1
|
Muli S, Blumenthal A, Conzen CA, Benz ME, Alexy U, Schmid M, Keski-Rahkonen P, Floegel A, Nöthlings U. Association of Ultraprocessed Foods Intake with Untargeted Metabolomics Profiles in Adolescents and Young Adults in the DONALD Cohort Study. J Nutr 2024; 154:3255-3265. [PMID: 39332770 PMCID: PMC11600117 DOI: 10.1016/j.tjnut.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/16/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND High consumption of ultraprocessed foods (UPFs) continues to draw significant public health interest because of the associated negative health outcomes. Metabolomics can contribute to the understanding of the biological mechanisms through which UPFs may influence health. OBJECTIVES To investigate urine and plasma metabolomic biomarkers of UPF intake in adolescents and young adults. METHODS We used data from the Dortmund Nutritional and Anthropometric Longitudinally Designed study to investigate cross-sectional associations of UPF intake with concentrations of urine metabolites in adolescents using 3d weighed dietary records (3d-WDR) and 24-h urine samples (n = 339), and associations of repeatedly assessed UPF intake with concentrations of circulating plasma metabolites in young adults with 3-6 3d-WDRs within 5 y preceding blood measurement (n = 195). Urine and plasma samples were analyzed using mass spectrometry-based metabolomics. Biosample-specific metabolite patterns (MPs) were determined using robust sparse principal components analysis. Multivariable linear regression models were applied to assess the associations of UPF consumption (as a percentage of total food intake in g/d) with concentrations of individual metabolites and MP scores. RESULTS The median proportion of UPF intake was 22.0% [interquartile range (IQR): 12.3, 32.9] in adolescents and 23.2% (IQR: 16.0, 31.6) in young adults. We identified 42 and 6 UPF intake-associated metabolites in urine and plasma samples, respectively. One urinary MP, "xenobiotics and amino acids" [β = 0.042, 95% confidence interval (CI): 0.014, 0.070] and 1 plasma MP, "lipids, xenobiotics, and amino acids" (β = 0.074, 95% CI: 0.031, 0.117) showed positive association with UPF intake. Both patterns shared 29 metabolites, mostly of xenobiotic metabolism. CONCLUSIONS We identified urine and plasma metabolites associated with UPF intake in adolescents and young adults, which may represent some of the biological mechanisms through which UPFs may influence metabolism and health.
Collapse
Affiliation(s)
- Samuel Muli
- Unit of Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Bonn, Germany
| | - Annika Blumenthal
- Unit of Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Bonn, Germany
| | - Christina-Alexandra Conzen
- Unit of Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Bonn, Germany
| | - Maike Elena Benz
- Unit of Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Bonn, Germany
| | - Ute Alexy
- Unit of Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Bonn, Germany
| | - Matthias Schmid
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), University Hospital Bonn, Bonn, Germany
| | | | - Anna Floegel
- Section of Dietetics, Faculty of Agriculture and Food Sciences, Hochschule Neubrandenburg, Neubrandenburg, Germany
| | - Ute Nöthlings
- Unit of Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Bonn, Germany.
| |
Collapse
|
2
|
Goerdten J, Muli S, Rattner J, Merdas M, Achaintre D, Yuan L, De Henauw S, Foraita R, Hunsberger M, Huybrechts I, Lissner L, Molnár D, Moreno LA, Russo P, Veidebaum T, Aleksandrova K, Nöthlings U, Oluwagbemigun K, Keski-Rahkonen P, Floegel A. Identification and Replication of Urine Metabolites Associated With Short-Term and Habitual Intake of Sweet and Fatty Snacks in European Children and Adolescents. J Nutr 2024; 154:3274-3285. [PMID: 39332769 PMCID: PMC11600116 DOI: 10.1016/j.tjnut.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Intake of sweet and fatty snacks may partly contribute to the occurrence of obesity and other health conditions in childhood. Traditional dietary assessment methods may be limited in accurately assessing the intake of sweet and fatty snacks in children. Metabolite biomarkers may aid the objective assessment of children's food intake and support establishing diet-disease relationships. OBJECTIVES The present study aimed to identify biomarkers of sweet and fatty snack intake in 2 independent cohorts of European children. METHODS We used data from the IDEFICS/I.Family cohort from baseline (2007/2008) and 2 follow-up examination waves (2009/2010 and 2013/2014). In total, 1788 urine samples from 599 children were analyzed for untargeted metabolomics using high-resolution liquid chromatography-mass spectrometry. Short-term dietary intake was assessed by 24-h dietary recalls, and habitual dietary intake was calculated with the National Cancer Institute method. Data from the Dortmund Nutritional and Anthropometric Longitudinal Designed (DONALD) cohort of 24-h urine samples (n = 567) and 3-d weighted dietary records were used for external replication of results. Multivariate modeling with unbiased variable selection in R algorithms and linear mixed models were used to identify novel biomarkers. Metabolite features significantly associated with dietary intake were then annotated. RESULTS In total, 66 metabolites were discovered and found to be statistically significant for chocolate candy; cakes, puddings, and cookies; candy and sweets; ice cream; and crisps. Most of the features (n = 62) could not be annotated. Short-term and habitual chocolate intake were positively associated with theobromine, xanthosine, and cyclo(L-prolyl-L-valyl). These results were replicated in the DONALD cohort. Short-term candy and sweet intake was negatively associated with octenoylcarnitine. CONCLUSIONS Of the potential metabolite biomarkers of sweet and fatty snacks in children, 3 biomarkers of chocolate intake, namely theobromine, xanthosine, and cyclo(L-prolyl-L-valyl), are externally replicated. However, these potential biomarkers require further validation in children.
Collapse
Affiliation(s)
- Jantje Goerdten
- Leibniz Institute for Prevention Research and Epidemiology (BIPS), Bremen, Germany.
