1
|
Pirozzi D, Latte A, Yousuf A, De Mastro F, Brunetti G, El Hassanin A, Sannino F. Magnetic Chitosan for the Removal of Sulfamethoxazole from Tertiary Wastewaters. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:406. [PMID: 38470737 DOI: 10.3390/nano14050406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
Magnetic chitosan nanoparticles, synthesized by in situ precipitation, have been used as adsorbents to remove sulfamethoxazole (SMX), a sulfonamide antibiotic dangerous due to its capacity to enter ecosystems. The adsorption of SMX has been carried out in the presence of tertiary wastewaters from a depuration plant to obtain more realistic results. The effect of pH on the adsorption capacity significantly changed when carrying out the experiments in the presence of wastewater. This change has been explained while taking into account the charge properties of both the antibiotic and the magnetic chitosan. The composition of wastewaters has been characterized and discussed as regards its effect on the adsorption capacity of the magnetic chitosan. The models of Elovich and Freundlich have been selected to describe the adsorption kinetics and the adsorption isotherms, respectively. The analysis of these models has suggested that the adsorption mechanism is based on strong chemical interactions between the SMX and the magnetic chitosan, leading to the formation of an SMX multilayer.
Collapse
Affiliation(s)
- Domenico Pirozzi
- Department of Chemical Engineering, Materials and Industrial Production (DICMaPI), Laboratory of Biochemical Engineering, University of Naples "Federico II", Piazzale Tecchio, 80, 80125 Naples, Italy
| | - Alessandro Latte
- Department of Chemical Engineering, Materials and Industrial Production (DICMaPI), Laboratory of Biochemical Engineering, University of Naples "Federico II", Piazzale Tecchio, 80, 80125 Naples, Italy
| | - Abu Yousuf
- Department of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73069, USA
| | - Francesco De Mastro
- Department of Soil, Plant, and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Gennaro Brunetti
- Department of Soil, Plant, and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Andrea El Hassanin
- Department of Chemical Engineering, Materials and Industrial Production (DICMaPI), Laboratory of Biochemical Engineering, University of Naples "Federico II", Piazzale Tecchio, 80, 80125 Naples, Italy
| | - Filomena Sannino
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, 80055 Naples, Italy
| |
Collapse
|
2
|
Salama A, El-Sakhawy M. Synthesis and adsorption performance of functionalized chitosan and carboxyethylsilanetriol hybrids. BMC Chem 2023; 17:33. [PMID: 37029397 PMCID: PMC10080773 DOI: 10.1186/s13065-023-00943-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
A novel adsorbent from cationic chitosan derivative and anionic silica precursor was fabricated to remove methylene blue (MB). The hybrid material was prepared from N-guanidinium chitosan acetate (GChi) and carboxyethylsilanetriol sodium salt by a simple ionic interaction followed by sol-gel approach. Multiple characterization methods were used to analyze the morphology and the structure of the well-prepared functionalized material. Batch experiments were conducted to optimize the various operational parameters. The Langmuir isotherm was used to fit the data, and it predicted monolayer adsorption with a maximum capacity of 334 mg g-1. A pseudo-second-order equation fit the adsorption process well. Chitosan/silica hybrids containing carboxylic groups are efficient and cost-effective adsorbents for cationic dyes adsorption from aqueous solutions.
Collapse
Affiliation(s)
- Ahmed Salama
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt.
| | - Mohamed El-Sakhawy
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt.
| |
Collapse
|
3
|
Kunakham T, Hoijang S, Nguyen MD, Ananta S, Lee TR, Srisombat L. Magnesium Ferrite/Poly(cysteine methacrylate) Nanocomposites for pH-Tunable Selective Removal and Enhanced Adsorption of Indigo Carmine and Methylene Blue. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tanapong Kunakham
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai50200, Thailand
| | - Supawitch Hoijang
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai50200, Thailand
| | - Minh Dang Nguyen
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, Texas77204-5003, United States
| | - Supon Ananta
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai50200, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai50200, Thailand
| | - T. Randall Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, Texas77204-5003, United States
| | - Laongnuan Srisombat
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai50200, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai50200, Thailand
| |
Collapse
|
4
|
Highly Efficient Adsorption of Tetracycline Using Chitosan-Based Magnetic Adsorbent. Polymers (Basel) 2022; 14:polym14224854. [PMID: 36432981 PMCID: PMC9696233 DOI: 10.3390/polym14224854] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022] Open
Abstract
Herein, tetracycline adsorption employing magnetic chitosan (CS·Fe3O4) as the adsorbent is reported. The magnetic adsorbent was synthesized by the co-precipitation method and characterized through FTIR, XRD, SEM, and VSM analyses. The experimental data showed that the highest maximum adsorption capacity was reached at pH 7.0 (211.21 mg g-1). The efficiency of the magnetic adsorbent in tetracycline removal was dependent on the pH, initial concentration of adsorbate, and the adsorbent dosage. Additionally, the ionic strength showed a significant effect on the process. The equilibrium and kinetics studies demonstrate that Sips and Elovich models showed the best adjustment for experimental data, suggesting that the adsorption occurs in a heterogeneous surface and predominantly by chemical mechanisms. The experimental results suggest that tetracycline adsorption is mainly governed by the hydrogen bonds and cation-π interactions due to its pH dependence as well as the enhancement in the removal efficiency with the magnetite incorporation on the chitosan surface, respectively. Thermodynamic parameters indicate a spontaneous and exothermic process. Finally, magnetic chitosan proves to be efficient in TC removal even after several adsorption/desorption cycles.
