1
|
Wu D, Wu S, Narongdej P, Duan S, Chen C, Yan Y, Liu Z, Hong W, Frenkel I, He X. Fast and Facile Liquid Metal Printing via Projection Lithography for Highly Stretchable Electronic Circuits. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307632. [PMID: 38126914 DOI: 10.1002/adma.202307632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/19/2023] [Indexed: 12/23/2023]
Abstract
Soft electronic circuits are crucial for wearable electronics, biomedical technologies, and soft robotics, requiring soft conductive materials with high conductivity, high strain limit, and stable electrical performance under deformation. Liquid metals (LMs) have become attractive candidates with high conductivity and fluidic compliance, while effective manufacturing methods are demanded. Digital light processing (DLP)-based projection lithography is a high-resolution and high-throughput printing technique for primarily polymers and some metals. If LMs can be printed with DLP as well, the entire soft devices can be fabricated by one printer in a streamlined and highly efficient process. Herein, fast and facile DLP-based LM printing is achieved. Simply with 5-10 s of patterned ultraviolet (UV)-light exposure, a highly conductive and stretchable pattern can be printed using a photo-crosslinkable LM particle ink. The printed eutectic gallium indium traces feature high resolution (≈20 µm), conductivity (3 × 106 S m-1), stretchability (≈2500%), and excellent stability (consistent performance at different deformation). Various patterns are printed in diverse material systems for broad applications including stretchable displays, epidermal strain sensors, heaters, humidity sensors, conformal electrodes for electrography, and multi-layer actuators. The facile and scalable process, excellent performance, and diverse applications ensure its broad impact on soft electronic manufacturing.
Collapse
Affiliation(s)
- Dong Wu
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Shuwang Wu
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Poom Narongdej
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Sidi Duan
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Chi Chen
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Yichen Yan
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Zixiao Liu
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Wen Hong
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Imri Frenkel
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Ximin He
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| |
Collapse
|
2
|
Seo H, Chung WG, Kwon YW, Kim S, Hong YM, Park W, Kim E, Lee J, Lee S, Kim M, Lim K, Jeong I, Song H, Park JU. Smart Contact Lenses as Wearable Ophthalmic Devices for Disease Monitoring and Health Management. Chem Rev 2023; 123:11488-11558. [PMID: 37748126 PMCID: PMC10571045 DOI: 10.1021/acs.chemrev.3c00290] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 09/27/2023]
Abstract
The eye contains a complex network of physiological information and biomarkers for monitoring disease and managing health, and ocular devices can be used to effectively perform point-of-care diagnosis and disease management. This comprehensive review describes the target biomarkers and various diseases, including ophthalmic diseases, metabolic diseases, and neurological diseases, based on the physiological and anatomical background of the eye. This review also includes the recent technologies utilized in eye-wearable medical devices and the latest trends in wearable ophthalmic devices, specifically smart contact lenses for the purpose of disease management. After introducing other ocular devices such as the retinal prosthesis, we further discuss the current challenges and potential possibilities of smart contact lenses.
Collapse
Affiliation(s)
- Hunkyu Seo
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Won Gi Chung
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yong Won Kwon
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sumin Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yeon-Mi Hong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Wonjung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Enji Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jakyoung Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sanghoon Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Moohyun Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Kyeonghee Lim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Inhea Jeong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Hayoung Song
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jang-Ung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
- Department
of Neurosurgery, Yonsei University College
of Medicine, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic
of Korea
| |
Collapse
|
3
|
Liu G, Lv Z, Batool S, Li MZ, Zhao P, Guo L, Wang Y, Zhou Y, Han ST. Biocompatible Material-Based Flexible Biosensors: From Materials Design to Wearable/Implantable Devices and Integrated Sensing Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207879. [PMID: 37009995 DOI: 10.1002/smll.202207879] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Human beings have a greater need to pursue life and manage personal or family health in the context of the rapid growth of artificial intelligence, big data, the Internet of Things, and 5G/6G technologies. The application of micro biosensing devices is crucial in connecting technology and personalized medicine. Here, the progress and current status from biocompatible inorganic materials to organic materials and composites are reviewed and the material-to-device processing is described. Next, the operating principles of pressure, chemical, optical, and temperature sensors are dissected and the application of these flexible biosensors in wearable/implantable devices is discussed. Different biosensing systems acting in vivo and in vitro, including signal communication and energy supply are then illustrated. The potential of in-sensor computing for applications in sensing systems is also discussed. Finally, some essential needs for commercial translation are highlighted and future opportunities for flexible biosensors are considered.
Collapse
Affiliation(s)
- Gang Liu
- Institute of Microscale Optoelectronics and College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ziyu Lv
- Institute of Microscale Optoelectronics and College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Saima Batool
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | | | - Pengfei Zhao
- Institute of Microscale Optoelectronics and College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Liangchao Guo
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, P. R. China
| | - Yan Wang
- School of Microelectronics, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Su-Ting Han
- Institute of Microscale Optoelectronics and College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
4
|
Chen Z, Wang Z, Wang J, Chen S, Zhang B, Li Y, Yuan L, Duan Y. Analysis of the Effect of Graphene, Metal, and Metal Oxide Transparent Electrodes on the Performance of Organic Optoelectronic Devices. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:25. [PMID: 36615935 PMCID: PMC9824898 DOI: 10.3390/nano13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Transparent electrodes (TEs) are important components in organic optoelectronic devices. ITO is the mostly applied TE material, which is costly and inferior in mechanical performance, and could not satisfy the versatile need for the next generation of transparent optoelectronic devices. Recently, many new TE materials emerged to try to overcome the deficiency of ITO, including graphene, ultrathin metal, and oxide-metal-oxide structure. By finely control of the fabrication techniques, the main properties of conductivity, transmittance, and mechanical stability, have been studied in the literatures, and their applicability in the potential optoelectronic devices has been reported. Herein, in this work, we summarized the recent progress of the TE materials applied in optoelectronic devices by focusing on the fabrication, properties, such as Graphene, ultra-thin metal film, and metal oxide and performance. The advantages and insufficiencies of these materials as TEs have been summarized and the future development aspects have been pointed out to guide the design and fabrication TE materials in the next generation of transparent optoelectronic devices.
