1
|
Ferrer I. Historical review: The golden age of the Golgi method in human neuropathology. J Neuropathol Exp Neurol 2024; 83:375-395. [PMID: 38622902 DOI: 10.1093/jnen/nlae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Golgi methods were used to study human neuropathology in the 1970s, 1980s, and 1990s of the last century. Although a relatively small number of laboratories applied these methods, their impact was crucial by increasing knowledge about: (1) the morphology, orientation, and localization of neurons in human cerebral and cerebellar malformations and ganglionic tumors, and (2) the presence of abnormal structures including large and thin spines (spine dysgenesis) in several disorders linked to mental retardation, focal enlargements of the axon hillock and dendrites (meganeurites) in neuronal storage diseases, growth cone-like appendages in Alzheimer disease, as well as abnormal structures in other dementias. Although there were initial concerns about their reliability, reduced dendritic branches and dendritic spines were identified as common alterations in mental retardation, dementia, and other pathological conditions. Similar observations in appropriate experimental models have supported many abnormalities that were first identified using Golgi methods in human material. Moreover, electron microscopy, immunohistochemistry, fluorescent tracers, and combined methods have proven the accuracy of pioneering observations uniquely visualized as 3D images of fully stained individual neurons. Although Golgi methods had their golden age many years ago, these methods may still be useful complementary tools in human neuropathology.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de LLobregat, Spain
| |
Collapse
|
2
|
Bychkova E, Dorofeeva M, Levov A, Kislyakov A, Karandasheva K, Strelnikov V, Anoshkin K. Specific Features of Focal Cortical Dysplasia in Tuberous Sclerosis Complex. Curr Issues Mol Biol 2023; 45:3977-3996. [PMID: 37232723 DOI: 10.3390/cimb45050254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Patients with tuberous sclerosis complex present with cognitive, behavioral, and psychiatric impairments, such as intellectual disabilities, autism spectrum disorders, and drug-resistant epilepsy. It has been shown that these disorders are associated with the presence of cortical tubers. Tuberous sclerosis complex results from inactivating mutations in the TSC1 or TSC2 genes, resulting in hyperactivation of the mTOR signaling pathway, which regulates cell growth, proliferation, survival, and autophagy. TSC1 and TSC2 are classified as tumor suppressor genes and function according to Knudson's two-hit hypothesis, which requires both alleles to be damaged for tumor formation. However, a second-hit mutation is a rare event in cortical tubers. This suggests that the molecular mechanism of cortical tuber formation may be more complicated and requires further research. This review highlights the issues of molecular genetics and genotype-phenotype correlations, considers histopathological characteristics and the mechanism of morphogenesis of cortical tubers, and also presents data on the relationship between these formations and the development of neurological manifestations, as well as treatment options.
Collapse
Affiliation(s)
- Ekaterina Bychkova
- Research Centre for Medical Genetics, Moskvorechye Street 1, 115522 Moscow, Russia
- Faculty of Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova Street 1, 117997 Moscow, Russia
| | - Marina Dorofeeva
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery, Pirogov Russian National Research Medical University, Taldomskaya 2, 125412 Moscow, Russia
| | - Aleksandr Levov
- Morozov Children's City Clinical Hospital, 4th Dobryninsky Lane, 1/9, 119049 Moscow, Russia
| | - Alexey Kislyakov
- Morozov Children's City Clinical Hospital, 4th Dobryninsky Lane, 1/9, 119049 Moscow, Russia
| | | | - Vladimir Strelnikov
- Research Centre for Medical Genetics, Moskvorechye Street 1, 115522 Moscow, Russia
| | - Kirill Anoshkin
- Research Centre for Medical Genetics, Moskvorechye Street 1, 115522 Moscow, Russia
| |
Collapse
|
3
|
Huang K, Wang Z, He Z, Li Y, Li S, Shen K, Zhu G, Liu Z, Lv S, Zhang C, Yang H, Yang X, Liu S. Downregulated formyl peptide receptor 2 expression in the epileptogenic foci of patients with focal cortical dysplasia type IIb and tuberous sclerosis complex. Immun Inflamm Dis 2022; 10:e706. [PMID: 36301030 PMCID: PMC9597500 DOI: 10.1002/iid3.706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Focal cortical dysplasia type IIb (FCDIIb) and tuberous sclerosis complex (TSC) show persistent neuroinflammation, which promotes epileptogenesis and epilepsy progression, suggesting that endogenous resolution of inflammation is inadequate to relieve neuronal network hyperexcitability. To explore the potential roles of formyl peptide receptor 2 (FPR2), which is a key regulator of inflammation resolution, in epilepsy caused by FCDIIb and TSC, we examined the expression and cellular distribution of FPR2. METHOD The expression of FPR2 and nuclear factor-κB (NF-κB) signaling pathway was examined by real-time PCR, western blots, and analyzed via one-way analysis of variance. The distribution of FPR2 was detected using immunostaining. The expression of resolvin D1 (RvD1, the endogenous ligand of FPR2) was observed via enzyme-linked immunosorbent assay. Pearson's correlation test was used to evaluate the correlation between the expression levels of FPR2 and RvD1 and the clinical variants. RESULTS The expression of FPR2 was significantly lower in FCDIIb (p = .0146) and TSC (p = .0006) cortical lesions than in controls, as was the expression of RvD1 (FCDIIb: p = .00431; TSC: p = .0439). Weak FPR2 immunoreactivity was observed in dysmorphic neurons (DNs), balloon cells (BCs), and giant cells (GCs) in FCDIIb and TSC tissues. Moreover, FPR2 was mainly distributed in dysplastic neurons; it was sparse in microglia and nearly absent in astrocytes. The NF-κB pathway was significantly activated in patients with FCDIIb and TSC, and the protein level of NF-κB was negatively correlated with the protein level of FPR2 (FCDIIb: p = .00395; TSC: p = .0399). In addition, the protein level of FPR2 was negatively correlated with seizure frequency in FCDIIb (p = .0434) and TSC (p = .0351) patients. CONCLUSION In summary, these results showed that the expression and specific distribution of FPR2 may be involved in epilepsy caused by FCDIIb and TSC, indicating that downregulation of FPR2 mediated the dysfunction of neuroinflammation resolution in FCDIIb and TSC.