Collapse
|
5
|
Advances of magnetic nanohydrometallurgy using superparamagnetic nanomaterials as rare earth ions adsorbents: A grand opportunity for sustainable rare earth recovery. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Akbas YA, Yusan S, Sert S, Aytas S. Sorption of Ce(III) on magnetic/olive pomace nanocomposite: isotherm, kinetic and thermodynamic studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:56782-56794. [PMID: 34075495 DOI: 10.1007/s11356-021-14662-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Used for various high-tech applications, cerium is an important rare earth element (REE), and its sorption on various solids also is important considering purification and environmental and radioactive waste disposal. In view of the industrial and environmental terms, it is important to remove Ce3+ ions from an aqueous solution. Magnetite and magnetic olive pomace nanocomposite were thus fabricated by a partial reduction co-precipitation approach. The structure and morphological properties of the prepared nano-material and nanocomposite were characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-Ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), vibrating sample magnetometry (VSM), and BET surface area analysis. The effects of parameters such as solution pH, contact time, initial Ce(III) concentration, and temperature on the sorption efficiency were studied. The maximum sorption capacities of the magnetite (MNP) and magnetic olive pomace nanocomposite (MOP) for Ce(III) ions were found to be 76.92 and 90.90 mgg-1, respectively. The sorption data fitted well with Dubinin-Radushkevich isotherm model and the pseudo-second-order kinetic model. Thermodynamic parameters indicated that the sorption was non-spontaneous and endothermic. This paper reports the preparation of MNP and novel MOP and their application as efficient, sustainable adsorbents alternative to commercial ones for adsorption of cerium ions from aqueous solution.
Collapse
Affiliation(s)
- Yusuf Azmi Akbas
- Ege University Institute of Nuclear Sciences, 35100 Bornova, Izmir, Turkey
| | - Sabriye Yusan
- Ege University Institute of Nuclear Sciences, 35100 Bornova, Izmir, Turkey.
| | - Senol Sert
- Ege University Institute of Nuclear Sciences, 35100 Bornova, Izmir, Turkey
| | - Sule Aytas
- Ege University Institute of Nuclear Sciences, 35100 Bornova, Izmir, Turkey
| |
Collapse
|
7
|
Michailidou G, Koumentakou I, Liakos EV, Lazaridou M, Lambropoulou DA, Bikiaris DN, Kyzas GZ. Adsorption of Uranium, Mercury, and Rare Earth Elements from Aqueous Solutions onto Magnetic Chitosan Adsorbents: A Review. Polymers (Basel) 2021; 13:polym13183137. [PMID: 34578037 PMCID: PMC8473260 DOI: 10.3390/polym13183137] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
The compound of chitin is the second most important and abundant natural biopolymer in the world. The main extraction and exploitation sources of this natural polysaccharide polymer are mainly crustaceans species, such as shrimps and crabs. Chitosan (CS) (poly-β-(1 → 4)-2-amino-2-deoxy-d-glucose) can be derived from chitin and can be mentioned as a compound that has high value-added applications due to its wide variety of uses, including pharmaceutical, biomedical, and cosmetics applications, food etc. Furthermore, chitosan is a biopolymer that can be used for adsorption applications because it contains amino and hydroxyl groups in its chemical structure (molecules), resulting in possible interactions of adsorption between chitosan and pollutants (uranium, mercury, rare earth elements (REEs), phenols, etc.). However, adsorption is a very effective, fast, simple, and low-cost process. This review article places emphasis on recent demonstrated research papers (2014–2020) where the chemical modifications of CS are explained briefly (grafting, cross-linking etc.) for the uptake of uranium, mercury, and REEs in synthesized aqueous solutions. Finally, figures and tables from selected synthetic routes of CS are presented and the effects of pH and the best mathematical fitting of isotherm and kinetic equations are discussed. In addition, the adsorption mechanisms are discussed.
Collapse
Affiliation(s)
- Georgia Michailidou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.M.); (I.K.); (M.L.)
| | - Ioanna Koumentakou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.M.); (I.K.); (M.L.)
| | - Efstathios V. Liakos
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece;
| | - Maria Lazaridou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.M.); (I.K.); (M.L.)
| | - Dimitra A. Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.M.); (I.K.); (M.L.)
- Correspondence: (D.N.B.); (G.Z.K.); Tel.: +30-2310-997-812 (D.N.B.); +30-2510-462-218 (G.Z.K.)
| | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece;
- Correspondence: (D.N.B.); (G.Z.K.); Tel.: +30-2310-997-812 (D.N.B.); +30-2510-462-218 (G.Z.K.)
| |
Collapse
|
8
|
González-Martínez E, Pérez AG, González-Martínez DA, Águila CRD, Urbina EC, Ramírez DU, Yee-Madeira H. Chitosan-coated magnetic nanoparticles; exploring their potentialities for DNA and Cu(II) recovery. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2020.1814335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Eduardo González-Martínez
- Instituto Politécnico Nacional – ESFM, Depto. De Física, U.P.A.L.M.,San Pedro Zacatenco, 07738, CDMX, México
| | - Annia Gómez Pérez
- Instituto Politécnico Nacional – ESFM, Depto. De Física, U.P.A.L.M.,San Pedro Zacatenco, 07738, CDMX, México
| | - David A. González-Martínez
- Laboratorio de Bioinorgánica (LBI), Facultad de Química, Universidad de La Habana, Zapata y G, Plaza de la Revolución, 10400, La Habana, Cuba
| | - Carlos R. Díaz Águila
- Centro de Biomateriales, Universidad de La Habana, Avenida Universidad entre G y Ronda, Plaza de la Revolución, 10400, La Habana, Cuba
| | - Eliseo Cristiani Urbina
- Escuela Nacional de Ciencias Biológicas del (ENCB-IPN), Depto. Ingeniería Bioquímica, Avenida Wilfrido Massieu, UPALM, Col. San Pedro Zacatenco, 07738, CDMX, México
| | - Daniel Uribe Ramírez