Collapse
Affiliation(s)
- Ziqiang Chen
- College of Physics, Changchun University of Science and Technology, Changchun 130013, China
| | - Zhenyu Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Jintao Wang
- College of Physics, Changchun University of Science and Technology, Changchun 130013, China
| | - Shuming Chen
- College of Physics, Changchun University of Science and Technology, Changchun 130013, China
| | - Buyue Zhang
- College of Physics, Changchun University of Science and Technology, Changchun 130013, China
| | - Ye Li
- College of Physics, Changchun University of Science and Technology, Changchun 130013, China
| | - Long Yuan
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, College of Physics, Jilin Normal University, Changchun 130103, China
| | - Yu Duan
- College of Physics, Changchun University of Science and Technology, Changchun 130013, China
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
5
|
Chung WG, Kim E, Song H, Lee J, Lee S, Lim K, Jeong I, Park JU. Recent Advances in Electrophysiological Recording Platforms for Brain and Heart Organoids. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Won Gi Chung
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Enji Kim
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Hayoung Song
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Jakyoung Lee
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Sanghoon Lee
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Kyeonghee Lim
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Inhea Jeong
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
- KIURI Institute Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
6
|
Jang J, Kim J, Shin H, Park YG, Joo BJ, Seo H, Won JE, Kim DW, Lee CY, Kim HK, Park JU. Smart contact lens and transparent heat patch for remote monitoring and therapy of chronic ocular surface inflammation using mobiles. SCIENCE ADVANCES 2021; 7:eabf7194. [PMID: 33789904 PMCID: PMC8011975 DOI: 10.1126/sciadv.abf7194] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/11/2021] [Indexed: 05/24/2023]
Abstract
Wearable electronic devices that can monitor physiological signals of the human body to provide biomedical information have been drawing extensive interests for sustainable personal health management. Here, we report a human pilot trial of a soft, smart contact lens and a skin-attachable therapeutic device for wireless monitoring and therapy of chronic ocular surface inflammation (OSI). As a diagnostic device, this smart contact lens enables real-time measurement of the concentration of matrix metalloproteinase-9, a biomarker for OSI, in tears using a graphene field-effect transistor. As a therapeutic device, we also fabricated a stretchable and transparent heat patch attachable on the human eyelid conformably. Both diagnostic and therapeutic devices can be incorporated using a smartphone for their wireless communications, thereby achieving instantaneous diagnosis of OSI and automated hyperthermia treatments. Furthermore, in vivo tests using live animals and human subjects confirm their good biocompatibility and reliability as a noninvasive, mobile health care solution.
Collapse
Affiliation(s)
- Jiuk Jang
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Joohee Kim
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Haein Shin
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Young-Geun Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- 3KIURI Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Byung Jun Joo
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Hunkyu Seo
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Jong-Eun Won
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Dentistry, Korea University Guro Hospital, Seoul 08308, Republic of Korea
- Institute of Clinical Dental Research, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Dai Woo Kim
- Department of Ophthalmology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, South Korea
- Bio-Medical Institute, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu 41944, South Korea
| | - Chang Young Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hong Kyun Kim
- Department of Ophthalmology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, South Korea.
- Bio-Medical Institute, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu 41944, South Korea
| | - Jang-Ung Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- 3KIURI Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
7
|
Highly Transparent Conducting Electrodes Based on a Grid Structure of Silver Nanowires. COATINGS 2020. [DOI: 10.3390/coatings11010030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transparent conducting electrodes (TCEs) formed with silver nanowires (AgNWs) have attracted attention as substitutes for indium tin oxide (ITO). However, the randomly deposited AgNW film performs poorly in terms of the transmittance and sheet resistance to serve as a substitute of ITO. To improve the performance of the AgNW film, we fabricated a grid-patterned AgNW by modifying the surface energy of the substrate. The hydrophobized surface was selectively etched by UV light through a quartz chrome mask, and a suspension of AgNWs in isopropyl alcohol/ethylene glycol mixture was coated on the substrate by a meniscus dragging deposition process. The grid-patterned AgNW film has a lower percolation threshold and a 13% higher figure-of-merit value compared to the randomly deposited AgNW film. The transparent thin films with a grid structure of AgNWs exhibit the high electrical conductivity with a sheet resistance of 33 Ohm/sq at a transmittance of 92.7% (λ = 550 nm).
Collapse
|
8
|
Yi N, Shen M, Erdely D, Cheng H. Stretchable gas sensors for detecting biomarkers from humans and exposed environments. Trends Analyt Chem 2020; 133:116085. [PMID: 33244191 PMCID: PMC7685242 DOI: 10.1016/j.trac.2020.116085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The recent advent of stretchable gas sensors demonstrates their capabilities to detect not only gaseous biomarkers from the human body but also toxic gas species from the exposed environment. To ensure accurate gas detection without device breakdown from the mechanical deformations, the stretchable gas sensors often rely on the direct integration of gas-sensitive nanomaterials on the stretchable substrate or fibrous network, as well as being configured into stretchable structures. The nanomaterials in the forms of nanoparticles, nanowires, or thin-films with nanometer thickness are explored for a variety of sensing materials. The commonly used stretchable structures in the stretchable gas sensors include wrinkled structures from a pre-strain strategy, island-bridge layouts or serpentine interconnects, strain isolation approaches, and their combinations. This review aims to summarize the recent advancement in novel nanomaterials, sensor design innovations, and new fabrication approaches of stretchable gas sensors.
