1
|
Schurr TG, Shengelia R, Shamoon-Pour M, Chitanava D, Laliashvili S, Laliashvili I, Kibret R, Kume-Kangkolo Y, Akhvlediani I, Bitadze L, Mathieson I, Yardumian A. Genetic Analysis of Mingrelians Reveals Long-Term Continuity of Populations in Western Georgia (Caucasus). Genome Biol Evol 2023; 15:evad198. [PMID: 37935112 PMCID: PMC10665041 DOI: 10.1093/gbe/evad198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/09/2023] Open
Abstract
To elucidate the population history of the Caucasus, we conducted a survey of genetic diversity in Samegrelo (Mingrelia), western Georgia. We collected DNA samples and genealogical information from 485 individuals residing in 30 different locations, the vast majority of whom being Mingrelian speaking. From these DNA samples, we generated mitochondrial DNA (mtDNA) control region sequences for all 485 participants (female and male), Y-short tandem repeat haplotypes for the 372 male participants, and analyzed all samples at nearly 590,000 autosomal single nucleotide polymorphisms (SNPs) plus around 33,000 on the sex chromosomes, with 27,000 SNP removed for missingness, using the GenoChip 2.0+ microarray. The resulting data were compared with those from populations from Anatolia, the Caucasus, the Near East, and Europe. Overall, Mingrelians exhibited considerable mtDNA haplogroup diversity, having high frequencies of common West Eurasian haplogroups (H, HV, I, J, K, N1, R1, R2, T, U, and W. X2) and low frequencies of East Eurasian haplogroups (A, C, D, F, and G). From a Y-chromosome standpoint, Mingrelians possessed a variety of haplogroups, including E1b1b, G2a, I2, J1, J2, L, Q, R1a, and R1b. Analysis of autosomal SNP data further revealed that Mingrelians are genetically homogeneous and cluster with other modern-day South Caucasus populations. When compared with ancient DNA samples from Bronze Age archaeological contexts in the broader region, these data indicate that the Mingrelian gene pool began taking its current form at least by this period, probably in conjunction with the formation of a distinct linguistic community.
Collapse
Affiliation(s)
- Theodore G Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ramaz Shengelia
- Department of the History of Medicine, Tbilisi State Medical University, Tbilisi, Georgia
| | - Michel Shamoon-Pour
- First-year Research Immersion, Binghamton University, Binghamton, New York, USA
| | - David Chitanava
- Laboratory for Anthropologic Studies, Ivane Javakhishvili Institute of History and Ethnology, Tbilisi, Georgia
| | - Shorena Laliashvili
- Laboratory for Anthropologic Studies, Ivane Javakhishvili Institute of History and Ethnology, Tbilisi, Georgia
| | - Irma Laliashvili
- Laboratory for Anthropologic Studies, Ivane Javakhishvili Institute of History and Ethnology, Tbilisi, Georgia
| | - Redate Kibret
- Department of History and Social Science, Bryn Athyn College, Bryn Athyn, Pennsylvania, USA
| | - Yanu Kume-Kangkolo
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Lia Bitadze
- Laboratory for Anthropologic Studies, Ivane Javakhishvili Institute of History and Ethnology, Tbilisi, Georgia
| | - Iain Mathieson
- Department of Genetics, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Aram Yardumian
- Department of History and Social Science, Bryn Athyn College, Bryn Athyn, Pennsylvania, USA
| |
Collapse
|
2
|
Derenko M, Denisova G, Litvinov A, Dambueva I, Malyarchuk B. Mitogenomics of the Koryaks and Evens of the northern coast of the Sea of Okhotsk. J Hum Genet 2023; 68:705-712. [PMID: 37316650 DOI: 10.1038/s10038-023-01173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Due to the geographical proximity of the northern coast of the Sea of Okhotsk and Kamchatka Peninsula to the Beringia, the indigenous populations of these territories are of great interest for elucidating the human settlement history of northern Asia and America. Meanwhile, there is a clear shortage of genetic studies of the indigenous populations of the northern coast of the Sea of Okhotsk. Here, in order to examine their fine-scale matrilineal genetic structure, ancestry and relationships with neighboring populations, we analyzed 203 complete