1
|
Nawaz MA, Pamirsky IE, Golokhvast KS. Bioinformatics in Russia: history and present-day landscape. Brief Bioinform 2024; 25:bbae513. [PMID: 39402695 PMCID: PMC11473191 DOI: 10.1093/bib/bbae513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/12/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Bioinformatics has become an interdisciplinary subject due to its universal role in molecular biology research. The current status of Russia's bioinformatics research in Russia is not known. Here, we review the history of bioinformatics in Russia, present the current landscape, and highlight future directions and challenges. Bioinformatics research in Russia is driven by four major industries: information technology, pharmaceuticals, biotechnology, and agriculture. Over the past three decades, despite a delayed start, the field has gained momentum, especially in protein and nucleic acid research. Dedicated and shared centers for genomics, proteomics, and bioinformatics are active in different regions of Russia. Present-day bioinformatics in Russia is characterized by research issues related to genetics, metagenomics, OMICs, medical informatics, computational biology, environmental informatics, and structural bioinformatics. Notable developments are in the fields of software (tools, algorithms, and pipelines), use of high computation power (e.g. by the Siberian Supercomputer Center), and large-scale sequencing projects (the sequencing of 100 000 human genomes). Government funding is increasing, policies are being changed, and a National Genomic Information Database is being established. An increased focus on eukaryotic genome sequencing, the development of a common place for developers and researchers to share tools and data, and the use of biological modeling, machine learning, and biostatistics are key areas for future focus. Universities and research institutes have started to implement bioinformatics modules. A critical mass of bioinformaticians is essential to catch up with the global pace in the discipline.
Collapse
Affiliation(s)
- Muhammad A Nawaz
- Advanced Engineering School (Agrobiotek), National Research Tomsk State University, Lenin Ave, 36, Tomsk Oblast, Tomsk 634050, Russia
- Centre for Research in the Field of Materials and Technologies, National Research Tomsk State University, Lenin Ave, 36, Tomsk Oblast, Tomsk 634050, Russia
| | - Igor E Pamirsky
- Advanced Engineering School (Agrobiotek), National Research Tomsk State University, Lenin Ave, 36, Tomsk Oblast, Tomsk 634050, Russia
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya st., 2b, Presidium, Krasnoobsk, 633501, Novosibirsk Oblast, Russia
| | - Kirill S Golokhvast
- Advanced Engineering School (Agrobiotek), National Research Tomsk State University, Lenin Ave, 36, Tomsk Oblast, Tomsk 634050, Russia
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya st., 2b, Presidium, Krasnoobsk, 633501, Novosibirsk Oblast, Russia
| |
Collapse
|
2
|
Letanneur C, Brisson A, Bisaillon M, Devèze T, Plourde MB, Schattat M, Duplessis S, Germain H. Host-Specific and Homologous Pairs of Melampsora larici-populina Effectors Unveil Novel Nicotiana benthamiana Stromule Induction Factors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:277-289. [PMID: 38148279 DOI: 10.1094/mpmi-09-23-0148-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The poplar rust fungus Melampsora larici-populina is part of one of the most devastating group of fungi (Pucciniales) and causes important economic losses to the poplar industry. Because M. larici-populina is a heteroecious obligate biotroph, its spread depends on its ability to carry out its reproductive cycle through larch and then poplar parasitism. Genomic approaches have identified more than 1,000 candidate secreted effector proteins (CSEPs) from the predicted secretome of M. larici-populina that are potentially implicated in the infection process. In this study, we selected CSEP pairs (and one triplet) among CSEP gene families that share high sequence homology but display specific gene expression profiles among the two distinct hosts. We determined their subcellular localization by confocal microscopy through expression in the heterologous plant system Nicotiana benthamiana. Five out of nine showed partial or complete chloroplastic localization. We also screened for potential protein interactors from larch and poplar by yeast two-hybrid assays. One pair of CSEPs and the triplet shared common interactors, whereas the members of the two other pairs did not have common targets from either host. Finally, stromule induction quantification revealed that two pairs and the triplet of CSEPs induced stromules when transiently expressed in N. benthamiana. The use of N. benthamiana eds1 and nrg1 knockout lines showed that CSEPs can induce stromules through an eds1-independent mechanism. However, CSEP homologs shared the same impact on stromule induction and contributed to discovering a new stromule induction cascade that can be partially and/or fully independent of eds1. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Claire Letanneur
- Chemistry, Biochemistry, and Physics Department, Université du Québec à Trois-Rivières, Trois-Rivières, G8Z 4M3, Canada
| | - Alexandre Brisson
- Chemistry, Biochemistry, and Physics Department, Université du Québec à Trois-Rivières, Trois-Rivières, G8Z 4M3, Canada
| | - Mathias Bisaillon
- Chemistry, Biochemistry, and Physics Department, Université du Québec à Trois-Rivières, Trois-Rivières, G8Z 4M3, Canada
| | - Théo Devèze
- Chemistry, Biochemistry, and Physics Department, Université du Québec à Trois-Rivières, Trois-Rivières, G8Z 4M3, Canada
| | - Mélodie B Plourde
- Chemistry, Biochemistry, and Physics Department, Université du Québec à Trois-Rivières, Trois-Rivières, G8Z 4M3, Canada
| | - Martin Schattat
- Plant Physiology Department, Martin Luther University, 06120 Halle, Germany
| | | | - Hugo Germain
- Chemistry, Biochemistry, and Physics Department, Université du Québec à Trois-Rivières, Trois-Rivières, G8Z 4M3, Canada
| |
Collapse
|
3
|
Hong K, Radian Y, Manda T, Xu H, Luo Y. The Development of Plant Genome Sequencing Technology and Its Conservation and Application in Endangered Gymnosperms. PLANTS (BASEL, SWITZERLAND) 2023; 12:4006. [PMID: 38068641 PMCID: PMC10708082 DOI: 10.3390/plants12234006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 10/16/2024]
Abstract
Genome sequencing is widely recognized as a fundamental pillar in genetic research and legal studies of biological phenomena, providing essential insights for genetic investigations and legal analyses of biological events. The field of genome sequencing has experienced significant progress due to rapid improvements in scientific and technological developments. These advancements encompass not only significant improvements in the speed and quality of sequencing but also provide an unparalleled opportunity to explore the subtle complexities of genomes, particularly in the context of rare species. Such a wide range of possibilities has successfully supported the validation of plant gene functions and the refinement of precision breeding methodologies. This expanded scope now includes a comprehensive exploration of the current state and conservation efforts of gymnosperm gene sequencing, offering invaluable insights into their genomic landscapes. This comprehensive review elucidates the trajectory of development and the diverse applications of genome sequencing. It encompasses various domains, including crop breeding, responses to abiotic stress, species evolutionary dynamics, biodiversity, and the unique challenges faced in the conservation and utilization of gymnosperms. It highlights both ongoing challenges and the unveiling of forthcoming developmental trajectories.
Collapse
Affiliation(s)
- Kaiyue Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an 223300, China;
- School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Y.R.); (T.M.)
| | - Yasmina Radian
- School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Y.R.); (T.M.)
| | - Teja Manda
- School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Y.R.); (T.M.)
| | - Haibin Xu
- School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Y.R.); (T.M.)