Collapse
Affiliation(s)
- Ning Yi
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mingzhou Shen
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Daniel Erdely
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Huanyu Cheng
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
9
|
Jang J, Jun YS, Seo H, Kim M, Park JU. Motion Detection Using Tactile Sensors Based on Pressure-Sensitive Transistor Arrays. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3624. [PMID: 32605148 PMCID: PMC7374490 DOI: 10.3390/s20133624] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 01/17/2023]
Abstract
In recent years, to develop more spontaneous and instant interfaces between a system and users, technology has evolved toward designing efficient and simple gesture recognition (GR) techniques. As a tool for acquiring human motion, a tactile sensor system, which converts the human touch signal into a single datum and executes a command by translating a bundle of data into a text language or triggering a preset sequence as a haptic motion, has been developed. The tactile sensor aims to collect comprehensive data on various motions, from the touch of a fingertip to large body movements. The sensor devices have different characteristics that are important for target applications. Furthermore, devices can be fabricated using various principles, and include piezoelectric, capacitive, piezoresistive, and field-effect transistor types, depending on the parameters to be achieved. Here, we introduce tactile sensors consisting of field-effect transistors (FETs). GR requires a process involving the acquisition of a large amount of data in an array rather than a single sensor, suggesting the importance of fabricating a tactile sensor as an array. In this case, an FET-type pressure sensor can exploit the advantages of active-matrix sensor arrays that allow high-array uniformity, high spatial contrast, and facile integration with electrical circuitry. We envision that tactile sensors based on FETs will be beneficial for GR as well as future applications, and these sensors will provide substantial opportunities for next-generation motion sensing systems.
Collapse
Affiliation(s)
- Jiuk Jang
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea; (J.J.); (Y.S.J.); (H.S.); (M.K.)
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Korea
| | - Yoon Sun Jun
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea; (J.J.); (Y.S.J.); (H.S.); (M.K.)
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Korea
| | - Hunkyu Seo
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea; (J.J.); (Y.S.J.); (H.S.); (M.K.)
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Korea
| | - Moohyun Kim
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea; (J.J.); (Y.S.J.); (H.S.); (M.K.)
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Korea
| | - Jang-Ung Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea; (J.J.); (Y.S.J.); (H.S.); (M.K.)
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
10
|
Seo KW, Cho C, Jang HI, Park JH, Lee JY. Enhanced bendability of nanostructured metal electrodes: effect of nanoholes and their arrangement. NANOSCALE 2020; 12:12898-12908. [PMID: 32520068 DOI: 10.1039/d0nr00316f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metallic thin films often exhibit poor mechanical robustness, which makes them unsuitable for use as electrodes in flexible and stretchable electronic devices. This prompted us to investigate the effect of creating a pattern of nanoholes in a metallic thin film to its mechanical and electrical properties. The adoption of nanonetwork structures is shown to confer significantly improved bendability to the films, with a change in electrical resistance of only 21% after 10 000 bending cycles, under a bending strain of 6.3%. In contrast to the planar silver (Ag) films in which large cracks are formed, structures that contain nanoholes act as barriers that block the growth of cracks; consequently, only short cracks are formed in these films and therefore changes in their resistance are much lower. In this paper, we suggest a novel model based on random grain boundaries to simulate the behavior of various nanopattern arrangements when the film is subjected to mechanical stress. Our modeling studies revealed that nanoholes secure the electrical current pathways by effectively blocking crack propagation, and that optimizing orientation, size, and coverage of these nanoholes can further improve the mechanical properties. Although diamond patterns exhibit superior characteristics to those of rectangular ones, their directional dependence is shown to be reduced by adopting randomly dispersed nanostructures. We additionally verified experimentally that an array of holes (rectangular, diamond-shaped, and randomly patterned) significantly affects crack propagation and resistance change.
Collapse
Affiliation(s)
- Ki-Won Seo
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Changsoon Cho
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. and Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) Technische Universität Dresden, Nöthnitzer Straße 61, Dresden 01187, Germany
| | - Hyun-Ik Jang
- Department of Research, NanoIn Inc., Daejeon 34166, Republic of Korea
| | - Jae Hong Park
- Department of Research, NanoIn Inc., Daejeon 34166, Republic of Korea
| | - Jung-Yong Lee
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. and Graduate School of Energy, Environment, Water, and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
11
|
Sohn H, Shin WH, Seok D, Lee T, Park C, Oh JM, Kim SY, Seubsai A. Novel Hybrid Conductor of Irregularly Patterned Graphene Mesh and Silver Nanowire Networks. MICROMACHINES 2020; 11:mi11060578. [PMID: 32526961 PMCID: PMC7345882 DOI: 10.3390/mi11060578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022]
Abstract
We prepared the hybrid conductor of the Ag nanowire (NW) network and irregularly patterned graphene (GP) mesh with enhanced optical transmittance (~98.5%) and mechano-electric stability (ΔR/Ro: ~42.4% at 200,000 (200k) cycles) under 6.7% strain. Irregularly patterned GP meshes were prepared with a bottom-side etching method using chemical etchant (HNO3). The GP mesh pattern was judiciously and easily tuned by the regulation of treatment time (0–180 min) and concentration (0–20 M) of chemical etchants. As-formed hybrid conductor of Ag NW and GP mesh exhibit enhanced/controllable electrical-optical properties and mechano-electric stabilities; hybrid conductor exhibits enhanced optical transmittance (TT = 98.5%) and improved conductivity (ΔRs: 22%) compared with that of a conventional hybrid conductor at similar TT. It is also noteworthy that our hybrid conductor shows far superior mechano-electric stability (ΔR/Ro: ~42.4% at 200k cycles; TT: ~98.5%) to that of controls (Ag NW (ΔR/Ro: ~293% at 200k cycles), Ag NW-pristine GP hybrid (ΔR/Ro: ~121% at 200k cycles)) ascribed to our unique hybrid structure.