Collapse
Affiliation(s)
- Kaixuan Huang
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Zhongke Wang
- Department of NeurosurgeryArmed Police Hospital of ChongqingChongqingChina
| | - Zeng He
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Yang Li
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Shujing Li
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Kaifeng Shen
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Gang Zhu
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Zhonghong Liu
- Department of NeurosurgeryArmed Police Hospital of ChongqingChongqingChina
| | - Shengqing Lv
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Chunqing Zhang
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Hui Yang
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Xiaolin Yang
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Shiyong Liu
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| |
Collapse
|
4
|
Genetic pathogenesis of the epileptogenic lesions in Tuberous Sclerosis Complex: Therapeutic targeting of the mTOR pathway. Epilepsy Behav 2022; 131:107713. [PMID: 33431351 DOI: 10.1016/j.yebeh.2020.107713] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022]
Abstract
Tuberous sclerosis complex (TSC) is a genetic multisystem disease due to the mutation in one of the two genes TSC1 and TSC2, affecting several organs and systems and carrying a significant risk of early onset and refractory seizures. The pathogenesis of this complex disorder is now well known, with most of TSC-related manifestations being a consequence of the overactivation of the mammalian Target of Rapamycin (mTOR) complex. The discovery of this underlying mechanism paved the way for the use of a class of drugs called mTOR inhibitors including rapamycin and everolimus and specifically targeting this pathway. Rapamycin has been widely used in different animal models of TSC-related epilepsy and proved to be able not only to suppress seizures but also to prevent the development of epilepsy, thus demonstrating an antiepileptogenic potential. In some models, it also showed some benefit on neuropsychiatric manifestations associated with TSC. Everolimus has recently been approved by the US Food and Drug Administration and the European Medical Agency for the treatment of refractory seizures associated with TSC starting from the age of 2 years. It demonstrated a clear benefit when compared to placebo on reducing the frequency of different seizure types and exerting a higher effect in younger children. In conclusion, mTOR cascade can be a potentially major cause of TSC-associated epilepsy and neurodevelopmental disability, and additional research should investigate if early suppression of abnormal mTOR signal with mTOR inhibitors before seizure onset can be a more efficient approach and an effective antiepileptogenic and disease-modifying strategy in infants with TSC.
Collapse
|
5
|
De Ridder J, Kotulska K, Curatolo P, Jansen AC, Aronica E, Kwiatkowski DJ, Jansen FE, Jóźwiak S, Lagae L. Evolution of electroencephalogram in infants with tuberous sclerosis complex and neurodevelopmental outcome: a prospective cohort study. Dev Med Child Neurol 2022; 64:495-501. [PMID: 34601720 DOI: 10.1111/dmcn.15073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 01/20/2023]
Abstract
AIM To describe the evolution of electroencephalogram (EEG) characteristics in infants with tuberous sclerosis complex (TSC) and the relationship with neurodevelopmental outcome at 24 months. METHOD Eighty-three infants were enrolled in the EPISTOP trial and underwent serial EEG follow-up until the age of 24 months (males n=45, females n=37, median age at enrolment 28d, interquartile range 14-54d). Maturation of the EEG background and epileptiform discharges were compared between the TSC1 and TSC2 variants and between preventive and conventional groups respectively. RESULTS Children with TSC2 more frequently had a slower posterior dominant rhythm (PDR) at 24 months (51% vs 11%, p=0.002), a higher number of epileptiform foci (median=8 vs 4, p=0.003), and a lower fraction of EEGs without epileptiform discharges (18% vs 61%, p=0.001) at follow-up. A slower PDR at 24 months was significantly associated with lower cognitive (median=70 vs 80, p=0.028) and motor developmental quotients (median=70 vs 79, p=0.008). A higher fraction of EEGs without epileptiform discharges was associated with a lower probability of autism spectrum disorder symptoms (odds ratio=0.092, 95% confidence interval=0.009-0.912, p=0.042) and higher cognitive (p=0.004), language (p=0.002), and motor (p=0.001) developmental quotients at 24 months. INTERPRETATION TSC2 is associated with more abnormal EEG characteristics compared to TSC1, which are predictive for neurodevelopmental outcome.
Collapse
Affiliation(s)
- Jessie De Ridder
- Department of Development and Regeneration, Section Pediatric Neurology, Catholic University of Leuven (KU Leuven), Leuven, Belgium
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| | - Anna C Jansen
- Pediatric Neurology Unit, University Hospital Brussel, Brussels, Belgium
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.,Stichting Epilepsie Instellingen Nederland, Heemstede, the Netherlands
| | | | - Floor E Jansen
- Department of Child Neurology, Brain Centre, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Sergiusz Jóźwiak
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland.,Department of Child Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Lieven Lagae
- Department of Development and Regeneration, Section Pediatric Neurology, Catholic University of Leuven (KU Leuven), Leuven, Belgium
| | | |
Collapse
|
6
|
Validating EEG, MEG and Combined MEG and EEG Beamforming for an Estimation of the Epileptogenic Zone in Focal Cortical Dysplasia. Brain Sci 2022; 12:brainsci12010114. [PMID: 35053857 PMCID: PMC8796031 DOI: 10.3390/brainsci12010114] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
MEG and EEG source analysis is frequently used for the presurgical evaluation of pharmacoresistant epilepsy patients. The source localization of the epileptogenic zone depends, among other aspects, on the selected inverse and forward approaches and their respective parameter choices. In this validation study, we compare the standard dipole scanning method with two beamformer approaches for the inverse problem, and we investigate the influence of the covariance estimation method and the strength of regularization on the localization performance for EEG, MEG, and combined EEG and MEG. For forward modelling, we investigate the difference between calibrated six-compartment and standard three-compartment head modelling. In a retrospective study, two patients with focal epilepsy due to focal cortical dysplasia type IIb and seizure freedom following lesionectomy or radiofrequency-guided thermocoagulation (RFTC) used the distance of the localization of interictal epileptic spikes to the resection cavity resp. RFTC lesion as reference for good localization. We found that beamformer localization can be sensitive to the choice of the regularization parameter, which has to be individually optimized. Estimation of the covariance matrix with averaged spike data yielded more robust results across the modalities. MEG was the dominant modality and provided a good localization in one case, while it was EEG for the other. When combining the modalities, the good results of the dominant modality were mostly not spoiled by the weaker modality. For appropriate regularization parameter choices, the beamformer localized better than the standard dipole scan. Compared to the importance of an appropriate regularization, the sensitivity of the localization to the head modelling was smaller, due to similar skull conductivity modelling and the fixed source space without orientation constraint.