| | - Yuming Luo
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an 223300, China;
| |
Collapse
|
4
|
Novikova SV, Sharov VV, Oreshkova NV, Simonov EP, Krutovsky KV. Genetic Adaptation of Siberian Larch ( Larix sibirica Ledeb.) to High Altitudes. Int J Mol Sci 2023; 24:ijms24054530. [PMID: 36901960 PMCID: PMC10003562 DOI: 10.3390/ijms24054530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Forest trees growing in high altitude conditions offer a convenient model for studying adaptation processes. They are subject to a whole range of adverse factors that are likely to cause local adaptation and related genetic changes. Siberian larch (Larix sibirica Ledeb.), whose distribution covers different altitudes, makes it possible to directly compare lowland with highland populations. This paper presents for the first time the results of studying the genetic differentiation of Siberian larch populations, presumably associated with adaptation to the altitudinal gradient of climatic conditions, based on a joint analysis of altitude and six other bioclimatic variables, together with a large number of genetic markers, single nucleotide polymorphisms (SNPs), obtained from double digest restriction-site-associated DNA sequencing (ddRADseq). In total, 25,143 SNPs were genotyped in 231 trees. In addition, a dataset of 761 supposedly selectively neutral SNPs was assembled by selecting SNPs located outside coding regions in the Siberian larch genome and mapped to different contigs. The analysis using four different methods (PCAdapt, LFMM, BayeScEnv and RDA) revealed 550 outlier SNPs, including 207 SNPs whose variation was significantly correlated with the variation of some of environmental factors and presumably associated with local adaptation, including 67 SNPs that correlated with altitude based on either LFMM or BayeScEnv and 23 SNPs based on both of them. Twenty SNPs were found in the coding regions of genes, and 16 of them represented non-synonymous nucleotide substitutions. They are located in genes involved in the processes of macromolecular cell metabolism and organic biosynthesis associated with reproduction and development, as well as organismal response to stress. Among these 20 SNPs, nine were possibly associated with altitude, but only one of them was identified as associated with altitude by all four methods used in the study, a nonsynonymous SNP in scaffold_31130 in position 28092, a gene encoding a cell membrane protein with uncertain function. Among the studied populations, at least two main groups (clusters), the Altai populations and all others, were significantly genetically different according to the admixture analysis based on any of the three SNP datasets as follows: 761 supposedly selectively neutral SNPs, all 25,143 SNPs and 550 adaptive SNPs. In general, according to the AMOVA results, genetic differentiation between transects or regions or between population samples was relatively low, although statistically significant, based on 761 neutral SNPs (FST = 0.036) and all 25,143 SNPs (FST = 0.017). Meanwhile, the differentiation based on 550 adaptive SNPs was much higher (FST = 0.218). The data showed a relatively weak but highly significant linear correlation between genetic and geographic distances (r = 0.206, p = 0.001).
Collapse
Affiliation(s)
- Serafima V. Novikova
- Laboratory of Genomic Research and Biotechnology, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 660036 Krasnoyarsk, Russia
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Vadim V. Sharov
- Laboratory of Genomic Research and Biotechnology, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 660036 Krasnoyarsk, Russia
- Department of High-Performance Computing, Institute of Space and Information Technologies, Siberian Federal University, 660074 Krasnoyarsk, Russia
- Tauber Bioinformatics Research Center, University of Haifa, Haifa 3498838, Israel
| | - Natalia V. Oreshkova
- Laboratory of Genomic Research and Biotechnology, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 660036 Krasnoyarsk, Russia
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Laboratory of Forest Genetics and Selection, V. N. Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Evgeniy P. Simonov
- Laboratory of Evolutionary Trophology, A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Konstantin V. Krutovsky
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, 37077 Göttingen, Germany
- Center for Integrated Breeding Research, George-August University of Göttingen, 37075 Göttingen, Germany
- Laboratory of Population Genetics, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
- Scientific and Methodological Center, G. F. Morozov Voronezh State University of Forestry and Technologies, 394087 Voronezh, Russia
- Correspondence: ; Tel.: +49-551-339-3537
| |
Collapse
|
5
|
Artyukhin A, Sharifyanova Y, Krivosheev MM, Mikhaylova EV. Larches of Kuzhanovo Have a Unique Mutation in the atpF-atpH Intergenic Spacer. Int J Mol Sci 2023; 24:ijms24043939. [PMID: 36835349 PMCID: PMC9960809 DOI: 10.3390/ijms24043939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/06/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The larches of Kuzhanovo (Larix sibirica Ledeb.) are protected trees with a round crown growing in the Southern Urals. In 2020 vandals sawed the sapwood of these trees, which exposed the problem of insufficient conservation measures. Their origin and genetic characteristics have been of particular interest to breeders and scientists. The larches of Kuzhanovo were screened for polymorphisms using SSR and ISSR analyses and the sequencing of genetic markers and genes GIGANTEA and mTERF, associated with wider crown shape. A unique mutation was discovered in the atpF-atpH intergenic spacer of all protected trees, but it was absent in some of their descendants and larches with similar crown shape. Mutations were discovered in the rpoC1 and mTERF genes of all samples. Flow cytometry did not reveal any changes in genome size. Our results suggest that the unique phenotype arose from point mutations in L. sibirica, but they are yet to be found in the nuclear genome. The concurrent mutations in the rpoC1 and mTERF genes may indicate that the round crown shape originates from the Southern Urals. The atpF-atpH and rpoC1 genetic markers are not common in studies of Larix sp., but their wider use could help to establish the origin of these endangered plants. The discovery of the unique atpF-atpH mutation also allows for stronger conservation and crime detection efforts.
Collapse
Affiliation(s)
- Alexander Artyukhin
- Institute of Biochemistry and Genetics UFRC RAS, Prospekt Oktyabrya 71, Ufa 450054, Russia
| | - Yuliya Sharifyanova
- Institute of Biochemistry and Genetics UFRC RAS, Prospekt Oktyabrya 71, Ufa 450054, Russia
| | | | - Elena V. Mikhaylova
- Institute of Biochemistry and Genetics UFRC RAS, Prospekt Oktyabrya 71, Ufa 450054, Russia
- Correspondence:
| |
Collapse
|
6
|
Krutovsky KV. Dendrogenomics Is a New Interdisciplinary Field of Research of the Adaptive Genetic Potential of Forest Tree Populations Integrating Dendrochronology, Dendroecology, Dendroclimatology, and Genomics. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422110059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
7
|
Mishima K, Hirakawa H, Iki T, Fukuda Y, Hirao T, Tamura A, Takahashi M. Comprehensive collection of genes and comparative analysis of full-length transcriptome sequences from Japanese larch (Larix kaempferi) and Kuril larch (Larix gmelinii var. japonica). BMC PLANT BIOLOGY 2022; 22:470. [PMID: 36192701 PMCID: PMC9531402 DOI: 10.1186/s12870-022-03862-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Japanese larch (Larix kaempferi) is an economically important deciduous conifer species that grows in cool-temperate forests and is endemic to Japan. Kuril larch (L. gmelinii var. japonica) is a variety of Dahurian larch that is naturally distributed in the Kuril Islands and Sakhalin. The hybrid larch (L. gmelinii var. japonica × L. kaempferi) exhibits heterosis, which manifests as rapid juvenile growth and high resistance to vole grazing. Since these superior characteristics have been valued by forestry managers, the hybrid larch is one of the most important plantation species in Hokkaido. To accelerate molecular breeding in these species, we collected and compared full-length cDNA isoforms (Iso-Seq) and RNA-Seq short-read, and merged them to construct candidate gene as reference for both Larix species. To validate the results, candidate protein-coding genes (ORFs) related to some flowering signal-related genes were screened from the reference sequences, and the phylogenetic relationship with closely related species was elucidated. RESULTS Using the isoform sequencing of PacBio RS ll and the de novo assembly of RNA-Seq short-read sequences, we identified 50,690 and 38,684 ORFs in Japanese larch and Kuril larch, respectively. BUSCO completeness values were 90.5% and 92.1% in the Japanese and Kuril larches, respectively. After comparing the collected ORFs from the two larch species, a total of 19,813 clusters, comprising 22,571 Japanese larch ORFs and 22,667 Kuril larch ORFs, were contained in the intersection of the Venn diagram. In addition, we screened several ORFs related to flowering signals (SUPPRESSER OF OVEREXPRESSION OF CO1: SOC1, LEAFY: LFY, FLOWERING Locus T: FT, CONSTANCE: CO) from both reference sequences, and very similar found in other species. CONCLUSIONS The collected ORFs will be useful as reference sequences for molecular breeding of Japanese and Kuril larches, and also for clarifying the evolution of the conifer genome and investigating functional genomics.
Collapse
Affiliation(s)
- Kentaro Mishima
- Tohoku Regional Breeding Office, Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 95 Osaki, Takizawa, Iwate, 020-0621, Japan.