Collapse
Affiliation(s)
- Hiesang Sohn
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (D.S.); (T.L.); (C.P.)
- Correspondence:
| | - Weon Ho Shin
- Department of Electronic Material Engineering, Kwangwoon University, Seoul 01897, Korea; (W.H.S.); (J.-M.O.)
| | - Dohyeong Seok
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (D.S.); (T.L.); (C.P.)
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (D.S.); (T.L.); (C.P.)
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (D.S.); (T.L.); (C.P.)
| | - Jong-Min Oh
- Department of Electronic Material Engineering, Kwangwoon University, Seoul 01897, Korea; (W.H.S.); (J.-M.O.)
| | - Se Yun Kim
- Material Research Center, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics, Suwon 16678, Korea;
| | - Anusorn Seubsai
- Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand;
| |
Collapse
|
12
|
Van Duong Q, Nguyen VP, Domingues Dos Santos F, Choi ST. Localized Fretting-Vibrotactile Sensations for Large-Area Displays. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33292-33301. [PMID: 31411459 DOI: 10.1021/acsami.9b09691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tactile perception in large-area displays is currently attracting substantial research attention since, in conjunction with visible and auditory sensations, it provides more immersive and realistic interactions with displayed contents. Here, a new vibrotactile display based on the fretting phenomenon is developed for the first time to provide localized tactile feedback on a large-area display. Normal pressure by a human fingertip activates a locally concentrated electric field in a relaxor ferroelectric polymer (RFP) film under the contact area, which produces a localized electrostrictive strain. The synergistic interplay among the localized electric field, electrostrictive deformation of the RFP film, and contact area dramatically amplifies acoustic vibrations near the contact edge of a human fingertip. A blend of poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer and poly(vinylidene fluoride-trifluoroethylene) (55:45) copolymer is proposed for the RFP to provide an enhanced actuation performance even at elevated temperatures. The fretting-vibrotactile mechanism has several interesting properties, such as tactile feedback on a stationary fingertip, pressure-responsive simple on-off mechanism, multitouch interaction, excellent transparency, and easy integration with capacitive or resistive touch sensors and friction-based haptic-feedback mechanisms. An array of RFP film vibrators can provide addressable content-related multiple tactile feedback on large-area displays by modulating the frequency, amplitude, and profile of the driving voltage signals.
Collapse
Affiliation(s)
- Quang Van Duong
- School of Mechanical Engineering , Chung-Ang University , 84 Heukseok-Ro , Dongjak-Gu, Seoul 06974 , Republic of Korea
| | - Vinh Phu Nguyen
- School of Mechanical Engineering , Chung-Ang University , 84 Heukseok-Ro , Dongjak-Gu, Seoul 06974 , Republic of Korea
| | | | - Seung Tae Choi
- School of Mechanical Engineering , Chung-Ang University , 84 Heukseok-Ro , Dongjak-Gu, Seoul 06974 , Republic of Korea
| |
Collapse
|
13
|
Sohn H, Park C, Oh JM, Kang SW, Kim MJ. Silver Nanowire Networks: Mechano-Electric Properties and Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2526. [PMID: 31398876 PMCID: PMC6720749 DOI: 10.3390/ma12162526] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 11/16/2022]
Abstract
With increasing technological demand for portable electronic and photovoltaic devices, it has become critical to ensure the electrical and mechano-electric reliability of electrodes in such devices. However, the limited flexibility and high processing costs of traditional electrodes based on indium tin oxide undermine their application in flexible devices. Among various alternative materials for flexible electrodes, such as metallic/carbon nanowires or meshes, silver nanowire (Ag NW) networks are regarded as promising candidates owing to their excellent electrical, optical, and mechano-electric properties. In this context, there have been tremendous studies on the physico-chemical and mechano-electric properties of Ag NW networks. At the same time, it has been a crucial job to maximize the device performance (or their mechano-electric performance) by reconciliation of various properties. This review discusses the properties and device applications of Ag NW networks under dynamic motion by focusing on notable findings and cases in the recent literature. Initially, we introduce the fabrication (deposition process) of Ag NW network-based electrodes from solution-based coating processes (drop casting, spray coating, spin coating, etc.) to commercial processes (slot-die and roll-to-roll coating). We also discuss the electrical/optical properties of Ag NW networks, which are governed by percolation, and their electrical contacts. Second, the mechano-electric properties of Ag NW networks are reviewed by describing individual and combined properties of NW networks with dynamic motion under cyclic loading. The improved mechano-electric properties of Ag NW network-based flexible electrodes are also discussed by presenting various approaches, including post-treatment and hybridization. Third, various Ag NW-based flexible devices (electronic and optoelectronic devices) are introduced by discussing their operation principles, performance, and challenges. Finally, we offer remarks on the challenges facing the current studies and discuss the direction of research in this field, as well as forthcoming issues to be overcome to achieve integration into commercial devices.
Collapse
Affiliation(s)
- Hiesang Sohn
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea.
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea
| | - Jong-Min Oh
- Department of Electronic Material Engineering, Kwangwoon University, Seoul 01897, Korea
| | - Sang Wook Kang
- Department of Chemistry and Energy Engineering, Sangmyung University, Seoul 03016, Korea.
| | - Mi-Jeong Kim
- Material Research Center, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics, Suwon 16678, Korea.