- Escuela Nacional de Ciencias Biológicas del (ENCB-IPN), Depto. Ingeniería Bioquímica, Avenida Wilfrido Massieu, UPALM, Col. San Pedro Zacatenco, 07738, CDMX, México
| | - Hernani Yee-Madeira
- Instituto Politécnico Nacional – ESFM, Depto. De Física, U.P.A.L.M.,San Pedro Zacatenco, 07738, CDMX, México
| |
Collapse
|
9
|
Patel SR, Patel RH, Patel MP. Eco-friendly bioadsorbent-based polymer composites as a pH-responsive material for selective removal of anionic and azo dyes from aqueous solutions. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1827957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Shital R. Patel
- Department of Chemistry, Sardar Patel University, Gujarat, India
| | - Rasmika H. Patel
- Department of Materials Science, Sardar Patel University, Gujarat, India
| | - Manish P. Patel
- Department of Chemistry, Sardar Patel University, Gujarat, India
| |
Collapse
|
10
|
Mohd Şuan M, Chin CK, Razak JA, Hasib H, Abid M‘AM, Nurdin I. Synthesis and Characterizations of Fe 3O 4 Added with Al 2O 3 Nanoparticles via Sol-Gel Technique. IOP CONFERENCE SERIES: MATERIALS SCIENCE AND ENGINEERING 2020; 957:012040. [DOI: 10.1088/1757-899x/957/1/012040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
A single step sol-gel has been established as a new route for synthesizing AkCb-added Fe3O4 nanoparticles. In this work, the effects of Al2O3 composition towards the micro structure and magnetic properties of AkCb-added Fe3O4 samples were investigated. A series of Fe and Al nitrate mixture solutions were prepared by varying the Al nitrate composition from 2.0 wt. % to 10.0 wt. %. A dropwise of propylene oxide has dimed out the clear red mixture solution with a significant release of heat before turned into a gel. The gel was dried at 90 °C for 48 h in a ventilated oven which then pulverized into a powder by using mortar grinder. The powder was calcinated at 900 °C for 1 h in a normal furnace atmosphere. The XRD results revealed that the existence of polycrystalline Fe3O4 were completed at calcination temperature 900 °C. The SEM images of the Fe3O4 with 10.0 wt.% of Al2O3 samples showed a distinct nanoparticles micro structure due to the increased of Fe3O4 nucleation initiated by Al2O3 nanoparticles. The Vickers microhardness of the Al2O3 added Fe3O4 samples were significantly increased as the Al2O3 content was increased up to 10.0 wt.% attributed from good distribution of Al2O3 nanoparticles in the sample. Subsequently, the magnetic properties of Fe3O4 investigated by alternating gradient magnetometer, AGM was insignificantly reduced by the addition of Al2O3 nanoparticles. This work indicated that the sol-gel reaction is an effective method to achieve uniform distribution and high purity of AkCb-added Fe3O4 nanoparticles with optimum microhardness and ferromagnetic performances.
Collapse
|
11
|
Freire TM, Fechine LMUD, Queiroz DC, Freire RM, Denardin JC, Ricardo NMPS, Rodrigues TNB, Gondim DR, Junior IJS, Fechine PBA. Magnetic Porous Controlled Fe 3O 4-Chitosan Nanostructure: An Ecofriendly Adsorbent for Efficient Removal of Azo Dyes. NANOMATERIALS 2020; 10:nano10061194. [PMID: 32575349 PMCID: PMC7353100 DOI: 10.3390/nano10061194] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/05/2020] [Accepted: 06/13/2020] [Indexed: 11/16/2022]
Abstract
In this work, chitosan/magnetite nanoparticles (ChM) were quickly synthesized according to our previous report based on co-precipitation reaction under ultrasound (US) irradiation. Besides ChM was in-depth structurally characterized, showing a crystalline phase corresponding to magnetite and presenting a spheric morphology, a "nanorod"-type morphology was also obtained after increasing reaction time for eight minutes. Successfully, both morphologies presented a nanoscale range with an average particle size of approximately 5-30 nm, providing a superparamagnetic behavior with saturation magnetization ranging from 44 to 57 emu·g-1. As ChM nanocomposites have shown great versatility considering their properties, we proposed a comparative study using three different amine-based nanoparticles, non-surface-modified and surface-modified, for removal of azo dyes from aqueous solutions. From nitrogen adsorption-desorption isotherm results, the surface-modified ChMs increased the specific surface area and pore size. Additionally, the adsorption of anionic azo dyes (reactive black 5 (RB5) and methyl orange (MO)) on nanocomposites surface was pH-dependent, where surface-modified samples presented a better response under pH 4 and non-modified one under pH 8. Indeed, adsorption capacity results also showed different adsorption mechanisms, molecular size effect and electrostatic attraction, for unmodified and modified ChMs, respectively. Herein, considering all results and nanocomposite-type structure, ChM nanoparticles seem to be a suitable potential alternative for conventional anionic dyes adsorbents, as well as both primary materials source, chitosan and magnetite, are costless and easily supplied.
Collapse
Affiliation(s)
- Tiago M. Freire
- Group of Chemistry of Advanced Materials (GQMat)—Department of Analytical Chemistry and Physical-Chemistry, Federal University of Ceará—UFC, Campus do Pici, CP 12100, Fortaleza CEP 60451-970, Brazil; (T.M.F.); (L.M.U.D.F.)
| | - Lillian M. U. D. Fechine
- Group of Chemistry of Advanced Materials (GQMat)—Department of Analytical Chemistry and Physical-Chemistry, Federal University of Ceará—UFC, Campus do Pici, CP 12100, Fortaleza CEP 60451-970, Brazil; (T.M.F.); (L.M.U.D.F.)
| | - Danilo C. Queiroz
- Department of Organic and Inorganic Chemistry, Federal University of Ceará—UFC, Campus do Pici, CP 12100, Fortaleza CEP 60451-970, Brazil; (D.C.Q.); (N.M.P.S.R.)
| | - Rafael M. Freire
- Institute of Applied Chemical Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| | - Juliano C. Denardin
- Department of Physical/CEDENNA, University of Santiago de Chile, USACH, Av. Ecuador 3493, Santiago 9170020, Chile;
| | - Nágila M. P. S. Ricardo
- Department of Organic and Inorganic Chemistry, Federal University of Ceará—UFC, Campus do Pici, CP 12100, Fortaleza CEP 60451-970, Brazil; (D.C.Q.); (N.M.P.S.R.)