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Taiichi Iki
- Tohoku Regional Breeding Office, Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 95 Osaki, Takizawa, Iwate, 020-0621, Japan
| | - Yoko Fukuda
- Hokkaido Regional Breeding Office, Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 561-1 Bunkyodaimidorimachi, Ebetsu, Hokkaido, 069-0836, Japan
| | - Tomonori Hirao
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301, Japan
| | - Akira Tamura
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301, Japan
| | - Makoto Takahashi
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301, Japan
| |
Collapse
|
8
|
Wan T, Gong Y, Liu Z, Zhou Y, Dai C, Wang Q. Evolution of complex genome architecture in gymnosperms. Gigascience 2022; 11:6659718. [PMID: 35946987 PMCID: PMC9364684 DOI: 10.1093/gigascience/giac078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/09/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Gymnosperms represent an ancient lineage that diverged from early spermatophytes during the Devonian. The long fossil records and low diversity in living species prove their complex evolutionary history, which included ancient radiations and massive extinctions. Due to their ultra-large genome size, the whole-genome assembly of gymnosperms has only generated in the past 10 years and is now being further expanded into more taxonomic representations. Here, we provide an overview of the publicly available gymnosperm genome resources and discuss their assembly quality and recent findings in large genome architectures. In particular, we describe the genomic features most related to changes affecting the whole genome. We also highlight new realizations relative to repetitive sequence dynamics, paleopolyploidy, and long introns. Based on the results of relevant genomic studies of gymnosperms, we suggest additional efforts should be made toward exploring the genomes of medium-sized (5–15 gigabases) species. Lastly, more comparative analyses among high-quality assemblies are needed to understand the genomic shifts and the early species diversification of seed plants.
Collapse
Affiliation(s)
- Tao Wan
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.,Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan 430074, China.,Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen 518004, China
| | - Yanbing Gong
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Research Center for Ecology, College of Science, Tibet University, Lhasa 850000, China
| | - Zhiming Liu
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen 518004, China
| | - YaDong Zhou
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Can Dai
- School of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Qingfeng Wang
- Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.,Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
9
|
Annotation of Siberian Larch (Larix sibirica Ledeb.) Nuclear Genome—One of the Most Cold-Resistant Tree Species in the Only Deciduous GENUS in Pinaceae. PLANTS 2022; 11:plants11152062. [PMID: 35956540 PMCID: PMC9370799 DOI: 10.3390/plants11152062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
The recent release of the nuclear, chloroplast and mitochondrial genome assemblies of Siberian larch (Larix sibirica Ledeb.), one of the most cold-resistant tree species in the only deciduous genus of Pinaceae, with seasonal senescence and a rot-resistant valuable timber widely used in construction, greatly contributed to the development of genomic resources for the larch genus. Here, we present an extensive repeatome analysis and the first annotation of the draft nuclear Siberian larch genome assembly. About 66% of the larch genome consists of highly repetitive elements (REs), with the likely wave of retrotransposons insertions into the larch genome estimated to occur 4–5 MYA. In total, 39,370 gene models were predicted, with 87% of them having homology to the Arabidopsis-annotated proteins and 78% having at least one GO term assignment. The current state of the genome annotations allows for the exploration of the gymnosperm and angiosperm species for relative gene abundance in different functional categories. Comparative analysis of functional gene categories across different angiosperm and gymnosperm species finds that the Siberian larch genome has an overabundance of genes associated with programmed cell death (PCD), autophagy, stress hormone biosynthesis and regulatory pathways; genes that may play important roles in seasonal senescence and stress response to extreme cold in larch. Despite being incomplete, the draft assemblies and annotations of the conifer genomes are at a point of development where they now represent a valuable source for further genomic, genetic and population studies.
Collapse
|
10
|
Sayakova G, Boshkayeva A, Ibadullayeva G, Khamitova A, Begimova G. Actual prospects of using some types of larch growing in Kazakhstan in medicine. J Med Life 2022; 15:1038-1046. [PMID: 36188655 PMCID: PMC9514822 DOI: 10.25122/jml-2021-0373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Local plants can save natural resources and be used as a source of biologically active compounds, which can be high-quality, effective, and safe ingredients for pharmacological or chemical industries. Therefore, this study aimed to investigate the properties of two medicinal plants - the fine-scaled larch (Lárix Kaémpferi) and Siberian larch (Lárix Sibirica), which are growing in the Republic of Kazakhstan. We compared the two types of larches according to botanical affiliation and species description. We studied the alcoholic extracts from Lárix Kaémpferi and Lárix Sibirica to determine their physical and chemical properties. The data on the chemical composition of extractive compounds were generalized and systematized. The authenticity of Lárix Kaémpferi and Lárix Sibirica was established by external, anatomical, and diagnostic signs in microscopic examination and qualitative reactions. Specific indicators and their norms for raw materials were identified. This is the standard for both types of larch and determines their quality. We experimented with grinding fineness for studied materials and tested the impurities and moisture content of raw materials, total ash, and ash insoluble in a 10% hydrochloric acid solution. Determination of heavy metals and radionuclides was also considered. The quality specifications were developed based on the standardization of fine-scaled larch and Siberian larch.
Collapse
Affiliation(s)
- Galiya Sayakova
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany, Asfendiyarov Kazakh National Medical University, Almaty, The Republic of Kazakhstan
| | - Assyl Boshkayeva
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany, Asfendiyarov Kazakh National Medical University, Almaty, The Republic of Kazakhstan,Corresponding Author: Assyl Boshkayeva, Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany, Asfendiyarov Kazakh National Medical University, Almaty, The Republic of Kazakhstan. E-mail:
| | - Galiya Ibadullayeva
- Department of Pharmaceutical Technology, Non-profit Stock Corporation KazNMU, Almaty, The Republic of Kazakhstan
| | - Akzhonas Khamitova
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany, Asfendiyarov Kazakh National Medical University, Almaty, The Republic of Kazakhstan
| | - Gulzeynep Begimova
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany, Asfendiyarov Kazakh National Medical University, Almaty, The Republic of Kazakhstan
| |
Collapse
|
11
|
Sun C, Xie YH, Li Z, Liu YJ, Sun XM, Li JJ, Quan WP, Zeng QY, Van de Peer Y, Zhang SG. The Larix kaempferi genome reveals new insights into wood properties. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1364-1373. [PMID: 35442564 DOI: 10.1111/jipb.13265] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Here, through single-molecule real-time sequencing, we present a high-quality genome sequence of the Japanese larch (Larix kaempferi), a conifer species with great value for wood production and ecological afforestation. The assembled genome is 10.97 Gb in size, harboring 45,828 protein-coding genes. Of the genome, 66.8% consists of repeat sequences, of which long terminal repeat retrotransposons are dominant and make up 69.86%. We find that tandem duplications have been responsible for the expansion of genes involved in transcriptional regulation and stress responses, unveiling their crucial roles in adaptive evolution. Population transcriptome analysis reveals that lignin content in L. kaempferi is mainly determined by the process of monolignol polymerization. The expression values of six genes (LkCOMT7, LkCOMT8, LkLAC23, LkLAC102, LkPRX148, and LkPRX166) have significantly positive correlations with lignin content. These results indicated that the increased expression of these six genes might be responsible for the high lignin content of the larches' wood. Overall, this study provides new genome resources for investigating the evolution and biological function of conifer trees, and also offers new insights into wood properties of larches.
Collapse
Affiliation(s)
- Chao Sun
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yun-Hui Xie
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Yan-Jing Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xiao-Mei Sun
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jing-Jing Li
- Nextomics Biosciences Co., Ltd, Wuhan, 430073, China
| | - Wei-Peng Quan
- Nextomics Biosciences Co., Ltd, Wuhan, 430073, China
| | - Qing-Yin Zeng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
- Department of Biochemistry, Genetics and Microbiology, Pretoria, South Africa
| | - Shou-Gong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|
12
|
Valderrama‐Martín JM, Ortigosa F, Ávila C, Cánovas FM, Hirel B, Cantón FR, Cañas RA. A revised view on the evolution of glutamine synthetase isoenzymes in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:946-960. [PMID: 35199893 PMCID: PMC9310647 DOI: 10.1111/tpj.15712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 05/29/2023]
Abstract
Glutamine synthetase (GS) is a key enzyme responsible for the incorporation of inorganic nitrogen in the form of ammonium into the amino acid glutamine. In plants, two groups of functional GS enzymes are found: eubacterial GSIIb (GLN2) and eukaryotic GSIIe (GLN1/GS). Only GLN1/GS genes are found in vascular plants, which suggests that they are involved in the final adaptation of plants to terrestrial life. The present phylogenetic study reclassifies the different GS genes of seed plants into three clusters: GS1a, GS1b and GS2. The presence of genes encoding GS2 has been expanded to Cycadopsida gymnosperms, which suggests the origin of this gene in a common ancestor of Cycadopsida, Ginkgoopsida and angiosperms. GS1a genes have been identified in all gymnosperms, basal angiosperms and some Magnoliidae species. Previous studies in conifers and the gene expression profiles obtained in ginkgo and magnolia in the present work could explain the absence of GS1a in more recent angiosperm species (e.g. monocots and eudicots) as a result of the redundant roles of GS1a and GS2 in photosynthetic cells. Altogether, the results provide a better understanding of the evolution of plant GS isoenzymes and their physiological roles, which is valuable for improving crop nitrogen use efficiency and productivity. This new view of GS evolution in plants, including a new cytosolic GS group (GS1a), has important functional implications in the context of plant metabolism adaptation to global changes.