| |
Collapse
|
14
|
Hemasiri BWNH, Kim JK, Lee JM. Synthesis and Characterization of Graphene/ITO Nanoparticle Hybrid Transparent Conducting Electrode. NANO-MICRO LETTERS 2017; 10:18. [PMID: 30393667 PMCID: PMC6199067 DOI: 10.1007/s40820-017-0174-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/14/2017] [Indexed: 06/08/2023]
Abstract
The combination of graphene with conductive nanoparticles, forming graphene-nanoparticle hybrid materials, offers a number of excellent properties for advanced engineering applications. A novel and simple method was developed to deposit 10 wt% tin-doped indium tin oxide (ITO) nanoparticles on graphene. The method involved a combination of a solution-based environmentally friendly electroless deposition approach and subsequent vacuum annealing. A stable organic-free solution of ITO was prepared from economical salts of In(NO3)3 ·H2O and SnCl4. The obtained ITO nanostructure exhibited a unique architecture, with uniformly dispersed 25-35 nm size ITO nanoparticles, containing only the crystallized In2O3 phase. The synthesized ITO nanoparticles-graphene hybrid exhibited very good and reproducible optical transparency in the visible range (more than 85%) and a 28.2% improvement in electrical conductivity relative to graphene synthesized by chemical vapor deposition. It was observed that the ITO nanoparticles affect the position of the Raman signal of graphene, in which the D, G, and 2D peaks were redshifted by 5.65, 5.69, and 9.74 cm-1, respectively, and the annealing conditions had no significant effect on the Raman signatures of graphene.
Collapse
Affiliation(s)
| | - Jae-Kwan Kim
- Department of Printed Electronics Engineering, Sunchon National University, Suncheon, Jeonnam, 57922, South Korea
| | - Ji-Myon Lee
- Department of Printed Electronics Engineering, Sunchon National University, Suncheon, Jeonnam, 57922, South Korea.
| |
Collapse
|
15
|
An BW, Shin JH, Kim SY, Kim J, Ji S, Park J, Lee Y, Jang J, Park YG, Cho E, Jo S, Park JU. Smart Sensor Systems for Wearable Electronic Devices. Polymers (Basel) 2017; 9:E303. [PMID: 30970981 PMCID: PMC6418677 DOI: 10.3390/polym9080303] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/20/2017] [Accepted: 07/22/2017] [Indexed: 01/04/2023] Open
Abstract
Wearable human interaction devices are technologies with various applications for improving human comfort, convenience and security and for monitoring health conditions. Healthcare monitoring includes caring for the welfare of every person, which includes early diagnosis of diseases, real-time monitoring of the effects of treatment, therapy, and the general monitoring of the conditions of people's health. As a result, wearable electronic devices are receiving greater attention because of their facile interaction with the human body, such as monitoring heart rate, wrist pulse, motion, blood pressure, intraocular pressure, and other health-related conditions. In this paper, various smart sensors and wireless systems are reviewed, the current state of research related to such systems is reported, and their detection mechanisms are compared. Our focus was limited to wearable and attachable sensors. Section 1 presents the various smart sensors. In Section 2, we describe multiplexed sensors that can monitor several physiological signals simultaneously. Section 3 provides a discussion about short-range wireless systems including bluetooth, near field communication (NFC), and resonance antenna systems for wearable electronic devices.
Collapse
Affiliation(s)
- Byeong Wan An
- School of Materials Science and Engineering, Wearable Electronics Research Group, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| | - Jung Hwal Shin
- School of Materials Science and Engineering, Wearable Electronics Research Group, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| | - So-Yun Kim
- School of Materials Science and Engineering, Wearable Electronics Research Group, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| | - Joohee Kim
- School of Materials Science and Engineering, Wearable Electronics Research Group, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| | - Sangyoon Ji
- School of Materials Science and Engineering, Wearable Electronics Research Group, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| | - Jihun Park
- School of Materials Science and Engineering, Wearable Electronics Research Group, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| | - Youngjin Lee
- School of Materials Science and Engineering, Wearable Electronics Research Group, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| | - Jiuk Jang
- School of Materials Science and Engineering, Wearable Electronics Research Group, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| | - Young-Geun Park
- School of Materials Science and Engineering, Wearable Electronics Research Group, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| | - Eunjin Cho
- School of Materials Science and Engineering, Wearable Electronics Research Group, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| | - Subin Jo
- School of Materials Science and Engineering, Wearable Electronics Research Group, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| | - Jang-Ung Park
- School of Materials Science and Engineering, Wearable Electronics Research Group, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| |
Collapse
|
16
|
Xue J, Song J, Dong Y, Xu L, Li J, Zeng H. Nanowire-based transparent conductors for flexible electronics and optoelectronics. Sci Bull (Beijing) 2017; 62:143-156. [PMID: 36659486 DOI: 10.1016/j.scib.2016.11.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 01/21/2023]
Abstract
As the necessary components for various modern electronic and optoelectronic devices, novel transparent electrodes (TEs) with the low cost, abundance features, and comparable performance of indium tin oxide (ITO) are inquired materials. Metal nanowires (NWs) with the excellent photoelectric properties as next-generation TE candidates have widely applications in smart optoelectronic devices such as electronic skins, wearable electronics, robotic skins, flexible and stretchable displays. This review describes the synthetic strategies for the preparation of metal NWs, the assemble process for metal NW films, and the practical aspects of metal NW films with the desired properties in various low-cost, flexible, and solution-based photoelectric devices.
Collapse
Affiliation(s)
- Jie Xue
- Institute of Optoelectronics & Nanomaterials, Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Jizhong Song
- Institute of Optoelectronics & Nanomaterials, Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science & Technology, Nanjing 210094, China.
| | - Yuhui Dong
- Institute of Optoelectronics & Nanomaterials, Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Leimeng Xu
- Institute of Optoelectronics & Nanomaterials, Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Jianhai Li
- Institute of Optoelectronics & Nanomaterials, Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Haibo Zeng
- Institute of Optoelectronics & Nanomaterials, Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| |
Collapse
|
17
|
Yi P, Zhang C, Peng L, Lai X. Flexible silver-mesh electrodes with moth-eye nanostructures for transmittance enhancement by double-sided roll-to-roll nanoimprint lithography. RSC Adv 2017. [DOI: 10.1039/c7ra09149d] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A double-sided R2R NIL system is established and the novel Ag-mesh electrodes with moth-eye nanostructures have been fabricated. An increase of 4.5% in transmittance has been achieved while remaining the sheet resistance at 22.8 ± 1.3 Ω sq−1.