| | - Thaina N. B. Rodrigues
- Department of Chemical Engineering, Federal University of Ceará—UFC, Campus do Pici, CP 12100, Fortaleza CEP 60451-970, Brazil; (T.N.B.R.); (D.R.G.); (I.J.S.J.)
| | - Diego R. Gondim
- Department of Chemical Engineering, Federal University of Ceará—UFC, Campus do Pici, CP 12100, Fortaleza CEP 60451-970, Brazil; (T.N.B.R.); (D.R.G.); (I.J.S.J.)
| | - Ivanildo J. S. Junior
- Department of Chemical Engineering, Federal University of Ceará—UFC, Campus do Pici, CP 12100, Fortaleza CEP 60451-970, Brazil; (T.N.B.R.); (D.R.G.); (I.J.S.J.)
| | - Pierre B. A. Fechine
- Group of Chemistry of Advanced Materials (GQMat)—Department of Analytical Chemistry and Physical-Chemistry, Federal University of Ceará—UFC, Campus do Pici, CP 12100, Fortaleza CEP 60451-970, Brazil; (T.M.F.); (L.M.U.D.F.)
- Correspondence: ; Tel.: +55-(85)-3366-9047
| |
Collapse
|
12
|
Ayyanaar S, Balachandran C, Bhaskar RC, Kesavan MP, Aoki S, Raja RP, Rajesh J, Webster TJ, Rajagopal G. ROS-Responsive Chitosan Coated Magnetic Iron Oxide Nanoparticles as Potential Vehicles for Targeted Drug Delivery in Cancer Therapy. Int J Nanomedicine 2020; 15:3333-3346. [PMID: 32494133 PMCID: PMC7229795 DOI: 10.2147/ijn.s249240] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022] Open
Abstract
Background and Objective Cancer cells accumulate high concentrations of reactive oxygen species as a result of their faster and uninhibited metabolic activity. Cancer chemotherapeutic agents release an excess of severe adverse reactions as a result of targeting normal cells. This demands an improvement in targeted drug-delivery systems to selectively discharge anticancer drugs in the vicinity of such highly metabolically and mitotically active cells. Materials and Methods Here, magnetic nanoparticles were synthesized by a traditional co-precipitation technique. Fe3O4@OA-CS-5-FLU-NPs were synthesized by an easy and rapid in situ loading method. The proposed Fe3O4@OA-CS-5-FLU-NPs were productively prepared as well as characterized by various spectroscopic and microscopic studies. Results The targeted drug release profile of the Fe3O4@OA-CS-5-FLU-NPs was studied in the presence of ROS including H2O2 and pH induction. The released product, Fe3O4@OA-CS-5-FLU-NP, exhibited desirable levels of cytotoxicity and demonstrated morphological changes and inhibition of colony formation for A549 and HeLa S3 cancer cells. The IC50 values at 24 hours were 12.9 and 23 μg/mL, respectively. Conclusion In summary, results from the MTT assay, fluorescence staining as well as colony formation assays, revealed that the Fe3O4@OA-CS-5-FLU-NPs were active and safe for anticancer biomedical applications. In summary, the present investigation provides a powerful nanostructured based system for improved cancer theranostics that should be further studied.
Collapse
Affiliation(s)
- Srinivasan Ayyanaar
- PG and Research Department of Chemistry, Chikkanna Government Arts College, Tiruppur 641 602, Tamilnadu, India
| | | | - Rangaswamy Chinnabba Bhaskar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Mookkandi Palsamy Kesavan
- Department of Chemistry, Hajee Karutha Rowther Howdia College, Uthamapalayam 625 533, Tamil Nadu, India
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan.,Research Institute of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | | | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Gurusamy Rajagopal
- PG and Research Department of Chemistry, Chikkanna Government Arts College, Tiruppur 641 602, Tamilnadu, India
| |
Collapse
|
13
|
Ulu A, Birhanli E, Boran F, Köytepe S, Yesilada O, Ateş B. Laccase-conjugated thiolated chitosan-Fe3O4 hybrid composite for biocatalytic degradation of organic dyes. Int J Biol Macromol 2020; 150:871-884. [DOI: 10.1016/j.ijbiomac.2020.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/20/2022]
|
14
|
Gómez Pérez A, González-Martínez E, Díaz Águila CR, González-Martínez DA, González Ruiz G, García Artalejo A, Yee-Madeira H. Chitosan-coated magnetic iron oxide nanoparticles for DNA and rhEGF separation. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124500] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
High efficiency biosorption of Uranium (VI) ions from solution by using hemp fibers functionalized with imidazole-4,5-dicarboxylic. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111739] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
16
|
Rahman INA, Wahab RA, Mahat NA, Jamalis J, Huri MAM, Kurniawan C. Ternary Blended Chitosan/Chitin/ $$\hbox {FE}_{3}\hbox {O}_{4}$$ FE 3 O 4 Nanosupport for Lipase Activation and Stabilization. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2019. [DOI: 10.1007/s13369-019-03771-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Xu W, Lin Z, Li G, Long H, Du M, Fu G, Pu L. Linear PVA–DTPA–Gd conjugate for magnetic resonance imaging. RSC Adv 2019; 9:37052-37056. [PMID: 35539082 PMCID: PMC9075117 DOI: 10.1039/c9ra05607f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/29/2019] [Indexed: 12/23/2022] Open
Abstract
In this study, we report the preparation and characterization of the PVA–DTPA–Gd conjugate as a potential MRI contrast agent (CA). The r1 value and the r2/r1 ratio were about 5.6 mM−1 s−1 and 1.31, respectively. In vitro toxicity studies not only demonstrated that the polymeric system possessed good biocompatibility, but also proved that the conjugate could be an attractive candidate for CA. In this study, we report the preparation and characterization of the PVA–DTPA–Gd conjugate as a potential MRI contrast agent (CA).![]()
Collapse
