1
|
Ranjbari S, Rezayi M, Arefinia R, Aghaee-Bakhtiari SH, Hatamluyi B, Pasdar A. A novel electrochemical biosensor based on signal amplification of Au HFGNs/PnBA-MXene nanocomposite for the detection of miRNA-122 as a biomarker of breast cancer. Talanta 2023; 255:124247. [PMID: 36603443 DOI: 10.1016/j.talanta.2022.124247] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/25/2022] [Accepted: 12/30/2022] [Indexed: 01/02/2023]
Abstract
Cancer is one of the leading causes of death worldwide and a crisis for global health. Breast cancer is the second most common cancer globally. In the perusal, a novel electrochemical biosensor amplified with hierarchical flower-like gold, poly (n-butyl acrylate), and MXene (AuHFGNs/PnBA-MXene) nanocomposite and activated by highly special antisense ssDNA (single-stranded DNA) provide a promising alternative for miRNA-122 detection as a biomarker of breast cancer. The biosensor presented a detection limit of 0.0035 aM (S/N = 3) with a linear range from 0.01 aM to 10 nM. The platform was tried on 20 breast cancer miRNAs extracted from actual serum specimens (10 positives and 10 negatives). Founded on the quantitatively obtained outcomes and statistic analysis (t-test, box-graph, receiver performance characteristic curve, and cut-off amount), the biosensor showed a meaningful discrepancy between the native and positive groups with 100% specificity and 100% sensitivity. While, RT-qPCR showed less specificity and sensitivity (70% specificity, 100% sensitivity) than the proposed biosensor. To assess the quantitative capacity and biosensor detection limit for clinical tests, the biosensor diagnosis performance for continually diluted miRNA extracted from patients was compared to that gained by RT-qPCR results, indicating that the biosensor detection limit was lower than RT-qPCR. ssDNA/AuHFGN/PnBA-MXene/GCE displayed little cross-reaction with other sequences and also showed desirable stability, reproducibility, and specificity and stayed stable until 32 days. As a result, the designed biosensor can perform as a hopeful method for diagnosis applications.
Collapse
Affiliation(s)
- Sara Ranjbari
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Majid Rezayi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Reza Arefinia
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | - Behnaz Hatamluyi
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Rahman M, Niu J, Cui X, Zhou C, Tang N, Jin H, Cui D. Electrochemical Biosensor Based on l-Arginine and rGO-AuNSs Deposited on the Electrode Combined with DNA Probes for Ultrasensitive Detection of the Gastric Cancer-Related PIK3CA Gene of ctDNA. ACS APPLIED BIO MATERIALS 2022; 5:5094-5103. [PMID: 36315410 DOI: 10.1021/acsabm.2c00393] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gene biomarkers of circulating tumor DNA (ctDNA) in liquid biopsies have been explored for use in the precise diagnosis of tumors. There is a great clinical need to realize the ultrasensitive detection of gene biomarkers in ctDNA. Here we reported that an ultrasensitive label-free biosensor was developed for the detection of the gastric cancer-related PIK3CA gene of ctDNA in peripheral blood. The polymeric l-arginine and graphene oxide-wrapped gold nanostars (rGO-AuNSs) were prepared and deposited on the glass electrode. The capturing DNA probes for the PIK3CA gene were prepared and successfully immobilized on the rGO-AuNS-modified electrode surface via π-π interaction among the rGO-AuNS composites and DNA probes. The resultant electrochemical sensor was effectively applied to detect the PIK3CA gene of ctDNA via the hybridization between the capturing DNA probe and ctDNA, the result of which showed that the biosensor exhibited desirable sensitivity, stability, and a wider dynamic response in a ctDNA concentration range from 1.0 × 10-20 to 1.0 × 10-10 M (R2 = 0.997). Moreover, the low limit of detection of 1.0 × 10-20 M (S/N = 3) indicates the biosensor owns satisfactory detection sensitivity. Fourteen PIK3CA genes and two PIK3CA gene mutations were detected in 60 clinical ctDNA samples of gastric cancer patients by using the developed biosensor. In conclusion, this ultrasensitive label-free electrochemical biosensor possesses a significant application prospect in the detection of the PIK3CA gene in ctDNA and in early screening for gastric cancer in the near future.