| | - Samuel Muli
- Unit of Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Bonn, Germany
| | - Jodi Rattner
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Mira Merdas
- International Agency for Research on Cancer (IARC), Lyon, France
| | - David Achaintre
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Li Yuan
- Leibniz Institute for Prevention Research and Epidemiology (BIPS), Bremen, Germany
| | - Stefaan De Henauw
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Ronja Foraita
- Leibniz Institute for Prevention Research and Epidemiology (BIPS), Bremen, Germany
| | - Monica Hunsberger
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Inge Huybrechts
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Lauren Lissner
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dénes Molnár
- Department of Pediatrics, Medical School, University of Pécs, Pécs, Hungary
| | - Luis A Moreno
- GENUD (Growth, Exercise, NUtrition and Development) Research Group, Faculty of Health Sciences, University of Zaragoza, Instituto Agroalimentario de Aragón (IA2) and Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Paola Russo
- Institute of Food Sciences, CNR, Avellino, Italy
| | | | - Krasimira Aleksandrova
- Leibniz Institute for Prevention Research and Epidemiology (BIPS), Bremen, Germany; Faculty of Human and Health Sciences, University of Bremen, Bremen, Germany
| | - Ute Nöthlings
- Unit of Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Bonn, Germany
| | - Kolade Oluwagbemigun
- Unit of Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Bonn, Germany
| | | | - Anna Floegel
- Leibniz Institute for Prevention Research and Epidemiology (BIPS), Bremen, Germany; Section of Dietetics, Faculty of Agriculture and Food Sciences, Hochschule Neubrandenburg-University of Applied Sciences, Neubrandenburg, Germany
| |
Collapse
|
3
|
Ribeiro LR, Dos Santos AMF, da Cruz Guedes E, Bezerra TLDS, de Souza TL, Filho JMB, de Almeida RN, Salvadori MGDSS. Effects of acute administration of 4-allyl-2,6-dimethoxyphenol in mouse models of seizures. Epilepsy Res 2024; 205:107421. [PMID: 39068729 DOI: 10.1016/j.eplepsyres.2024.107421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Epilepsy, a chronic neurological disorder characterized by recurrent unprovoked seizures, presents a substantial challenge in approximately one-third of cases exhibiting resistance to conventional pharmacological treatments. This study investigated the effect of 4-allyl-2,6-dimethoxyphenol, a phenolic compound derived from various natural sources, in different models of induced seizures and its impact on animal electroencephalographic (EEG) recordings. Adult male Swiss albino mice were pre-treated (i.p.) with a dose curve of 4-allyl-2,6-dimethoxyphenol (50, 100, or 200 mg/kg), its vehicle (Tween), or standard antiepileptic drug (Diazepam; or Phenytoin). Subsequently, the mice were subjected to different seizure-inducing models - pentylenetetrazole (PTZ), 3-mercaptopropionic acid (3-MPA), pilocarpine (PILO), or maximal electroshock seizure (MES). EEG analysis was performed on other animals surgically implanted with electrodes to evaluate brain activity. Significant results revealed that animals treated with 4-allyl-2,6-dimethoxyphenol exhibited increased latency to the first myoclonic jerk in the PTZ and PILO models; prolonged latency to the first tonic-clonic seizure in the PTZ, 3-MPA, and PILO models; reduced total duration of tonic-clonic seizures in the PTZ and PILO models; decreased intensity of convulsive seizures in the PTZ and 3-MPA models; and diminished mortality in the 3-MPA, PILO, and MES models. EEG analysis indicated an increase in the percentage of total power attributed to beta waves following 4-allyl-2,6-dimethoxyphenol administration. Notably, the substance protected from behavioral and electrographic seizures in the PTZ model, preventing increases in the average amplitude of recording signals while also inducing an increase in the participation of theta and gamma waves. These findings suggest promising outcomes for the tested phenolic compound across diverse pre-clinical seizure models, highlighting the need for further comprehensive studies to elucidate its underlying mechanisms and validate its clinical relevance in epilepsy management.
Collapse
Affiliation(s)
- Leandro Rodrigo Ribeiro
- Laboratory of Psychopharmacology, Federal University of Paraíba, João Pessoa, Brazil; Graduate Program in Cognitive Neuroscience and Behavior, Federal University of Paraíba, João Pessoa, Brazil; Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil; Institute of Research in Pharmaceuticals and Medicines, Federal University of Paraíba, João Pessoa, Brazil.
| | - Aline Matilde Ferreira Dos Santos
- Laboratory of Psychopharmacology, Federal University of Paraíba, João Pessoa, Brazil; Graduate Program in Cognitive Neuroscience and Behavior, Federal University of Paraíba, João Pessoa, Brazil; Institute of Research in Pharmaceuticals and Medicines, Federal University of Paraíba, João Pessoa, Brazil
| | - Erika da Cruz Guedes
- Laboratory of Psychopharmacology, Federal University of Paraíba, João Pessoa, Brazil; Institute of Research in Pharmaceuticals and Medicines, Federal University of Paraíba, João Pessoa, Brazil; Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Thamires Lucena da Silva Bezerra
- Laboratory of Psychopharmacology, Federal University of Paraíba, João Pessoa, Brazil; Institute of Research in Pharmaceuticals and Medicines, Federal University of Paraíba, João Pessoa, Brazil
| | - Thaíze Lopes de Souza
- Laboratory of Psychopharmacology, Federal University of Paraíba, João Pessoa, Brazil; Institute of Research in Pharmaceuticals and Medicines, Federal University of Paraíba, João Pessoa, Brazil
| | - José Maria Barbosa Filho
- Institute of Research in Pharmaceuticals and Medicines, Federal University of Paraíba, João Pessoa, Brazil; Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, Brazil; Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Brazil
| | - Reinaldo Nóbrega de Almeida
- Laboratory of Psychopharmacology, Federal University of Paraíba, João Pessoa, Brazil; Graduate Program in Cognitive Neuroscience and Behavior, Federal University of Paraíba, João Pessoa, Brazil; Institute of Research in Pharmaceuticals and Medicines, Federal University of Paraíba, João Pessoa, Brazil; Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, Brazil; Department of Physiology and Pathology, Federal University of Paraíba, João Pessoa, Brazil
| | - Mirian Graciela da Silva Stiebbe Salvadori
- Laboratory of Psychopharmacology, Federal University of Paraíba, João Pessoa, Brazil; Graduate Program in Cognitive Neuroscience and Behavior, Federal University of Paraíba, João Pessoa, Brazil; Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil; Institute of Research in Pharmaceuticals and Medicines, Federal University of Paraíba, João Pessoa, Brazil; Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
4
|
Cuparencu C, Bulmuş-Tüccar T, Stanstrup J, La Barbera G, Roager HM, Dragsted LO. Towards nutrition with precision: unlocking biomarkers as dietary assessment tools. Nat Metab 2024; 6:1438-1453. [PMID: 38956322 DOI: 10.1038/s42255-024-01067-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/20/2024] [Indexed: 07/04/2024]
Abstract
Precision nutrition requires precise tools to monitor dietary habits. Yet current dietary assessment instruments are subjective, limiting our understanding of the causal relationships between diet and health. Biomarkers of food intake (BFIs) hold promise to increase the objectivity and accuracy of dietary assessment, enabling adjustment for compliance and misreporting. Here, we update current concepts and provide a comprehensive overview of BFIs measured in urine and blood. We rank BFIs based on a four-level utility scale to guide selection and identify combinations of BFIs that specifically reflect complex food intakes, making them applicable as dietary instruments. We discuss the main challenges in biomarker development and illustrate key solutions for the application of BFIs in human studies, highlighting different strategies for selecting and combining BFIs to support specific study designs. Finally, we present a roadmap for BFI development and implementation to leverage current knowledge and enable precision in nutrition research.
