regulating brain connectivity of the key regions in pain modulation. In this study, MWoA patients were recruited and randomly assigned to 4 weeks of real or sham acupuncture. Resting-state functional magnetic resonance imaging (fMRI) data were collected before and after the treatment. A modern neuroimaging literature meta-analysis of 515 fMRI studies was conducted to identify pain modulation-related key regions as regions of interest (ROIs). Seed-to-voxel resting state-functional connectivity (rsFC) method and repeated-measures two-way analysis of variance were conducted to determine the interaction effects between the two groups and time (baseline and post-treatment). The changes in rsFC were evaluated between baseline and post-treatment in real and sham acupuncture groups, respectively. Clinical data at baseline and post-treatment were also recorded in order to determine between-group differences in clinical outcomes as well as correlations between rsFC changes and clinical effects. 40 subjects were involved in the final analysis. The current study demonstrated significant improvement in real acupuncture vs sham acupuncture on headache severity (monthly migraine days), headache impact (6-item Headache Impact Test), and health-related quality of life (Migraine-Specific Quality of Life Questionnaire). Five pain modulation-related key regions, including the right amygdala (AMYG), left insula (INS), left medial orbital superior frontal gyrus (PFCventmed), left middle occipital gyrus (MOG), and right middle cingulate cortex (MCC), were selected based on the meta-analysis on brain imaging studies. This study found that 1) after acupuncture treatment, migraine patients of the real acupuncture group showed significantly enhanced connectivity in the right AMYG/MCC-left MTG and the right MCC-right superior temporal gyrus (STG) compared to that of the sham acupuncture group; 2) negative correlations were established between clinical effects and increased rsFC in the right AMYG/MCC-left MTG; 3) baseline right AMYG-left MTG rsFC predicts monthly migraine days reduction after treatment. The current results suggested that acupuncture may concurrently regulate the rsFC of two pain modulation regions in the AMYG and MCC. MTG and STG may be the key nodes linked to multisensory processing of pain modulation in migraine with acupuncture treatment. These findings highlighted the potential of acupuncture for migraine management and the mechanisms underlying the modulation effects.
Collapse
Affiliation(s)
- Lu Liu
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, China
| | - Tian-Li Lyu
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, China
| | - Ming-Yang Fu
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Lin-Peng Wang
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, China
| | - Ying Chen
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, China
| | - Jia-Hui Hong
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, China
| | - Qiu-Yi Chen
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, China
| | - Yu-Pu Zhu
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhong-Jian Tan
- Department of Radiology, Dong Zhimen Hospital Beijing University of Chinese Medicine, Beijing 100700, China
| | - Da-Peng Liu
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029,China
| | - Zi-Wei Chen
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China.
| | - Ya-Zhuo Kong
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bin Li
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, China.
| |
Collapse
|
26
|
The Pathogenetic Role of Melatonin in Migraine and Its Theoretic Implications for Pharmacotherapy: A Brief Overview of the Research. Nutrients 2022; 14:nu14163335. [PMID: 36014841 PMCID: PMC9415653 DOI: 10.3390/nu14163335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Migraine is a chronic disease of global concern, regardless of socio-economic and cultural background. It most often and intensely affects young adults, especially women. Numerous mechanisms of a migraine attack have been identified (disturbances in the reaction of vessels, functions of neurotransmitters, cortical neurons, ion channels, receptors, the process of neurogenic inflammation), and many of its symptoms can be explained by activation of the hypothalamus and disturbances in its communication with other brain regions (including the brainstem). Numerous neuropeptides and neurochemical systems also play a role in migraine. One of them is melatonin, a hormone that allows the body to adapt to cyclically changing environmental and food conditions. In this article, we present the pathophysiological basis of melatonin release from the pineal gland and other tissues (including the intestines) under the influence of various stimuli (including light and food), and its role in stimulating the brain structures responsible for triggering a migraine attack. We analyze publications concerning research on the role of melatonin in various headaches, in various stages of migraine, and in various phases of the menstrual cycle in women with migraine, and its impact on the occurrence and severity of migraine attacks. Melatonin as an internally secreted substance, but also present naturally in many foods. It is possible to supplement melatonin in the form of pharmaceutical preparations, and it seems, to be a good complementary therapy (due to the lack of significant side effects and pharmacological interactions) in the treatment of migraine, especially: in women of childbearing age, in people taking multiple medications for other diseases, as well as those sensitive to pharmacotherapy.
Collapse
|
27
|
Krimmel SR, DeSouza DD, Keaser ML, Sanjanwala BM, Cowan RP, Lindquist MA, Haythornthwaite JA, Seminowicz DA. Three Dimensions of Association Link Migraine Symptoms and Functional Connectivity. J Neurosci 2022; 42:6156-6166. [PMID: 35768210 PMCID: PMC9351635 DOI: 10.1523/jneurosci.1796-21.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 04/27/2022] [Accepted: 06/18/2022] [Indexed: 02/05/2023] Open
Abstract
Migraine is a heterogeneous disorder with variable symptoms and responsiveness to therapy. Because of previous analytic shortcomings, variance in migraine symptoms has been inconsistently related to brain function. In the current analysis, we used data from two sites (n = 143, male and female humans), and performed canonical correlation analysis, relating resting-state functional connectivity (RSFC) with a broad range of migraine symptoms, ranging from headache characteristics to sleep abnormalities. This identified three dimensions of covariance between symptoms and RSFC. The first dimension related to headache intensity, headache frequency, pain catastrophizing, affect, sleep disturbances, and somatic abnormalities, and was associated with frontoparietal and dorsal attention network connectivity, both of which are major cognitive networks. Additionally, RSFC scores from this dimension, both the baseline value and the change from baseline to postintervention, were associated with responsiveness to mind-body therapy. The second dimension was related to an inverse association between pain and anxiety, and to default mode network connectivity. The final dimension was related to pain catastrophizing, and salience, sensorimotor, and default mode network connectivity. In addition to performing canonical correlation analysis, we evaluated the current clustering of migraine patients into episodic and chronic subtypes, and found no evidence to support this clustering. However, when using RSFC scores from the three significant dimensions, we identified a novel clustering of migraine patients into four biotypes with unique functional connectivity patterns. These findings provide new insight into individual variability in migraine, and could serve as the foundation for novel therapies that take advantage of migraine heterogeneity.SIGNIFICANCE STATEMENT Using a large multisite dataset of migraine patients, we identified three dimensions of multivariate association between symptoms and functional connectivity. This analysis revealed neural networks that relate to all measured symptoms, but also to specific symptom ensembles, such as patient propensity to catastrophize painful events. Using these three dimensions, we found four biotypes of migraine informed by clinical and neural variation together. Such findings pave the way for precision medicine therapy for migraine.