Collapse
Affiliation(s)
- Mahbubur Rahman
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, PR China.,Department of General Educational Development, Faculty of Science and Information Technology (FSIT), Daffodil International University, Daffodil Smart City, Ashulia, Savar, Dhaka1341, Bangladesh
| | - Jiaqi Niu
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, PR China
| | - Xinyuan Cui
- Medical Imaging Department of Tong Ji Hospital Affiliated to Tongji University, Shanghai200065, PR China
| | - Cheng Zhou
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, PR China.,National Engineering Center for Nanotechnology, Shanghai200241, PR China
| | - Ning Tang
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, PR China
| | - Han Jin
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, PR China.,National Engineering Center for Nanotechnology, Shanghai200241, PR China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, PR China.,National Engineering Center for Nanotechnology, Shanghai200241, PR China
| |
Collapse
|
3
|
An electrochemical biosensor for the rapid genetic identification of Musang King durian. Sci Rep 2022; 12:19324. [PMID: 36369187 PMCID: PMC9652400 DOI: 10.1038/s41598-022-20998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
More than 200 different cultivars of durian exist worldwide but Durio zibethinus or Musang King (MK) is the most premium and prized durian fruit among the recommended varieties. Early identification of this premium variety is critical to protect from non-authentic MK durian cultivars. However, the MK variety's morphological traits are nearly identical to other varieties. Currently, the identification of durian varieties is mostly performed via evaluation of leaf shape, fruit shape, aroma, taste and seed shape and this requires trained personnel for the morphology observation. To enable the rapid identification of the MK variety, PCR amplification of ten durian varieties using six gene candidates from the chloroplast genome was first performed to obtain DNA probes that were specific to the MK durian variety. PCR amplification of ten durian varieties using primers designed confirmed that the nadhA gene sequence showed an obvious difference in the MK variety from other durian varieties. The unique sequence of MK was used as a DNA probe to develop an electrochemical biosensor for the direct identification of the MK durian variety. The electrochemical biosensor was based on the hybridization response of the immobilized DNA probe with the target DNA from the MK variety and was monitored via differential pulse voltammetry technique. Under optimal conditions, the DNA electrochemical biosensor showed a low detection limit at 10% of MK genomic DNA concentration with a wide linear calibration range of 0.05-1.5 µM (R2 = 0.9891) and RSD value of 3.77% (n = 3). The results of the developed DNA biosensor provide high promise for the development of portable sensors employed in the determination of MK variety in the field.
Collapse
|
4
|
Ansah F, Krampa F, Donkor JK, Owusu-Appiah C, Ashitei S, Kornu VE, Danku RK, Chirawurah JD, Awandare GA, Aniweh Y, Kanyong P. Ultrasensitive electrochemical genosensors for species-specific diagnosis of malaria. Electrochim Acta 2022; 429:140988. [PMID: 36225971 PMCID: PMC9472471 DOI: 10.1016/j.electacta.2022.140988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 11/21/2022]
Abstract
The absence of reliable species-specific diagnostic tools for malaria at point-of-care (POC) remains a major setback towards effective disease management. This is partly due to the limited sensitivity and specificity of the current malaria POC diagnostic kits especially in cases of low-density parasitaemia and mixed species infections. In this study, we describe the first label-free DNA-based genosensors based on electrochemical impedance spectroscopy (EIS) for species-specific detection of P. falciparum, P. malariae and P. ovale. The limits of detection (LOD) for the three species-specific genosensors were down in attomolar concentrations ranging from 18.7 aM to 43.6 aM, which is below the detection limits of previously reported malaria genosensors. More importantly, the diagnostic performance of the three genosensors were compared to quantitative real-time polymerase chain reaction (qPCR) assays using purified genomic DNA and the paired whole blood lysates from clinical samples. Remarkably, all the qPCR-positive purified genomic DNA samples were correctly identified by the genosensors indicating 100% sensitivity for each of the three malaria species. The specificities of the three genosensors ranged from 66.7% to 100.0% with a Therapeutic Turnaround Time (TTAT) within 30 min, which is comparable to the TTAT of current POC diagnostic tools for malaria. This work represents a significant step towards the development of accurate and rapid species-specific nucleic acid-based toolkits for the diagnosis of malaria at the POC.