Collapse
|
7
|
Wang Z, Huang K, Yang X, Shen K, Yang L, Ruan R, Shi X, Wang M, Zhu G, Yang M, Zhang C, Lv S, Yang H, Fan X, Liu S. Downregulated GPR30 expression in the epileptogenic foci of female patients with focal cortical dysplasia type IIb and tuberous sclerosis complex is correlated with 18 F-FDG PET-CT values. Brain Pathol 2021; 31:346-364. [PMID: 33314369 PMCID: PMC8018162 DOI: 10.1111/bpa.12925] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/20/2020] [Accepted: 12/07/2020] [Indexed: 01/19/2023] Open
Abstract
Focal cortical dysplasia type IIb (FCDIIb) and tuberous sclerosis complex (TSC) are typical causes of developmental delay and refractory epilepsy. G‐protein‐coupled receptor 30 (GPR30) is a specific estrogen receptor that is critical in neurodevelopment, neuroinflammation, and neuronal excitability, suggesting that it plays a potential role in the epilepsy of patients with FCDIIb and TSC. Therefore, we investigated the role of GPR30 in patients with FCDIIb and TSC. We found that the expression of GPR30 and its downstream protein kinase A (PKA) pathway were decreased and negatively correlated with seizure frequency in female patients with FCDIIb and TSC, but not in male patients. GPR30 was widely distributed in neurons, astrocytes, and microglia, and its downregulation was especially notable in microglia. The GPR30 agonist G‐1 increased the expression of PKA and p‐PKA in cultured cortical neurons, and the GPR30 antagonist G‐15 exhibited the opposite effects of G‐1. The NF‐κB signaling pathway was also activated in the specimens of female patients with FCDIIb and TSC, and was regulated by G‐1 and G‐15 in cultured cortical neurons. We also found that GPR30 regulated cortical neuronal excitability by altering the frequency of spontaneous excitatory postsynaptic currents and the expression of NR2A/B. Further, the relationship between GPR30 and glycometabolism was evaluated by analyzing the correlations between GPR30 and 18F‐FDG PET‐CT values (standardized uptake values, SUVs). Positive correlations between GPR30 and SUVs were found in female patients, but not in male patients. Intriguingly, GPR30 expression and SUVs were significantly decreased in the epileptogenic tubers of female TSC patients, and ROC curves indicated that SUVs could predict the localization of epileptogenic tubers. Taken together, our results suggest a potential protective effect of GPR30 in the epileptogenesis of female patients with FCDIIb and TSC.
Collapse
Affiliation(s)
- Zhongke Wang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Kaixuan Huang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaolin Yang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Kaifeng Shen
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ling Yang
- Department of Developmental Neuropsychology, School of Psychology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ruotong Ruan
- Department of Basic Medical College, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xianjun Shi
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Miao Wang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Gang Zhu
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Meihua Yang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chunqing Zhang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shengqing Lv
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hui Yang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shiyong Liu
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
8
|
De Ridder J, Lavanga M, Verhelle B, Vervisch J, Lemmens K, Kotulska K, Moavero R, Curatolo P, Weschke B, Riney K, Feucht M, Krsek P, Nabbout R, Jansen AC, Wojdan K, Domanska-Pakieła D, Kaczorowska-Frontczak M, Hertzberg C, Ferrier CH, Samueli S, Benova B, Aronica E, Kwiatkowski DJ, Jansen FE, Jóźwiak S, Van Huffel S, Lagae L. Prediction of Neurodevelopment in Infants With Tuberous Sclerosis Complex Using Early EEG Characteristics. Front Neurol 2020; 11:582891. [PMID: 33178126 PMCID: PMC7596378 DOI: 10.3389/fneur.2020.582891] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022] Open
Abstract
Tuberous Sclerosis Complex (TSC) is a multisystem genetic disorder with a high risk of early-onset epilepsy and a high prevalence of neurodevelopmental comorbidities, including intellectual disability and autism spectrum disorder (ASD). Therefore, TSC is an interesting disease model to investigate early biomarkers of neurodevelopmental comorbidities when interventions are favourable. We investigated whether early EEG characteristics can be used to predict neurodevelopment in infants with TSC. The first recorded EEG of 64 infants with TSC, enrolled in the international prospective EPISTOP trial (recorded at a median gestational age 42 4/7 weeks) was first visually assessed. EEG characteristics were correlated with ASD risk based on the ADOS-2 score, and cognitive, language, and motor developmental quotients (Bayley Scales of Infant and Toddler Development III) at the age of 24 months. Quantitative EEG analysis was used to validate the relationship between EEG background abnormalities and ASD risk. An abnormal first EEG (OR = 4.1, p-value = 0.027) and more specifically a dysmature EEG background (OR = 4.6, p-value = 0.017) was associated with a higher probability of ASD traits at the age of 24 months. This association between an early abnormal EEG and ASD risk remained significant in a multivariable model, adjusting for mutation and treatment (adjusted OR = 4.2, p-value = 0.029). A dysmature EEG background was also associated with lower cognitive (p-value = 0.029), language (p-value = 0.001), and motor (p-value = 0.017) developmental quotients at the age of 24 months. Our findings suggest that early EEG characteristics in newborns and infants with TSC can be used to predict neurodevelopmental comorbidities.