Collapse
Affiliation(s)
- Samuel R Krimmel
- Department of Neural and Pain Sciences, School of Dentistry, and Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Maryland 21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Danielle D DeSouza
- Department of Neurology and Neurological Sciences, Headache and Facial Pain Program, Stanford University, California 94305
| | - Michael L Keaser
- Department of Neural and Pain Sciences, School of Dentistry, and Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Maryland 21201
| | - Bharati M Sanjanwala
- Department of Neurology and Neurological Sciences, Headache and Facial Pain Program, Stanford University, California 94305
| | - Robert P Cowan
- Department of Neurology and Neurological Sciences, Headache and Facial Pain Program, Stanford University, California 94305
| | - Martin A Lindquist
- Department Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Jennifer A Haythornthwaite
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224
| | - David A Seminowicz
- Department of Neural and Pain Sciences, School of Dentistry, and Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Maryland 21201
| |
Collapse
|
28
|
Mahammedi A, Wang LL, Vagal AS. Imaging Appearance of Migraine and Tension Type Headache. Neurol Clin 2022; 40:491-505. [PMID: 35871781 DOI: 10.1016/j.ncl.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Abdelkader Mahammedi
- Department of Radiology, University of Cincinnati Medical Center, 234 Goodman Street, Cincinnati, OH 45219, USA.
| | - Lily L Wang
- Department of Radiology, University of Cincinnati Medical Center, 234 Goodman Street, Cincinnati, OH 45219, USA
| | - Achala S Vagal
- Department of Radiology, University of Cincinnati Medical Center, 234 Goodman Street, Cincinnati, OH 45219, USA
| |
Collapse
|
29
|
Bentivegna E, Luciani M, Ferrari V, Galastri S, Baldari F, Scarso F, Lamberti PA, Martelletti P. Recently approved and emerging drug options for migraine prophylaxis. Expert Opin Pharmacother 2022; 23:1325-1335. [PMID: 35850597 DOI: 10.1080/14656566.2022.2102420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Migraine occupies the first position regarding to the disability caused in female working population (15-49 years). Research in the field of prophylaxis of this pathology has made enormous strides in recent years. AREAS COVERED In this narrative review we retrace the most important scientific evidence regarding recently approved and emerging drug for prophylactic treatment of migraine. The purpose of this article is in fact to evaluate currently approved or emerging pharmacological agents for migraine prophylaxis. This review is based on literature published in peer review journal obtained through PubMed, Cochrane library, Clinicaltrials.gov and US FDA. EXPERT OPINION : Monoclonal antibodies (mAbs) that target the calcitonin gene-related peptide signalling pathway (CGRP) have marked an innovation in prophylactic migraine therapy. The combination of Onabotulinumtoxin-A (OBTA) and mAbs appears to be an effective, but costly, therapeutic option for resistant cases. New classes of molecules like gepants and ditans seem to give exceptional results. In addition, new prophylactic drugs are emerging with several targets: the pituitary adenylate cyclase-activating polypeptide (PACAP), ion channels, several receptors coupled to G proteins, orexin, and glutamate. All these therapies will implement and improve migraine management, as well as personalized medicine for each patient.
Collapse
Affiliation(s)
- Enrico Bentivegna
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | | | - Valeria Ferrari
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Silvia Galastri
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Francesco Baldari
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Francesco Scarso
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Piera A Lamberti
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Paolo Martelletti
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy.,Regional Referral Headache Centre, Sant'Andrea Hospital, Rome, Italy
| |
Collapse
|
30
|
Dai L, Xu Q, Xiong X, Yu Y, Wang X, Dai H, Zhao H, Ke J. Propagation Structure of Intrinsic Brain Activity in Migraine without Aura. Brain Sci 2022; 12:brainsci12070903. [PMID: 35884710 PMCID: PMC9313295 DOI: 10.3390/brainsci12070903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 12/02/2022] Open
Abstract
Previous studies have revealed highly reproducible patterns of temporally lagged brain activity in healthy human adults. However, it is unknown whether temporal organization of intrinsic activity is altered in migraines or if it relates to migraine chronification. In this resting-state functional magnetic resonance imaging study, temporal features of intrinsic activity were investigated using resting-state lag analysis, and 39 episodic migraine patients, 17 chronic migraine patients, and 35 healthy controls were assessed. Temporally earlier intrinsic activity in the hippocampal complex was revealed in the chronic migraine group relative to the other two groups. We also found earlier intrinsic activity in the medial prefrontal cortex in chronic compared with episodic migraines. Both migraine groups showed earlier intrinsic activity in the lateral temporal cortex and sensorimotor cortex compared with the healthy control group. Across all patients, headache frequency negatively correlated with temporal lag of the medial prefrontal cortex and hippocampal complex. Disrupted propagation of intrinsic activity in regions involved in sensory, cognitive and affective processing of pain may contribute to abnormal brain function during migraines. Decreased time latency in the lateral temporal cortex and sensorimotor cortex may be common manifestations in episodic and chronic migraines. The temporal features of the medial prefrontal cortex and hippocampal complex were associated with migraine chronification.
Collapse
Affiliation(s)
- Lingling Dai
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215000, China; (L.D.); (X.X.); (Y.Y.); (X.W.); (H.D.)
- Institute of Medical Imaging, Soochow University, Suzhou 215000, China
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China;
| | - Xing Xiong
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215000, China; (L.D.); (X.X.); (Y.Y.); (X.W.); (H.D.)
- Institute of Medical Imaging, Soochow University, Suzhou 215000, China
| | - Yang Yu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215000, China; (L.D.); (X.X.); (Y.Y.); (X.W.); (H.D.)
- Institute of Medical Imaging, Soochow University, Suzhou 215000, China
| | - Ximing Wang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215000, China; (L.D.); (X.X.); (Y.Y.); (X.W.); (H.D.)
- Institute of Medical Imaging, Soochow University, Suzhou 215000, China
| | - Hui Dai
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215000, China; (L.D.); (X.X.); (Y.Y.); (X.W.); (H.D.)
- Institute of Medical Imaging, Soochow University, Suzhou 215000, China
| | - Hongru Zhao
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215000, China
- Correspondence: (H.Z.); (J.K.)
| | - Jun Ke
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215000, China; (L.D.); (X.X.); (Y.Y.); (X.W.); (H.D.)