Collapse
Affiliation(s)
- Felix Ansah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Francis Krampa
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge,CB3 0AS, United Kingdom
| | - Jacob K. Donkor
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Caleb Owusu-Appiah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Sarah Ashitei
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Victor E. Kornu
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Reinhard K. Danku
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Jersley D. Chirawurah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Yaw Aniweh
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Prosper Kanyong
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Siemens Healthineers, Siemens Healthcare Diagnostics Products Ltd, Llanberis, Gwynedd LL55 4EL, United Kingdom
| |
Collapse
|
5
|
Zhang YY, Guillon FX, Griveau S, Bedioui F, Lazerges M, Slim C. Evolution of nucleic acids biosensors detection limit III. Anal Bioanal Chem 2021; 414:943-968. [PMID: 34668044 DOI: 10.1007/s00216-021-03722-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022]
Abstract
This review is an update of two previous ones focusing on the limit of detection of electrochemical nucleic acid biosensors allowing direct detection of nucleic acid target (miRNA, mRNA, DNA) after hybridization event. A classification founded on the nature of the electrochemical transduction pathway is established. It provides an overall picture of the detection limit evolution of the various sensor architectures developed during the last three decades and a critical report of recent strategies.
Collapse
Affiliation(s)
- Yuan Yuan Zhang
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France
| | - François-Xavier Guillon
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France
| | - Sophie Griveau
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France
| | - Fethi Bedioui
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France.
| | - Mathieu Lazerges
- Faculté de Pharmacie de Paris, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Cyrine Slim
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France.
| |
Collapse
|
6
|
Azizi MMF, Lau HY, Abu-Bakar N. Integration of advanced technologies for plant variety and cultivar identification. J Biosci 2021. [DOI: 10.1007/s12038-021-00214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Abstract
Early diagnosis of diseases is of great importance because it increases the chance of a cure and significantly reduces treatment costs. Thus, development of rapid, sensitive, and reliable biosensing techniques is essential for the benefits of human life and health. As such, various nanomaterials have been explored to improve performance of biosensors, among which, carbon dots (CDs) have received enormous attention due to their excellent performance. In this Review, the recent advancements of CD-based biosensors have been carefully summarized. First, biosensors are classified according to their sensing strategies, and the role of CDs in these sensors is elaborated in detail. Next, several typical CD-based biosensors (including CD-only, enzymatic, antigen-antibody, and nucleic acid biosensors) and their applications are fully discussed. Last, advantages, challenges, and perspectives on the future trends of CD-based biosensors are highlighted.
Collapse
Affiliation(s)
- Chunyu Ji
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, Yunnan 650091, People’s Republic of China
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Roger M. Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Zhili Peng
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, Yunnan 650091, People’s Republic of China
| |
Collapse
|
8
|
Hassan RA, Heng LY, Tan LL. Highly Sensitive Fluorescence Sensor for Carrageenan from a Composite Methylcellulose/Polyacrylate Membrane. SENSORS 2020; 20:s20185043. [PMID: 32899886 PMCID: PMC7570864 DOI: 10.3390/s20185043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/21/2022]
Abstract
Carrageenans are linear sulphated polysaccharides that are commonly added into confectionery products but may exert a detrimental effect to human health. A new and simpler way of carrageenan determination based on an optical sensor utilizing a methylcellulose/poly(n-butyl acrylate) (Mc/PnBA) composite membrane with immobilized methylene blue (MB) was developed. The hydrophilic Mc polymer membrane was successfully modified with a more hydrophobic acrylic polymer. This was to produce an insoluble membrane at room temperature where MB reagent could be immobilized to build an optical sensor for carrageenan analysis. The fluorescence intensity of MB in the composite membrane was found to be proportional to the carrageenan concentrations in a linear manner (1.0–20.0 mg L−1, R2 = 0.992) and with a detection limit at 0.4 mg L−1. Recovery of spiked carrageenan into commercial fruit juice products showed percentage recoveries between 90% and 102%. The optical sensor has the advantages of improved sensitivity and better selectivity to carrageenan when compared to other types of hydrocolloids. Its sensitivity was comparable to most sophisticated techniques for carageenan analysis but better than other types of optical sensors. Thus, this sensor provides a simple, rapid, and sensitive means for carageenan analysis.