Collapse
Affiliation(s)
- José Miguel Valderrama‐Martín
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y BioquímicaUniversidad de Málaga, Campus Universitario de Teatinos29071MálagaSpain
- Integrative Molecular Biology LabUniversidad de Málaga, Campus Universitario de Teatinos29071MálagaSpain
| | - Francisco Ortigosa
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y BioquímicaUniversidad de Málaga, Campus Universitario de Teatinos29071MálagaSpain
| | - Concepción Ávila
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y BioquímicaUniversidad de Málaga, Campus Universitario de Teatinos29071MálagaSpain
| | - Francisco M. Cánovas
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y BioquímicaUniversidad de Málaga, Campus Universitario de Teatinos29071MálagaSpain
| | - Bertrand Hirel
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre de Versailles‐GrignonRD 1078026Versailles CedexFrance
| | - Francisco R. Cantón
- Integrative Molecular Biology LabUniversidad de Málaga, Campus Universitario de Teatinos29071MálagaSpain
| | - Rafael A. Cañas
- Integrative Molecular Biology LabUniversidad de Málaga, Campus Universitario de Teatinos29071MálagaSpain
| |
Collapse
|
13
|
Wood Formation under Changing Environment: Omics Approaches to Elucidate the Mechanisms Driving the Early-to-Latewood Transition in Conifers. FORESTS 2022. [DOI: 10.3390/f13040608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The global change scenarios highlight the urgency of clarifying the mechanisms driving the determination of wood traits in forest trees. Coniferous xylem is characterized by the alternation between earlywood (EW) and latewood (LW), on which proportions the wood density depend, one of the most important mechanical xylem qualities. However, the molecular mechanisms triggering the transition between the production of cells with the typical features of EW to the LW are still far from being completely elucidated. The increasing availability of omics resources for conifers, e.g., genomes and transcriptomes, would lay the basis for the comprehension of wood formation dynamics, boosting both breeding and gene-editing approaches. This review is intended to introduce the importance of wood formation dynamics and xylem traits of conifers in a changing environment. Then, an up-to-date overview of the omics resources available for conifers was reported, focusing on both genomes and transcriptomes. Later, an analysis of wood formation studies using omics approaches was conducted, with the aim of elucidating the main metabolic pathways involved in EW and LW determination. Finally, the future perspectives and the urgent needs on this research topic were highlighted.
Collapse
|
14
|
Batalova AY, Putintseva YA, Sadovsky MG, Krutovsky KV. Comparative Genomics of Seasonal Senescence in Forest Trees. Int J Mol Sci 2022; 23:ijms23073761. [PMID: 35409113 PMCID: PMC8998842 DOI: 10.3390/ijms23073761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 01/13/2023] Open
Abstract
In the course of evolution, both flowering plants and some gymnosperms have developed such an adaptation to winter and unfavorable living conditions as deciduousness. Of particular interest is Siberian larch (Larix sibirica Ledeb.), which is the only species in the pine family (Pinaceae) with a seasonal deciduousness. New generation sequencing technologies make it possible to study this phenomenon at the genomic level and to reveal the genetic mechanisms of leaf and needle aging in angiosperms and gymnosperms. Using a comparative analysis of the genomes of evergreen and deciduous trees, it was found that the genes that control EXORDIUM LIKE 2 (EXL2) and DORMANCY-ASSOCIATED PROTEIN 1 (DRM1) proteins are most represented in Siberian larch, while an excess of genes that control proteins acting as immune receptors were found in evergreens. Orthologs from the family of genes that control leucine-rich repeat receptor-like kinases (LRR-RLK) contributed mostly to the distinction between evergreens and deciduous plants.
Collapse
Affiliation(s)
- Anastasia Y. Batalova
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia;
| | - Yuliya A. Putintseva
- Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia;
| | - Michael G. Sadovsky
- Institute of Computational Modelling, Russian Academy of Sciences, Siberian Branch, 660036 Krasnoyarsk, Russia;
- V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Federal Siberian Research Clinical Center, Federal Medical-Biological Agency, 660037 Krasnoyarsk, Russia
| | - Konstantin V. Krutovsky
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia;
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, 37077 Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August University of Göttingen, 37075 Göttingen, Germany
- Laboratory of Population Genetics, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
- Scientific and Methodological Center, G. F. Morozov Voronezh State University of Forestry and Technologies, 394087 Voronezh, Russia
- Correspondence: ; Tel.: +49-551-339-3537
| |
Collapse
|
15
|
Genome-Wide Prediction of Transcription Start Sites in Conifers. Int J Mol Sci 2022; 23:ijms23031735. [PMID: 35163661 PMCID: PMC8836283 DOI: 10.3390/ijms23031735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
The identification of promoters is an essential step in the genome annotation process, providing a framework for gene regulatory networks and their role in transcription regulation. Despite considerable advances in the high-throughput determination of transcription start sites (TSSs) and transcription factor binding sites (TFBSs), experimental methods are still time-consuming and expensive. Instead, several computational approaches have been developed to provide fast and reliable means for predicting the location of TSSs and regulatory motifs on a genome-wide scale. Numerous studies have been carried out on the regulatory elements of mammalian genomes, but plant promoters, especially in gymnosperms, have been left out of the limelight and, therefore, have been poorly investigated. The aim of this study was to enhance and expand the existing genome annotations using computational approaches for genome-wide prediction of TSSs in the four conifer species: loblolly pine, white spruce, Norway spruce, and Siberian larch. Our pipeline will be useful for TSS predictions in other genomes, especially for draft assemblies, where reliable TSS predictions are not usually available. We also explored some of the features of the nucleotide composition of the predicted promoters and compared the GC properties of conifer genes with model monocot and dicot plants. Here, we demonstrate that even incomplete genome assemblies and partial annotations can be a reliable starting point for TSS annotation. The results of the TSS prediction in four conifer species have been deposited in the Persephone genome browser, which allows smooth visualization and is optimized for large data sets. This work provides the initial basis for future experimental validation and the study of the regulatory regions to understand gene regulation in gymnosperms.
Collapse
|
16
|
Cao HX, Vu GTH, Gailing O. From Genome Sequencing to CRISPR-Based Genome Editing for Climate-Resilient Forest Trees. Int J Mol Sci 2022; 23:966. [PMID: 35055150 PMCID: PMC8780650 DOI: 10.3390/ijms23020966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Due to the economic and ecological importance of forest trees, modern breeding and genetic manipulation of forest trees have become increasingly prevalent. The CRISPR-based technology provides a versatile, powerful, and widely accepted tool for analyzing gene function and precise genetic modification in virtually any species but remains largely unexplored in forest species. Rapidly accumulating genetic and genomic resources for forest trees enabled the identification of numerous genes and biological processes that are associated with important traits such as wood quality, drought, or pest resistance, facilitating the selection of suitable gene editing targets. Here, we introduce and discuss the latest progress, opportunities, and challenges of genome sequencing and editing for improving forest sustainability.
Collapse
Affiliation(s)
- Hieu Xuan Cao
- Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Gottingen, Germany;
| | - Giang Thi Ha Vu
- Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Gottingen, Germany;
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Gottingen, Germany;
- Center for Integrated Breeding Research (CiBreed), Georg-August University of Göttingen, 37073 Gottingen, Germany
| |
Collapse
|
17
|
Neale DB, Zimin AV, Zaman S, Scott AD, Shrestha B, Workman RE, Puiu D, Allen BJ, Moore ZJ, Sekhwal MK, De La Torre AR, McGuire PE, Burns E, Timp W, Wegrzyn JL, Salzberg SL. Assembled and annotated 26.5 Gbp coast redwood genome: a resource for estimating evolutionary adaptive potential and investigating hexaploid origin. G3 (BETHESDA, MD.) 2022; 12:6460957. [PMID: 35100403 PMCID: PMC8728005 DOI: 10.1093/g3journal/jkab380] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022]
Abstract
Sequencing, assembly, and annotation of the 26.5 Gbp hexaploid genome of coast redwood (Sequoia sempervirens) was completed leading toward discovery of genes related to climate adaptation and investigation of the origin of the hexaploid genome. Deep-coverage short-read Illumina sequencing data from haploid tissue from a single seed were combined with long-read Oxford Nanopore Technologies sequencing data from diploid needle tissue to create an initial assembly, which was then scaffolded using proximity ligation data to produce a highly contiguous final assembly, SESE 2.1, with a scaffold N50 size of 44.9 Mbp. The assembly included several scaffolds that span entire chromosome arms, confirmed by the presence of telomere and centromere sequences on the ends of the scaffolds. The structural annotation produced 118,906 genes with 113 containing introns that exceed 500 Kbp in length and one reaching 2 Mb. Nearly 19 Gbp of the genome represented repetitive content with the vast majority characterized as long terminal repeats, with a 2.9:1 ratio of Copia to Gypsy elements that may aid in gene expression control. Comparison of coast redwood to other conifers revealed species-specific expansions for a plethora of abiotic and biotic stress response genes, including those involved in fungal disease resistance, detoxification, and physical injury/structural remodeling and others supporting flavonoid biosynthesis. Analysis of multiple genes that exist in triplicate in coast redwood but only once in its diploid relative, giant sequoia, supports a previous hypothesis that the hexaploidy is the result of autopolyploidy rather than any hybridizations with separate but closely related conifer species.