Collapse
Affiliation(s)
- Cătălina Cuparencu
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark.
| | - Tuğçe Bulmuş-Tüccar
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
- Department of Nutrition and Dietetics, Yüksek İhtisas University, Ankara, Turkey
| | - Jan Stanstrup
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Giorgia La Barbera
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Henrik M Roager
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Lars O Dragsted
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
5
|
Silva AM, Levy J, De Carli E, Cacau LT, de Alvarenga JFR, Benseñor IJM, Lotufo PA, Fiamoncini J, Brennan L, Marchioni DML. Biomarker panels for fruit intake assessment: a metabolomics analysis in the ELSA-Brasil study. Metabolomics 2024; 20:88. [PMID: 39073486 DOI: 10.1007/s11306-024-02145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/24/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Food intake biomarkers are used to estimate dietary exposure; however, selecting a single biomarker to evaluate a specific dietary component is difficult due to the overlap of diverse compounds from different foods. Therefore, combining two or more biomarkers can increase the sensitivity and specificity of food intake estimates. OBJECTIVE This study aimed to evaluate the ability of metabolite panels to distinguish between self-reported fruit consumers and non-consumers among participants in the Longitudinal Study of Adult Health. MATERIALS AND METHODS A total of 93 healthy adults of both sexes were selected from the Longitudinal Study of Adult Health. A 24-h dietary recall was obtained using the computer-assisted 24-h food recall GloboDiet software, and 24-h urine samples were collected from each participant. Metabolites were identified in urine using liquid chromatography coupled with high-resolution mass spectrometry by comparing their exact mass and fragmentation patterns using free-access databases. Multivariate receiver operating characteristic curve (ROC) analysis and partial least squares discriminant analysis were used to verify the ability of the metabolite combination to classify daily and non-daily fruit consumers. Fruit intake was identified using a 24 h dietary recall (24 h-DR). RESULTS Bananas, grapes, and oranges are included in the summary. The panel of biomarkers exhibited an area under the curve (AUC) > 0.6 (Orange AUC = 0.665; Grape AUC = 0.622; Bananas AUC = 0.602; All fruits AUC = 0.679; Citrus AUC = 0.693) and variable importance projection score > 1.0, and these were useful for assessing the sensitivity and predictability of food intake in our population. CONCLUSION A panel of metabolites was able to classify self-reported fruit consumers with strong predictive power and high specificity and sensitivity values except for banana and total fruit intake.
Collapse
Affiliation(s)
- Alexsandro Macedo Silva
- Department of Nutrition, Faculty of Public Health, University of São Paulo, São Paulo, SP, Brazil
| | - Jéssica Levy
- Department of Nutrition, Faculty of Public Health, University of São Paulo, São Paulo, SP, Brazil
| | - Eduardo De Carli
- Department of Nutrition, Faculty of Public Health, University of São Paulo, São Paulo, SP, Brazil
| | - Leandro Teixeira Cacau
- Department of Nutrition, Faculty of Public Health, University of São Paulo, São Paulo, SP, Brazil
| | - José Fernando Rinaldi de Alvarenga
- Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Food Research Center (FoRC), University of São Paulo, São Paulo, SP, Brazil
| | | | - Paulo Andrade Lotufo
- Center for Clinical and Epidemiological Research, University Hospital, University of São Paulo, São Paulo, SP, Brazil
| | - Jarlei Fiamoncini
- Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Food Research Center (FoRC), University of São Paulo, São Paulo, SP, Brazil
| | - Lorraine Brennan
- School of Agriculture and Food Science, UCD Institute of Food and Health, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
6
|
Cifuentes M, Vahid F, Devaux Y, Bohn T. Biomarkers of food intake and their relevance to metabolic syndrome. Food Funct 2024; 15:7271-7304. [PMID: 38904169 DOI: 10.1039/d4fo00721b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Metabolic syndrome (MetS) constitutes a prevalent risk factor associated with non communicable diseases such as cardiovascular disease and type 2 diabetes. A major factor impacting the etiology of MetS is diet. Dietary patterns and several individual food constituents have been related to the risk of developing MetS or have been proposed as adjuvant treatment. However, traditional methods of dietary assessment such as 24 h recalls rely greatly on intensive user-interaction and are subject to bias. Hence, more objective methods are required for unbiased dietary assessment and efficient prevention. While it is accepted that some dietary-derived constituents in blood plasma are indicators for certain dietary patterns, these may be too unstable (such as vitamin C as a marker for fruits/vegetables) or too broad (e.g. polyphenols for plant-based diets) or reflect too short-term intake only to allow for strong associations with prolonged intake of individual food groups. In the present manuscript, commonly employed biomarkers of intake including those related to specific food items (e.g. genistein for soybean or astaxanthin and EPA for fish intake) and novel emerging ones (e.g. stable isotopes for meat intake or microRNA for plant foods) are emphasized and their suitability as biomarker for food intake discussed. Promising alternatives to plasma measures (e.g. ethyl glucuronide in hair for ethanol intake) are also emphasized. As many biomarkers (i.e. secondary plant metabolites) are not limited to dietary assessment but are also capable of regulating e.g. anti-inflammatory and antioxidant pathways, special attention will be given to biomarkers presenting a double function to assess both dietary patterns and MetS risk.
Collapse
Affiliation(s)
- Miguel Cifuentes
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
- Doctoral School in Science and Engineering, University of Luxembourg, 2, Avenue de l'Université, 4365 Esch-sur-Alzette, Luxembourg
| | - Farhad Vahid
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| | - Yvan Devaux
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| | - Torsten Bohn
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| |
Collapse
|
7
|
Tor-Roca A, Sánchez-Pla A, Korosi A, Pallàs M, Lucassen PJ, Castellano-Escuder P, Aigner L, González-Domínguez R, Manach C, Carmona F, Vegas E, Helmer C, Feart C, Lefèvre-Arbogast S, Neuffer J, Lee H, Thuret S, Andres-Lacueva C, Samieri C, Urpi-Sarda M. A Mediterranean Diet-Based Metabolomic Score and Cognitive Decline in Older Adults: A Case-Control Analysis Nested within the Three-City Cohort Study. Mol Nutr Food Res 2024; 68:e2300271. [PMID: 37876144 DOI: 10.1002/mnfr.202300271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/04/2023] [Indexed: 10/26/2023]
Abstract
SCOPE Evidence on the Mediterranean diet (MD) and age-related cognitive decline (CD) is still inconclusive partly due to self-reported dietary assessment. The aim of the current study is to develop an MD- metabolomic score (MDMS) and investigate its association with CD in community-dwelling older adults. METHODS AND RESULTS This study includes participants from the Three-City Study from the Bordeaux (n = 418) and Dijon (n = 422) cohorts who are free of dementia at baseline. Repeated measures of cognition over 12 years are collected. An MDMS is designed based on serum biomarkers related to MD key food groups and using a targeted metabolomics platform. Associations with CD are investigated through conditional logistic regression (matched on age, sex, and education level) in both sample sets. The MDMS is found to be inversely associated with CD (odds ratio [OR] [95% confidence interval (CI)] = 0.90 [0.80-1.00]; p = 0.048) in the Bordeaux (discovery) cohort. Results are comparable in the Dijon (validation) cohort, with a trend toward significance (OR [95% CI] = 0.91 [0.83-1.01]; p = 0.084). CONCLUSIONS A greater adherence to the MD, here assessed by a serum MDMS, is associated with lower odds of CD in older adults.
