1
|
Peerapen P, Boonmark W, Chantarasaka S, Thongboonkerd V. Trigonelline prevents high-glucose-induced endothelial-to-mesenchymal transition, oxidative stress, mitochondrial dysfunction, and impaired angiogenic activity in human endothelial EA.hy926 cells. Biomed Pharmacother 2024; 179:117320. [PMID: 39191024 DOI: 10.1016/j.biopha.2024.117320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Trigonelline (TRIG) is a natural compound in an alkaloid family found in diverse plants. This compound exerts anti-inflammatory, anti-allergic, anti-oxidative and anti-fibrotic activities in several disease models. However, its beneficial role in endothelial injury, especially induced by diabetes, is unclear. We, therefore, evaluated the effects of TRIG on the cellular proteome of human endothelial (EA.hy926) cells followed by functional validation in high-glucose (HG)-induced endothelial deteriorations. Label-free quantification using nanoLC-ESI-Qq-TOF MS/MS revealed 40 downregulated and 29 upregulated proteins induced by TRIG. Functional enrichment analysis using DAVID and REVIGO tools suggested the involvement of these altered proteins in several biological processes and molecular functions, particularly cell-cell adhesion, ATP metabolic process, cell redox homeostasis, cadherin binding, and ATP hydrolysis activity. Experimental validation showed that HG triggered endothelial-to-mesenchymal transition (EndMT) (as demonstrated by increased spindle index and mesenchymal markers, i.e., fibronectin and vimentin, and decreased endothelial markers, i.e., PECAM-1 and VE-cadherin), increased oxidized proteins, and reduced intracellular ATP, active mitochondria, endothelial tube/mesh formation and VEGF secretion. However, TRIG successfully abolished all these defects induced by HG. These data indicate that TRIG prevents HG-induced EndMT, oxidative stress, mitochondrial dysfunction, and impaired angiogenic activity in human endothelial cells.
Collapse
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wanida Boonmark
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suwichaya Chantarasaka
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
2
|
Scimone C, Donato L, Alibrandi S, Conti A, Bortolotti C, Germanò A, Alafaci C, Vinci SL, D'Angelo R, Sidoti A. Methylome analysis of endothelial cells suggests new insights on sporadic brain arteriovenous malformation. Heliyon 2024; 10:e35126. [PMID: 39170526 PMCID: PMC11336478 DOI: 10.1016/j.heliyon.2024.e35126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Arteriovenous malformation of the brain (bAVM) is a vascular phenotype related to brain defective angiogenesis. Involved vessels show impaired expression of vascular differentiation markers resulting in the arteriolar to venule direct shunt. In order to clarify aberrant gene expression occurring in bAVM, here we describe results obtained by methylome analysis performed on endothelial cells (ECs) isolated from bAVM specimens, compared to human cerebral microvascular ECs. Results were validated by quantitative methylation-specific PCR and quantitative realtime-PCR. Differential methylation events occur in genes already linked to bAVM onset, as RBPJ and KRAS. However, among differentially methylated genes, we identified EPHB1 and several other loci involved in EC adhesion as well as in EC/vascular smooth muscle cell (VSMC) crosstalk, suggesting that only endothelial dysfunction might not be sufficient to trigger the bAVM phenotype. Moreover, aberrant methylation pattern was reported for many lncRNA genes targeting transcription factors expressed during neurovascular development. Among these, the YBX1 that was recently shown to target the arteridin coding gene. Finally, in addition to the conventional CpG methylation, we further considered the role of impaired CHG methylation, mainly occurring in brain at embryo stage. We showed as differentially CHG methylated genes are clustered in pathways related to EC homeostasis, as well as to VSMC-EC crosstalk, suggesting as impairment of this interaction plays a prominent role in loss of vascular differentiation, in bAVM phenotype.