Collapse
Affiliation(s)
- David B Neale
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Aleksey V Zimin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
| | - Sumaira Zaman
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA.,Department of Computer Science & Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Alison D Scott
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Bikash Shrestha
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Rachael E Workman
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Daniela Puiu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
| | - Brian J Allen
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Zane J Moore
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Manoj K Sekhwal
- School of Forestry, Northern Arizona University, Flagstaff, AZ 86011, USA
| | | | - Patrick E McGuire
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Emily Burns
- Save the Redwoods League, San Francisco, CA 94104, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA.,Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Steven L Salzberg
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA.,Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
18
|
Comparative Genomics Analysis of Repetitive Elements in Ten Gymnosperm Species: "Dark Repeatome" and Its Abundance in Conifer and Gnetum Species. Life (Basel) 2021; 11:life11111234. [PMID: 34833110 PMCID: PMC8620675 DOI: 10.3390/life11111234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Repetitive elements (RE) and transposons (TE) can comprise up to 80% of some plant genomes and may be essential for regulating their evolution and adaptation. The “repeatome” information is often unavailable in assembled genomes because genomic areas of repeats are challenging to assemble and are often missing from final assembly. However, raw genomic sequencing data contain rich information about RE/TEs. Here, raw genomic NGS reads of 10 gymnosperm species were studied for the content and abundance patterns of their “repeatome”. We utilized a combination of alignment on databases of repetitive elements and de novo assembly of highly repetitive sequences from genomic sequencing reads to characterize and calculate the abundance of known and putative repetitive elements in the genomes of 10 conifer plants: Pinus taeda, Pinus sylvestris, Pinus sibirica, Picea glauca, Picea abies, Abies sibirica, Larix sibirica, Juniperus communis, Taxus baccata, and Gnetum gnemon. We found that genome abundances of known and newly discovered putative repeats are specific to phylogenetically close groups of species and match biological taxa. The grouping of species based on abundances of known repeats closely matches the grouping based on abundances of newly discovered putative repeats (kChains) and matches the known taxonomic relations.
Collapse
|
19
|
Li WF, Kang Y, Zhang Y, Zang QL, Qi LW. Concerted control of the LaRAV1-LaCDKB1;3 module by temperature during dormancy release and reactivation of larch. TREE PHYSIOLOGY 2021; 41:1918-1937. [PMID: 33847364 PMCID: PMC8498939 DOI: 10.1093/treephys/tpab052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/07/2021] [Indexed: 05/03/2023]
Abstract
Dormancy release and reactivation of temperate-zone trees involve the temperature-modulated expression of cell-cycle genes. However, information on the detailed regulatory mechanism is limited. Here, we compared the transcriptomes of the stems of active and dormant larch trees, emphasizing the expression patterns of cell-cycle genes and transcription factors and assessed their relationships and responses to temperatures. Twelve cell-cycle genes and 31 transcription factors were strongly expressed in the active stage. Promoter analysis suggested that these 12 genes might be regulated by transcription factors from 10 families. Altogether, 73 cases of regulation between 16 transcription factors and 12 cell-cycle genes were predicted, while the regulatory interactions between LaMYB20 and LaCYCB1;1, and LaRAV1 and LaCDKB1;3 were confirmed by yeast one-hybrid and dual-luciferase assays. Last, we found that LaRAV1 and LaCDKB1;3 had almost the same expression patterns during dormancy release and reactivation induced naturally or artificially by temperature, indicating that the LaRAV1-LaCDKB1;3 module functions in the temperature-modulated dormancy release and reactivation of larch trees. These results provide new insights into the link between temperature and cell-cycle gene expression, helping to understand the temperature control of tree growth and development in the context of climate change.
Collapse
Affiliation(s)
- Wan-Feng Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1, Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, People's Republic of China
| | - Yanhui Kang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1, Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, People's Republic of China
| | - Yao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, No. 1, Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, People's Republic of China
| | - Qiao-Lu Zang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1, Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, People's Republic of China
| | - Li-Wang Qi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1, Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, People's Republic of China
| |
Collapse
|
20
|
Heitkam T, Schulte L, Weber B, Liedtke S, Breitenbach S, Kögler A, Morgenstern K, Brückner M, Tröber U, Wolf H, Krabel D, Schmidt T. Comparative Repeat Profiling of Two Closely Related Conifers ( Larix decidua and Larix kaempferi) Reveals High Genome Similarity With Only Few Fast-Evolving Satellite DNAs. Front Genet 2021; 12:683668. [PMID: 34322154 PMCID: PMC8312256 DOI: 10.3389/fgene.2021.683668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/25/2021] [Indexed: 12/26/2022] Open
Abstract
In eukaryotic genomes, cycles of repeat expansion and removal lead to large-scale genomic changes and propel organisms forward in evolution. However, in conifers, active repeat removal is thought to be limited, leading to expansions of their genomes, mostly exceeding 10 giga base pairs. As a result, conifer genomes are largely littered with fragmented and decayed repeats. Here, we aim to investigate how the repeat landscapes of two related conifers have diverged, given the conifers' accumulative genome evolution mode. For this, we applied low-coverage sequencing and read clustering to the genomes of European and Japanese larch, Larix decidua (Lamb.) Carrière and Larix kaempferi (Mill.), that arose from a common ancestor, but are now geographically isolated. We found that both Larix species harbored largely similar repeat landscapes, especially regarding the transposable element content. To pin down possible genomic changes, we focused on the repeat class with the fastest sequence turnover: satellite DNAs (satDNAs). Using comparative bioinformatics, Southern, and fluorescent in situ hybridization, we reveal the satDNAs' organizational patterns, their abundances, and chromosomal locations. Four out of the five identified satDNAs are widespread in the Larix genus, with two even present in the more distantly related Pseudotsuga and Abies genera. Unexpectedly, the EulaSat3 family was restricted to L. decidua and absent from L. kaempferi, indicating its evolutionarily young age. Taken together, our results exemplify how the accumulative genome evolution of conifers may limit the overall divergence of repeats after speciation, producing only few repeat-induced genomic novelties.
Collapse
Affiliation(s)
- Tony Heitkam
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Luise Schulte
- Institute of Botany, Technische Universität Dresden, Dresden, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Beatrice Weber
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Susan Liedtke
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Sarah Breitenbach
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Anja Kögler
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Kristin Morgenstern
- Institute of Forest Botany and Forest Zoology, Technische Universität Dresden, Tharandt, Germany
| | | | - Ute Tröber
- Staatsbetrieb Sachsenforst, Pirna, Germany
| | - Heino Wolf
- Staatsbetrieb Sachsenforst, Pirna, Germany
| | - Doris Krabel
- Institute of Forest Botany and Forest Zoology, Technische Universität Dresden, Tharandt, Germany
| | - Thomas Schmidt
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
21
|
Matallana-Ramirez LP, Whetten RW, Sanchez GM, Payn KG. Breeding for Climate Change Resilience: A Case Study of Loblolly Pine ( Pinus taeda L.) in North America. FRONTIERS IN PLANT SCIENCE 2021; 12:606908. [PMID: 33995428 PMCID: PMC8119900 DOI: 10.3389/fpls.2021.606908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/08/2021] [Indexed: 05/25/2023]
Abstract
Earth's atmosphere is warming and the effects of climate change are becoming evident. A key observation is that both the average levels and the variability of temperature and precipitation are changing. Information and data from new technologies are developing in parallel to provide multidisciplinary opportunities to address and overcome the consequences of these changes in forest ecosystems. Changes in temperature and water availability impose multidimensional environmental constraints that trigger changes from the molecular to the forest stand level. These can represent a threat for the normal development of the tree from early seedling recruitment to adulthood both through direct mortality, and by increasing susceptibility to pathogens, insect attack, and fire damage. This review summarizes the strengths and shortcomings of previous work in the areas of genetic variation related to cold and drought stress in forest species with particular emphasis on loblolly pine (Pinus taeda L.), the most-planted tree species in North America. We describe and discuss the implementation of management and breeding strategies to increase resilience and adaptation, and discuss how new technologies in the areas of engineering and genomics are shaping the future of phenotype-genotype studies. Lessons learned from the study of species important in intensively-managed forest ecosystems may also prove to be of value in helping less-intensively managed forest ecosystems adapt to climate change, thereby increasing the sustainability and resilience of forestlands for the future.