Collapse
Affiliation(s)
- Alba Tor-Roca
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, Food Science and Nutrition Torribera Campus, University of Barcelona, Santa Coloma de Gramenet, 08921, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Alex Sánchez-Pla
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Aniko Korosi
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, 1098 XH, The Netherlands
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences and Institut of Neurosciences, University of Barcelona, Barcelona, 08028, Spain
- Centro de Investigación Biomédica en Red en Neurodegeneracion, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, 1098 XH, The Netherlands
| | - Pol Castellano-Escuder
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, Food Science and Nutrition Torribera Campus, University of Barcelona, Santa Coloma de Gramenet, 08921, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, 5020, Austria
| | - Raúl González-Domínguez
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, Food Science and Nutrition Torribera Campus, University of Barcelona, Santa Coloma de Gramenet, 08921, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Claudine Manach
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, F-63000, France
| | - Francisco Carmona
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Esteban Vegas
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Catherine Helmer
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, F-33000, France
| | - Catherine Feart
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, F-33000, France
| | - Sophie Lefèvre-Arbogast
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, F-33000, France
| | - Jeanne Neuffer
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, F-33000, France
| | - Hyunah Lee
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, Food Science and Nutrition Torribera Campus, University of Barcelona, Santa Coloma de Gramenet, 08921, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Cécilia Samieri
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, F-33000, France
| | - Mireia Urpi-Sarda
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, Food Science and Nutrition Torribera Campus, University of Barcelona, Santa Coloma de Gramenet, 08921, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, 28029, Spain
| |
Collapse
|
8
|
Patel MJ, Emerenini C, Wang X, Bottiglieri T, Kitzman H. Metabolomic and Physiological Effects of a Cardiorenal Protective Diet Intervention in African American Adults with Chronic Kidney Disease. Metabolites 2024; 14:300. [PMID: 38921435 PMCID: PMC11205948 DOI: 10.3390/metabo14060300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Chronic kidney disease (CKD) impacts 14% of adults in the United States, and African American (AA) individuals are disproportionately affected, with more than 3 times higher risk of kidney failure as compared to White individuals. This study evaluated the effects of base-producing fruit and vegetables (FVs) on cardiorenal outcomes in AA persons with CKD and hypertension (HTN) in a low socioeconomic area. The "Cardiorenal Protective Diet" prospective randomized trial evaluated the effects of a 6-week, community-based FV intervention compared to a waitlist control (WL) in 91 AA adults (age = 58.3 ± 10.1 years, 66% female, 48% income ≤ USD 25K). Biometric and metabolomic variables were collected at baseline and 6 weeks post-intervention. The change in health outcomes for both groups was statistically insignificant (p > 0.05), though small reductions in albumin to creatinine ratio, body mass index, total cholesterol, and systolic blood pressure were observed in the FV group. Metabolomic profiling identified key markers (p < 0.05), including C3, C5, 1-Met-His, kynurenine, PC ae 38:5, and choline, indicating kidney function decline in the WL group. Overall, delivering a directed cardiorenal protective diet intervention improved cardiorenal outcomes in AA adults with CKD and HTN. Additionally, metabolomic profiling may serve as a prognostic technique for the early identification of biomarkers as indicators for worsening CKD and increased CVD risk.
Collapse
Affiliation(s)
- Meera J. Patel
- Peter J. O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Chiamaka Emerenini
- College of Natural Sciences, University of Texas at Austin, Austin, TX 78712, USA;
| | - Xuan Wang
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX 75204, USA; (X.W.); (T.B.)
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX 75204, USA; (X.W.); (T.B.)
| | - Heather Kitzman
- Peter J. O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|
9
|
Sawicki C, Haslam D, Bhupathiraju S. Utilising the precision nutrition toolkit in the path towards precision medicine. Proc Nutr Soc 2023; 82:359-369. [PMID: 37475596 DOI: 10.1017/s0029665123003038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The overall aim of precision nutrition is to replace the 'one size fits all' approach to dietary advice with recommendations that are more specific to the individual in order to improve the prevention or management of chronic disease. Interest in precision nutrition has grown with advancements in technologies such as genomics, proteomics, metabolomics and measurement of the gut microbiome. Precision nutrition initiatives have three major applications in precision medicine. First, they aim to provide more 'precision' dietary assessments through artificial intelligence, wearable devices or by employing omic technologies to characterise diet more precisely. Secondly, precision nutrition allows us to understand the underlying mechanisms of how diet influences disease risk and identify individuals who are more susceptible to disease due to gene-diet or microbiota-diet interactions. Third, precision nutrition can be used for 'personalised nutrition' advice where machine-learning algorithms can integrate data from omic profiles with other personal and clinical measures to improve disease risk. Proteomics and metabolomics especially provide the ability to discover new biomarkers of food or nutrient intake, proteomic or metabolomic signatures of diet and disease, and discover potential mechanisms of diet-disease interactions. Although there are several challenges that must be overcome to improve the reproducibility, cost-effectiveness and efficacy of these approaches, precision nutrition methodologies have great potential for nutrition research and clinical application.
Collapse
Affiliation(s)
- Caleigh Sawicki
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Danielle Haslam
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Shilpa Bhupathiraju
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
10
|
Noerman S, Landberg R. Blood metabolite profiles linking dietary patterns with health-Toward precision nutrition. J Intern Med 2023; 293:408-432. [PMID: 36484466 DOI: 10.1111/joim.13596] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diet is one of the most important exposures that may affect health throughout life span. Investigations on dietary patterns rather than single food components are gaining in popularity because they take the complexity of the whole dietary context into account. Adherence to such dietary patterns can be measured by using metabolomics, which allows measurements of thousands of molecules simultaneously. Derived metabolite signatures of dietary patterns may reflect the consumption of specific groups of foods or their constituents originating from the dietary pattern per se, or the physiological response toward the food-derived metabolites, their interaction with endogenous metabolism, and exogenous factors such as gut microbiota. Here, we review and discuss blood metabolite fingerprints of healthy dietary patterns. The plasma concentration of several food-derived metabolites-such as betaines from whole grains and n - 3 polyunsaturated fatty acids and furan fatty acids from fish-seems to consistently reflect the intake of common foods of several healthy dietary patterns. The metabolites reflecting shared features of different healthy food indices form biomarker panels for which specific, targeted assays could be developed. The specificity of such biomarker panels would need to be validated, and proof-of-concept feeding trials are needed to evaluate to what extent the panels may mediate the effects of dietary patterns on disease risk indicators or if they are merely food intake biomarkers. Metabolites mediating health effects may represent novel targets for precision prevention strategies of clinical relevance to be verified in future studies.