Collapse
Affiliation(s)
- Peiyun Yi
- State Key Laboratory of Mechanical System and Vibration
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Chengpeng Zhang
- State Key Laboratory of Mechanical System and Vibration
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Linfa Peng
- State Key Laboratory of Mechanical System and Vibration
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xinmin Lai
- State Key Laboratory of Mechanical System and Vibration
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
- Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures
| |
Collapse
|
18
|
Teng TP, Wang WP, Hsu YC. Fabrication and Characterization of Nanocarbon-Based Nanofluids by Using an Oxygen-Acetylene Flame Synthesis System. NANOSCALE RESEARCH LETTERS 2016; 11:288. [PMID: 27295256 PMCID: PMC4905858 DOI: 10.1186/s11671-016-1522-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/07/2016] [Indexed: 06/02/2023]
Abstract
In this study, an oxygen-acetylene flame synthesis system was developed to fabricate nanocarbon-based nanofluids (NCBNFs) through a one-step synthesis method. Measured in liters per minute (LPM), the flame's fuel flows combined oxygen and acetylene at four ratios: 1.5/2.5 (P1), 1.0/2.5 (P2), 0.5/2.5 (P3), and 0/2.5 (P4). The flow rate of cooling water (base fluid) was fixed at 1.2 LPM to produce different nanocarbon-based materials (NCBMs) and various concentrations of NCBNFs. Tests and analyses were conducted for determining the morphology of NCBMs, NCBM material, optical characteristics, the production rate, suspension performance, average particle size, zeta potential, and other relevant basic characteristics of NCBNFs to understand the characteristics and materials of NCBNFs produced through different process parameters (P1-P4). The results revealed that the NCBMs mainly had flaky and spherical morphologies and the diameters of the spherical NCBMs measured approximately 20-30 nm. X-ray diffraction and Raman spectroscopy revealed that the NCBMs contained graphene oxide (GO) and amorphous carbon (AC) when the oxygen flow rate was lower than 1.0 LPM. In addition, the NCBMs contained reduced GO, crystalline graphite (graphite-2H), and AC when the oxygen flow rate was higher than 1.0 LPM. The process parameters of P1, P2, P3, and P4 resulted in NCBMs produced at concentrations of 0.010, 0.013, 0.040, and 0.023 wt%, respectively, in NCBNFs. All the NCBNFs exhibited non-Newtonian and shear-thinning rheological properties. The P4 ratio showed the highest enhancement rate of thermal conductivity for NCBNFs, at a rate 4.85 % higher than that of water.
Collapse
Affiliation(s)
- Tun-Ping Teng
- Department of Industrial Education, National Taiwan Normal University, No. 162, Section 1, He-ping East Road, Da-an District, Taipei, 10610, Taiwan, Republic of China.
| | - Wei-Ping Wang
- Department of Industrial Education, National Taiwan Normal University, No. 162, Section 1, He-ping East Road, Da-an District, Taipei, 10610, Taiwan, Republic of China
| | - Yu-Chun Hsu
- Department of Industrial Education, National Taiwan Normal University, No. 162, Section 1, He-ping East Road, Da-an District, Taipei, 10610, Taiwan, Republic of China
| |
Collapse
|
19
|
Ahn J, Seo JW, Lee TI, Kwon D, Park I, Kim TS, Lee JY. Extremely Robust and Patternable Electrodes for Copy-Paper-Based Electronics. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19031-7. [PMID: 27378213 DOI: 10.1021/acsami.6b05296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We propose a fabrication process for extremely robust and easily patternable silver nanowire (AgNW) electrodes on paper. Using an auxiliary donor layer and a simple laminating process, AgNWs can be easily transferred to copy paper as well as various other substrates using a dry process. Intercalating a polymeric binder between the AgNWs and the substrate through a simple printing technique enhances adhesion, not only guaranteeing high foldability of the electrodes, but also facilitating selective patterning of the AgNWs. Using the proposed process, extremely crease-tolerant electronics based on copy paper can be fabricated, such as a printed circuit board for a 7-segment display, portable heater, and capacitive touch sensor, demonstrating the applicability of the AgNWs-based electrodes to paper electronics.
Collapse
Affiliation(s)
- Jaeho Ahn
- Graduate School of Energy, Environment, Water, and Sustainability (EEWS), Graphene Research Center, ‡Department of Mechanical Engineering, and §KI for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| | - Ji-Won Seo
- Graduate School of Energy, Environment, Water, and Sustainability (EEWS), Graphene Research Center, ‡Department of Mechanical Engineering, and §KI for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| | - Tae-Ik Lee
- Graduate School of Energy, Environment, Water, and Sustainability (EEWS), Graphene Research Center, ‡Department of Mechanical Engineering, and §KI for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| | - Donguk Kwon
- Graduate School of Energy, Environment, Water, and Sustainability (EEWS), Graphene Research Center, ‡Department of Mechanical Engineering, and §KI for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| | - Inkyu Park
- Graduate School of Energy, Environment, Water, and Sustainability (EEWS), Graphene Research Center, ‡Department of Mechanical Engineering, and §KI for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| | - Taek-Soo Kim
- Graduate School of Energy, Environment, Water, and Sustainability (EEWS), Graphene Research Center, ‡Department of Mechanical Engineering, and §KI for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| | - Jung-Yong Lee
- Graduate School of Energy, Environment, Water, and Sustainability (EEWS), Graphene Research Center, ‡Department of Mechanical Engineering, and §KI for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| |
Collapse
|
20
|
Park J, Kim J, Kim K, Kim SY, Cheong WH, Park K, Song JH, Namgoong G, Kim JJ, Heo J, Bien F, Park JU. Wearable, wireless gas sensors using highly stretchable and transparent structures of nanowires and graphene. NANOSCALE 2016; 8:10591-7. [PMID: 27166976 DOI: 10.1039/c6nr01468b] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Herein, we report the fabrication of a highly stretchable, transparent gas sensor based on silver nanowire-graphene hybrid nanostructures. Due to its superb mechanical and optical characteristics, the fabricated sensor demonstrates outstanding and stable performances even under extreme mechanical deformation (stable until 20% of strain). The integration of a Bluetooth system or an inductive antenna enables the wireless operation of the sensor. In addition, the mechanical robustness of the materials allows the device to be transferred onto various nonplanar substrates, including a watch, a bicycle light, and the leaves of live plants, thereby achieving next-generation sensing electronics for the 'Internet of Things' area.