Collapse
Affiliation(s)
- Jessie De Ridder
- Pediatric Neurology, Department of Development and Regeneration, University of Leuven KU Leuven, Leuven, Belgium
| | - Mario Lavanga
- Department of Electrical Engineering (ESAT), STADIUS Centre for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
| | - Birgit Verhelle
- Pediatric Neurology, Department of Development and Regeneration, University of Leuven KU Leuven, Leuven, Belgium
| | - Jan Vervisch
- Pediatric Neurology, Department of Development and Regeneration, University of Leuven KU Leuven, Leuven, Belgium
| | - Katrien Lemmens
- Pediatric Neurology, Department of Development and Regeneration, University of Leuven KU Leuven, Leuven, Belgium
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Romina Moavero
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy.,Child Neurology Unit, Neuroscience and Neurorehabilitation Department, "Bambino Gesù" Children's Hospital, Rome, Italy
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| | - Bernhard Weschke
- Department of Child Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Kate Riney
- Neuroscience Unit, Queensland Children's Hospital, Brisbane, QLD, Australia.,University of Queensland School of Clinical Medicine, Brisbane, QLD, Australia
| | - Martha Feucht
- Department of Pediatrics, Medical University Vienna, Vienna, Austria
| | - Pavel Krsek
- Department of Paediatric Neurology, Charles University, Second Faculty of Medicine, Motol University Hospital, Prague, Czechia
| | - Rima Nabbout
- Department of Pediatric Neurology, Reference Centre for Rare Epilepsies, Imagine Institute, Necker- Enfants Malades Hospital, University Paris Descartes, Paris, France
| | - Anna C Jansen
- Pediatric Neurology Unit, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Konrad Wojdan
- Transition Technologies, Warsaw, Poland.,Institute of Heat Engineering, Warsaw University and Technology, Warsaw, Poland
| | - Dorota Domanska-Pakieła
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland
| | | | - Christoph Hertzberg
- Diagnose und Behandlungszentrum für Kinder und Jugendliche, Vivantes Klinikum Neuköln, Berlin, Germany
| | - Cyrille H Ferrier
- Department of Child Neurology, Brain Centre, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Sharon Samueli
- Department of Pediatrics, Medical University Vienna, Vienna, Austria
| | - Barbora Benova
- Department of Paediatric Neurology, Charles University, Second Faculty of Medicine, Motol University Hospital, Prague, Czechia
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam Universitair Medisch Centrum, University of Amsterdam, Amsterdam, Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - David J Kwiatkowski
- Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Floor E Jansen
- Department of Child Neurology, Brain Centre, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Sergiusz Jóźwiak
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland.,Department of Child Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Sabine Van Huffel
- Department of Electrical Engineering (ESAT), STADIUS Centre for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
| | - Lieven Lagae
- Pediatric Neurology, Department of Development and Regeneration, University of Leuven KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Gelot AB, Represa A. Progression of Fetal Brain Lesions in Tuberous Sclerosis Complex. Front Neurosci 2020; 14:899. [PMID: 32973442 PMCID: PMC7472962 DOI: 10.3389/fnins.2020.00899] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/31/2020] [Indexed: 11/24/2022] Open
Abstract
Tuberous sclerosis (TSC) is a multisystem autosomal dominant genetic disorder due to loss of function of TSC1/TSC2 resulting in increased mTOR (mammalian target of rapamycin) signaling. In the brain, TSC is characterized by the formation of specific lesions that include subependymal and white matter nodules and cortical tubers. Cells that constitute TSC lesions are mainly Giant cells and dysmorphic neurons and astrocytes, but normal cells also populate the tubers. Although considered as a developmental disorder, the histopathological features of brain lesions have been described in only a limited number of fetal cases, providing little information on how these lesions develop. In this report we characterized the development of TSC lesions in 14 fetal brains ranging from 19 gestational weeks (GW) to term and 2 postnatal cases. The study focused on the telencephalon at the level of the caudothalamic notch. Our data indicate that subcortical lesions, forming within and at the vicinity of germinative zones, are the first alterations (already detected in 19GW brains), characterized by the presence of numerous dysmorphic astrocytes and Giant, balloon-like, cells. Our data show that cortical tuber formation is a long process that initiates with the presence of dysmorphic astrocytes (by 19–21GW), progress with the apparition of Giant cells (by 24GW) and mature with the appearance of dysmorphic neurons by the end of gestation (by 36GW). Furthermore, the typical tuberal aspect of cortical lesions is only reached when bundles of neurofilament positive extensions delineate the bottom of the cortical lesion (by 36GW). In addition, our study reveals the presence of Giant cells and dysmorphic neurons immunopositive for interneuron markers such as calbindin and parvalbumin, suggesting that TSC lesions would be mosaic lesions generated from different classes of progenitors.
Collapse
Affiliation(s)
- Antoinette Bernabe Gelot
- Aix-Marseille University, INSERM, INMED, Marseille, France.,APHP, Hôpital Trousseau, Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
10
|
Feliciano DM. The Neurodevelopmental Pathogenesis of Tuberous Sclerosis Complex (TSC). Front Neuroanat 2020; 14:39. [PMID: 32765227 PMCID: PMC7381175 DOI: 10.3389/fnana.2020.00039] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a model disorder for understanding brain development because the genes that cause TSC are known, many downstream molecular pathways have been identified, and the resulting perturbations of cellular events are established. TSC, therefore, provides an intellectual framework to understand the molecular and biochemical pathways that orchestrate normal brain development. The TSC1 and TSC2 genes encode Hamartin and Tuberin which form a GTPase activating protein (GAP) complex. Inactivating mutations in TSC genes (TSC1/TSC2) cause sustained Ras homologue enriched in brain (RHEB) activation of the mammalian isoform of the target of rapamycin complex 1 (mTORC1). TOR is a protein kinase that regulates cell size in many organisms throughout nature. mTORC1 inhibits catabolic processes including autophagy and activates anabolic processes including mRNA translation. mTORC1 regulation is achieved through two main upstream mechanisms. The first mechanism is regulation by growth factor signaling. The second mechanism is regulation by amino acids. Gene mutations that cause too much or too little mTORC1 activity lead to a spectrum of neuroanatomical changes ranging from altered brain size (micro and macrocephaly) to cortical malformations to Type I neoplasias. Because somatic mutations often underlie these changes, the timing, and location of mutation results in focal brain malformations. These mutations, therefore, provide gain-of-function and loss-of-function changes that are a powerful tool to assess the events that have gone awry during development and to determine their functional physiological consequences. Knowledge about the TSC-mTORC1 pathway has allowed scientists to predict which upstream and downstream mutations should cause commensurate neuroanatomical changes. Indeed, many of these predictions have now been clinically validated. A description of clinical imaging and histochemical findings is provided in relation to laboratory models of TSC that will allow the reader to appreciate how human pathology can provide an understanding of the fundamental mechanisms of development.