Collapse
Affiliation(s)
- Stefania Noerman
- Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
11
|
Sierra JA, Escobar JS, Corrales-Agudelo V, Lara-Guzmán OJ, Velásquez-Mejía EP, Henao-Rojas JC, Caro-Quintero A, Vaillant F, Muñoz-Durango K. Consumption of golden berries (Physalis peruviana L.) might reduce biomarkers of oxidative stress and alter gut permeability in men without changing inflammation status or the gut microbiota. Food Res Int 2022; 162:111949. [DOI: 10.1016/j.foodres.2022.111949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/04/2022]
|
12
|
Levy J, Silva AM, De Carli E, Cacau LT, de Alvarenga JFR, Fiamoncini J, Benseñor IM, Lotufo PA, Marchioni DM. Biomarkers of Fruit Intake Using a Targeted Metabolomics Approach: an Observational Cross-Sectional Analysis of the ELSA-Brasil Study. J Nutr 2022; 152:2023-2030. [PMID: 35641174 DOI: 10.1093/jn/nxac115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/11/2022] [Accepted: 05/24/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Advances in technology have led to the identification of a greater number of metabolites related to diet. Although fruit intake biomarkers have been reported in some studies, these findings require further replication, considering the relevance of fruits for diet quality and health. OBJECTIVES The aim of this study was to explore the associations of a set of potential urinary biomarkers of diet, assessed using a targeted metabolomics approach, with self-reported fruit intake data in participants of a computer-assisted 24-h dietary recall (GloboDiet software) validation study. METHODS A total of 93 individuals aged 43-72 y, 54% female, participated in this study. The subjects were a subsample of the Longitudinal Study of Adult Health (ELSA-Brasil). A 24-h dietary recall was obtained with the aid of GloboDiet software matching a 24-h urine sample from each participant. Candidate biomarkers were selected in a literature search and identified in urine by LC coupled to high-resolution MS. Spearman correlation analyses were performed between fruit intake and each biomarker. RESULTS Spearman correlation analysis showed that total fruits intake was significantly correlated with citric acid (ρ = 0.213, P = 0.041), ferulic acid sulfate I (ρ = 0.240, P = 0.020), hesperetin glucuronide/homoeriodictyol glucuronide (ρ = 0.303, P = 0.003), hydroxyhippuric acid (ρ = 0.239, P = 0.021), homovanillic alcohol sulfate (ρ = 0.339, P = 0.001), methylgallic acid sulfate (ρ = 0.268, P = 0.009), naringenin glucuronide (NG; ρ = 0.278, P = 0.007), proline betaine (PB; ρ = 0.305, P = 0.003), syringic acid sulfate (ρ = 0.210, P = 0.044), and sinapic acid sulfate (ρ = 0.412, P < 0.001). Among them, 3 have been described in literature as promising biomarkers for intake of total fruit, oranges, and citrus fruit: NG, hesperetin glucuronide, and PB. CONCLUSIONS Associations of total fruits intake with urinary measurements indicate the potential usefulness of dietary biomarkers in the Brazilian population as a complement to self-reported dietary assessments.
Collapse
Affiliation(s)
- Jessica Levy
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Alexsandro Macedo Silva
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Eduardo De Carli
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Leandro Teixeira Cacau
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - José Fernando Rinaldi de Alvarenga
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jarlei Fiamoncini
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Isabela Martins Benseñor
- Clinical and Epidemiological Research Center, University Hospital, University of São Paulo, São Paulo, Brazil
| | - Paulo Andrade Lotufo
- Clinical and Epidemiological Research Center, University Hospital, University of São Paulo, São Paulo, Brazil
| | - Dirce Maria Marchioni
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Chen G, Wang J, Jing Y, Li C, Zhang W, Yang S, Song Y, Wang X, Liu J, Yu D, Xu Z. Serum Metabonomics Reveals Key Metabolites in Different Types of Childhood Short Stature. Front Pharmacol 2022; 13:818952. [PMID: 35600884 PMCID: PMC9117746 DOI: 10.3389/fphar.2022.818952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/21/2022] [Indexed: 11/05/2022] Open
Abstract
Nowadays, short stature (SS) in childhood is a common condition encountered by pediatricians, with an increase in not just a few families. Various studies related to the variations in key metabolites and their biological mechanisms that lead to SS have increased our understanding of the pathophysiology of the disease. However, little is known about the role of metabolite variation in different types of childhood SS that influence these biological processes and whether the understanding of the key metabolites from different types of childhood SS would predict the disease progression better. We performed a systematic investigation using the metabonomics method and studied the correlation between the three groups, namely, the control, idiopathic short stature (ISS), and short stature due to growth hormone deficiency (GHD). We observed that three pathways (viz., purine metabolism, sphingolipid signaling pathway, and sphingolipid metabolism) were significantly enriched in childhood SS. Moreover, we reported that two short peptides (Thr Val Leu Thr Ser and Trp Ile Lys) might play a significant role in childhood SS. Various metabolites in different pathways including 9,10-DiHOME, 12-HETE, 12(13)-EpOME, arachidonic acid methyl ester, glycerophospho-N-arachidonoyl ethanolamine, curvulinic acid (2-acetyl-3,5-dihydroxyphenyl acetic acid), nonanoic acid, and N'-(2,4-dimethylphenyl)-N-methylformamidine in human serum were compared between 60 children diagnosed with SS and 30 normal-height children. More investigations in this area may provide insights and enhance the personalized treatment approaches in clinical practice for SS by elucidating pathophysiology mechanisms of experimental verification.
Collapse
Affiliation(s)
- Guoyou Chen
- Daqing Campus, Harbin Medical University, Daqing, China
| | - Jinming Wang
- Gynecology Department, Dating Oil Field General Hospital, Daqing, China
| | - Yisi Jing
- Fifth Affiliated Hospital, Harbin Medical University, Daqing, China
| | - Chunxiang Li
- Fifth Affiliated Hospital, Harbin Medical University, Daqing, China
| | - Wenyue Zhang
- Fifth Affiliated Hospital, Harbin Medical University, Daqing, China
| | - Shuang Yang
- Fifth Affiliated Hospital, Harbin Medical University, Daqing, China
| | - Ye Song
- Fifth Affiliated Hospital, Harbin Medical University, Daqing, China
| | - Xin Wang
- Fifth Affiliated Hospital, Harbin Medical University, Daqing, China
| | - Jincheng Liu
- Daqing Campus, Harbin Medical University, Daqing, China
| | - Dejun Yu
- Fifth Affiliated Hospital, Harbin Medical University, Daqing, China,*Correspondence: Dejun Yu, ; Zhichun Xu,
| | - Zhichun Xu
- Fifth Affiliated Hospital, Harbin Medical University, Daqing, China,*Correspondence: Dejun Yu, ; Zhichun Xu,
| |
Collapse
|
14
|
Crowder SL, Playdon MC, Gudenkauf LM, Ose J, Gigic B, Greathouse L, Peoples AR, Sleight AG, Jim HSL, Figueiredo JC. A Molecular Approach to Understanding the Role of Diet in Cancer-Related Fatigue: Challenges and Future Opportunities. Nutrients 2022; 14:nu14071496. [PMID: 35406105 PMCID: PMC9003400 DOI: 10.3390/nu14071496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer-related fatigue (CRF) is considered one of the most frequent and distressing symptoms for cancer survivors. Despite its high prevalence, factors that predispose, precipitate, and perpetuate CRF are poorly understood. Emerging research focuses on cancer and treatment-related nutritional complications, changes in body composition, and nutritional deficiencies that can compound CRF. Nutritional metabolomics, the novel study of diet-related metabolites in cells, tissues, and biofluids, offers a promising tool to further address these research gaps. In this position paper, we examine CRF risk factors, summarize metabolomics studies of CRF, outline dietary recommendations for the prevention and management of CRF in cancer survivorship, and identify knowledge gaps and challenges in applying nutritional metabolomics to understand dietary contributions to CRF over the cancer survivorship trajectory.
Collapse
Affiliation(s)
- Sylvia L. Crowder
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL 33617, USA; (S.L.C.); (L.M.G.); (H.S.L.J.)
| | - Mary C. Playdon
- Cancer Control and Population Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Lisa M. Gudenkauf
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL 33617, USA; (S.L.C.); (L.M.G.); (H.S.L.J.)
| | - Jennifer Ose
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA; (J.O.); (A.R.P.)
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| | - Biljana Gigic
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69047 Heidelberg, Germany;
| | - Leigh Greathouse
- Human Science and Design, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76798, USA;
| | - Anita R. Peoples
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA; (J.O.); (A.R.P.)