Collapse
Affiliation(s)
- Jihun Park
- School of Materials Science and Engineering, Wearable Electronics Research Group, Center for Smart Sensor Systems, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Joohee Kim
- School of Materials Science and Engineering, Wearable Electronics Research Group, Center for Smart Sensor Systems, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Kukjoo Kim
- School of Materials Science and Engineering, Wearable Electronics Research Group, Center for Smart Sensor Systems, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - So-Yun Kim
- School of Materials Science and Engineering, Wearable Electronics Research Group, Center for Smart Sensor Systems, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Woon Hyung Cheong
- School of Materials Science and Engineering, Wearable Electronics Research Group, Center for Smart Sensor Systems, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Kyeongmin Park
- School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Joo Hyeb Song
- School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - GyeongHo Namgoong
- School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Jae Joon Kim
- School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Jaeyeong Heo
- Department of Materials Science and Engineering, Optoelectronics Convergence Research Center, Chonnam National University, Gwangju Metropolitan City, 61186, Republic of Korea
| | - Franklin Bien
- School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Jang-Ung Park
- School of Materials Science and Engineering, Wearable Electronics Research Group, Center for Smart Sensor Systems, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
21
|
Chou N, Kim Y, Kim S. A Method to Pattern Silver Nanowires Directly on Wafer-Scale PDMS Substrate and Its Applications. ACS APPLIED MATERIALS & INTERFACES 2016; 8:6269-6276. [PMID: 26882099 DOI: 10.1021/acsami.5b11307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study describes a fabrication method of microsized AgNW patterns based on poly dimethylsiloxane (PDMS) substrate using a poly(p-xylylene) (parylene) stencil technique. Various patterns of AgNW conductive sheets were created on the wafer scale area in the forms of straight and serpentine lines, texts, and symbols, which dimensions ranged from a few tens of micrometers to hundreds of micrometers. We demonstrated the electrical performance of straight line and serpentine line patterned AgNW electrodes when subjected to mechanical strains. The gauge factor and stretchability ranged from 0.5 to 55.2 at 2% uniaxial strain and from 4.7 to 55.7%, respectively, depending on the shapes and structures of the AgNW electrodes. Using the developed AgNW patterning technique, we fabricated strain sensors to detect small body signals epidermally such as hand motion, eye blink and heart rate. Also, tactile sensors were fabricated and exhibited the sensitivity of 3.91 MPa(-1) in the pressure range lower than 50 kPa, and 0.28 MPa(-1) in the pressure range greater than 50 kPa up to 1.3 MPa. From these results, we concluded that the proposed technique enables the fabrication of reliable AgNW patterns on wafer-scale PDMS substrate and the potential applications for various flexible electronic devices.
Collapse
Affiliation(s)
- Namsun Chou
- School of Mechatronics, Gwangju Institute of Science and Technology (GIST) , Gwangju, 61005, Republic of Korea
| | - Youngseok Kim
- School of Mechatronics, Gwangju Institute of Science and Technology (GIST) , Gwangju, 61005, Republic of Korea
| | - Sohee Kim
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST) , Daegu, 42988, Republic of Korea
| |
Collapse
|
22
|
Xu Y, Liu J. Graphene as Transparent Electrodes: Fabrication and New Emerging Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1400-19. [PMID: 26854030 DOI: 10.1002/smll.201502988] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/11/2015] [Indexed: 05/12/2023]
Abstract
Graphene has been regarded as a promising candidate for a new generation of transparent electrodes (TEs) due to its prominent characteristics including high optical transmittance, exceptional electronic transport, outstanding mechanical strength, and environmental stability. Comprehensive and critical insights into the latest advances in graphene-based TEs (GTEs) since, but not limited to 2013, are provided, with an emphasis on fabrication, modification, and versatile applications. Several emerging application areas not previously summarized, including electrochromic devices, supercapacitors, electrochemical and electrochemiluminescent sensors, are discussed in detail. The challenges and prospects in these fields are also addressed.
Collapse
Affiliation(s)
- Yuanhong Xu
- College of Materials Science and Engineering, Laboratory of Fiber Materials and Modern Textiles, the Growing Base for State Key Laboratory, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071, China
| | - Jingquan Liu
- College of Materials Science and Engineering, Laboratory of Fiber Materials and Modern Textiles, the Growing Base for State Key Laboratory, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
23
|
An BW, Gwak EJ, Kim K, Kim YC, Jang J, Kim JY, Park JU. Stretchable, Transparent Electrodes as Wearable Heaters Using Nanotrough Networks of Metallic Glasses with Superior Mechanical Properties and Thermal Stability. NANO LETTERS 2016; 16:471-478. [PMID: 26670378 DOI: 10.1021/acs.nanolett.5b04134] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Mechanical robustness, electrical and chemical reliabilities of devices against large deformations such as bending and stretching have become the key metrics for rapidly emerging wearable electronics. Metallic glasses (MGs) have high elastic limit, electrical conductivity, and corrosion resistance, which can be promising for applications in wearable electronics. However, their applications in wearable electronics or transparent electrodes have not been extensively explored so far. Here, we demonstrate stretchable and transparent electrodes using CuZr MGs in the form of nanotrough networks. MG nanotroughs are prepared by electrospinning and cosputtering process, and they can be transferred to various desired substrates, including stretchable elastomeric substrates. The resulting MG nanotrough network is first utilized as a stretchable transparent electrode, presenting outstanding optoelectronic (sheet resistance of 3.8 Ω/sq at transmittance of 90%) and mechanical robustness (resistance change less than 30% up to a tensile strain of 70%) as well as excellent chemical stability against hot and humid environments (negligible degradation in performance for 240 h in 85% relative humidity and 85 °C). A stretchable and transparent heater based on the MG nanotrough network is also demonstrated with a wide operating temperature range (up to 180 °C) and excellent stretchability (up to 70% in the strain). The excellent mechanical robustness of these stretchable transparent electrode and heater is ascribed to the structural configuration (i.e., a nanotrough network) and inherent high elastic limit of MGs, as supported by experimental results and numerical analysis. We demonstrate their real-time operations on human skin as a wearable, transparent thermotherapy patch controlled wirelessly using a smartphone as well as a transparent defroster for an automobile side-view mirror, suggesting a promising strategy toward next-generation wearable electronics or automobile applications.