mitogenomes (174 of which are new) from population samples of the Koryaks and Evens of the northern coast of the Sea of Okhotsk and the Chukchi of the extreme northeast Asia. The patterns observed underscore the reduced level of genetic diversity found in the Koryak, Even, and Chukchi populations, which, along with the high degree of interpopulation differentiation, may be the result of genetic drift. Our phylogeographic analysis reveals common Paleo-Asiatic ancestry for 51.1% of the Koryaks and 17.8% of the Evens. About third of the mitogenomes found in the Koryaks and Evens might be considered as ethno-specific, as these are virtually absent elsewhere in North, Central and East Asia. Coalescence ages of most of these lineages coincide well with the emergence and development of the Tokarev and Old Koryak archaeological cultures associated with the formation of the Koryaks, as well as with the period of separation and split of the North Tungusic groups migrated northwards from the Lake Baikal or the Amur River area.
Collapse
Affiliation(s)
- Miroslava Derenko
- Institute of Biological Problems of the North, Russian Academy of Sciences, Portovaya Street, 18, Magadan, 685000, Russia.
| | - Galina Denisova
- Institute of Biological Problems of the North, Russian Academy of Sciences, Portovaya Street, 18, Magadan, 685000, Russia
| | - Andrey Litvinov
- Institute of Biological Problems of the North, Russian Academy of Sciences, Portovaya Street, 18, Magadan, 685000, Russia
| | - Irina Dambueva
- Institute of Biological Problems of the North, Russian Academy of Sciences, Portovaya Street, 18, Magadan, 685000, Russia
| | - Boris Malyarchuk
- Institute of Biological Problems of the North, Russian Academy of Sciences, Portovaya Street, 18, Magadan, 685000, Russia
| |
Collapse
|
3
|
Malyarchuk BA. The role of Beringia in human adaptation to Arctic conditions based on results of genomic studies of modern and ancient populations. Vavilovskii Zhurnal Genet Selektsii 2023; 27:373-382. [PMID: 37465192 PMCID: PMC10350865 DOI: 10.18699/vjgb-23-45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/15/2022] [Accepted: 10/15/2022] [Indexed: 07/20/2023] Open
Abstract
The results of studies in Quaternary geology, archeology, paleoanthropology and human genetics demonstrate that the ancestors of Native Americans arrived in mid-latitude North America mainly along the Pacific Northwest Coast, but had previously inhabited the Arctic and during the last glacial maximum were in a refugium in Beringia, a land bridge connecting Eurasia and North America. The gene pool of Native Americans is represented by unique haplogroups of mitochondrial DNA and the Y chromosome, the evolutionary age of which ranges from 13 to 22 thousand years. The results of a paleogenomic analysis also show that during the last glacial maximum Beringia was populated by human groups that had arisen as a result of interaction between the most ancient Upper Paleolithic populations of Northern Eurasia and newcomer groups from East Asia. Approximately 20 thousand years ago the Beringian populations began to form, and the duration of their existence in relative isolation is estimated at about 5 thousand years. Thus, the adaptation of the Beringians to the Arctic conditions could have taken several millennia. The adaptation of Amerindian ancestors to high latitudes and cold climates is supported by genomic data showing that adaptive genetic variants in Native Americans are associated with various metabolic pathways: melanin production processes in the skin, hair and eyes, the functioning of the cardiovascular system, energy metabolism and immune response characteristics. Meanwhile, the analysis of the existing hypotheses about the selection of some genetic variants in the Beringian ancestors of the Amerindians in connection with adaptation to the Arctic conditions (for example, in the FADS, ACTN3, EDAR genes) shows the ambiguity of the testing results, which may be due to the loss of some traces of the "Beringian" adaptation in the gene pools of modern Native Americans. The most optimal strategy for further research seems to be the search for adaptive variant.