Collapse
Affiliation(s)
- David M Feliciano
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
| |
Collapse
|
11
|
Kubach J, Muhlebner-Fahrngruber A, Soylemezoglu F, Miyata H, Niehusmann P, Honavar M, Rogerio F, Kim SH, Aronica E, Garbelli R, Vilz S, Popp A, Walcher S, Neuner C, Scholz M, Kuerten S, Schropp V, Roeder S, Eichhorn P, Eckstein M, Brehmer A, Kobow K, Coras R, Blumcke I, Jabari S. Same same but different: A Web-based deep learning application revealed classifying features for the histopathologic distinction of cortical malformations. Epilepsia 2020; 61:421-432. [PMID: 32080846 DOI: 10.1111/epi.16447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The microscopic review of hematoxylin-eosin-stained images of focal cortical dysplasia type IIb and cortical tuber of tuberous sclerosis complex remains challenging. Both entities are distinct subtypes of human malformations of cortical development that share histopathological features consisting of neuronal dyslamination with dysmorphic neurons and balloon cells. We trained a convolutional neural network (CNN) to classify both entities and visualize the results. Additionally, we propose a new Web-based deep learning application as proof of concept of how deep learning could enter the pathologic routine. METHODS A digital processing pipeline was developed for a series of 56 cases of focal cortical dysplasia type IIb and cortical tuber of tuberous sclerosis complex to obtain 4000 regions of interest and 200 000 subsamples with different zoom and rotation angles to train a neural network. Guided gradient-weighted class activation maps (Guided Grad-CAMs) were generated to visualize morphological features used by the CNN to distinguish both entities. RESULTS Our best-performing network achieved 91% accuracy and 0.88 area under the receiver operating characteristic curve at the tile level for an unseen test set. Novel histopathologic patterns were found through the visualized Guided Grad-CAMs. These patterns were assembled into a classification score to augment decision-making in routine histopathology workup. This score was successfully validated by 11 expert neuropathologists and 12 nonexperts, boosting nonexperts to expert level performance. SIGNIFICANCE Our newly developed Web application combines the visualization of whole slide images with the possibility of deep learning-aided classification between focal cortical dysplasia IIb and tuberous sclerosis complex. This approach will help to introduce deep learning applications and visualization for the histopathologic diagnosis of rare and difficult-to-classify brain lesions.
Collapse
Affiliation(s)
- Joshua Kubach
- Institute of Neuropathology, University Hospitals, Erlangen, Germany
| | - Angelika Muhlebner-Fahrngruber
- Department of (Neuro)Pathology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Figen Soylemezoglu
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Hajime Miyata
- Department of Neuropathology, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita, Japan
| | - Pitt Niehusmann
- Department of Neurology/Pathology, Oslo University Hospital, Oslo, Norway
| | - Mrinalini Honavar
- Department of Anatomic Pathology, Pedro Hispano Hospital, Matosinhos, Portugal
| | - Fabio Rogerio
- Department of Pathology, State University of Campinas, Campinas, Brazil
| | - Se-Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Stichting Epilepsie Instellingen Nederland, Zwolle, the Netherlands
| | | | - Samuel Vilz
- Institute of Neuropathology, University Hospitals, Erlangen, Germany
| | - Alexander Popp
- Institute of Neuropathology, University Hospitals, Erlangen, Germany
| | - Stefan Walcher
- Institute of Neuropathology, University Hospitals, Erlangen, Germany
| | - Christoph Neuner
- Institute of Neuropathology, University Hospitals, Erlangen, Germany
| | - Michael Scholz
- Institute of Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Stefanie Kuerten
- Institute of Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Verena Schropp
- Institute of Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Roeder
- Department of Neurology, University Hospitals Erlangen, Erlangen, Germany
| | - Philip Eichhorn
- Institute of Pathology, University Hospitals Erlangen, Erlangen, Germany
| | - Markus Eckstein
- Institute of Pathology, University Hospitals Erlangen, Erlangen, Germany
| | - Axel Brehmer
- Institute of Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Katja Kobow
- Institute of Neuropathology, University Hospitals, Erlangen, Germany
| | - Roland Coras
- Institute of Neuropathology, University Hospitals, Erlangen, Germany
| | - Ingmar Blumcke
- Institute of Neuropathology, University Hospitals, Erlangen, Germany
| | - Samir Jabari
- Institute of Neuropathology, University Hospitals, Erlangen, Germany
| |
Collapse
|
12
|
Afshar Saber W, Sahin M. Recent advances in human stem cell-based modeling of Tuberous Sclerosis Complex. Mol Autism 2020; 11:16. [PMID: 32075691 PMCID: PMC7031912 DOI: 10.1186/s13229-020-0320-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by epilepsy, intellectual disability, and benign tumors of the brain, heart, skin, and kidney. Animal models have contributed to our understanding of normal and abnormal human brain development, but the construction of models that accurately recapitulate a human pathology remains challenging. Recent advances in stem cell biology with the derivation of human-induced pluripotent stem cells (hiPSCs) from somatic cells from patients have opened new avenues to the study of TSC. This approach combined with gene-editing tools such as CRISPR/Cas9 offers the advantage of preserving patient-specific genetic background and the ability to generate isogenic controls by correcting a specific mutation. The patient cell line and the isogenic control can be differentiated into the cell type of interest to model various aspects of TSC. In this review, we discuss the remarkable capacity of these cells to be used as a model for TSC in two- and three-dimensional cultures, the potential variability in iPSC models, and highlight differences between findings reported to date.