- Institute of Medical Imaging, Soochow University, Suzhou 215000, China
- Correspondence: (H.Z.); (J.K.)
| |
Collapse
|
31
|
Markin K, Trufanov A, Frunza D, Litvinenko I, Tarumov D, Krasichkov A, Polyakova V, Efimtsev A, Medvedev D. fMRI Findings in Cortical Brain Networks Interactions in Migraine Following Repetitive Transcranial Magnetic Stimulation. Front Neurol 2022; 13:915346. [PMID: 35800086 PMCID: PMC9253380 DOI: 10.3389/fneur.2022.915346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/12/2022] [Indexed: 11/21/2022] Open
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) is one of the high-potential non-pharmacological methods for migraine treatment. The purpose of this study is to define the neuroimaging markers associated with rTMS therapy in patients with migraine based on data from functional MRI (fMRI). Materials and Methods A total of 19 patients with episodic migraine without aura underwent a 5-day course of rTMS of the fronto-temporo-parietal junction bilaterally, at 10 Hz frequency and 60% of motor threshold response of 900 pulses. Resting-state functional MRI (1.5 T) and a battery of tests were carried out for each patient to clarify their diagnosis, qualitative and quantitative characteristics of pain, and associated affective symptoms. Changes in functional connectivity (FC) in the brain's neural networks before and after the treatment were identified through independent components analysis. Results Over the course of therapy, we observed an increase in FC of the default mode network within it, with pain system components and with structures of the visual network. We also noted a decrease in FC of the salience network with sensorimotor and visual networks, as well as an increase in FC of the visual network. Besides, we identified 5 patients who did not have a positive response to one rTMS course after the first week of treatment according to the clinical scales results, presumably because of an increasing trend of depressive symptoms and neuroimaging criteria for depressive disorder. Conclusions Our results show that a 5-day course of rTMS significantly alters the connectivity of brain networks associated with pain and antinociceptive brain systems in about 70% of cases, which may shed light on the neural mechanisms underlying migraine treatment with rTMS.
Collapse
Affiliation(s)
- Kirill Markin
- Psychiatry Department, Kirov Military Medical Academy, Saint Petersburg, Russia
- *Correspondence: Kirill Markin ; orcid.org/0000-0002-6242-1279
| | - Artem Trufanov
- Neurology Department, Kirov Military Medical Academy, Saint Petersburg, Russia
- Department of Software Engineering and Computer Applications, Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg, Russia
| | - Daria Frunza
- Neurology Department, Kirov Military Medical Academy, Saint Petersburg, Russia
| | - Igor Litvinenko
- Neurology Department, Kirov Military Medical Academy, Saint Petersburg, Russia
| | - Dmitriy Tarumov
- Psychiatry Department, Kirov Military Medical Academy, Saint Petersburg, Russia
| | - Alexander Krasichkov
- Radio Engineering Systems Department, Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg, Russia
| | - Victoria Polyakova
- Department of Pathology, Saint-Petersburg State Pediatric Medical University, Saint Petersburg, Russia
| | - Alexander Efimtsev
- Department of Software Engineering and Computer Applications, Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg, Russia
- Department of Radiology, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Dmitriy Medvedev
- Federal State Unitary Enterprise, Federal Medical Biological Agency, Saint Petersburg, Russia
- Department of Physical Therapy and Sports Medicine, North-Western State Medical University Named After I.I. Mechnikov, Saint Petersburg, Russia
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW The underlying mechanisms of migraine are complex and heterogenous. Advances in neuroimaging techniques during the past few decades have contributed to our understanding of migraine pathophysiology. Brain function in migraine patients has been widely explored using functional MRI (fMRI). This review will highlight the major fMRI findings that characterize the different phases of migraine. RECENT FINDINGS The migraine attack starts with hypothalamic hyperexcitability and early reorganization of the common ascending pain and central trigeminovascular pathways. Moreover, the visual cortex becomes hyperexcitable during the aura phase. During the headache phase, further disruptions of the pontine, thalamic, sensorimotor and visual networks occur, although the hypothalamic activity and connectivity normalizes. The visual cortex remains hyperexcitable during the postdromal phase. Asymptomatic migraine patients can also experience functional alternations of pain and visual processing brain areas. At present, the heterogeneity of the asymptomatic phase and fMRI findings make it difficult to find common denominator. SUMMARY fMRI studies have captured functional brain changes associated with migraine phases, leading to an improvement of our understanding of migraine pathophysiology. Further MRI studies are needed to disclose whether the migraine attack is triggered by intrinsic brain dysfunction or external factors.
Collapse
|
33
|
Wang Y, Wang Y, Bu L, Wang S, Xie X, Lin F, Xiao Z. Functional Connectivity Features of Resting-State Functional Magnetic Resonance Imaging May Distinguish Migraine From Tension-Type Headache. Front Neurosci 2022; 16:851111. [PMID: 35557602 PMCID: PMC9087040 DOI: 10.3389/fnins.2022.851111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
Background Migraineurs often exhibited abnormalities in cognition, emotion, and resting-state functional connectivity (rsFC), whereas patients with tension-type headache (TTH) rarely exhibited these abnormalities. The aim of this study is to explore whether rsFC alterations in brain regions related to cognition and emotion could be used to distinguish patients with migraine from patients with TTH. Methods In this study, Montreal Cognitive Assessment (MoCA), Self-Rating Anxiety Scale (SAS), Self-Rating Depression Scale (SDS), and rsFC analyses were used to assess the cognition, anxiety, and depression of 24 healthy controls (HCs), 24 migraineurs, and 24 patients with TTH. Due to their important roles in neuropsychological functions, the bilateral amygdala and hippocampus were chosen as seed regions for rsFC analyses. We further assessed the accuracy of the potential rsFC alterations for distinguishing migraineurs from non-migraineurs (including HCs and patients with TTH) by the receiver operating characteristic (ROC) analysis. Associations between headache characteristics and rsFC features were calculated using a multi-linear regression model. This clinical trial protocol has been registered in the Chinese Clinical Trial Registry (registry number: ChiCTR1900024307, Registered: 5 July 2019-Retrospectively registered, http://www.chictr.org.cn/showproj.aspx?proj=40817). Results Migraineurs showed lower MoCA scores (p = 0.010) and higher SAS scores (p = 0.017) than HCs. Migraineurs also showed decreased rsFC in the bilateral calcarine/cuneus, lingual gyrus (seed: left amygdala), and bilateral calcarine/cuneus (seed: left hippocampus) in comparison to HCs and patients with TTH. These rsFC features demonstrated significant distinguishing capabilities and got a sensitivity of 82.6% and specificity of 81.8% with an area under the curve (AUC) of 0.868. rsFC alterations showed a significant correlation with headache frequency in migraineurs (p = 0.001, Pc = 0.020). Conclusion The rsFC of amygdala and hippocampus with occipital lobe can be used to distinguish patients with migraine from patients with TTH. Clinical Trial Registration [http://www.chictr.org.cn/showproj.aspx?proj=40817], identifier [ChiCTR1900024307].