Collapse
Affiliation(s)
- B A Malyarchuk
- Institute of Biological Problems of the North, Far-East Branch of the Russian Academy of Sciences, Magadan, Russia N.A. Shilo North-East Interdisciplinary Scientific Research Institute, Far-East Branch of the Russian Academy of Sciences, Magadan, Russia
| |
Collapse
|
4
|
Askapuli A, Vilar M, Garcia-Ortiz H, Zhabagin M, Sabitov Z, Akilzhanova A, Ramanculov E, Schamiloglu U, Martinez-Hernandez A, Contreras-Cubas C, Barajas-Olmos F, Schurr TG, Zhumadilov Z, Flores-Huacuja M, Orozco L, Hawks J, Saitou N. Kazak mitochondrial genomes provide insights into the human population history of Central Eurasia. PLoS One 2022; 17:e0277771. [PMID: 36445929 PMCID: PMC9707748 DOI: 10.1371/journal.pone.0277771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022] Open
Abstract
As a historical nomadic group in Central Asia, Kazaks have mainly inhabited the steppe zone from the Altay Mountains in the East to the Caspian Sea in the West. Fine scale characterization of the genetic profile and population structure of Kazaks would be invaluable for understanding their population history and modeling prehistoric human expansions across the Eurasian steppes. With this mind, we characterized the maternal lineages of 200 Kazaks from Jetisuu at mitochondrial genome level. Our results reveal that Jetisuu Kazaks have unique mtDNA haplotypes including those belonging to the basal branches of both West Eurasian (R0, H, HV) and East Eurasian (A, B, C, D) lineages. The great diversity observed in their maternal lineages may reflect pivotal geographic location of Kazaks in Eurasia and implies a complex history for this population. Comparative analyses of mitochondrial genomes of human populations in Central Eurasia reveal a common maternal genetic ancestry for Turko-Mongolian speakers and their expansion being responsible for the presence of East Eurasian maternal lineages in Central Eurasia. Our analyses further indicate maternal genetic affinity between the Sherpas from the Tibetan Plateau with the Turko-Mongolian speakers.
Collapse
Affiliation(s)
- Ayken Askapuli
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
- National Center for Biotechnology, Astana, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Miguel Vilar
- The Genographic Project, National Geographic Society, Washington, DC, United States of America
- Department of Anthropology, University of Maryland, College Park, Maryland, United States of America
| | - Humberto Garcia-Ortiz
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Maxat Zhabagin
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
- National Center for Biotechnology, Astana, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | | | - Ainur Akilzhanova
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Erlan Ramanculov
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
- National Center for Biotechnology, Astana, Kazakhstan
| | - Uli Schamiloglu
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Angelica Martinez-Hernandez
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Cecilia Contreras-Cubas
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Francisco Barajas-Olmos
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Theodore G. Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zhaxybay Zhumadilov
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Marlen Flores-Huacuja
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Lorena Orozco
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | - John Hawks
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Anthropology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Naruya Saitou
- Population Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
- Advanced Medical Research Center, Faculty of Medicine, University of the Ryukyus, Okinawa Ken, Japan
| |
Collapse
|
5
|
Wang CZ, Yu XE, Shi MS, Li H, Ma SH. Whole mitochondrial genome analysis of the Daur ethnic minority from Hulunbuir in the Inner Mongolia Autonomous Region of China. BMC Ecol Evol 2022; 22:66. [PMID: 35585500 PMCID: PMC9118598 DOI: 10.1186/s12862-022-02019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/27/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) variations are often associated with bioenergetics, disease, and speciation and can be used to track the history of women. Although advances in massively parallel sequencing (MPS) technology have greatly promoted our understanding of the population's history (especially genome-wide data and whole Y chromosome sequencing), the whole mtDNA sequence of many important groups has not been fully studied. In this study, we employed whole mitogenomes of 209 healthy and unrelated individuals from the Daur group, a Mongolic-speaking representative population of the indigenous groups in the Heilongjiang River basin (also known as the Amur River basin). RESULTS The