Collapse
Affiliation(s)
- Lilian P. Matallana-Ramirez
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, Raleigh, NC, United States
| | - Ross W. Whetten
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, Raleigh, NC, United States
| | - Georgina M. Sanchez
- Center for Geospatial Analytics, North Carolina State University, Raleigh, Raleigh, NC, United States
| | - Kitt G. Payn
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, Raleigh, NC, United States
| |
Collapse
|
22
|
García-García I, Méndez-Cea B, Martín-Gálvez D, Seco JI, Gallego FJ, Linares JC. Challenges and Perspectives in the Epigenetics of Climate Change-Induced Forests Decline. FRONTIERS IN PLANT SCIENCE 2021; 12:797958. [PMID: 35058957 PMCID: PMC8764141 DOI: 10.3389/fpls.2021.797958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/13/2021] [Indexed: 05/14/2023]
Abstract
Forest tree species are highly vulnerable to the effects of climate change. As sessile organisms with long generation times, their adaptation to a local changing environment may rely on epigenetic modifications when allele frequencies are not able to shift fast enough. However, the current lack of knowledge on this field is remarkable, due to many challenges that researchers face when studying this issue. Huge genome sizes, absence of reference genomes and annotation, and having to analyze huge amounts of data are among these difficulties, which limit the current ability to understand how climate change drives tree species epigenetic modifications. In spite of this challenging framework, some insights on the relationships among climate change-induced stress and epigenomics are coming. Advances in DNA sequencing technologies and an increasing number of studies dealing with this topic must boost our knowledge on tree adaptive capacity to changing environmental conditions. Here, we discuss challenges and perspectives in the epigenetics of climate change-induced forests decline, aiming to provide a general overview of the state of the art.
Collapse
Affiliation(s)
- Isabel García-García
- Departamento de Genética, Fisiología y Microbiología, UD Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, Madrid, Spain
- *Correspondence: Isabel García-García,
| | - Belén Méndez-Cea
- Departamento de Genética, Fisiología y Microbiología, UD Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, Madrid, Spain
- Belén Méndez-Cea,
| | - David Martín-Gálvez
- Departamento de Biodiversidad, Ecología y Evolución, UD Zoología, Facultad de CC Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - José Ignacio Seco
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Seville, Spain
| | - Francisco Javier Gallego
- Departamento de Genética, Fisiología y Microbiología, UD Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan Carlos Linares
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
23
|
Putintseva YA, Bondar EI, Simonov EP, Sharov VV, Oreshkova NV, Kuzmin DA, Konstantinov YM, Shmakov VN, Belkov VI, Sadovsky MG, Keech O, Krutovsky KV. Siberian larch (Larix sibirica Ledeb.) mitochondrial genome assembled using both short and long nucleotide sequence reads is currently the largest known mitogenome. BMC Genomics 2020; 21:654. [PMID: 32972367 PMCID: PMC7517811 DOI: 10.1186/s12864-020-07061-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/10/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Plant mitochondrial genomes (mitogenomes) can be structurally complex while their size can vary from ~ 222 Kbp in Brassica napus to 11.3 Mbp in Silene conica. To date, in comparison with the number of plant species, only a few plant mitogenomes have been sequenced and released, particularly for conifers (the Pinaceae family). Conifers cover an ancient group of land plants that includes about 600 species, and which are of great ecological and economical value. Among them, Siberian larch (Larix sibirica Ledeb.) represents one of the keystone species in Siberian boreal forests. Yet, despite its importance for evolutionary and population studies, the mitogenome of Siberian larch has not yet been assembled and studied. RESULTS Two sources of DNA sequences were used to search for mitochondrial DNA (mtDNA) sequences: mtDNA enriched samples and nucleotide reads generated in the de novo whole genome sequencing project, respectively. The assembly of the Siberian larch mitogenome contained nine contigs, with the shortest and the largest contigs being 24,767 bp and 4,008,762 bp, respectively. The total size of the genome was estimated at 11.7 Mbp. In total, 40 protein-coding, 34 tRNA, and 3 rRNA genes and numerous repetitive elements (REs) were annotated in this mitogenome. In total, 864 C-to-U RNA editing sites were found for 38 out of 40 protein-coding genes. The immense size of this genome, currently the largest reported, can be partly explained by variable numbers of mobile genetic elements, and introns, but unlikely by plasmid-related sequences. We found few plasmid-like insertions representing only 0.11% of the entire Siberian larch mitogenome. CONCLUSIONS Our study showed that the size of the Siberian larch mitogenome is much larger than in other so far studied Gymnosperms, and in the same range as for the annual flowering plant Silene conica (11.3 Mbp). Similar to other species, the Siberian larch mitogenome contains relatively few genes, and despite its huge size, the repeated and low complexity regions cover only 14.46% of the mitogenome sequence.
Collapse
Affiliation(s)
- Yuliya A Putintseva
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660036, Russia
| | - Eugeniya I Bondar
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660036, Russia
- Laboratory of Genomic Research and Biotechnology, Federal Research Center "Krasnoyarsk Science Center", Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russia
| | - Evgeniy P Simonov
- Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, Tyumen, 625003, Russia
| | - Vadim V Sharov
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660036, Russia
- Laboratory of Genomic Research and Biotechnology, Federal Research Center "Krasnoyarsk Science Center", Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russia
- Department of High Performance Computing, Institute of Space and Information Technologies, Siberian Federal University, Krasnoyarsk, 660074, Russia
| | - Natalya V Oreshkova
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660036, Russia
- Laboratory of Genomic Research and Biotechnology, Federal Research Center "Krasnoyarsk Science Center", Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russia
- Laboratory of Forest Genetics and Selection, V. N. Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russia
| | - Dmitry A Kuzmin
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660036, Russia
- Department of High Performance Computing, Institute of Space and Information Technologies, Siberian Federal University, Krasnoyarsk, 660074, Russia
| | - Yuri M Konstantinov
- Laboratory of Plant Genetic Engineering, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, Irkutsk, 664033, Russia
| | - Vladimir N Shmakov
- Laboratory of Plant Genetic Engineering, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, Irkutsk, 664033, Russia
| | - Vadim I Belkov
- Laboratory of Plant Genetic Engineering, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, Irkutsk, 664033, Russia
| | - Michael G Sadovsky
- Institute of Computational Modeling, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russia
| | - Olivier Keech
- Department of Plant Physiology, UPSC, Umeå University, S-90187, Umeå, Sweden
| | - Konstantin V Krutovsky
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660036, Russia.
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, 37077, Göttingen, Germany.
- Center for Integrated Breeding Research, George-August University of Göttingen, 37075, Göttingen, Germany.
- Laboratory of Population Genetics, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia.
- Department of Ecosystem Science and Management, Texas A&M University, College Station, TX, 77843-2138, USA.
| |
Collapse
|
24
|
The transcriptome of the newt Cynops orientalis provides new insights into evolution and function of sexual gene networks in sarcopterygians. Sci Rep 2020; 10:5445. [PMID: 32214214 PMCID: PMC7096497 DOI: 10.1038/s41598-020-62408-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/04/2020] [Indexed: 01/08/2023] Open
Abstract
Amphibians evolved in the Devonian period about 400 Mya and represent a transition step in tetrapod evolution. Among amphibians, high-throughput sequencing data are very limited for Caudata, due to their largest genome sizes among terrestrial vertebrates. In this paper we present the transcriptome from the fire bellied newt Cynops orientalis. Data here presented display a high level of completeness, comparable to the fully sequenced genomes available from other amphibians. Moreover, this work focused on genes involved in gametogenesis and sexual development. Surprisingly, the gsdf gene was identified for the first time in a tetrapod species, so far known only from bony fish and basal sarcopterygians. Our analysis failed to isolate fgf24 and foxl3, supporting the possible loss of both genes in the common ancestor of Rhipidistians. In Cynops, the expression analysis of genes described to be sex-related in vertebrates singled out an expected functional role for some genes, while others displayed an unforeseen behavior, confirming the high variability of the sex-related pathway in vertebrates.