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| | - Alix G. Sleight
- Department of Physical Medicine and Rehabilitation, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Center for Integrated Research in Cancer and Lifestyle, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Heather S. L. Jim
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL 33617, USA; (S.L.C.); (L.M.G.); (H.S.L.J.)
| | - Jane C. Figueiredo
- Center for Integrated Research in Cancer and Lifestyle, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Correspondence:
| |
Collapse
|
15
|
Parijadi AAR, Yamamoto K, Ikram MMM, Dwivany FM, Wikantika K, Putri SP, Fukusaki E. Metabolome Analysis of Banana (Musa acuminata) Treated With Chitosan Coating and Low Temperature Reveals Different Mechanisms Modulating Delayed Ripening. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.835978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Banana (Musa acuminata) is one of the most important crop plants consumed in many countries. However, the commercial value decreases during storage and transportation. To maintain fruit quality, postharvest technologies have been developed. Storage at low temperature is a common method to prolong the shelf life of food products, especially during transportation and distribution. Another emerging approach is the use of chitosan biopolymer as an edible coating, which can extend the shelf life of fruit by preventing moisture and aroma loss, and inhibiting oxygen penetration into the plant tissue. Gas chromatography-mass spectrometry metabolite profiling of the banana ripening process was performed to clarify the global metabolism changes in banana after chitosan coating or storage at low temperature. Both postharvest treatments were effective in delaying banana ripening. Interestingly, principal component analysis and orthogonal projection to latent structure regression analysis revealed significant differences of both treatments in the metabolite changes, indicating that the mechanism of prolonging the banana shelf life may be different. Chitosan (1.25% w/v) treatment stored for 11 days resulted in a distinct accumulation of 1-aminocyclopropane-1-carboxylic acid metabolite, an important precursor of ethylene that is responsible for the climacteric fruit ripening process. Low temperature (LT, 14 ± 1°C) treatment stored for 9 days resulted in higher levels of putrescine, a polyamine that responds to plant stress, at the end of ripening days. The findings clarify how chitosan delays fruit ripening and provides a deeper understanding of how storage at low temperature affects banana metabolism. The results may aid in more effective development of banana postharvest strategies.
Collapse
|
16
|
Vong CI, Rathinasabapathy T, Moncada M, Komarnytsky S. All Polyphenols Are Not Created Equal: Exploring the Diversity of Phenolic Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2077-2091. [PMID: 35147422 DOI: 10.1021/acs.jafc.1c07179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dietary intake of plant polyphenols is significant, and many of them enter a human body as a highly diverse pool of ring-fission phenolic metabolites arising from digestion and microbial catabolism of the parental structures. Difficulty in designing the uniform intervention studies and limited tools calibrated to detect and quantify the inherent complexity of phenolic metabolites hindered efforts to establish and validate protective health effects of these molecules. Here, we highlight the recent findings that describe novel complex downstream metabolite profiles with a particular focus on dihydrophenolic (phenylpropanoic) acids of microbial origin, ingested and phase II-transformed methylated phenolic metabolites (methylated sinks), and small phenolic metabolites derived from the breakdown of different classes of flavonoids, stilbenoids, and tannins. There is a critical need for precise identification of the individual phenolic metabolite signatures originating from different polyphenol groups to enable future translation of these findings into break-through nutritional interventions and dietary guidelines.
Collapse
Affiliation(s)
- Chi In Vong
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, North Carolina 27695, United States
| | - Thirumurugan Rathinasabapathy
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, North Carolina 27695, United States
| | - Marvin Moncada
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, North Carolina 27695, United States
| | - Slavko Komarnytsky
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, North Carolina 27695, United States
| |
Collapse
|
17
|
Yuan L, Muli S, Huybrechts I, Nöthlings U, Ahrens W, Scalbert A, Floegel A. Assessment of Fruit and Vegetables Intake with Biomarkers in Children and Adolescents and Their Level of Validation: A Systematic Review. Metabolites 2022; 12:126. [PMID: 35208201 PMCID: PMC8876138 DOI: 10.3390/metabo12020126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/23/2022] [Accepted: 01/23/2022] [Indexed: 12/10/2022] Open
Abstract
Fruit and vegetables (FV) are part of a healthy diet and should be frequently consumed already at a young age. However, intake of FV is difficult to assess in children and adolescents due to various misreporting aspects. Thus, measurement of dietary biomarkers may be a promising alternative to assess FV intake more objectively at young age. To date, dietary biomarkers have been primarily studied in adults, and research focused on their usefulness in children is scarce. However, clinical studies have revealed important differences between children and adults, most importantly in their gut microbiome composition, resulting in differences in postprandial metabolism, as well as in food choices and meal compositions that may influence individual biomarker levels. Therefore, the present review aimed to identify biomarkers of FV intake (BFVI) currently available in children and adolescents and to explore whether there are any differences in the BFVI profile above between children and adolescents and adults. In addition, the current level of validation of BFVI in children and adolescents was examined. In total, 28 studies were eligible for this review, and 18 compounds were identified as potential biomarkers for FV intake in children and adolescents. Carotenoid concentration in skin was a valuable biomarker for total FV intake for both children and adult populations. Common BFVI in blood in adults (e.g., carotenoids and vitamin C) showed inconsistent results in children and adolescents. Biomarkers particularly useful in children included urinary hippuric acid as a biomarker of polyphenolic compound intake originating from FV and the combination of N-methylnicotinic acid and acetylornithine as a biomarker of bean intake. Further studies are needed to assess their kinetics, dose-response, and other validation aspects. There is limited evidence so far regarding valid BFVI in children and adolescents. Thus, to put BFVI into practice in children and adolescents, further studies, particularly based on metabolomics, are needed to identify and validate BFVI that can be used in future epidemiological studies.
Collapse
Affiliation(s)
- Li Yuan
- Department of Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology—BIPS, Achterstraße 30, 28359 Bremen, Germany; (W.A.); (A.F.)
| | - Samuel Muli
- Unit of Nutritional Epidemiology, Department of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms-University Bonn, 53115 Bonn, Germany; (S.M.); (U.N.)
| | - Inge Huybrechts
- International Agency for Research on Cancer (IARC), 69372 Lyon, France; (I.H.); (A.S.)
| | - Ute Nöthlings
- Unit of Nutritional Epidemiology, Department of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms-University Bonn, 53115 Bonn, Germany; (S.M.); (U.N.)
| | - Wolfgang Ahrens
- Department of Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology—BIPS, Achterstraße 30, 28359 Bremen, Germany; (W.A.); (A.F.)
| | - Augustin Scalbert
- International Agency for Research on Cancer (IARC), 69372 Lyon, France; (I.H.); (A.S.)
| | - Anna Floegel
- Department of Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology—BIPS, Achterstraße 30, 28359 Bremen, Germany; (W.A.); (A.F.)