dataset presented 127 distinct mtDNA haplotypes, resulting in a haplotype diversity of 0.9933. Most of haplotypes were assigned to eastern Eurasian-specific lineages, such as D4 (19.62%), B4 (9.09%), D5 (7.66%) and M7 (4.78%). Population comparisons showed that the Daurians do have certain connections with the ancient populations in the Heilongjiang River basin but the matrilineal genetic composition of the Daur group was also greatly influenced by other non-Mongolic groups from neighboring areas. CONCLUSIONS Collectively, the whole mtDNA data generated in the present study will augment the existing mtDNA database. Our study provides genetic links between the Daur population and the aborigine peoples from Siberia and the Amur-Ussuri Region. But on the whole, compared with other Mongolic-speaking groups, the modern Daur population is closer to the East Asian ancestry group.
Collapse
Affiliation(s)
- Chi-Zao Wang
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Shantou University Medical College, Shantou, 515041, Guangdong, China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Xue-Er Yu
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Mei-Sen Shi
- Criminal Justice College of China University of Political Science and Law, Beijing, 100088, People's Republic of China
| | - Hui Li
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, 200438, Shanghai, China
- Shanxi Academy of Advanced Research and Innovation, Fudan-Datong Institute of Chinese Origin, Datong, 037006, China
| | - Shu-Hua Ma
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Shantou University Medical College, Shantou, 515041, Guangdong, China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, 515041, Guangdong, China
| |
Collapse
|
6
|
Malyarchuk B, Skonieczna K, Duleba A, Derenko M, Malyarchuk A, Grzybowski T. Mitogenomic diversity in Czechs and Slovaks. Forensic Sci Int Genet 2022; 59:102714. [PMID: 35468348 DOI: 10.1016/j.fsigen.2022.102714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Boris Malyarchuk
- Genetics Laboratory, Institute of Biological Problems of the North, Russian Academy of Sciences, Magadan 685000, Russian Federation.
| | - Katarzyna Skonieczna
- Department of Forensic Medicine, Collegium Medicum of the Nicolaus Copernicus University, Bydgoszcz 85-094, Poland
| | - Anna Duleba
- Department of Forensic Medicine, Collegium Medicum of the Nicolaus Copernicus University, Bydgoszcz 85-094, Poland
| | - Miroslava Derenko
- Genetics Laboratory, Institute of Biological Problems of the North, Russian Academy of Sciences, Magadan 685000, Russian Federation
| | - Alexandra Malyarchuk
- Center for Genetics and Genetic Technologies, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234, Russian Federation
| | - Tomasz Grzybowski
- Department of Forensic Medicine, Collegium Medicum of the Nicolaus Copernicus University, Bydgoszcz 85-094, Poland
| |
Collapse
|
7
|
Mitochondrial DNA (CA) n dinucleotide repeat variations in Sinhalese and Vedda populations in Sri Lanka. Genetica 2022; 150:145-150. [PMID: 35141800 DOI: 10.1007/s10709-022-00150-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/27/2022] [Indexed: 11/04/2022]
Abstract
Sinhalese and Vedda people are respectively the major ethnic group and the descendants of the probably earliest inhabitants of Sri Lanka, both believed to have a long history of settlement on the island. However, very little information is available on the origin and possible migration patterns of the two populations. Some studies have focused on (CA) dinucleotide repeat variations located in the mitochondrial hypervariable region 3 (HVS3) (base pairs 514-524) as a useful biomarker to understand migration patterns of different populations. Hence, here we analyze these repeat variations in these two ethnic groups to understand their historical roots and possible patterns of gene flow. Blood samples were collected from healthy, maternally unrelated individuals (N = 109) and mitochondrial D-loop was amplified and sequenced. The (CA)4 dinucleotide repeat in hypervariable region 3 was detected in the majority of Vedda samples while the remaining samples were defined by a (CA)5 cluster. In contrast, the (CA)5 repeat was the most frequent among Sinhalese followed by (CA)4 and (CA)7 repeats. Haplogroup diversity of (CA)4 variation indicated that the majority of Sinhalese individuals grouped into the M30 haplogroup while Vedda clustered into the R5a2b and U7a2 haplogroups. No significant differences in diversity measures were observed among the two populations. However, Multidimensional Scaling indicated a separate clustering for aboriginal Vedda and contemporary Sinhalese populations. Results from this study can be used together with mitochondrial DNA information from hypervariable regions 1 and 2 to perform anthropological and forensic investigations in the two populations studied.