Collapse
|
25
|
Chinese Fir Breeding in the High-Throughput Sequencing Era: Insights from SNPs. FORESTS 2019. [DOI: 10.3390/f10080681] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Knowledge on population diversity and structure is of fundamental importance for conifer breeding programs. In this study, we concentrated on the development and application of high-density single nucleotide polymorphism (SNP) markers through a high-throughput sequencing technique termed as specific-locus amplified fragment sequencing (SLAF-seq) for the economically important conifer tree species, Chinese fir (Cunninghamia lanceolata). Based on the SLAF-seq, we successfully established a high-density SNP panel consisting of 108,753 genomic SNPs from Chinese fir. This SNP panel facilitated us in gaining insight into the genetic base of the Chinese fir advance breeding population with 221 genotypes for its genetic variation, relationship and diversity, and population structure status. Overall, the present population appears to have considerable genetic variability. Most (94.15%) of the variability was attributed to the genetic differentiation of genotypes, very limited (5.85%) variation occurred on the population (sub-origin set) level. Correspondingly, low FST (0.0285–0.0990) values were seen for the sub-origin sets. When viewing the genetic structure of the population regardless of its sub-origin set feature, the present SNP data opened a new population picture where the advanced Chinese fir breeding population could be divided into four genetic sets, as evidenced by phylogenetic tree and population structure analysis results, albeit some difference in membership of the corresponding set (cluster vs. group). It also suggested that all the genetic sets were admixed clades revealing a complex relationship of the genotypes of this population. With a step wise pruning procedure, we captured a core collection (core 0.650) harboring 143 genotypes that maintains all the allele, diversity, and specific genetic structure of the whole population. This generalist core is valuable for the Chinese fir advanced breeding program and further genetic/genomic studies.
Collapse
|
26
|
Zimmermann HH, Harms L, Epp LS, Mewes N, Bernhardt N, Kruse S, Stoof-Leichsenring KR, Pestryakova LA, Wieczorek M, Trense D, Herzschuh U. Chloroplast and mitochondrial genetic variation of larches at the Siberian tundra-taiga ecotone revealed by de novo assembly. PLoS One 2019; 14:e0216966. [PMID: 31291259 PMCID: PMC6619608 DOI: 10.1371/journal.pone.0216966] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/30/2019] [Indexed: 01/10/2023] Open
Abstract
Larix populations at the tundra-taiga ecotone in northern Siberia are highly under-represented in population genetic studies, possibly due to the remoteness of these regions that can only be accessed at extraordinary expense. The genetic signatures of populations in these boundary regions are therefore largely unknown. We aim to generate organelle reference genomes for the detection of single nucleotide polymorphisms (SNPs) that can be used for paleogenetic studies. We present 19 complete chloroplast genomes and mitochondrial genomic sequences of larches from the southern lowlands of the Taymyr Peninsula (northernmost range of Larix gmelinii (Rupr.) Kuzen.), the lower Omoloy River, and the lower Kolyma River (both in the range of Larix cajanderi Mayr). The genomic data reveal 84 chloroplast SNPs and 213 putatively mitochondrial SNPs. Parsimony-based chloroplast haplotype networks show no spatial structure of individuals from different geographic origins, while the mitochondrial haplotype network shows at least a slight spatial structure with haplotypes from the Omoloy and Kolyma populations being more closely related to each other than to most of the haplotypes from the Taymyr populations. Whole genome alignments with publicly available complete chloroplast genomes of different Larix species show that among official plant barcodes only the rcbL gene contains sufficient polymorphisms, but has to be sequenced completely to distinguish the different provenances. We provide 8 novel mitochondrial SNPs that are putatively diagnostic for the separation of L. gmelinii and L. cajanderi, while 4 chloroplast SNPs have the potential to distinguish the L. gmelinii/L. cajanderi group from other Larix species. Our organelle references can be used for a targeted primer and probe design allowing the generation of short amplicons. This is particularly important with regard to future investigations of, for example, the biogeographic history of Larix by screening ancient sedimentary DNA of Larix.
Collapse
MESH Headings
- Chromosome Mapping
- DNA, Ancient
- DNA, Chloroplast/genetics
- DNA, Mitochondrial/genetics
- DNA, Plant/genetics
- Genetic Variation
- Genetics, Population
- Genome, Chloroplast
- Genome, Mitochondrial
- Genome, Plant
- Haplotypes
- History, Ancient
- Larix/classification
- Larix/genetics
- Polymorphism, Single Nucleotide
- Siberia
- Taiga
- Tundra
Collapse
Affiliation(s)
- Heike H. Zimmermann
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- * E-mail: (HHZ); (UH)
| | - Lars Harms
- Scientific Computing, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Laura S. Epp
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Nick Mewes
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Nadine Bernhardt
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Stefan Kruse
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Kathleen R. Stoof-Leichsenring
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | | | - Mareike Wieczorek
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Daronja Trense
- Institute for Integrated Natural Sciences, Biology, Koblenz-Landau University, Koblenz, Germany
| | - Ulrike Herzschuh
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Institute of Environmental Sciences and Geography, University of Potsdam, Potsdam, Germany
- * E-mail: (HHZ); (UH)
| |
Collapse
|
27
|
Mosca E, Cruz F, Gómez-Garrido J, Bianco L, Rellstab C, Brodbeck S, Csilléry K, Fady B, Fladung M, Fussi B, Gömöry D, González-Martínez SC, Grivet D, Gut M, Hansen OK, Heer K, Kaya Z, Krutovsky KV, Kersten B, Liepelt S, Opgenoorth L, Sperisen C, Ullrich KK, Vendramin GG, Westergren M, Ziegenhagen B, Alioto T, Gugerli F, Heinze B, Höhn M, Troggio M, Neale DB. A Reference Genome Sequence for the European Silver Fir ( Abies alba Mill.): A Community-Generated Genomic Resource. G3 (BETHESDA, MD.) 2019; 9:2039-2049. [PMID: 31217262 PMCID: PMC6643874 DOI: 10.1534/g3.119.400083] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/11/2019] [Indexed: 02/08/2023]
Abstract
Silver fir (Abies alba Mill.) is a keystone conifer of European montane forest ecosystems that has experienced large fluctuations in population size during during the Quaternary and, more recently, due to land-use change. To forecast the species' future distribution and survival, it is important to investigate the genetic basis of adaptation to environmental change, notably to extreme events. For this purpose, we here provide a first draft genome assembly and annotation of the silver fir genome, established through a community-based initiative. DNA obtained from haploid megagametophyte and diploid needle tissue was used to construct and sequence Illumina paired-end and mate-pair libraries, respectively, to high depth. The assembled A. alba genome sequence accounted for over 37 million scaffolds corresponding to 18.16 Gb, with a scaffold N50 of 14,051 bp. Despite the fragmented nature of the assembly, a total of 50,757 full-length genes were functionally annotated in the nuclear genome. The chloroplast genome was also assembled into a single scaffold (120,908 bp) that shows a high collinearity with both the A. koreana and A. sibirica complete chloroplast genomes. This first genome assembly of silver fir is an important genomic resource that is now publicly available in support of a new generation of research. By genome-enabling this important conifer, this resource will open the gate for new research and more precise genetic monitoring of European silver fir forests.