Collapse
Affiliation(s)
- Yajuan Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingshuang Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lihong Bu
- Positron Emission Tomography-Computer Tomography (PET-CT)/Magnetic Resonance Imaging (MRI) Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shaoyang Wang
- Department of Emergency, People's Hospital of Rizhao, Rizhao, China
| | - Xinhui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fuchun Lin
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Zheman Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
34
|
Li Y, Chen G, Lv J, Hou L, Dong Z, Wang R, Su M, Yu S. Abnormalities in resting-state EEG microstates are a vulnerability marker of migraine. J Headache Pain 2022; 23:45. [PMID: 35382739 PMCID: PMC8981824 DOI: 10.1186/s10194-022-01414-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/15/2022] [Indexed: 12/31/2022] Open
Abstract
Background Resting-state EEG microstates are thought to reflect brief activations of several interacting components of resting-state brain networks. Surprisingly, we still know little about the role of these microstates in migraine. In the present study, we attempted to address this issue by examining EEG microstates in patients with migraine without aura (MwoA) during the interictal period and comparing them with those of a group of healthy controls (HC). Methods Resting-state EEG was recorded in 61 MwoA patients (50 females) and 66 HC (50 females). Microstate parameters were compared between the two groups. We computed four widely identified canonical microstate classes A-D. Results Microstate classes B and D displayed higher time coverage and occurrence in the MwoA patient group than in the HC group, while microstate class C exhibited significantly lower time coverage and occurrence in the MwoA patient group. Meanwhile, the mean duration of microstate class C was significantly shorter in the MwoA patient group than in the HC group. Moreover, among the MwoA patient group, the duration of microstate class C correlated negatively with clinical measures of headache-related disability as assessed by the six-item Headache Impact Test (HIT-6). Finally, microstate syntax analysis showed significant differences in transition probabilities between the two groups, primarily involving microstate classes B, C, and D. Conclusions By exploring EEG microstate characteristics at baseline we were able to explore the neurobiological mechanisms underlying altered cortical excitability and aberrant sensory, affective, and cognitive processing, thus deepening our understanding of migraine pathophysiology.
Collapse
|
35
|
Yang Y, Wei K, Zhang H, Hu H, Yan L, Gui W, Liu Y, Chen X. Identifying functional brain abnormalities in migraine and depression comorbidity. Quant Imaging Med Surg 2022; 12:2288-2302. [PMID: 35371950 PMCID: PMC8923836 DOI: 10.21037/qims-21-667] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/12/2021] [Indexed: 10/10/2023]
Abstract
BACKGROUND Migraine and major depressive disorder (MDD) are both highly prevalent brain disorders and are often comorbid. However, the common and distinctive neural mechanisms underlying these disorders and the brain function alterations associated with their comorbidity are largely unknown. We aimed to explore the functional abnormalities of the brain associated with the co-occurrence of migraine and depression. METHODS High-resolution T1-weighted and resting-state functional magnetic resonance images (MRI) were acquired from 93 well-matched patients with comorbid migraine and depression, patients with migraine, patients with MDD, and healthy controls. Voxel-wise analysis of variance (ANOVA) and a two-sample t-test of multiple functional variables were performed among the groups. Furthermore, correlation analysis was conducted to detect the clinical significance of the altered functional regions in the brain. RESULTS Migraine patients with and without depression revealed widely shared regional networks of functional changes. Brain function changes in the right paracentral lobule and fusiform were specific to patients with comorbid migraine and depression [P<0.05, cluster-level familywise error (FWE)-corrected], while changes in the left thalamus, medial orbital of superior frontal gyrus and triangular part of the inferior frontal gyrus were specific to patients with migraine (P<0.05, cluster-level FWE-corrected). Importantly, the brain activity of the right paracentral lobule, left calcarine, and left dorsolateral superior frontal gyrus was associated with emotional symptoms in the pooled migraine data (P<0.05). CONCLUSIONS These findings help to identify the neural correlates underlying patients with migraine and those with comorbid migraine and depression. These shared and distinct brain changes could be used as potential image markers to decipher the comorbidity of the 2 disorders.
Collapse
Affiliation(s)
- Ying Yang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kai Wei
- Department of Neurology, Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hongchun Zhang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongyun Hu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Li Yan
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Gui
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ying Liu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xin Chen
- Department of Neurology, Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
36
|
ONAY M, YILDOĞAN AT, EREN F. Relationship between headache, corpus callosum, and deep white matter lesions in patients with migraine. CUKUROVA MEDICAL JOURNAL 2022. [DOI: 10.17826/cumj.1037888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
37
|
Baksa D, Szabo E, Kocsel N, Galambos A, Edes AE, Pap D, Zsombok T, Magyar M, Gecse K, Dobos D, Kozak LR, Bagdy G, Kokonyei G, Juhasz G. Circadian Variation of Migraine Attack Onset Affects fMRI Brain Response to Fearful Faces. Front Hum Neurosci 2022; 16:842426. [PMID: 35355585 PMCID: PMC8959375 DOI: 10.3389/fnhum.2022.842426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/10/2022] [Indexed: 11/29/2022] Open
Abstract
Background Previous studies suggested a circadian variation of migraine attack onset, although, with contradictory results – possibly because of the existence of migraine subgroups with different circadian attack onset peaks. Migraine is primarily a brain disorder, and if the diversity in daily distribution of migraine attack onset reflects an important aspect of migraine, it may also associate with interictal brain activity. Our goal was to assess brain activity differences in episodic migraine subgroups who were classified according to their typical circadian peak of attack onset. Methods Two fMRI studies were conducted with migraine without aura patients (n = 31 in Study 1, n = 48 in Study 2). Among them, three subgroups emerged with typical Morning, Evening, and Varying start of attack onset. Whole brain activity was compared between the groups in an implicit emotional processing fMRI task, comparing fearful, sad, and happy facial stimuli to neutral ones. Results In both studies, significantly increased neural activation was detected to fearful (but not sad or happy) faces. In Study 1, the Evening start group showed increased activation compared to the Morning start group in regions involved in emotional, self-referential (left posterior cingulate gyrus, right precuneus), pain (including left middle cingulate, left postcentral, left supramarginal gyri, right Rolandic operculum) and sensory (including bilateral superior temporal gyrus, right Heschl’s gyrus) processing. While in Study 2, the Morning start group showed increased activation compared to the Varying start group at a nominally significant level in regions with pain (right precentral gyrus, right supplementary motor area) and sensory processing (bilateral paracentral lobule) functions. Conclusion Our fMRI studies suggest that different circadian attack onset peaks are associated with interictal brain activity differences indicating heterogeneity within migraine patients and alterations in sensitivity to threatening fearful stimuli. Circadian variation of migraine attack onset may be an important characteristic to address in future studies and migraine prophylaxis.