Collapse
Affiliation(s)
- Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., Via Michele Miraglia 20, Palermo, 90139, Italy
| | - Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., Via Michele Miraglia 20, Palermo, 90139, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., Via Michele Miraglia 20, Palermo, 90139, Italy
| | - Alfredo Conti
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Via Altura 3, 40123, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Carlo Bortolotti
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Via Altura 3, 40123, Bologna, Italy
| | - Antonino Germanò
- Neurosurgery Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
| | - Concetta Alafaci
- Neurosurgery Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
| | - Sergio Lucio Vinci
- Neuroradiology Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., Via Michele Miraglia 20, Palermo, 90139, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., Via Michele Miraglia 20, Palermo, 90139, Italy
| |
Collapse
|
3
|
Sreelakshmi BJ, Karthika CL, Ahalya S, Kalpana SR, Kartha CC, Sumi S. Mechanoresponsive ETS1 causes endothelial dysfunction and arterialization in varicose veins via NOTCH4/DLL4 signaling. Eur J Cell Biol 2024; 103:151420. [PMID: 38759515 DOI: 10.1016/j.ejcb.2024.151420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/05/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
Varicose veins are the most common venous disorder in humans and are characterized by hemodynamic instability due to valvular insufficiency and orthostatic lifestyle factors. It is unclear how changes in biomechanical signals cause aberrant remodeling of the vein wall. Our previous studies suggest that Notch signaling is implicated in varicose vein arterialization. In the arterial system, mechanoresponsive ETS1 is a transcriptional activator of the endothelial Notch, but its involvement in sensing disrupted venous flow and varicose vein formation has not been investigated. Here, we use human varicose veins and cultured human venous endothelial cells to show that disturbed venous shear stress activates ETS1-NOTCH4/DLL4 signaling. Notch components were highly expressed in the neointima, whereas ETS1 was upregulated in all histological layers of varicose veins. In vitro microfluidic flow-based studies demonstrate that even minute changes in venous flow patterns enhance ETS1-NOTCH4/DLL4 signaling. Uniform venous shear stress, albeit an inherently low-flow system, does not induce ETS1 and Notch proteins. ETS1 activation under altered flow was mediated primarily by MEK1/2 and, to a lesser extent, by MEK5 but was independent of p38 MAP kinase. Endothelial cell-specific ETS1 knockdown prevented disturbed flow-induced NOTCH4/DLL4 expression. TK216, an inhibitor of ETS-family, prevented the acquisition of arterial molecular identity and loss of endothelial integrity in cells exposed to the ensuing altered shear stress. We conclude that ETS1 senses blood flow disturbances and may promote venous remodeling by inducing endothelial dysfunction. Targeting ETS1 rather than downstream Notch proteins could be an effective and safe strategy to develop varicose vein therapies.
Collapse
Affiliation(s)
- B J Sreelakshmi
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala 695014, India
| | - C L Karthika
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala 695014, India
| | - S Ahalya
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala 695014, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - S R Kalpana
- Sri Jayadeva Institute for Cardiovascular Sciences & Research, Bangalore 570016, India
| | - C C Kartha
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala 695014, India
| | - S Sumi
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala 695014, India.
| |
Collapse
|
4
|
Tang W, Chen Y, Ma L, Chen Y, Yang B, Li R, Li Z, Wu Y, Wang X, Guo X, Zhang W, Chen X, Lv M, Zhao Y, Guo G. Current perspectives and trends in the treatment of brain arteriovenous malformations: a review and bibliometric analysis. Front Neurol 2024; 14:1327915. [PMID: 38274874 PMCID: PMC10808838 DOI: 10.3389/fneur.2023.1327915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Background Currently, there is a lack of intuitive analysis regarding the development trend, main authors, and research hotspots in the field of cerebral arteriovenous malformation treatment, as well as a detailed elaboration of possible research hotspots. Methods A bibliometric analysis was conducted on data retrieved from the Web of Science core collection database between 2000 and 2022. The analysis was performed using R, VOSviewer, CiteSpace software, and an online bibliometric platform. Results A total of 1,356 articles were collected, and the number of publications has increased over time. The United States and the University of Pittsburgh are the most prolific countries and institutions in the field. The top three cited authors are Kondziolka D, Sheehan JP, and Lunsford LD. The Journal of Neurosurgery and Neurosurgery are two of the most influential journals in the field of brain arteriovenous malformation treatment research, with higher H-index, total citations, and number of publications. Furthermore, the analysis of keywords indicates that "aruba trial," "randomised trial," "microsurgery," "onyx embolization," and "Spetzler-Martin grade" may become research focal points. Additionally, this paper discusses the current research status, existing issues, and potential future research directions for the treatment of brain arteriovenous malformations. Conclusion This bibliometric study comprehensively analyses the publication trend of cerebral arteriovenous malformation treatment in the past 20 years. It covers the trend of international cooperation, publications, and research hotspots. This information provides an important reference for scholars to further study cerebral arteriovenous malformation.