Collapse
Affiliation(s)
- Elena Mosca
- C3A - Centro Agricoltura Alimenti Ambiente, University of Trento, via E. Mach 1, 38010 S. Michele a/Adige (TN), Italy
| | - Fernando Cruz
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, BaldiriReixac 4, 08028 Barcelona, Spain
| | - Jèssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, BaldiriReixac 4, 08028 Barcelona, Spain
| | - Luca Bianco
- Fondazione Edmund Mach, Via Mach 1, 38010 S. Michele a/Adige (TN), Italy
| | - Christian Rellstab
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Sabine Brodbeck
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Katalin Csilléry
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
- University of Zürich, Department of Evolutionary Biology and Environmental Studies, Winterthurerstrasse 190, CH-8057 Zurich
| | - Bruno Fady
- Institut National de la Recherche Agronomique (INRA), Unité de Recherche Ecologie des Forêts Méditerranéennes (URFM), Site Agroparc, Domaine Saint Paul, 84914 Avignon, France
| | - Matthias Fladung
- Thünen-Institute of Forest Genetics, Sieker Landstr, 2, 22927 Grosshansdorf, Germany
| | - Barbara Fussi
- Bavarian Office for Forest Seeding and Planting (ASP), Applied Forest Genetics, Forstamtsplatz 1, 83317 Teisendorf, Germany
| | - Dušan Gömöry
- Technical University in Zvolen, TG Masaryka 24, 96053 Zvolen, Slovakia
| | - Santiago C González-Martínez
- Institut National de la Recherche Agronomique (INRA), UMR1202 Biodiversity, Genes & Communities (BIOGECO), University of Bordeaux, 69, route d'Arcachon, 33610 Cestas, France
| | - Delphine Grivet
- INIA Forest Research Centre, Carretera de la Coruña km 7.5, 28040 Madrid, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, BaldiriReixac 4, 08028 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Plaça de la Mercè, 10, 08002 Barcelona, Spain
| | - Ole Kim Hansen
- Department of Geosciences and Natural Resource Management (IGN), University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
| | - Katrin Heer
- Philipps-Universität Marburg, Faculty of Biology (PUM), Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Zeki Kaya
- Department of Biological Sciences (METU), Middle East Technical University, 06800 Çankaya/Ankara, Turkey
| | - Konstantin V Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
- Laboratory of Population Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Str. 3, 11991 Moscow, Russia
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 50a/2 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Birgit Kersten
- Thünen-Institute of Forest Genetics, Sieker Landstr, 2, 22927 Grosshansdorf, Germany
| | - Sascha Liepelt
- Philipps-Universität Marburg, Faculty of Biology (PUM), Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Lars Opgenoorth
- Philipps-Universität Marburg, Faculty of Biology (PUM), Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Christoph Sperisen
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Kristian K Ullrich
- Department of Biological Sciences (METU), Middle East Technical University, 06800 Çankaya/Ankara, Turkey
| | - Giovanni G Vendramin
- Institute of Biosciences and BioResources, National Research Council, Via Madonna del Piano 10,50019 Sesto Fiorentino (Firenze), Italy
| | - Marjana Westergren
- Slovenian Forestry Institute (SFI), Gozdarskiinštitut Slovenije), Večna pot 2, 1000 Ljubljana, Slovenia
| | - Birgit Ziegenhagen
- Philipps-Universität Marburg, Faculty of Biology (PUM), Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Tyler Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, BaldiriReixac 4, 08028 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Plaça de la Mercè, 10, 08002 Barcelona, Spain
| | - Felix Gugerli
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Berthold Heinze
- Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Seckendorff-Gudent Weg 8, 1130 Wien, Austria
| | - Maria Höhn
- Max Planck Institute for Evolutionary Biology, Department for Evolutionary Genetics (MPI), August Thienemann Str. 2, 24306 Ploen, Germany
| | - Michela Troggio
- Fondazione Edmund Mach, Via Mach 1, 38010 S. Michele a/Adige (TN), Italy
| | - David B Neale
- Department of Plant Sciences, University of California at Davis (UCD), Davis 95616
| |
Collapse
|
28
|
Affiliation(s)
- Tatiana V Tatarinova
- Department of Biology, University of La Verne, La Verne, CA, USA
- Department of Fundamental Biology and Biotechnology, Siberian Federal University, 660074, Krasnoyarsk, Russia
- Vavilov Institute of General Genetics RAS, Moscow, Russia
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Ming Chen
- Zhejiang University, Hangzhou, 310058, China
| | - Yuriy L Orlov
- Institute of Cytology and Genetics SB RAS, 630090, Novosibirsk, Russia.
- Novosibirsk State University, 630090, Novosibirsk, Russia.
- A.O. Kovalevsky Institute of Marine Biological Research of RAS, 119334, Moscow, Russia.
| |
Collapse
|
29
|
Bondar EI, Putintseva YA, Oreshkova NV, Krutovsky KV. Siberian larch (Larix sibirica Ledeb.) chloroplast genome and development of polymorphic chloroplast markers. BMC Bioinformatics 2019; 20:38. [PMID: 30717673 PMCID: PMC6362560 DOI: 10.1186/s12859-018-2571-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The main objectives of this study were sequencing, assembling, and annotation of chloroplast genome of one of the main Siberian boreal forest tree conifer species Siberian larch (Larix sibirica Ledeb.) and detection of polymorphic genetic markers - microsatellite loci or simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs). RESULTS We used the data of the whole genome sequencing of three Siberian larch trees from different regions - the Urals, Krasnoyarsk, and Khakassia, respectively. Sequence reads were obtained using the Illumina HiSeq2000 in the Laboratory of Forest Genomics at the Genome Research and Education Center of the Siberian Federal University. The assembling was done using the Bowtie2 mapping program and the SPAdes genomic assembler. The genome annotation was performed using the RAST service. We used the GMATo program for the SSRs search, and the Bowtie2 and UGENE programs for the SNPs detection. Length of the assembled chloroplast genome was 122,561 bp, which is similar to 122,474 bp in the closely related European larch (Larix decidua Mill.). As a result of annotation and comparison of the data with the existing data available only for three larch species - L. decidua, L. potaninii var. chinensis (complete genome 122,492 bp), and L. occidentalis (partial genome of 119,680 bp), we identified 110 genes, 34 of which represented tRNA, 4 rRNA, and 72 protein-coding genes. In total, 13 SNPs were detected; two of them were in the tRNA-Arg and Cell division protein FtsH genes, respectively. In addition, 23 SSR loci were identified. CONCLUSIONS The complete chloroplast genome sequence was obtained for Siberian larch for the first time. The reference complete chloroplast genomes, such as one described here, would greatly help in the chloroplast resequencing and search for additional genetic markers using population samples. The results of this research will be useful for further phylogenetic and gene flow studies in conifers.
Collapse
Affiliation(s)
- Eugeniya I Bondar
- Laboratory of Forest Genomics, Genome Research and Education Center, Siberian Federal University, 660036, Krasnoyarsk, Russian Federation
| | - Yuliya A Putintseva
- Laboratory of Forest Genomics, Genome Research and Education Center, Siberian Federal University, 660036, Krasnoyarsk, Russian Federation
| | - Nataliya V Oreshkova
- Laboratory of Forest Genomics, Genome Research and Education Center, Siberian Federal University, 660036, Krasnoyarsk, Russian Federation
- Laboratory of Forest Genetics and Selection, V.N. Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, 660036, Krasnoyarsk, Russian Federation
| | - Konstantin V Krutovsky
- Laboratory of Forest Genomics, Genome Research and Education Center, Siberian Federal University, 660036, Krasnoyarsk, Russian Federation.
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, D-37077, Göttingen, Germany.
- Laboratory of Population Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333, Moscow, Russia.
- Department of Ecosystem Science and Management, Texas A&M University, College Station, TX, 77843-2138, USA.
| |
Collapse
|
30
|
Chang P, Zhu L, Zhao M, Li C, Zhang Y, Li L. The first transcriptome sequencing and analysis of the endangered plant species Picea neoveitchii Mast. and potential EST-SSR markers development. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1632739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Pan Chang
- Department of Forestry, College of Forestry, Northwest A&F University, Yangling, PR China
- Shaanxi Province Key Laboratory of Economic Plant Resources Development and Utilization, Yangling, PR China
| | - Ling Zhu
- Department of Forestry, College of Forestry, Northwest A&F University, Yangling, PR China
| | - Mengran Zhao
- Department of Forestry, College of Forestry, Northwest A&F University, Yangling, PR China
- Shaanxi Province Key Laboratory of Economic Plant Resources Development and Utilization, Yangling, PR China
| | - Chao Li
- Department of Forestry, College of Forestry, Northwest A&F University, Yangling, PR China
| | - Yi Zhang
- Department of Forestry, College of Forestry, Northwest A&F University, Yangling, PR China
| | - Lingli Li
- Department of Forestry, College of Forestry, Northwest A&F University, Yangling, PR China
- Shaanxi Province Key Laboratory of Economic Plant Resources Development and Utilization, Yangling, PR China
| |
Collapse
|