Collapse
Affiliation(s)
- Byeong Wan An
- School of Materials Science and Engineering, Wearable Electronics Research Group, Center for Smart Sensor Systems, ‡School of Materials Science and Engineering, and §School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan Metropolitan City 44919, Republic of Korea
| | | | - Kukjoo Kim
- School of Materials Science and Engineering, Wearable Electronics Research Group, Center for Smart Sensor Systems, ‡School of Materials Science and Engineering, and §School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan Metropolitan City 44919, Republic of Korea
| | | | - Jiuk Jang
- School of Materials Science and Engineering, Wearable Electronics Research Group, Center for Smart Sensor Systems, ‡School of Materials Science and Engineering, and §School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan Metropolitan City 44919, Republic of Korea
| | | | - Jang-Ung Park
- School of Materials Science and Engineering, Wearable Electronics Research Group, Center for Smart Sensor Systems, ‡School of Materials Science and Engineering, and §School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan Metropolitan City 44919, Republic of Korea
| |
Collapse
|
24
|
Kim JH, Park JW. Foldable Transparent Substrates with Embedded Electrodes for Flexible Electronics. ACS APPLIED MATERIALS & INTERFACES 2015; 7:18574-80. [PMID: 26258906 DOI: 10.1021/acsami.5b04982] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We present highly flexible transparent electrodes composed of silver nanowire (AgNW) networks and silica aerogels embedded into UV-curable adhesive photopolymers (APPs). Because the aerogels have an extremely high surface-to-volume ratio, the enhanced van der Waals forces of the aerogel surfaces result in more AgNWs being uniformly coated onto a release substrate and embedded into the APP when mixed with an AgNW solution at a fixed concentration. The uniform distribution of the embedded composite electrodes of AgNWs and aerogels was verified by the Joule heating test. The APP with the composite electrodes has a lower sheet resistance (Rs) and a better mechanical stability compared with APP without aerogels. The APP with the embedded electrodes is a freestanding flexible substrate and can be used as an electrode coating on a polymer substrate, such as polydimethylsiloxane and polyethylene terephthalate. On the basis of the bending test results, the APPs with composite electrodes were sufficiently flexible to withstand a 1 mm bending radius (rb) and could be foldable with a slight change in Rs. Organic light emitting diodes were successfully fabricated on the APP with the composite electrodes, indicating the strong potential of the proposed flexible TEs for application as highly flexible transparent conductive substrates.
Collapse
Affiliation(s)
- Jin-Hoon Kim
- Department of Materials Science and Engineering, Yonsei University , Seoul, 120-749, Korea
| | - Jin-Woo Park
- Department of Materials Science and Engineering, Yonsei University , Seoul, 120-749, Korea
| |
Collapse
|
25
|
Kim J, Lee MS, Jeon S, Kim M, Kim S, Kim K, Bien F, Hong SY, Park JU. Highly transparent and stretchable field-effect transistor sensors using graphene-nanowire hybrid nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:3292-7. [PMID: 25885929 DOI: 10.1002/adma.201500710] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/18/2015] [Indexed: 05/16/2023]
Abstract
Transparent and stretchable electronics with remarkable bendability, conformability, and lightness are the key attributes for sensing or wearable devices. Transparent and stretchable field-effect transistor sensors using graphene-metal nanowire hybrid nanostructures have high mobility (≈3000 cm(2) V(-1) s(-1) ) with low contact resistance, and they are transferrable onto a variety of substrates. The integration of these sensors for RLC circuits enables wireless monitoring.
Collapse
Affiliation(s)
- Joohee Kim
- School of Materials Science and Engineering, Wearable Electronics Research Group, Low-Dimensional Carbon Materials Research Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, Republic of Korea
| | - Mi-Sun Lee
- School of Materials Science and Engineering, Wearable Electronics Research Group, Low-Dimensional Carbon Materials Research Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, Republic of Korea
| | - Sangbin Jeon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, Republic of Korea
| | - Minji Kim
- School of Materials Science and Engineering, Wearable Electronics Research Group, Low-Dimensional Carbon Materials Research Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, Republic of Korea
| | - Sungwon Kim
- School of Materials Science and Engineering, Wearable Electronics Research Group, Low-Dimensional Carbon Materials Research Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, Republic of Korea
| | - Kukjoo Kim
- School of Materials Science and Engineering, Wearable Electronics Research Group, Low-Dimensional Carbon Materials Research Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, Republic of Korea
| | - Franklin Bien
- School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, 689-798, Republic of Korea
| | - Sung You Hong
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, Republic of Korea
| | - Jang-Ung Park
- School of Materials Science and Engineering, Wearable Electronics Research Group, Low-Dimensional Carbon Materials Research Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, Republic of Korea
| |
Collapse
|