- Section of Dietetics, Faculty of Agriculture and Food Sciences, Hochschule Neubrandenburg—University of Applied Sciences, 17033 Neubrandenburg, Germany
| |
Collapse
|
18
|
Comparison of chemometric strategies for potential exposure marker discovery and false-positive reduction in untargeted metabolomics: application to the serum analysis by LC-HRMS after intake of Vaccinium fruit supplements. Anal Bioanal Chem 2022; 414:1841-1855. [PMID: 35028688 DOI: 10.1007/s00216-021-03815-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/18/2021] [Accepted: 11/30/2021] [Indexed: 11/01/2022]
Abstract
Untargeted liquid chromatographic-high-resolution mass spectrometric (LC-HRMS) metabolomics for potential exposure marker (PEM) discovery in nutrikinetic studies generates complex outputs. The correct selection of statistically significant PEMs is a crucial analytical step for understanding nutrition-health interactions. Hence, in this paper, different chemometric selection workflows for PEM discovery, using multivariate or univariate parametric or non-parametric data analyses, were comparatively tested and evaluated. The PEM selection protocols were applied to a small-sample-size untargeted LC-HRMS study of a longitudinal set of serum samples from 20 volunteers after a single intake of (poly)phenolic-rich Vaccinium myrtillus and Vaccinium corymbosum supplements. The non-parametric Games-Howell test identified a restricted group of significant features, thus minimizing the risk of false-positive retention. Among the forty-seven PEMs exhibiting a statistically significant postprandial kinetics, twelve were successfully annotated as purine pathway metabolites, benzoic and benzodiol metabolites, indole alkaloids, and organic and fatty acids, and five (i.e. octahydro-methyl-β-carboline-dicarboxylic acid, tetrahydro-methyl-β-carboline-dicarboxylic acid, citric acid, caprylic acid, and azelaic acid) were associated to Vaccinium berry consumption for the first time. The analysis of the area under the curve of the longitudinal dataset highlighted thirteen statistically significant PEMs discriminating the two interventions, including four intra-intervention relevant metabolites (i.e. abscisic acid glucuronide, catechol sulphate, methyl-catechol sulphate, and α-hydroxy-hippuric acid). Principal component analysis and sample classification through linear discriminant analysis performed on PEM maximum intensity confirmed the discriminating role of these PEMs.
Collapse
|
19
|
Rafiq T, Azab SM, Teo KK, Thabane L, Anand SS, Morrison KM, de Souza RJ, Britz-McKibbin P. Nutritional Metabolomics and the Classification of Dietary Biomarker Candidates: A Critical Review. Adv Nutr 2021; 12:2333-2357. [PMID: 34015815 PMCID: PMC8634495 DOI: 10.1093/advances/nmab054] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/20/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Recent advances in metabolomics allow for more objective assessment of contemporary food exposures, which have been proposed as an alternative or complement to self-reporting of food intake. However, the quality of evidence supporting the utility of dietary biomarkers as valid measures of habitual intake of foods or complex dietary patterns in diverse populations has not been systematically evaluated. We reviewed nutritional metabolomics studies reporting metabolites associated with specific foods or food groups; evaluated the interstudy repeatability of dietary biomarker candidates; and reported study design, metabolomic approach, analytical technique(s), and type of biofluid analyzed. A comprehensive literature search of 5 databases (PubMed, EMBASE, Web of Science, BIOSIS, and CINAHL) was conducted from inception through December 2020. This review included 244 studies, 169 (69%) of which were interventional studies (9 of these were replicated in free-living participants) and 151 (62%) of which measured the metabolomic profile of serum and/or plasma. Food-based metabolites identified in ≥1 study and/or biofluid were associated with 11 food-specific categories or dietary patterns: 1) fruits; 2) vegetables; 3) high-fiber foods (grain-rich); 4) meats; 5) seafood; 6) pulses, legumes, and nuts; 7) alcohol; 8) caffeinated beverages, teas, and cocoas; 9) dairy and soya; 10) sweet and sugary foods; and 11) complex dietary patterns and other foods. We conclude that 69 metabolites represent good candidate biomarkers of food intake. Quantitative measurement of these metabolites will advance our understanding of the relation between diet and chronic disease risk and support evidence-based dietary guidelines for global health.
Collapse
Affiliation(s)
- Talha Rafiq
- Medical Sciences Graduate Program, Faculty of Health Sciences, McMaster University, Hamilton, Canada
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Canada
| | - Sandi M Azab
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada
- Department of Pharmacognosy, Alexandria University, Alexandria, Egypt
| | - Koon K Teo
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Canada
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, Canada
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Lehana Thabane
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, Canada
| | - Sonia S Anand
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Canada
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, Canada
- Department of Medicine, McMaster University, Hamilton, Canada
| | | | - Russell J de Souza
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Canada
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, Canada
| | | |
Collapse
|
20
|
Sorokina M, McCaffrey KS, Deaton EE, Ma G, Ordovás JM, Perkins-Veazie PM, Steinbeck C, Levi A, Parnell LD. A Catalog of Natural Products Occurring in Watermelon- Citrullus lanatus. Front Nutr 2021; 8:729822. [PMID: 34595201 PMCID: PMC8476801 DOI: 10.3389/fnut.2021.729822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Sweet dessert watermelon (Citrullus lanatus) is one of the most important vegetable crops consumed throughout the world. The chemical composition of watermelon provides both high nutritional value and various health benefits. The present manuscript introduces a catalog of 1,679 small molecules occurring in the watermelon and their cheminformatics analysis for diverse features. In this catalog, the phytochemicals are associated with the literature describing their presence in the watermelon plant, and when possible, concentration values in various plant parts (flesh, seeds, leaves, roots, rind). Also cataloged are the chemical classes, molecular weight and formula, chemical structure, and certain physical and chemical properties for each phytochemical. In our view, knowing precisely what is in what we eat, as this catalog does for watermelon, supports both the rationale for certain controlled feeding studies in the field of precision nutrition, and plant breeding efforts for the development of new varieties with enhanced concentrations of specific phytochemicals. Additionally, improved and comprehensive collections of natural products accessible to the public will be especially useful to researchers in nutrition, cheminformatics, bioinformatics, and drug development, among other disciplines.