Collapse
Affiliation(s)
- Wardiya Afshar Saber
- Department of Neurology, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Mustafa Sahin
- Department of Neurology, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
13
|
Zimmer TS, Ciriminna G, Arena A, Anink JJ, Korotkov A, Jansen FE, van Hecke W, Spliet WG, van Rijen PC, Baayen JC, Idema S, Rensing NR, Wong M, Mills JD, van Vliet EA, Aronica E. Chronic activation of anti-oxidant pathways and iron accumulation in epileptogenic malformations. Neuropathol Appl Neurobiol 2020; 46:546-563. [PMID: 31869431 PMCID: PMC7308211 DOI: 10.1111/nan.12596] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/18/2019] [Indexed: 12/29/2022]
Abstract
Aims Oxidative stress is evident in resected epileptogenic brain tissue of patients with developmental brain malformations related to mammalian target of rapamycin activation: tuberous sclerosis complex (TSC) and focal cortical dysplasia type IIb (FCD IIb). Whether chronic activation of anti‐oxidant pathways is beneficial or contributes to pathology is not clear. Methods We investigated oxidative stress markers, including haem oxygenase 1, ferritin and the inflammation associated microRNA‐155 in surgically resected epileptogenic brain tissue of TSC (n = 10) and FCD IIb (n = 8) patients and in a TSC model (Tsc1GFAP−/− mice) using immunohistochemistry, in situ hybridization, real‐time quantitative PCR and immunoblotting. Using human foetal astrocytes we performed an in vitro characterization of the anti‐oxidant response to acute and chronic oxidative stress and evaluated overexpression of the disease‐relevant pro‐inflammatory microRNA‐155. Results Resected TSC or FCD IIb tissue displayed higher expression of oxidative stress markers and microRNA‐155. Tsc1GFAP−/− mice expressed more microRNA‐155 and haem oxygenase 1 in the brain compared to wild‐type, preceding the typical development of spontaneous seizures in these animals. In vitro, chronic microRNA‐155 overexpression induced haem oxygenase 1, iron regulatory elements and increased susceptibility to oxidative stress. Overexpression of iron regulatory genes was also detected in patients with TSC, FCD IIb and Tsc1GFAP−/− mice. Conclusion Our results demonstrate that early and sustained activation of anti‐oxidant signalling and dysregulation of iron metabolism are a pathological hallmark of FCD IIb and TSC. Our findings suggest novel therapeutic strategies aimed at controlling the pathological link between both processes.
Collapse
Affiliation(s)
- T S Zimmer
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - G Ciriminna
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - A Arena
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - J J Anink
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - A Korotkov
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - F E Jansen
- Department of Paediatric Neurology, University Medical Center Utrecht, The Netherlands
| | - W van Hecke
- Department of Pathology, University Medical Center Utrecht, The Netherlands
| | - W G Spliet
- Department of Pathology, University Medical Center Utrecht, The Netherlands
| | - P C van Rijen
- Department of Neurosurgery, Brain Centre, Rudolf Magnus Institute for Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J C Baayen
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - S Idema
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - N R Rensing
- Department of Neurology, Washington University, Saint Louis, MO, USA
| | - M Wong
- Department of Neurology, Washington University, Saint Louis, MO, USA
| | - J D Mills
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - E A van Vliet
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - E Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| |
Collapse
|
14
|
Mühlebner A, Bongaarts A, Sarnat HB, Scholl T, Aronica E. New insights into a spectrum of developmental malformations related to mTOR dysregulations: challenges and perspectives. J Anat 2019; 235:521-542. [PMID: 30901081 DOI: 10.1111/joa.12956] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2019] [Indexed: 12/20/2022] Open
Abstract
In recent years the role of the mammalian target of rapamycin (mTOR) pathway has emerged as crucial for normal cortical development. Therefore, it is not surprising that aberrant activation of mTOR is associated with developmental malformations and epileptogenesis. A broad spectrum of malformations of cortical development, such as focal cortical dysplasia (FCD) and tuberous sclerosis complex (TSC), have been linked to either germline or somatic mutations in mTOR pathway-related genes, commonly summarised under the umbrella term 'mTORopathies'. However, there are still a number of unanswered questions regarding the involvement of mTOR in the pathophysiology of these abnormalities. Therefore, a monogenetic disease, such as TSC, can be more easily applied as a model to study the mechanisms of epileptogenesis and identify potential new targets of therapy. Developmental neuropathology and genetics demonstrate that FCD IIb and hemimegalencephaly are the same diseases. Constitutive activation of mTOR signalling represents a shared pathogenic mechanism in a group of developmental malformations that have histopathological and clinical features in common, such as epilepsy, autism and other comorbidities. We seek to understand the effect of mTOR dysregulation in a developing cortex with the propensity to generate seizures as well as the aftermath of the surrounding environment, including the white matter.
Collapse
Affiliation(s)
- A Mühlebner
- Department of Neuropathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - A Bongaarts
- Department of Neuropathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - H B Sarnat
- Departments of Paediatrics, Pathology (Neuropathology) and Clinical Neurosciences, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute (Owerko Centre), Calgary, AB, Canada
| | - T Scholl
- Department of Paediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - E Aronica
- Department of Neuropathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Amsterdam, The Netherlands
| |
Collapse
|
15
|
Arena A, Zimmer TS, van Scheppingen J, Korotkov A, Anink JJ, Mühlebner A, Jansen FE, van Hecke W, Spliet WG, van Rijen PC, Vezzani A, Baayen JC, Idema S, Iyer AM, Perluigi M, Mills JD, van Vliet EA, Aronica E. Oxidative stress and inflammation in a spectrum of epileptogenic cortical malformations: molecular insights into their interdependence. Brain Pathol 2018; 29:351-365. [PMID: 30303592 DOI: 10.1111/bpa.12661] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/14/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress (OS) occurs in brains of patients with epilepsy and coincides with brain inflammation, and both phenomena contribute to seizure generation in animal models. We investigated whether expression of OS and brain inflammation markers co-occurred also in resected brain tissue of patients with epileptogenic cortical malformations: hemimegalencephaly (HME), focal cortical dysplasia (FCD) and cortical tubers in tuberous sclerosis complex (TSC). Moreover, we studied molecular mechanisms linking OS and inflammation in an in vitro model of neuronal function. Untangling interdependency and underlying molecular mechanisms might pose new therapeutic strategies for treating patients with drug-resistant epilepsy of different etiologies. Immunohistochemistry was performed for specific OS markers xCT and iNOS and brain inflammation markers TLR4, COX-2 and NF-κB in cortical tissue derived from patients with HME, FCD IIa, IIb and TSC. Additionally, we studied gene expression of these markers using the human neuronal cell line SH-SY5Y in which OS was induced using H2 O2 . OS markers were higher in dysmorphic neurons and balloon/giant cells in cortex of patients with FCD IIb or TSC. Expression of OS markers was positively correlated to expression of brain inflammation markers. In vitro, 100 µM, but not 50 µM, of H2 O2 increased expression of TLR4, IL-1β and COX-2. We found that NF-κB signaling was activated only upon stimulation with 100 µM H2 O2 leading to upregulation of TLR4 signaling and IL-1β. The NF-κB inhibitor TPCA-1 completely reversed this effect. Our results show that OS positively correlates with neuroinflammation and is particularly evident in brain tissue of patients with FCD IIb and TSC. In vitro, NF-κB is involved in the switch to an inflammatory state after OS. We propose that the extent of OS can predict the neuroinflammatory state of the brain. Additionally, antioxidant treatments may prevent the switch to inflammation in neurons thus targeting multiple epileptogenic processes at once.