Affiliation(s)
- Weibing Xu
- College of Science
- Gansu Agricultural University
- Lanzhou 730000
- P. R. China
| | - Zhiyan Lin
- Clinical Medical College
- Gansu University of Chinese Medicine
- Lanzhou 730000
- China
| | - Guichen Li
- Gansu Provincial Key Laboratory of Aridland Crop Science
- Gansu Agricultural University
- Lanzhou 730070
- China
| | - Haitao Long
- College of Science
- Gansu Agricultural University
- Lanzhou 730000
- P. R. China
| | - Mingyuan Du
- College of Science
- Gansu Agricultural University
- Lanzhou 730000
- P. R. China
| | - Guorui Fu
- College of Science
- Gansu Agricultural University
- Lanzhou 730000
- P. R. China
| | - Lumei Pu
- College of Science
- Gansu Agricultural University
- Lanzhou 730000
- P. R. China
| |
Collapse
|
18
|
Gupta NK, Gupta A, Ramteke P, Sahoo H, Sengupta A. Biosorption-a green method for the preconcentration of rare earth elements (REEs) from waste solutions: A review. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.134] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Ma J, Yan S, Miao C, Li L, Shi W, Liu X, Luo Y, Liu T, Lin B, Wu W, Lu Y. Paper Microfluidics for Cell Analysis. Adv Healthc Mater 2019; 8:e1801084. [PMID: 30474359 DOI: 10.1002/adhm.201801084] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/20/2018] [Indexed: 01/04/2023]
Abstract
Paper microfluidics has attracted much attention since its first introduction around one decade ago due to the merits such as low cost, ease of fabrication and operation, portability, and facile integration with other devices. The dominant application for paper microfluidics still lies in point-of-care testing (POCT), which holds great promise to provide diagnostic tools to meet the ASSURED criteria. With micro/nanostructures inside, paper substrates provide a natural 3D scaffold to mimic native cellular microenvironments and create excellent biointerfaces for cell analysis applications, such as long-term 3D cell culture, cell capture/phenotyping, and cell-related biochemical analysis (small molecules, protein DNA, etc.). This review summarizes cell-related applications based on various engineered paper microdevices and provides some perspectives for paper microfluidics-based cell analysis.
Collapse
Affiliation(s)
- Jun Ma
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
- State Key Laboratory of Applied Optics; Chuangchun 130033 China
| | - Shiqiang Yan
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
| | - Chunyue Miao
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
| | - Linmei Li
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
| | - Weiwei Shi
- Second Affiliated Hospital of Dalian Medical University; Dalian 116023 China
| | - Xianming Liu
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
| | - Yong Luo
- State Key Laboratory of Fine Chemicals; Department of Chemical Engineering & School of Pharmaceutical Science and Technology; Dalian University of Technology; Dalian 116044 China
| | - Tingjiao Liu
- College of Stomatology; Dalian Medical University; Dalian 116044 China
| | - Bingcheng Lin
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
| | - Wenming Wu
- State Key Laboratory of Applied Optics; Chuangchun 130033 China
| | - Yao Lu
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
| |
Collapse
|
20
|
Rahman INA, Attan N, Mahat NA, Jamalis J, Abdul Keyon AS, Kurniawan C, Wahab RA. Statistical optimization and operational stability of Rhizomucor miehei lipase supported on magnetic chitosan/chitin nanoparticles for synthesis of pentyl valerate. Int J Biol Macromol 2018; 115:680-695. [DOI: 10.1016/j.ijbiomac.2018.04.111] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 04/21/2018] [Accepted: 04/21/2018] [Indexed: 10/17/2022]
|
21
|
Usman MS, Hussein MZ, Fakurazi S, Masarudin MJ, Ahmad Saad FF. A bimodal theranostic nanodelivery system based on [graphene oxide-chlorogenic acid-gadolinium/gold] nanoparticles. PLoS One 2018; 13:e0200760. [PMID: 30044841 PMCID: PMC6059483 DOI: 10.1371/journal.pone.0200760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/02/2018] [Indexed: 01/23/2023] Open
Abstract
We have synthesized a bimodal theranostic nanodelivery system (BIT) that is based on graphene oxide (GO) and composed of a natural chemotherapeutic agent, chlorogenic acid (CA) used as the anticancer agent, while gadolinium (Gd) and gold nanoparticles (AuNPs) were used as contrast agents for magnetic resonance imaging (MRI) modality. The CA and Gd guest agents were simultaneously loaded on the GO nanolayers using chemical interactions, such as hydrogen bonding and π-π non-covalent interactions to form GOGCA nanocomposite. Subsequently, the AuNPs were doped on the surface of the GOGCA by means of electrostatic interactions, which resulted in the BIT. The physico-chemical studies of the BIT affirmed its successful development. The X-ray diffractograms (XRD) collected of the various stages of BIT synthesis showed the successive development of the hybrid system, while 90% of the chlorogenic acid was released in phosphate buffer solution (PBS) at pH 4.8. This was further reaffirmed by the in vitro evaluations, which showed stunted HepG2 cancer cells growth against the above 90% cell growth in the control cells. A reverse case was recorded for the 3T3 normal cells. Further, the acquired T1-weighted image of the BIT doped samples obtained from the MRI indicated contrast enhancement in comparison with the plain Gd and water references. The abovementioned results portray our BIT as a promising future chemotherapeutic for anticancer treatment with diagnostic modalities.