Collapse
Affiliation(s)
- Riyadh Abdulmalek Hassan
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia;
- Department of Chemistry, Faculty of Science, Ibb University, P.O. Box: 70270 Ibb, Yemen
| | - Lee Yook Heng
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia;
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia;
- Correspondence: ; Tel.: +60-3-8921-3356; Fax: +60-3-8921-5410
| | - Ling Ling Tan
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia;
| |
Collapse
|
9
|
Nadzirah S, Hashim U, Gopinath SCB, Parmin NA, Hamzah AA, Yu HW, Dee CF. Titanium dioxide-mediated resistive nanobiosensor for E. coli O157:H7. Mikrochim Acta 2020; 187:235. [PMID: 32185529 DOI: 10.1007/s00604-020-4214-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/03/2020] [Indexed: 12/19/2022]
Abstract
A titanium dioxide nanoparticle (TiO2 NP)-mediated resistive biosensor is described for the determination of DNA fragments of Escherichia coli O157:H7 (E. coli O157:H7). The sol-gel method was used to synthesize the TiO2 NP, and microlithography was applied to fabricate the interdigitated sensor electrodes. Conventional E. coli DNA detections are facing difficulties in long-preparation-and-detection-time (more than 3 days). Hence, electronic biosensor was introduced by measuring the current-voltage (I-V) DNA probe without amplification of DNA fragments. The detection scheme is based on the interaction between the electron flow on the sensor and the introduction of negative charges from DNA probe and target DNA. The biosensor has a sensitivity of 1.67 × 1013 Ω/M and a wide analytical range. The limit detection is down to 1 × 10-11 M of DNA. The sensor possesses outstanding repeatability and reproducibility and is cabable to detect DNA within 15 min in a minute-volume sample (1 μL). Graphical abstract Fig. (a) Graphical illustration of electronic biosensor set up and (b) relationship between limit of detection (LOD) and the unaffected poultry samples on E. coli O157:H7.
Collapse
Affiliation(s)
- Sh Nadzirah
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - U Hashim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia.,School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| | - N A Parmin
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia.,School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| | - Azrul Azlan Hamzah
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Hung Wei Yu
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Chang Fu Dee
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
10
|
Wang CF, Sun XY, Su M, Wang YP, Lv YK. Electrochemical biosensors based on antibody, nucleic acid and enzyme functionalized graphene for the detection of disease-related biomolecules. Analyst 2020; 145:1550-1562. [DOI: 10.1039/c9an02047k] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The application of biomacromolecule functionalized graphene electrochemical biosensors in the detection of pathogens and disease markers was reviewed.
Collapse
Affiliation(s)
- Chen-Feng Wang
- College of Chemistry and Environmental Science
- Hebei University
- Key Laboratory of Analytical Science and Technology of Hebei Province
- Baoding 071002
- China
| | - Xin-Yue Sun
- College of Chemistry and Environmental Science
- Hebei University
- Key Laboratory of Analytical Science and Technology of Hebei Province
- Baoding 071002
- China
| | - Ming Su
- College of Chemistry and Environmental Science
- Hebei University
- Key Laboratory of Analytical Science and Technology of Hebei Province
- Baoding 071002
- China
| | - Yi-Peng Wang
- College of Chemistry and Environmental Science
- Hebei University
- Key Laboratory of Analytical Science and Technology of Hebei Province
- Baoding 071002
- China
| | - Yun-Kai Lv
- College of Chemistry and Environmental Science
- Hebei University
- Key Laboratory of Analytical Science and Technology of Hebei Province
- Baoding 071002
- China
| |
Collapse
|
11
|
Hashimi AS, Nohan MANM, Chin SX, Zakaria S, Chia CH. Rapid Catalytic Reduction of 4-Nitrophenol and Clock Reaction of Methylene Blue using Copper Nanowires. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E936. [PMID: 31261696 PMCID: PMC6669591 DOI: 10.3390/nano9070936] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 11/17/2022]
Abstract
Copper nanowires (CuNWs) with a high aspect ratio of ~2600 have been successfully synthesized by using a facile hydrothermal method. The reductions of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) and methylene blue (MB) to leucomethylene blue (LMB) by using sodium borohydride (NaBH4) were used as models to test the catalytic activity of CuNWs. We showed that by increasing the CuNWs content, the rate of reduction increased as well. The CuNWs showed an excellent catalytic performance where 99% reduction of 4-NP to 4-AP occurred in just 60 s by using only 0.1 pg of CuNWs after treatment with glacial acetic acid (GAA). The rate constant (kapp) and activity factor (K) of this study is 18 and ~1010 fold in comparison to previous study done with no GAA treatment applied, respectively. The CuNWs showed an outstanding catalytic activity for at least ten consecutive reusability tests with a consistent result in 4-NP reduction. In clock reaction of MB, approximately 99% of reduction of MB into LMB was achieved in ~5 s by using 2 μg CuNWs. Moreover, the addition of NaOH can improve the rate and degree of recolorization of LMB to MB.