Collapse
Affiliation(s)
- Daniel Baksa
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- Department of Personality and Clinical Psychology, Institute of Psychology, Faculty of Humanities and Social Sciences, Pázmány Péter Catholic University, Budapest, Hungary
| | - Edina Szabo
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Center for Pain and the Brain (PAIN Research Group), Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Natalia Kocsel
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Attila Galambos
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Andrea Edit Edes
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Dorottya Pap
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Terezia Zsombok
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Mate Magyar
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
- Department of Neuroradiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Kinga Gecse
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Dora Dobos
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Lajos Rudolf Kozak
- Department of Neuroradiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Gyongyi Kokonyei
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gabriella Juhasz
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
- *Correspondence: Gabriella Juhasz,
| |
Collapse
|
38
|
Decreased Gray Matter Volume in the Frontal Cortex of Migraine Patients with Associated Functional Connectivity Alterations: A VBM and rs-FC Study. Pain Res Manag 2022; 2022:2115956. [PMID: 35126799 PMCID: PMC8808241 DOI: 10.1155/2022/2115956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/01/2021] [Accepted: 01/07/2022] [Indexed: 01/03/2023]
Abstract
Background Resting-state functional MRI is widely used in migraine research. However, the pathophysiology and imaging markers specific for migraine pathologies are not well understood. In this study, we combined both structural and functional images to explore the concurrence and process of migraines. Methods Thirty-four patients with a history of migraine without aura presenting during the interictal period (MwoA-DI), 10 patients with migraine without aura presenting during the acute attack (MwoA-DA), and 32 healthy controls (HCs) were recruited in this study. All participants underwent scanning via MRI. Voxel-based morphometry (VBM) and seed-based resting-state functional connectivity (rs-FC) analysis were used to detect the brain structural and associated brain functional connectivity. Results In VBM analysis, a decrease of gray matter volume (GMV) in the middle frontal cortex was found in MwoA patients compared with HCs. The GMV of the middle frontal cortex had a negative correction with the duration of disease. In rs-FC analysis, the left middle frontal cortex (lower, VBM result) in both the MwoA-DA and the HC groups showed significantly increased functional connectivity with the left middle frontal cortex (upper) and left superior frontal cortex compared with MwoA-DI. The left middle frontal cortex (lower) in the MwoA-DI group also showed decreased functional connectivity in the left posterior cingulate cortex (PCC) compared with the HC group. The left middle frontal cortex (lower) in the MwoA-DA group demonstrated significantly increased functional connectivity in the left cerebellum lobule VI compared with the HC group. Conclusions Our results demonstrated that the middle frontal cortex may serve as an important target in the frequency and severity of migraines due to its role in pain regulation through the default mode network, especially in the PCC. In addition, the cerebellum may modulate the pathophysiology of migraines by serving as a communication point between the cortex and the brainstem.
Collapse
|
39
|
Qin Z, Liang HB, Li M, Hu Y, Wu J, Qiao Y, Liu JR, Du X. Disrupted White Matter Functional Connectivity With the Cerebral Cortex in Migraine Patients. Front Neurosci 2022; 15:799854. [PMID: 35095401 PMCID: PMC8793828 DOI: 10.3389/fnins.2021.799854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/23/2021] [Indexed: 11/18/2022] Open
Abstract
Background: In attempts to understand the migraine patients’ overall brain functional architecture, blood oxygenation level-dependent (BOLD) signals in the white matter (WM) and gray matter (GM) were considered in the current study. Migraine, a severe and multiphasic brain condition, is characterized by recurrent attacks of headaches. BOLD fluctuations in a resting state exhibit similar temporal and spectral profiles in both WM and GM. It is feasible to explore the functional interactions between WM tracts and GM regions in migraine. Methods: Forty-eight migraineurs without aura (MWoA) and 48 healthy controls underwent resting-state functional magnetic resonance imaging. Pearson’s correlations between the mean time courses of 48 white matter (WM) bundles and 82 gray matter (GM) regions were computed for each subject. Two-sample t-tests were performed on the Pearson’s correlation coefficients (CC) to compare the differences between the MWoA and healthy controls in the GM-averaged CC of each bundle and the WM-averaged CC of each GM region. Results: The MWoAs exhibited an overall decreased average temporal CC between BOLD signals in 82 GM regions and 48 WM bundles compared with healthy controls, while little was increased. In particular, WM bundles such as left anterior corona radiata, left external capsule and bilateral superior longitudinal fasciculus had significantly decreased mean CCs with GM in MWoA. On the other hand, 16 GM regions had significantly decreased mean CCs with WM in MWoA, including some areas that are parts of the somatosensory regions, auditory cortex, temporal areas, frontal areas, cingulate cortex, and parietal cortex. Conclusion: Decreased functional connections between WM bundles and GM regions might contribute to disrupted functional connectivity between the parts of the pain processing pathway in MWoAs, which indicated that functional and connectivity abnormalities in cortical regions may not be limited to GM regions but are instead associated with functional abnormalities in WM tracts.
Collapse
Affiliation(s)
- Zhaoxia Qin
- School of Psychology, Shanghai University of Sport, Shanghai, China
- Department of Medical Imaging, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Huai-Bin Liang
- Department of Neurology, Jiuyuan Municipal Stroke Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, Nashville, TN, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Yue Hu
- Department of Neurology, Jiuyuan Municipal Stroke Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wu
- Department of Neurology, Jiuyuan Municipal Stroke Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Qiao
- Department of Neurology, Jiuyuan Municipal Stroke Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Ren Liu
- Department of Neurology, Jiuyuan Municipal Stroke Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jian-Ren Liu,
| | - Xiaoxia Du
- School of Psychology, Shanghai University of Sport, Shanghai, China
- Xiaoxia Du,
| |
Collapse
|
40
|
Li F, Lu L, Shang S, Chen H, Wang P, Muthaiah VP, Yin X, Chen YC. Altered static and dynamic functional network connectivity in post-traumatic headache. J Headache Pain 2021; 22:137. [PMID: 34773973 PMCID: PMC8590227 DOI: 10.1186/s10194-021-01348-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/28/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Post-traumatic headache (PTH) is a very common symptom following mild traumatic brain injury (mTBI), yet much remains unknown about the underlying pathophysiological mechanisms of PTH. Neuroimaging studies suggest that aberrant functional network connectivity (FNC) may be an important factor in pain disorders. The present study aimed to investigate the functional characteristics of static FNC (sFNC) and dynamic FNC (dFNC) in mTBI patients with PTH. METHODS With Institutional Review Board (IRB) approval, we prospectively recruited 50 mTBI patients with PTH, who were diagnosed with ICHD-3 beta diagnostic criteria and 39 mTBI without PTH who were well matched for age, gender and education. Resting-state functional magnetic resonance imaging (fMRI) scanning (3.0 T, Philips Medical Systems, Netherlands), Montreal Cognitive Assessment (MoCA) and headache symptom measurement (headache frequency and headache intensity) were performed. The resting-state fMRI sequence took 8 min and 10 s. Independent component analysis and sliding window method were applied to examine the FNC on the basis of nine resting-state networks, namely, default mode network (DMN), sensorimotor network (SMN), executive control network (ECN), auditory network (AuN), attention network (AN), salience network (SN), visual network (VN), and cerebellum network (CN). The differences in sFNC and dFNC were determined and correlated with clinical variables using Pearson rank correlation. RESULTS For sFNC, compared with mTBI patients without PTH, mTB with PTH group showed four altered interactions, including decreased interactions in SN-SMN and VN-DMN pairs, increased sFNC in SN-ECN and SMN-DMN pairs. For dFNC, significant group differences were found in State 2, including increased connectivity alteration in the DMN with CN, DMN with SMN, and AuN with CN. Significant reduced connectivity changes in the DMN with VN was found in State 4. Furthermore, the number of transitions (r=0.394, p=0.005) between states was positively associated with headache frequency. Additionally, dwell time (r=-0.320, p=0.025) in State 1 was negatively correlated with MoCA score. CONCLUSIONS MTBI patients with PTH are characterized with altered sFNC and dFNC, which could provide new perspective to understand the neuropathological mechanism underlying the PTH to determine more appropriate management, and may be a useful imaging biomarker for identifying and predicting mTBI with PTH.