Collapse
Affiliation(s)
- Muhammad Sani Usman
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell & Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Fathinul Fikri Ahmad Saad
- Centre for Diagnostic and Nuclear Imaging, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
22
|
Carboxymethyl cellulose prepared from mesquite tree: New source for promising nanocomposite materials. Carbohydr Polym 2018; 189:138-144. [DOI: 10.1016/j.carbpol.2018.02.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 11/22/2022]
|
23
|
Usman MS, Hussein MZ, Kura AU, Fakurazi S, Masarudin MJ, Ahmad Saad FF. Graphene Oxide as a Nanocarrier for a Theranostics Delivery System of Protocatechuic Acid and Gadolinium/Gold Nanoparticles. Molecules 2018; 23:E500. [PMID: 29495251 PMCID: PMC6017407 DOI: 10.3390/molecules23020500] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 12/14/2022] Open
Abstract
We have synthesized a graphene oxide (GO)-based theranostic nanodelivery system (GOTS) for magnetic resonance imaging (MRI) using naturally occurring protocatechuic acid (PA) as an anticancer agent and gadolinium (III) nitrate hexahydrate (Gd) as the starting material for a contrast agent,. Gold nanoparticles (AuNPs) were subsequently used as second diagnostic agent. The GO nanosheets were first prepared from graphite via the improved Hummer's protocol. The conjugation of the GO and the PA was done via hydrogen bonding and π-π stacking interactions, followed by surface adsorption of the AuNPs through electrostatic interactions. GAGPA is the name given to the nanocomposite obtained from Gd and PA conjugation. However, after coating with AuNPs, the name was modified to GAGPAu. The physicochemical properties of the GAGPA and GAGPAu nanohybrids were studied using various characterization techniques. The results from the analyses confirmed the formation of the GOTS. The powder X-ray diffraction (PXRD) results showed the diffractive patterns for pure GO nanolayers, which changed after subsequent conjugation of the Gd and PA. The AuNPs patterns were also recorded after surface adsorption. Cytotoxicity and magnetic resonance imaging (MRI) contrast tests were also carried out on the developed GOTS. The GAGPAu was significantly cytotoxic to the human liver hepatocellular carcinoma cell line (HepG2) but nontoxic to the standard fibroblast cell line (3T3). The GAGPAu also appeared to possess higher T1 contrast compared to the pure Gd and water reference. The GOTS has good prospects of serving as future theranostic platform for cancer chemotherapy and diagnosis.
Collapse
Affiliation(s)
- Muhammad Sani Usman
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Aminu Umar Kura
- Pharmacology, Faculty of Basic Health Sciences, Bauchi State University, Bauchi 65, Nigeria.
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Mas Jaffri Masarudin
- Department of Cell & Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Fathinul Fikri Ahmad Saad
- Centre for Diagnostic and Nuclear Imaging, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
24
|
Budnyak TM, Gładysz-Płaska A, Strizhak AV, Sternik D, Komarov IV, Majdan M, Tertykh VA. Imidazole-2yl-Phosphonic Acid Derivative Grafted onto Mesoporous Silica Surface as a Novel Highly Effective Sorbent for Uranium(VI) Ion Extraction. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6681-6693. [PMID: 29370513 DOI: 10.1021/acsami.7b17594] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A new imidazol-2yl-phosphonic acid/mesoporous silica sorbent (ImP(O)(OH)2/SiO2) was developed and applied for uranium(VI) ion removal from aqueous solutions. The synthesized material was characterized by fast kinetics and an extra-high adsorption capacity with respect to uranium. The highest adsorption efficiency of U(VI) ions was obtained for the reaction system at pH 4 and exceeded 618 mg/g. The uranium(VI) sorption proceeds quickly in the first step within 60 min of the adsorbent sites and ion interactions. Moreover, the equilibrium time was determined to be 120 min. The equilibrium and kinetic characteristics of the uranium(VI) ions uptake by synthesized sorbent was found to follow the Langmuir-Freundlich isotherm model and pseudo-second-order kinetics rather than the Langmuir, Dubinin-Radushkevich, and Temkin models and pseudo-first-order or intraparticle diffusion sorption kinetics. The adsorption mechanism for uranium on the sorbent was clarified basing on the X-ray photoelectron spectroscopy (XPS) analysis. The model of UO22+ binding to surface of the sorbent was proposed according to the results of XPS, i.e., a 1:1 U-to-P ratio in the sorbed complex was established. The regeneration study confirms the ImP(O)(OH)2/SiO2 sorbent can be reused. A total of 45% of uranium ions was determined as originating from the sorbent leaching in the acidic solutions, whereas when the basic solutions were used, the removal efficiency was 12%.
Collapse
Affiliation(s)
- Tetyana M Budnyak
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine , 17 General Naumov Street, 03164 Kyiv, Ukraine
- KTH Royal Institute of Technology , Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | | | - Alexander V Strizhak
- Taras Shevchenko National University of Kyiv , 64/13 Volodymyrska Street, 01601 Kyiv, Ukraine
| | - Dariusz Sternik
- Maria Curie Skłodowska University , 2 Marie Curie Skłodowska Square, 20-031 Lublin, Poland
| | - Igor V Komarov
- Taras Shevchenko National University of Kyiv , 64/13 Volodymyrska Street, 01601 Kyiv, Ukraine
| | - Marek Majdan
- Maria Curie Skłodowska University , 2 Marie Curie Skłodowska Square, 20-031 Lublin, Poland
| | - Valentin A Tertykh
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine , 17 General Naumov Street, 03164 Kyiv, Ukraine
| |
Collapse
|
25
|
Cross-linked chitosan/β-cyclodextrin composite for selective removal of methyl orange: Adsorption performance and mechanism. Carbohydr Polym 2018; 182:106-114. [DOI: 10.1016/j.carbpol.2017.10.097] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/19/2017] [Accepted: 10/31/2017] [Indexed: 11/21/2022]
|
26
|
Zarrougui R, Mdimagh R, Raouafi N. Highly efficient extraction and selective separation of uranium (VI) from transition metals using new class of undiluted ionic liquids based on H-phosphonate anions. JOURNAL OF HAZARDOUS MATERIALS 2018; 342:464-476. [PMID: 28865257 DOI: 10.1016/j.jhazmat.2017.08.057] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/15/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
In this paper, we report the development of an environmental friendly process to decontaminate uranium-containing ores and nuclear wastes by using non-fluorinated ionic liquids (ILs). The main advantages of this extraction process are the absence of any organic diluent and extra extraction agents added to the organic phase. Moreover, the process is cost-effective and maybe applied as a sustainable hydrometallurgical method to recover uranium. The distribution ratio (DU) and the extraction efficiency (%E) of uranium(VI) (UO22+) were found to be dependent on the acidity of the aqueous phase, the extraction time, the alkyl chain length in the ILs, the concentration of the aqueous feed and molar quantity of ILs. The DU value is higher than 600 and the %E is equal to 98.6% when [HNO3]=7M. The extraction reactions follows a neutral partition or ionic exchange mechanism depending on nitric acid concentration. The nature of bonding in the extracted complexes was investigated by spectroscopic techniques. The potential use of Mor1-8-OP for the separation of UO22+ from a mixture containing transition metal ions Mn+ was also examined. The UO22+ ions were separated and extracted efficiently. These ILs are promising candidates for the recovery and separation of uranium.