Collapse
Affiliation(s)
- Maria Sorokina
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller University, Jena, Germany
| | | | - Erin E. Deaton
- Department of Horticulture, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Guoying Ma
- Department of Horticulture, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - José M. Ordovás
- Nutrition and Genomics Laboratory, Jean Mayer-United States Department of Agriculture (JM-USDA) Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Penelope M. Perkins-Veazie
- Department of Horticulture, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Christoph Steinbeck
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller University, Jena, Germany
| | - Amnon Levi
- United States Department of Agriculture (USDA), Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, SC, United States
| | - Laurence D. Parnell
- United States Department of Agriculture (USDA), Agricultural Research Service, Nutrition and Genomics Laboratory, Jean Mayer-United States Department of Agriculture (JM-USDA) Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| |
Collapse
|
21
|
LeVatte M, Keshteli AH, Zarei P, Wishart DS. Applications of Metabolomics to Precision Nutrition. Lifestyle Genom 2021; 15:1-9. [PMID: 34518463 DOI: 10.1159/000518489] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/07/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND For thousands of years, disabilities due to nutrient deficiencies have plagued humanity. Rickets, scurvy, anemia, stunted growth, blindness, and mental handicaps due to nutrient deficiencies affected up to 1/10 of the world's population prior to 1900. The discovery of essential amino acids, vitamins, and minerals, in the early 1900s, led to a fundamental change in our understanding of food and a revolution in human health. Widespread vitamin and mineral supplementation, the development of recommended dietary allowances, and the implementation of food labeling and testing along with significant improvements in food production and food quality have meant that nutrient-related disorders have almost vanished in the developed world. The success of nutritional science in preventing disease at a population-wide level is one of the great scientific triumphs of the 20th century. The challenge for nutritional science in the 21st century is to understand how to use nutrients and other food constituents to enhance human health or prevent disease at a more personal level. This is the primary goal of precision nutrition. SUMMARY Precision nutrition is an emerging branch of nutrition science that aims to use modern omics technologies (genomics, proteomics, and metabolomics) to assess an individual's response to specific foods or dietary patterns and thereby determine the most effective diet or lifestyle interventions to prevent or treat specific diseases in that individual. Metabolomics is vital to nearly every aspect of precision nutrition. It can be used to comprehensively characterize the thousands of chemicals in foods, to identify food byproducts in human biofluids or tissues, to characterize nutrient deficiencies or excesses, to monitor biochemical responses to dietary interventions, to track long-term or short-term dietary habits, and to guide the development of nutritional therapies. In this review, we will describe how metabolomics has been used to advance the field of precision nutrition by providing some notable examples or use cases. First, we will describe how metabolomics helped launch the field of precision nutrition through the diagnosis and dietary therapy of individuals with inborn errors of metabolism. Next, we will describe how metabolomics is being used to comprehensively characterize the full chemical complexity of many key foods, and how this is revealing much more about nutrients than ever imagined. Third, we will describe how metabolomics is being used to identify food consumption biomarkers and how this opens the door to a more objective and quantitative assessments of an individual's diet and their response to certain foods. Finally, we will describe how metabolomics is being coupled with other omics technologies to develop custom diets and lifestyle interventions that are leading to positive health benefits. Key Message: Metabolomics is vital to the advancement of nutritional science and in making the dream of precision nutrition a reality.
Collapse
Affiliation(s)
- Marcia LeVatte
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Parvin Zarei
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Department of Computing Sciences, University of Alberta, Edmonton, Alberta, Canada.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
22
|
Kim YM, Abas F, Park YS, Park YK, Ham KS, Kang SG, Lubinska-Szczygeł M, Ezra A, Gorinstein S. Bioactivities of Phenolic Compounds from Kiwifruit and Persimmon. Molecules 2021; 26:molecules26154405. [PMID: 34361562 PMCID: PMC8347458 DOI: 10.3390/molecules26154405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/04/2023] Open
Abstract
Fruit used in the common human diet in general, and kiwifruit and persimmon particularly, displays health properties in the prevention of heart disease. This study describes a combination of bioactivity, multivariate data analyses and fluorescence measurements for the differentiating of kiwifruit and persimmon, their quenching and antioxidant properties. The metabolic differences are shown, as well in the results of bioactivities and antioxidant capacities determined by ABTS, FRAP, CUPRAC and DPPH assays. To complement the bioactivity of these fruits, the quenching properties between extracted polyphenols and human serum proteins were determined by 3D-fluorescence spectroscopy studies. These properties of the extracted polyphenols in interaction with the main serum proteins in the human metabolism (human serum albumin (HSA), α-β-globulin (α-β G) and fibrinogen (Fgn)), showed that kiwifruit was more reactive than persimmon. There was a direct correlation between the quenching properties of the polyphenols of the investigated fruits with serum human proteins, their relative quantification and bioactivity. The results of metabolites and fluorescence quenching show that these fruits possess multiple properties that have a great potential to be used in industry with emphasis on the formulation of functional foods and in the pharmaceutical industry. Based on the quenching properties of human serum proteins with polyphenols and recent reports in vivo on human studies, we hypothesize that HSA, α-β G and Fgn will be predictors of coronary artery disease (CAD).
Collapse
Affiliation(s)
- Young-Mo Kim
- Industry Academic Collaboration Foundation, Kwangju Women’s University, Gwangsan-gu, Gwangju 62396, Korea;
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Laboratory of Natural Products, Institute of Bioscience, University Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Yong-Seo Park
- Department of Horticultural Science, Mokpo National University, Muan 534-729, Jeonnam, Korea;
| | - Yang-Kyun Park
- Department of Food Engineering, Mokpo National University, Muan 534-729, Jeonnam, Korea; (Y.-K.P.); (K.-S.H.); (S.-G.K.)
| | - Kyung-Sik Ham
- Department of Food Engineering, Mokpo National University, Muan 534-729, Jeonnam, Korea; (Y.-K.P.); (K.-S.H.); (S.-G.K.)
| | - Seong-Gook Kang
- Department of Food Engineering, Mokpo National University, Muan 534-729, Jeonnam, Korea; (Y.-K.P.); (K.-S.H.); (S.-G.K.)
| | - Martyna Lubinska-Szczygeł
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland;
| | - Aviva Ezra
- Faculty of Medicine, Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Shela Gorinstein
- Faculty of Medicine, Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
- Correspondence:
| |
Collapse
|
23
|
McNamara AE, Walton J, Flynn A, Nugent AP, McNulty BA, Brennan L. The Potential of Multi-Biomarker Panels in Nutrition Research: Total Fruit Intake as an Example. Front Nutr 2021; 7:577720. [PMID: 33521031 PMCID: PMC7840580 DOI: 10.3389/fnut.2020.577720] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/17/2020] [Indexed: 12/26/2022] Open
Abstract
Dietary and food intake biomarkers offer the potential of improving the accuracy of dietary assessment. An extensive range of putative intake biomarkers of commonly consumed foods have been identified to date. As the field of food intake biomarkers progresses toward solving the complexities of dietary habits, combining biomarkers associated with single foods or food groups may be required. The objective of this work was to examine the ability of a multi-biomarker panel to classify individuals into categories of fruit intake. Biomarker data was measured using 1H NMR spectroscopy in two studies: (1) An intervention study where varying amounts of fruit was consumed and (2) the National Adult Nutrition Survey (NANS). Using data from an intervention study a biomarker panel (Proline betaine, Hippurate, and Xylose) was constructed from three urinary biomarker concentrations. Biomarker cut-off values for three categories of fruit intake were developed. The biomarker sum cut-offs were ≤ 4.766, 4.766–5.976, >5.976 μM/mOsm/kg for <100, 101–160, and >160 g fruit intake. The ability of the biomarker sum to classify individuals into categories of fruit intake was examined in the cross-sectional study (NANS) (N = 565). Examination of results in the cross-sectional study revealed excellent agreement with self-reported intake: a similar number of participants were ranked into each category of fruit intake. The work illustrates the potential of multi-biomarker panels and paves the way forward for further development in the field. The use of such panels may be key to distinguishing foods and adding specificity to the predictions of food intake.
Collapse
Affiliation(s)
- Aoife E McNamara
- School of Agriculture and Food Science, UCD Institute of Food and Health, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Janette Walton
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland.,Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Albert Flynn
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Anne P Nugent
- School of Biological Sciences, Institute for Global Food Security, Queens University Belfast, Belfast, United Kingdom
| | - Breige A McNulty
- School of Agriculture and Food Science, UCD Institute of Food and Health, University College Dublin, Dublin, Ireland
| | - Lorraine Brennan
- School of Agriculture and Food Science, UCD Institute of Food and Health, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|