Collapse
Affiliation(s)
- Fengfang Li
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, 210006, Nanjing, China
| | - Liyan Lu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, 210006, Nanjing, China
| | - Song'an Shang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, 210006, Nanjing, China
| | - Huiyou Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, 210006, Nanjing, China
| | - Peng Wang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, 210006, Nanjing, China
| | - Vijaya Prakash Muthaiah
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, USA
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, 210006, Nanjing, China.
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, 210006, Nanjing, China.
| |
Collapse
|
41
|
Bentivegna E, Luciani M, Scarso F, Bruscia C, Chiappino D, Amore E, Nalli G, Martelletti P. Hormonal therapies in migraine management: current perspectives on patient selection and risk management. Expert Rev Neurother 2021; 21:1347-1355. [PMID: 34739361 DOI: 10.1080/14737175.2021.2003706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
INTRODUCTION The link between sex hormones and migraines has long been investigated but the mechanisms underlying this altered interaction are not yet fully understood. Herein, we retrace the knowledge on this association in relationship with risk of stroke. AREAS COVERED Estrogens fluctuations could trigger migraine attacks and exogenous estrogens intake could be a risk factor for venous thromboembolism (VTE) and stroke. At the same time, ischemic heart diseases and stroke share a common substrate with migraine and other mood disorders, depression, and anxiety. EXPERT OPINION The use of hormonal therapies in the context of contraception or replacement therapy must be closely evaluated in a careful risk assessment. We highlight the complex interaction of hormone/neuroinflammation pathways underlying the pathophysiology of migraine glimpsing in mood disorders a possible common denominator of link between hormonal and neuronal systems.
Collapse
Affiliation(s)
- Enrico Bentivegna
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy.,Regional Referral Headache Centre, Sant'Andrea Hospital, Rome, Italy
| | - Michelangelo Luciani
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy.,Regional Referral Headache Centre, Sant'Andrea Hospital, Rome, Italy
| | - Francesco Scarso
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy.,Regional Referral Headache Centre, Sant'Andrea Hospital, Rome, Italy
| | - Clara Bruscia
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy.,Regional Referral Headache Centre, Sant'Andrea Hospital, Rome, Italy
| | - Dario Chiappino
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy.,Regional Referral Headache Centre, Sant'Andrea Hospital, Rome, Italy
| | - Emanuele Amore
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy.,Regional Referral Headache Centre, Sant'Andrea Hospital, Rome, Italy
| | - Gabriele Nalli
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy.,Regional Referral Headache Centre, Sant'Andrea Hospital, Rome, Italy
| | - Paolo Martelletti
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy.,Regional Referral Headache Centre, Sant'Andrea Hospital, Rome, Italy
| |
Collapse
|
42
|
Zhu Y, Dai L, Zhao H, Ji B, Yu Y, Dai H, Hu C, Wang X, Ke J. Alterations in Effective Connectivity of the Hippocampus in Migraine without Aura. J Pain Res 2021; 14:3333-3343. [PMID: 34707401 PMCID: PMC8544273 DOI: 10.2147/jpr.s327945] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Neuroimaging studies on migraine have revealed structural and functional alterations in the hippocampus, a region involved in pain processing and stress response. This study was designed to investigate whether effective connectivity of this region is disrupted in migraine and relates to chronicity of this disease. Patients and Methods In 39 episodic migraine (EM) patients, 17 chronic migraine (CM) patients, and 35 healthy controls, we investigated differences in the directional influences between the hippocampus and the rest of the brain by combining resting-state functional magnetic resonance imaging and Granger causality analysis (GCA), with bilateral hippocampus as seed regions. The associations between directional influences and the clinical variables were also examined. Results Comparing each patient group to the control group, we found increased and decreased negative influence on the hippocampus exerted by the bilateral visual areas and right dorsolateral prefrontal cortex (dlPFC), respectively. The hippocampus showed increased positive influence on the right posterior insula and medial prefrontal cortex (mPFC), as well as increased negative influence on the left cerebellum in CM patients relative to EM patients and healthy controls. Furthermore, across all patients, the migraine frequency exhibited a positive and negative association with causal influence from the hippocampus to mPFC and left cerebellum, respectively. Conclusion Migraine patients have abnormal effective connectivity between the hippocampus and multiple brain regions involved in the sensory and cognitive processing of pain. Disrupted directional influences to the hippocampus exerted by dlPFC and bilateral visual areas were common features of EM and CM patients. Directional influences from the hippocampus to mPFC and left cerebellum may be useful imaging biomarkers for assessing migraine frequency.