Collapse
Affiliation(s)
- Ramzi Zarrougui
- Laboratoire des Matériaux Utiles (LR10INRAP01), Institut national de recherche et d'analyse physico-chimique, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia.
| | - Raouf Mdimagh
- Laboratoire des Substances Naturelles (LR10INRAP02), Institut national de recherche et d'analyse physico-chimique, Sidi Thabet Biotechpole, 2020, Ariana, Tunisia
| | - Nourreddine Raouafi
- Laboratoire de Chimie Analytique et Electrochimie (LR99ES15), Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092, Tunis, Tunisia
| |
Collapse
|
27
|
Xu W, Long H, Xu X, Fu G, Pu L, Ding L. Poly(HPMA)-DTPA/DOTA-Gd conjugates for magnetic resonance imaging. NEW J CHEM 2018. [DOI: 10.1039/c8nj04355h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Poly(HPMA)-DTPA/DOTA-Gd conjugates were fabricated, and the cytotoxicity, hemocompatibility and T1 relaxivity property were evaluated.
Collapse
Affiliation(s)
- Weibing Xu
- College of Science
- Gansu Agricultural University
- Lanzhou 730000
- P. R. China
| | - Haitao Long
- College of Science
- Gansu Agricultural University
- Lanzhou 730000
- P. R. China
| | - Xinxin Xu
- College of Life Science
- Northwest Normal University
- Lanzhou 730000
- China
| | - Guorui Fu
- College of Science
- Gansu Agricultural University
- Lanzhou 730000
- P. R. China
| | - Lumei Pu
- College of Science
- Gansu Agricultural University
- Lanzhou 730000
- P. R. China
| | - Lan Ding
- College of Life Science
- Northwest Normal University
- Lanzhou 730000
- China
| |
Collapse
|
28
|
Multifunctional Magnetic Nanocomposites on the Base of Magnetite and Hydroxyapatite for Oncology Applications. SPRINGER PROCEEDINGS IN PHYSICS 2018. [DOI: 10.1007/978-3-319-92567-7_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Gładysz-Płaska A, Skwarek E, Budnyak TM, Kołodyńska D. Metal Ions Removal Using Nano Oxide Pyrolox™ Material. NANOSCALE RESEARCH LETTERS 2017; 12:95. [PMID: 28176287 PMCID: PMC5296270 DOI: 10.1186/s11671-017-1870-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 01/27/2017] [Indexed: 05/27/2023]
Abstract
The paper presents the use of Pyrolox™ containing manganese nano oxides used for the removal of Cu(II), Zn(II), Cd(II), and Pb(II) as well as U(VI) ions. Their concentrations were analyzed using the atomic absorption spectrometer SpectrAA 240 FS (Varian) as well as UV-vis method. For this purpose the static kinetic and equilibrium studies were carried out using the batch technique. The effect of solution pH, shaking time, initial metal ion concentrations, sorbent dosage, and temperature was investigated. The equilibrium data were analyzed using the sorption isotherm models proposed by Freundlich, Langmuir-Freundlich, Temkin, and Dubinin-Radushkevich. The kinetic results showed that the pseudo second order kinetic model was found to correlate the experimental data well. The results indicate that adsorption of Cu(II), Zn(II), Cd(II), and Pb(II) as well as U(VI) ions is strongly dependent on pH. The value of pH 4-7 was optimal adsorption. The time to reach the equilibrium was found to be 24 h, and after this time, the sorption percentage reached about 70%. Kinetics of Cu(II), Zn(II), Cd(II), Pb(II), and U(VI) adsorption on the adsorbent can be described by the pseudo second order rate equation. Nitrogen adsorption/desorption, infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) measurements for adsorbent characterization were performed. Characteristic points of the double layer determined for the studied Pyrolox™ sample in 0.001 mol/dm3 NaCl solution are pHPZC = 4 and pHIEP < 2.
Collapse
Affiliation(s)
- A. Gładysz-Płaska
- Faculty of Chemistry, Department of Inorganic Chemistry, Maria Curie Skłodowska University, M. Curie Skłodowska Sq. 2, 20-031 Lublin, Poland
| | - E. Skwarek
- Faculty of Chemistry, Department of Radiochemistry and Colloid Chemistry, Maria Curie Skłodowska University, M. Curie Skłodowska Sq. 3, 20-031 Lublin, Poland
| | - T. M. Budnyak
- Nanomaterials Department, Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, 17 General Naumov St., 03164 Kyiv, Ukraine
| | - D. Kołodyńska
- Faculty of Chemistry, Department of Inorganic Chemistry, Maria Curie Skłodowska University, M. Curie Skłodowska Sq. 2, 20-031 Lublin, Poland
| |
Collapse
|
30
|
Azria D, Blanquer S, Verdier JM, Belamie E. Nanoparticles as contrast agents for brain nuclear magnetic resonance imaging in Alzheimer's disease diagnosis. J Mater Chem B 2017; 5:7216-7237. [PMID: 32264173 DOI: 10.1039/c7tb01599b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nuclear Magnetic Resonance Imaging (MRI) of amyloid plaques is a powerful non-invasive approach for the early and accurate diagnosis of Alzheimer's disease (AD) along with clinical observations of behavioral changes and cognitive impairment. The present article aims at giving a critical and comprehensive review of recent advances in the development of nanoparticle-based contrast agents for brain MRI. Nanoparticles considered for the MRI of AD must comply with a highly stringent set of requirements including low toxicity and the ability to cross the blood-brain-barrier. In addition, to reach an optimal signal-to-noise ratio, they must exhibit a specific ability to target amyloid plaques, which can be achieved by grafting antibodies, peptides or small molecules. Finally, we propose to consider new directions for the future of MRI in the context of Alzheimer's disease, in particular by enhancing the performances of contrast agents and by including therapeutic functionalities following a theranostic strategy.