Collapse
Affiliation(s)
- Aina Shasha Hashimi
- Materials Science Program, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | | | - Siew Xian Chin
- ASASIpintar Program, Pusat GENIUS@Pintar Negara, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| | - Sarani Zakaria
- Materials Science Program, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Chin Hua Chia
- Materials Science Program, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
12
|
Liu Y, Nan X, Shi W, Liu X, He Z, Sun Y, Ge D. A glucose biosensor based on the immobilization of glucose oxidase and Au nanocomposites with polynorepinephrine. RSC Adv 2019; 9:16439-16446. [PMID: 35516374 PMCID: PMC9064379 DOI: 10.1039/c9ra02054c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 05/12/2019] [Indexed: 01/16/2023] Open
Abstract
The PNE/GOD/AuNPs@PNE/Au electrode exhibited a low Michaelis–Menten constant, a fast response to glucose, outstanding anti-interference ability and high sensitivity.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Biomedical Engineering of Fujian Province University
- Research Center of Biomedical Engineering of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
| | - Xu Nan
- Key Laboratory of Biomedical Engineering of Fujian Province University
- Research Center of Biomedical Engineering of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
| | - Wei Shi
- Key Laboratory of Biomedical Engineering of Fujian Province University
- Research Center of Biomedical Engineering of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
| | - Xin Liu
- Key Laboratory of Biomedical Engineering of Fujian Province University
- Research Center of Biomedical Engineering of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
| | - Zi He
- Key Laboratory of Biomedical Engineering of Fujian Province University
- Research Center of Biomedical Engineering of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
| | - Yanan Sun
- Key Laboratory of Biomedical Engineering of Fujian Province University
- Research Center of Biomedical Engineering of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
| | - Dongtao Ge
- Key Laboratory of Biomedical Engineering of Fujian Province University
- Research Center of Biomedical Engineering of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
| |
Collapse
|
13
|
Peña-Bahamonde J, Nguyen HN, Fanourakis SK, Rodrigues DF. Recent advances in graphene-based biosensor technology with applications in life sciences. J Nanobiotechnology 2018; 16:75. [PMID: 30243292 PMCID: PMC6150956 DOI: 10.1186/s12951-018-0400-z] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/15/2018] [Indexed: 12/26/2022] Open
Abstract
Graphene's unique physical structure, as well as its chemical and electrical properties, make it ideal for use in sensor technologies. In the past years, novel sensing platforms have been proposed with pristine and modified graphene with nanoparticles and polymers. Several of these platforms were used to immobilize biomolecules, such as antibodies, DNA, and enzymes to create highly sensitive and selective biosensors. Strategies to attach these biomolecules onto the surface of graphene have been employed based on its chemical composition. These methods include covalent bonding, such as the coupling of the biomolecules via the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxysuccinimide reactions, and physisorption. In the literature, several detection methods are employed; however, the most common is electrochemical. The main reason for researchers to use this detection approach is because this method is simple, rapid and presents good sensitivity. These biosensors can be particularly useful in life sciences and medicine since in clinical practice, biosensors with high sensitivity and specificity can significantly enhance patient care, early diagnosis of diseases and pathogen detection. In this review, we will present the research conducted with antibodies, DNA molecules and, enzymes to develop biosensors that use graphene and its derivatives as scaffolds to produce effective biosensors able to detect and identify a variety of diseases, pathogens, and biomolecules linked to diseases.
Collapse
Affiliation(s)
- Janire Peña-Bahamonde
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003 USA
| | - Hang N. Nguyen
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003 USA
| | - Sofia K. Fanourakis
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003 USA
| | - Debora F. Rodrigues
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003 USA
| |
Collapse
|