Collapse
Affiliation(s)
- Yadi Zhu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu Province, People's Republic of China.,Institute of Medical Imaging, Soochow University, Soochow, Jiangsu Province, People's Republic of China
| | - Lingling Dai
- Department of Radiology, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu Province, People's Republic of China.,Institute of Medical Imaging, Soochow University, Soochow, Jiangsu Province, People's Republic of China
| | - Hongru Zhao
- Department of Neurology, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu Province, People's Republic of China
| | - Boan Ji
- Medical School of Soochow University, Soochow, Jiangsu Province, People's Republic of China
| | - Yang Yu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu Province, People's Republic of China.,Institute of Medical Imaging, Soochow University, Soochow, Jiangsu Province, People's Republic of China
| | - Hui Dai
- Department of Radiology, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu Province, People's Republic of China.,Institute of Medical Imaging, Soochow University, Soochow, Jiangsu Province, People's Republic of China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu Province, People's Republic of China.,Institute of Medical Imaging, Soochow University, Soochow, Jiangsu Province, People's Republic of China
| | - Ximing Wang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu Province, People's Republic of China.,Institute of Medical Imaging, Soochow University, Soochow, Jiangsu Province, People's Republic of China
| | - Jun Ke
- Department of Radiology, The First Affiliated Hospital of Soochow University, Soochow, Jiangsu Province, People's Republic of China.,Institute of Medical Imaging, Soochow University, Soochow, Jiangsu Province, People's Republic of China
| |
Collapse
|
43
|
Tian Z, Guo Y, Yin T, Xiao Q, Ha G, Chen J, Wang S, Lan L, Zeng F. Acupuncture Modulation Effect on Pain Processing Patterns in Patients With Migraine Without Aura. Front Neurosci 2021; 15:729218. [PMID: 34512254 PMCID: PMC8427167 DOI: 10.3389/fnins.2021.729218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/29/2021] [Indexed: 01/17/2023] Open
Abstract
Introduction In this retrospective study, resting-state functional connectivity (FC) in patients with migraine was analyzed to identify potential pathological pain processing patterns and compared them to those in healthy controls (HCs). The FC patterns in patients between pre- and post-acupuncture sessions were also analyzed to determine how acupuncture affects neurological activity and pain perception during the migraine interictal period. Methods In total, 52 patients with migraine without aura (MwoA) and 60 HCs were recruited. Patients with migraine were given acupuncture treatment sessions for 4 weeks. As a primary observation, functional magnetic resonance images were obtained at the beginning and end of the sessions. HCs received no treatment and underwent one functional magnetic resonance imaging (fMRI) scan after enrollment. After the fMRI data were preprocessed, a region of interest (ROI)-to-ROI analysis was performed with predefined ROIs related to pain processing regions. Results The first analysis showed significantly different FCs between patients with MwoA and HCs [false discovery rate corrected p-value (p-FDR) < 0.05]. The FCs were found to be mainly between the cingulate gyrus (CG) and the insular gyrus, the CG and the inferior parietal lobule (IPL), the CG and the superior frontal gyrus, and the middle frontal gyrus and the IPL. The second analysis indicated that acupuncture treatment partly restored the different FCs found in the first analysis (p-FDR < 0.05). Furthermore, subgroup analysis found different brain activity patterns in headache-intensity restored condition and headache-frequency restored condition. Lastly, the correlation analysis suggested a potential correlation between FCs and clinical symptoms (p < 0.05). Conclusion This study suggests that pain processing is abnormal in migraine, with significantly abnormal FCs in the frontal, parietal, and limbic regions. This finding could be a typical pathological feature of migraine. Acupuncture has been identified to relieve headache symptoms in two ways: it restores the pain processing function and regulates pain perception.
Collapse
Affiliation(s)
- Zilei Tian
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaoguang Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Yin
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingqing Xiao
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guodong Ha
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiyao Chen
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuo Wang
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Lan
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Zeng
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu, China
| |
Collapse
|
44
|
Kim YE, Kim MK, Suh SI, Kim JH. Altered trigeminothalamic spontaneous low-frequency oscillations in migraine without aura: a resting-state fMRI study. BMC Neurol 2021; 21:342. [PMID: 34493235 PMCID: PMC8422747 DOI: 10.1186/s12883-021-02374-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Background Recent resting-state fMRI studies demonstrated functional dysconnectivity within the central pain matrix in migraineurs. This study aimed to investigate the spatial distribution and amplitude of low-frequency oscillations (LFOs) using fractional amplitude of low-frequency fluctuation (fALFF) analysis in migraine patients without aura, and to examine relationships between regional LFOs and clinical variables. Methods Resting-state fMRI data were obtained and preprocessed in 44 migraine patients without aura and 31 matched controls. fALFF was computed according to the original method, z-transformed for standardization, and compared between migraineurs and controls. Correlation analysis between regional fALFF and clinical variables was performed in migraineurs as well. Results Compared with controls, migraineurs had significant fALFF increases in bilateral ventral posteromedial (VPM) thalamus and brainstem encompassing rostral ventromedial medulla (RVM) and trigeminocervical complex (TCC). Regional fALFF values of bilateral VPM thalamus and brainstem positively correlated with disease duration, but not with migraine attack frequency or Migraine Disability Assessment Scale score. Conclusions We have provided evidence for abnormal LFOs in the brainstem including RVM/TCC and thalamic VPM nucleus in migraine without aura, implicating trigeminothalamic network oscillations in migraine pathophysiology. Our results suggest that enhanced LFO activity may underpin the interictal trigeminothalamic dysrhythmia that could contribute to the impairments of pain transmission and modulation in migraine. Given our finding of increasing fALFF in relation to increasing disease duration, the observed trigeminothalamic dysrhythmia may indicate either an inherent pathology leading to migraine headaches or a consequence of repeated attacks on the brain.
Collapse
Affiliation(s)
- Ye Eun Kim
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 152-703, Guro-dong gil 97, Guro-dong, Guro-gu, Seoul, Republic of Korea
| | - Min Kyung Kim
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 152-703, Guro-dong gil 97, Guro-dong, Guro-gu, Seoul, Republic of Korea
| | - Sang-Il Suh
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Ji Hyun Kim
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 152-703, Guro-dong gil 97, Guro-dong, Guro-gu, Seoul, Republic of Korea.
| |
Collapse
|
45
|
Valenzuela-Fuenzalida JJ, Suazo-Santibañez A, Semmler MG, Cariseo-Avila C, Santana-Machuca E, Orellana-Donoso M. The structural and functional importance of the thalamus in migraine processes with and without aura. A literature review. TRANSLATIONAL RESEARCH IN ANATOMY 2021. [DOI: 10.1016/j.tria.2021.100130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
46
|
Bauer PR, Tolner EA, Keezer MR, Ferrari MD, Sander JW. Headache in people with epilepsy. Nat Rev Neurol 2021; 17:529-544. [PMID: 34312533 DOI: 10.1038/s41582-021-00516-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Epidemiological estimates indicate that individuals with epilepsy are more likely to experience headaches, including migraine, than individuals without epilepsy. Headaches can be temporally unrelated to seizures, or can occur before, during or after an episode; seizures and migraine attacks are mostly not temporally linked. The pathophysiological links between headaches (including migraine) and epilepsy are complex and have not yet been fully elucidated. Correct diagnoses and appropriate treatment of headaches in individuals with epilepsy is essential, as headaches can contribute substantially to disease burden. Here, we review the insights that have been made into the associations between headache and epilepsy over the past 5 years, including information on the pathophysiological mechanisms and genetic variants that link the two disorders. We also discuss the current best practice for the management of headaches co-occurring with epilepsy and highlight future challenges for this area of research.
Collapse
Affiliation(s)
- Prisca R Bauer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Freiburg, Freiburg, Germany.
| | - Else A Tolner
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Mark R Keezer
- Research Centre of the Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,School of Public Health, Université de Montréal, Montreal, Quebec, Canada.,Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Josemir W Sander
- Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands.,NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| |
Collapse
|
47
|
Bentivegna E, Luciani M, Paragliola V, Baldari F, Lamberti PA, Conforti G, Spuntarelli V, Martelletti P. Recent advancements in tension-type headache: a narrative review. Expert Rev Neurother 2021; 21:793-803. [PMID: 34128449 DOI: 10.1080/14737175.2021.1943363] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Tension-type headache (TTH) is the most common primary headache disorder with a prevalence of up to 78% in general population and huge expenses in terms of health service. Despite its high incidence and impact on life's quality the knowledge on the pathophysiology and efficacious treatment of TTH was still limited. AREAS COVERED In recent years, a series of studies highlighted the heterogeneous nature of this pathology that seems to be determined by a complex interaction between genetic, environmental, and neuromuscular factors, which result in nociceptive system activation. In this setting, alongside the simple analgesic therapies used during the acute attack, a series of therapeutic options based on newly acquired experiences have taken hold. EXPERT REVIEW Not having a single substrate or a typical site of pathophysiology, TTH must be analyzed in a global and multidisciplinary way. Herein, we perform a narrative review of the most recent advancement stimulating the concept of this disease as the tip of the iceberg of a more complex individual malaise secondary to different alterations. Strategies based solely on symptomatic drugs should therefore be avoided by experienced personnel and treatment should aim at taking charge of the patient considering the processes behind this complex pathology.