Collapse
Affiliation(s)
- David Azria
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM-ENSCM, Equipe Matériaux Avancés pour la Catalyse et la Santé, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France.
| | | | | | | |
Collapse
|
31
|
Pylypchuk IV, Kołodyńska D, Gorbyk PP. Gd(III) Adsorption on the DTPA-functionalized chitosan/magnetite nanocomposites. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1330830] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ie. V. Pylypchuk
- Nanomaterials Department, Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - D. Kołodyńska
- Faculty of Chemistry, Department of Inorganic Chemistry, Maria Curie Skłodowska University, Lublin, Poland
| | - P. P. Gorbyk
- Nanomaterials Department, Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
32
|
Budnyak TM, Yanovska ES, Kichkiruk OY, Sternik D, Tertykh VA. Natural Minerals Coated by Biopolymer Chitosan: Synthesis, Physicochemical, and Adsorption Properties. NANOSCALE RESEARCH LETTERS 2016; 11:492. [PMID: 27826951 PMCID: PMC5101246 DOI: 10.1186/s11671-016-1696-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/20/2016] [Indexed: 06/06/2023]
Abstract
Natural minerals are widely used in treatment technologies as mineral fertilizer, food additive in animal husbandry, and cosmetics because they combine valuable ion-exchanging and adsorption properties together with unique physicochemical and medical properties. Saponite (saponite clay) of the Ukrainian Podillya refers to the class of bentonites, a subclass of layered magnesium silicate montmorillonite. Clinoptilolits are aluminosilicates with carcase structure. In our work, we have coated biopolymer chitosan on the surfaces of natural minerals of Ukrainian origin - Podilsky saponite and Sokyrnitsky clinoptilolite. Chitosan mineral composites have been obtained by crosslinking of adsorbed biopolymer on saponite and clinoptilolite surface with glutaraldehyde. The obtained composites have been characterized by the physicochemical methods such as thermogravimetric/differential thermal analyses (DTA, DTG, TG), differential scanning calorimetry, mass analysis, nitrogen adsorption/desorption isotherms, scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy to determine possible interactions between the silica and chitosan molecule. The adsorption of microquantities of cations Cu(II), Zn(II), Fe(III), Cd(II), and Pb(II) by the obtained composites and the initial natural minerals has been studied from aqueous solutions. The sorption capacities and kinetic adsorption characteristics of the adsorbents were estimated. It was found that the obtained results have shown that the ability of chitosan to coordinate heavy metal ions Zn(II), Cu(II), Cd(II), and Fe(III) is less or equal to the ability to retain ions of these metals in the pores of minerals without forming chemical bonds.
Collapse
Affiliation(s)
- T M Budnyak
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164, Kyiv, Ukraine.
| | - E S Yanovska
- Taras Shevchenko National University of Kyiv, 62a Volodymyrska Str., 01033, Kyiv, Ukraine
| | - O Yu Kichkiruk
- Zhytomyr Ivan Franko State University, 42 Pushkina Str., Zhytomyr, Ukraine
| | - D Sternik
- Maria Curie-Skłodowska University, 2 Maria Curie Sklodowska Sq.,, 20-031, Lublin, Poland
| | - V A Tertykh
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164, Kyiv, Ukraine
| |
Collapse
|
33
|
Mirabello G, Lenders JJM, Sommerdijk NAJM. Bioinspired synthesis of magnetite nanoparticles. Chem Soc Rev 2016; 45:5085-106. [PMID: 27385627 DOI: 10.1039/c6cs00432f] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetite (Fe3O4) is a widespread magnetic iron oxide encountered in many biological and geological systems, and also in many technological applications. The magnetic properties of magnetite crystals depend strongly on the size and shape of its crystals. Hence, engineering magnetite nanoparticles with specific shapes and sizes allows tuning their properties to specific applications in a wide variety of fields, including catalysis, magnetic storage, targeted drug delivery, cancer diagnostics and magnetic resonance imaging (MRI). However, synthesis of magnetite with a specific size, shape and a narrow crystal size distribution is notoriously difficult without using high temperatures and non-aqueous media. Nevertheless, living organisms such as chitons and magnetotactic bacteria are able to form magnetite crystals with well controlled sizes and shapes under ambient conditions and in aqueous media. In these biomineralization processes the organisms use a twofold strategy to control magnetite formation: the mineral is formed from a poorly crystalline precursor phase, and nucleation and growth are controlled through the interaction of the mineral with biomolecular templates and additives. Taking inspiration from this biological strategy is a promising route to achieve control over the kinetics of magnetite crystallization under ambient conditions and in aqueous media. In this review we first summarize the main characteristics of magnetite and what is known about the mechanisms of magnetite biomineralization. We then describe the most common routes to synthesize magnetite and subsequently will introduce recent efforts in bioinspired magnetite synthesis. We describe how the use of poorly ordered, more soluble precursors such as ferrihydrite (FeH) or white rust (Fe(OH)2) can be employed to control the solution supersaturation, setting the conditions for continued growth. Further, we show how the use of various organic additives such as proteins, peptides and polymers allows for either the promotion or inhibition of magnetite nucleation and growth processes. At last we discuss how the formation of magnetite-based organic-inorganic hybrids leads to new functional nanomaterials.
Collapse
Affiliation(s)
- Giulia Mirabello
- Laboratory of Materials and Interface Chemistry & Centre for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, PO box 513, 5600 MB Eindhoven, The Netherlands.
| | | | | |
Collapse
|