Collapse
Affiliation(s)
- Weixia Tang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yang Chen
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Provincial Clinical Research Center for Interventional Medicine, Taiyuan, Shanxi, China
| | - Li Ma
- Department of Neurological Surgery, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Biao Yang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Provincial Clinical Research Center for Interventional Medicine, Taiyuan, Shanxi, China
| | - Ren Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ziao Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Provincial Clinical Research Center for Interventional Medicine, Taiyuan, Shanxi, China
| | - Yongqiang Wu
- Shanxi Provincial Clinical Research Center for Interventional Medicine, Taiyuan, Shanxi, China
- Department of Emergency, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaogang Wang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Provincial Clinical Research Center for Interventional Medicine, Taiyuan, Shanxi, China
| | - Xiaolong Guo
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Provincial Clinical Research Center for Interventional Medicine, Taiyuan, Shanxi, China
| | - Wenju Zhang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Provincial Clinical Research Center for Interventional Medicine, Taiyuan, Shanxi, China
| | - Xiaolin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ming Lv
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuanli Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Geng Guo
- Shanxi Provincial Clinical Research Center for Interventional Medicine, Taiyuan, Shanxi, China
- Department of Emergency, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
5
|
Suarez Rodriguez F, Sanlidag S, Sahlgren C. Mechanical regulation of the Notch signaling pathway. Curr Opin Cell Biol 2023; 85:102244. [PMID: 37783031 DOI: 10.1016/j.ceb.2023.102244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/13/2023] [Accepted: 09/03/2023] [Indexed: 10/04/2023]
Abstract
The mechanical regulation of Notch signaling is an emerging area of interest in cell biology. Notch is essential in many physiological processes in which mechanical stress plays an important role. This review provides an overview of the mechanoregulation of Notch signaling in multiple steps of the pathway. First, we discuss the current knowledge on the direct mechanoregulation of Notch receptor maturation and localization to the membrane and the effect of mechanical stress on the Notch components. Next, we explore how ligand-receptor interactions and membrane dynamics are possible subjects to mechano-regulation, emphasizing the role of cytoskeletal interactions, membrane stiffness, and endocytic complex formation. We further delve into the necessity of tension generation for negative regulatory region (NRR) domain unfolding, facilitated by ligand endocytosis and other microforces. Additionally, we examine the indirect mechano-regulation of S2 and S3 cleavages. Finally, we discuss the mechanoregulation of the Notch intracellular domain (NICD) trafficking and nuclear entry and the impact of mechanical stress on heterochromatin dynamics and nuclear NICD interactions. This review aims to draw attention to the intricate interplay between mechanical cues and Notch signaling regulation, offering novel insights into the multifaceted nature of cellular mechanobiology.
Collapse
Affiliation(s)
- Freddy Suarez Rodriguez
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6, FI-20520, Turku, Finland; Turku Bioscience, Åbo Akademi University and University of Turku, Tykistökatu 6, FI-20520, Turku, Finland; InFLAMES Research Flagship Center, Åbo Akademi University and University of Turku, Turku, Finland
| | - Sami Sanlidag
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6, FI-20520, Turku, Finland; Turku Bioscience, Åbo Akademi University and University of Turku, Tykistökatu 6, FI-20520, Turku, Finland; InFLAMES Research Flagship Center, Åbo Akademi University and University of Turku, Turku, Finland
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6, FI-20520, Turku, Finland; Turku Bioscience, Åbo Akademi University and University of Turku, Tykistökatu 6, FI-20520, Turku, Finland; InFLAMES Research Flagship Center, Åbo Akademi University and University of Turku, Turku, Finland; Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, the Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Ceres, Building Number 7, De Zaale, 5612 AJ, Eindhoven, the Netherlands.
| |
Collapse
|
6
|
Zong B, Yu F, Zhang X, Pang Y, Zhao W, Sun P, Li L. Mechanosensitive Piezo1 channel in physiology and pathophysiology of the central nervous system. Ageing Res Rev 2023; 90:102026. [PMID: 37532007 DOI: 10.1016/j.arr.2023.102026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
Since the discovery of the mechanosensitive Piezo1 channel in 2010, there has been a significant amount of research conducted to explore its regulatory role in the physiology and pathology of various organ systems. Recently, a growing body of compelling evidence has emerged linking the activity of the mechanosensitive Piezo1 channel to health and disease of the central nervous system. However, the exact mechanisms underlying these associations remain inadequately comprehended. This review systematically summarizes the current research on the mechanosensitive Piezo1 channel and its implications for central nervous system mechanobiology, retrospects the results demonstrating the regulatory role of the mechanosensitive Piezo1 channel on various cell types within the central nervous system, including neural stem cells, neurons, oligodendrocytes, microglia, astrocytes, and brain endothelial cells. Furthermore, the review discusses the current understanding of the involvement of the Piezo1 channel in central nervous system disorders, such as Alzheimer's disease, multiple sclerosis, glaucoma, stroke, and glioma.
Collapse
Affiliation(s)
- Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Fengzhi Yu
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaoyou Zhang
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Yige Pang
- Department of Neurosurgery, Zibo Central Hospital, Zibo 255000, Shandong, China
| | - Wenrui Zhao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Peng Sun
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Lin Li
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China.
| |
Collapse
|