Collapse
Affiliation(s)
- Andrea Arena
- Department of (Neuro-)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands.,Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Till S Zimmer
- Department of (Neuro-)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Jackelien van Scheppingen
- Department of (Neuro-)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Anatoly Korotkov
- Department of (Neuro-)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Jasper J Anink
- Department of (Neuro-)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Angelika Mühlebner
- Department of (Neuro-)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Floor E Jansen
- Department of Pediatric Neurology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wim van Hecke
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wim G Spliet
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Peter C van Rijen
- Department of Neurosurgery, Rudolf Magnus Institute for Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Johannes C Baayen
- Department of Neurosurgery, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sander Idema
- Department of Neurosurgery, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Anand M Iyer
- Department of (Neuro-)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - James D Mills
- Department of (Neuro-)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Erwin A van Vliet
- Department of (Neuro-)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Eleonora Aronica
- Department of (Neuro-)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), the Netherlands
| |
Collapse
|
16
|
MTOR pathway in focal cortical dysplasia type 2: What do we know? Epilepsy Behav 2018; 85:157-163. [PMID: 29945038 DOI: 10.1016/j.yebeh.2018.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 01/15/2023]
Abstract
Focal cortical dysplasia (FCD) is the most commonly encountered developmental malformation that causes refractory epilepsy. Focal cortical dysplasia type 2 is one of the most usual neuropathological findings in tissues resected therapeutically from patients with drug-resistant epilepsy. Unlike other types of FCD, it is characterized by laminar disorganization and dysplastic neurons, which compromise the organization of the six histologically known layers in the cortex; the morphology and/or cell location can also be altered. A comprehensive review about the pathogenesis of this disease is important because of the necessity to update the results reported over the past years. Here, we present an updated review through Pubmed about the mammalian target of rapamycin (MTOR) pathway in FCD type 2. A wide variety of aspects was covered in 44 articles related to molecular and cellular biology, including experiments in animal and human models. The first publications appeared in 2004, but there is still a lack of studies specifically for one type of FCD. With the advancement of techniques and greater access to molecular and cellular experiments, such as induced pluripotent stem cells (iPSCs) and organoids, it is believed that the trend is increasing the number of publications contributing to the achievement of new discoveries.
Collapse
|
17
|
Curatolo P, Moavero R, van Scheppingen J, Aronica E. mTOR dysregulation and tuberous sclerosis-related epilepsy. Expert Rev Neurother 2018; 18:185-201. [DOI: 10.1080/14737175.2018.1428562] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University Hospital, Rome, Italy
| | - Romina Moavero
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University Hospital, Rome, Italy
- Child Neurology Unit, Neuroscience and Neurorehabilitation Department, “Bambino Gesù” Children’s Hospital, IRCCS, Rome, Italy
| | - Jackelien van Scheppingen
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), The Netherlands
| |
Collapse
|
18
|
Adle-Biassette H, Golden JA, Harding B. Developmental and perinatal brain diseases. HANDBOOK OF CLINICAL NEUROLOGY 2018; 145:51-78. [PMID: 28987191 DOI: 10.1016/b978-0-12-802395-2.00006-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This chapter briefly describes the normal development of the nervous system, the neuropathology and pathophysiology of acquired and secondary disorders affecting the embryo, fetus, and child. They include CNS manifestations of chromosomal change; forebrain patterning defects; disorders of the brain size; cell migration and specification disorders; cerebellum, hindbrain and spinal patterning defects; hydrocephalus; secondary malformations and destructive pathologies; vascular malformations; arachnoid cysts and infectious diseases. The distinction between malformations and disruptions is important for pathogenesis and genetic counseling.
Collapse
Affiliation(s)
- Homa Adle-Biassette
- Department of Pathology, Lariboisière Hospital, APHP and Paris Diderot University, Sorbonne Paris Cité, Paris, France.
| | - Jeffery A Golden
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Brian Harding
- Department of Pathology/Neuropathology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
19
|
Li P, Fu X, Smith NA, Ziobro J, Curiel J, Tenga MJ, Martin B, Freedman S, Cea-Del Rio CA, Oboti L, Tsuchida TN, Oluigbo C, Yaun A, Magge SN, O'Neill B, Kao A, Zelleke TG, Depositario-Cabacar DT, Ghimbovschi S, Knoblach S, Ho CY, Corbin JG, Goodkin HP, Vicini S, Huntsman MM, Gaillard WD, Valdez G, Liu JS. Loss of CLOCK Results in Dysfunction of Brain Circuits Underlying Focal Epilepsy. Neuron 2017; 96:387-401.e6. [PMID: 29024662 PMCID: PMC6233318 DOI: 10.1016/j.neuron.2017.09.044] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 06/20/2017] [Accepted: 09/25/2017] [Indexed: 01/09/2023]
Abstract
Because molecular mechanisms underlying refractory focal epilepsy are poorly defined, we performed transcriptome analysis on human epileptogenic tissue. Compared with controls, expression of Circadian Locomotor Output Cycles Kaput (CLOCK) is decreased in epileptogenic tissue. To define the function of CLOCK, we generated and tested the Emx-Cre; Clockflox/flox and PV-Cre; Clockflox/flox mouse lines with targeted deletions of the Clock gene in excitatory and parvalbumin (PV)-expressing inhibitory neurons, respectively. The Emx-Cre; Clockflox/flox mouse line alone has decreased seizure thresholds, but no laminar or dendritic defects in the cortex. However, excitatory neurons from the Emx-Cre; Clockflox/flox mouse have spontaneous epileptiform discharges. Both neurons from Emx-Cre; Clockflox/flox mouse and human epileptogenic tissue exhibit decreased spontaneous inhibitory postsynaptic currents. Finally, video-EEG of Emx-Cre; Clockflox/flox mice reveals epileptiform discharges during sleep and also seizures arising from sleep. Altogether, these data show that disruption of CLOCK alters cortical circuits and may lead to generation of focal epilepsy.