Collapse
Affiliation(s)
- Enrico Bentivegna
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | | | - Vincenzo Paragliola
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Francesco Baldari
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Piera A Lamberti
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Giulia Conforti
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Valerio Spuntarelli
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Paolo Martelletti
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy.,Department of clicinal and molecular medicine, Regional Referral Headache Centre, Sant'Andrea Hospital, Rome, Italy
| |
Collapse
|
48
|
Recober A. Pathophysiology of Migraine. ACTA ACUST UNITED AC 2021; 27:586-596. [PMID: 34048393 DOI: 10.1212/con.0000000000000983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE OF REVIEW This article summarizes the current understanding of the pathophysiology of migraine, including some controversial aspects of the underlying mechanisms of the disorder. RECENT FINDINGS Recent functional neuroimaging studies focusing on the nonpainful symptoms of migraine have identified key areas of the central nervous system implicated in the early phases of a migraine attack. Clinical studies of spontaneous and provoked migraine attacks, together with preclinical studies using translational animal models, have led to a better understanding of the disease and the development of disease-specific and targeted therapies. SUMMARY Our knowledge of the pathophysiology of migraine has advanced significantly in the past decades. Current evidence supports our understanding of migraine as a complex cyclical brain disorder that likely results from dysfunctional sensory processing and dysregulation of homeostatic mechanisms. This article reviews the underlying mechanisms of the clinical manifestations of each phase of the migraine cycle.
Collapse
|
49
|
Ofoghi Z, Rohr CS, Dewey D, Bray S, Yeates KO, Noel M, Barlow KM. Functional connectivity of the anterior cingulate cortex with pain-related regions in children with post-traumatic headache. CEPHALALGIA REPORTS 2021. [DOI: 10.1177/25158163211009477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Introduction: Post-traumatic headaches (PTH) are common following mild traumatic brain injury (mTBI). There is evidence of altered central pain processing in adult PTH; however, little is known about how children with PTH process pain. The anterior cingulate cortex (ACC) plays a critical role in descending central pain modulation. In this study, we explored whether the functional connectivity (FC) of the ACC is altered in children with PTH. Methods: In this case-control study, we investigated resting-state FC of 5 ACC seeds (caudal, dorsal, rostral, perigenual, and subgenual) in children with PTH ( n = 73) and without PTH ( n = 29) following mTBI, and healthy controls ( n = 27). Post-concussion symptoms were assessed using the Post-Concussion Symptom Inventory and the Child Health Questionnaire. Resting-state functional Magnetic Resonance Imaging (fMRI) data were used to generate maps of ACC FC. Group-level comparisons were performed within a target mask comprised of pain-related regions using FSL Randomise. Results: We found decreased FC between the right perigenual ACC and the left cerebellum, and increased FC between the right subgenual ACC and the left dorsolateral prefrontal cortex in children with PTH compared to healthy controls. The ACC FC in children without PTH following mTBI did not differ from the group with PTH or healthy controls. FC between rostral and perigenual ACC seeds and the cerebellum was increased in children with PTH with pre-injury headaches compared to those with PTH without pre-injury headaches. There was a positive relationship between PTH severity and rostral ACC FC with the bilateral thalamus, right hippocampus and periaqueductal gray. Conclusions: Central pain processing is altered in children with PTH. Pre-existing headaches help to drive this process. Trial registration: The PlayGame Trial was registered in ClinicalTrials.gov database ( ClinicalTrials.gov Identifier: NCT01874847).
Collapse
Affiliation(s)
- Zahra Ofoghi
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Christiane S Rohr
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Deborah Dewey
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Paediatrics, Cumming School of Medicine University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Owerko Centre at the Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Signe Bray
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Keith Owen Yeates
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Melanie Noel
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Karen M Barlow
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Paediatrics, Cumming School of Medicine University of Calgary, Calgary, Alberta, Canada
- Paediatric Neurology Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
50
|
Chamanzar A, Haigh SM, Grover P, Behrmann M. Abnormalities in cortical pattern of coherence in migraine detected using ultra high-density EEG. Brain Commun 2021; 3:fcab061. [PMID: 34258580 PMCID: PMC8269966 DOI: 10.1093/braincomms/fcab061] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
Individuals with migraine generally experience photophobia and/or phonophobia during and between migraine attacks. Many different mechanisms have been postulated to explain these migraine phenomena including abnormal patterns of connectivity across the cortex. The results, however, remain contradictory and there is no clear consensus on the nature of the cortical abnormalities in migraine. Here, we uncover alterations in cortical patterns of coherence (connectivity) in interictal migraineurs during the presentation of visual and auditory stimuli and during rest. We used a high-density EEG system, with 128 customized electrode locations, to compare inter- and intra-hemispheric coherence in the interictal period from 17 individuals with migraine (12 female) and 18 age- and gender-matched healthy control subjects. During presentations of visual (vertical grating pattern) and auditory (modulated tone) stimulation which varied in temporal frequency (4 and 6 Hz), and during rest, participants performed a colour detection task at fixation. Analyses included characterizing the inter- and intra-hemisphere coherence between the scalp EEG channels over 2-s time intervals and over different frequency bands at different spatial distances and spatial clusters. Pearson's correlation coefficients were estimated at zero-lag. Repeated measures analyses-of-variance revealed that, relative to controls, migraineurs exhibited significantly (i) faster colour detection performance, (ii) lower spatial coherence of alpha-band activity, for both inter- and intra-hemisphere connections, and (iii) the reduced coherence occurred predominantly in frontal clusters during both sensory conditions, regardless of the stimulation frequency, as well as during the resting-state. The abnormal patterns of EEG coherence in interictal migraineurs during visual and auditory stimuli, as well as at rest (eyes open), may be associated with the cortical hyper-responsivity that is characteristic of abnormal sensory processing in migraineurs.
Collapse
Affiliation(s)
- Alireza Chamanzar
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sarah M Haigh
- Department of Psychology, University of Nevada, Reno, NV 89557, USA
- Institute for Neuroscience, University of Nevada, Reno, NV 89557, USA
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Pulkit Grover
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Marlene Behrmann
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|