Collapse
Affiliation(s)
- Peijun Li
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.
| | - Xiaoqin Fu
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Nathan A Smith
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Julie Ziobro
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Julian Curiel
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Milagros J Tenga
- Virginia Tech Carillion Research Institute; Roanoke, VA 24014, USA
| | - Brandon Martin
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Samuel Freedman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christian A Cea-Del Rio
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Livio Oboti
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Tammy N Tsuchida
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA
| | - Chima Oluigbo
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA; Division of Neurosurgery, Children's National Medical Center, Washington, DC 20010, USA
| | - Amanda Yaun
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA; Division of Neurosurgery, Children's National Medical Center, Washington, DC 20010, USA
| | - Suresh N Magge
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA; Division of Neurosurgery, Children's National Medical Center, Washington, DC 20010, USA
| | - Brent O'Neill
- Division of Pediatric Neurosurgery, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amy Kao
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA
| | - Tesfaye G Zelleke
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA
| | - Dewi T Depositario-Cabacar
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA
| | - Svetlana Ghimbovschi
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Susan Knoblach
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Chen-Ying Ho
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA; Division of Pathology, Children's National Medical Center; Washington, DC 20010, USA
| | - Joshua G Corbin
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Howard P Goodkin
- Departments of Neurology and Pediatrics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20057, USA
| | - Molly M Huntsman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - William D Gaillard
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA; Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA
| | - Gregorio Valdez
- Virginia Tech Carillion Research Institute; Roanoke, VA 24014, USA; Department of Biological Sciences, Virginia Tech; Blacksburg, VA 24061, USA
| | - Judy S Liu
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.
| |
Collapse
|
20
|
Auvin S, Walker L, Gallentine W, Jozwiak S, Tombini M, Sills GJ. Prospective clinical trials to investigate clinical and molecular biomarkers. Epilepsia 2017; 58 Suppl 3:20-26. [PMID: 28675556 DOI: 10.1111/epi.13782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2017] [Indexed: 01/11/2023]
Abstract
Among clinical studies, randomized studies as well as well-designed observational studies are providing the highest quality data. In addition, these studies represent a good opportunity to examine biomarkers of ictogenesis and epileptogenesis. To date, no validated molecular or cellular biomarker exists for any aspect of epilepsy. We provide an overview of the inflammatory biomarkers under investigation in prospective clinical studies in epilepsy: proinflammatory cytokines in prolonged febrile seizure; High Mobility Group Box 1 (HMGB1) as a prognosis biomarker in epilepsy and the interaction between inflammation and metabolism, in particular, iron metabolism, in epilepsy. The designs of the European Union EPISTOP project following prospectively patients with tuberous sclerosis from birth to the start of the epilepsy and of the Standard and New Antiepileptic Drugs-II study illustrate how such studies can be used to find new inflammatory biomarkers of ictogenesis and epileptogenesis. If we want to bridge the current gap between having numerous biomarker candidates from preclinical studies and their selective use in clinical practice, we need to explore multiple biologic systems, not just including inflammation. In addition, it is crucial that those involved in the design and support of relevant clinical studies recognize this gap and act accordingly, and in the interests of improving the diagnosis and prognosis for epilepsy.
Collapse
Affiliation(s)
- Stéphane Auvin
- Pediatric Neurology Department & INSERM U1141, Robert-Debré University Hospital, APHP, Paris, France
| | - Lauren Walker
- Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - William Gallentine
- Department of Pediatrics (Neurology), Duke University Medical Center, Durham, North Carolina, U.S.A
| | - Sergiusz Jozwiak
- Department of Child Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Mario Tombini
- Department of Medicine, Unit of Neurology, Neurophysiology, Neurobiology, Campus Bio-Medico University, Rome, Italy
| | - Graeme J Sills
- Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
21
|
Samueli S, Abraham K, Dressler A, Gröppel G, Mühlebner-Fahrngruber A, Scholl T, Kasprian G, Laccone F, Feucht M. Efficacy and safety of Everolimus in children with TSC - associated epilepsy - Pilot data from an open single-center prospective study. Orphanet J Rare Dis 2016; 11:145. [PMID: 27809914 PMCID: PMC5094073 DOI: 10.1186/s13023-016-0530-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/24/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Epilepsy occurs in up to 90 % of all individuals with tuberous sclerosis complex (TSC). In 67 % disease onset is during childhood. In ≥ 50 % seizures are refractory to currently available treatment options. The mTOR-Inhibitor Everolimus (Votubia®) was approved for the treatment of subependymal giant cell astrocytoma (SEGA) and renal angiomyolipoma (AML) in Europe in 2011. It's anticonvulsive/antiepileptic properties are promising, but evidence is still limited. Study aim was to evaluate the efficacy and safety of Everolimus in children and adolescents with TSC-associated epilepsies. METHODS Inclusion-criteria of this investigator-initiated, single-center, open, prospective study were: 1) the ascertained diagnosis of TSC; 2) age ≤ 18 years; 3) treatment indication for Votubia® according to the European Commission guidelines; 4) drug-resistant TSC-associated epilepsy, 5) prospective continuous follow-up for at least 6 months after treatment initiation and 6) informed consent to participate. Votubia® was orally administered once/day, starting with 4.5 mg/m2 and titrated to achieve blood trough concentrations between 5 and 15 ng/ml. Primary endpoint was the reduction in seizure frequency of ≥ 50 % compared to baseline. RESULTS Fifteen patients (nine male) with a median age of six (range; 1-18) years fulfilled the inclusion criteria. 26 % (4/15) had TSC1, 66 % (10/15) had TSC2 mutations. In one patient no mutation was found. Time of observation after treatment initiation was median 22 (range; 6-50) months. At last observation, 80 % (12/15) of the patients were responders, 58 % of them (7/12) were seizure free. The overall reduction in seizure frequency was 60 % in focal seizures, 80 % in generalized tonic clonic seizures and 87 % in drop attacks. The effect of Everolimus was seen already at low doses, early after treatment initiation. Loss of efficacy over time was not observed. Transient side effects were seen in 93 % (14/15) of the patients. In no case the drug had to be withdrawn. CONCLUSION Everolimus seems to be an effective treatment option not only for SEGA and AML, but also for TSC-related epilepsies. Although there are potential serious side effects, treatment was tolerated well by the majority of patients, provided that patients are under close surveillance of epileptologists who are familiar with immunosuppressive agents.
Collapse
Affiliation(s)
- Sharon Samueli
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Klaus Abraham
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Anastasia Dressler
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Gudrun Gröppel
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Theresa Scholl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Franco Laccone
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Martha Feucht
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|