Collapse
|
8
|
Cardinali I, Bodner M, Capodiferro MR, Amory C, Rambaldi Migliore N, Gomez EJ, Myagmar E, Dashzeveg T, Carano F, Woodward SR, Parson W, Perego UA, Lancioni H, Achilli A. Mitochondrial DNA Footprints from Western Eurasia in Modern Mongolia. Front Genet 2022; 12:819337. [PMID: 35069708 PMCID: PMC8773455 DOI: 10.3389/fgene.2021.819337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/14/2021] [Indexed: 11/15/2022] Open
Abstract
Mongolia is located in a strategic position at the eastern edge of the Eurasian Steppe. Nomadic populations moved across this wide area for millennia before developing more sedentary communities, extended empires, and complex trading networks, which connected western Eurasia and eastern Asia until the late Medieval period. We provided a fine-grained portrait of the mitochondrial DNA (mtDNA) variation observed in present-day Mongolians and capable of revealing gene flows and other demographic processes that took place in Inner Asia, as well as in western Eurasia. The analyses of a novel dataset (N = 2,420) of mtDNAs highlighted a clear matrilineal differentiation within the country due to a mixture of haplotypes with eastern Asian (EAs) and western Eurasian (WEu) origins, which were differentially lost and preserved. In a wider genetic context, the prevalent EAs contribution, larger in eastern and central Mongolian regions, revealed continuous connections with neighboring Asian populations until recent times, as attested by the geographically restricted haplotype-sharing likely facilitated by the Genghis Khan’s so-called Pax Mongolica. The genetic history beyond the WEu haplogroups, notably detectable on both sides of Mongolia, was more difficult to explain. For this reason, we moved to the analysis of entire mitogenomes (N = 147). Although it was not completely possible to identify specific lineages that evolved in situ, two major changes in the effective (female) population size were reconstructed. The more recent one, which began during the late Pleistocene glacial period and became steeper in the early Holocene, was probably the outcome of demographic events connected to western Eurasia. The Neolithic growth could be easily explained by the diffusion of dairy pastoralism, as already proposed, while the late glacial increase indicates, for the first time, a genetic connection with western Eurasian refuges, as supported by the unusual high frequency and internal sub-structure in Mongolia of haplogroup H1, a well-known post-glacial marker in Europe. Bronze Age events, without a significant demographic impact, might explain the age of some mtDNA haplogroups. Finally, a diachronic comparison with available ancient mtDNAs made it possible to link six mitochondrial lineages of present-day Mongolians to the timeframe and geographic path of the Silk Route.
Collapse
Affiliation(s)
- Irene Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Martin Bodner
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Christina Amory
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Edgar J Gomez
- Sorenson Molecular Genealogy Foundation, Salt Lake City, UT, United States.,FamilySearch Int., Salt Lake City, UT, United States
| | - Erdene Myagmar
- Department of Anthropology and Archaeology, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Tumen Dashzeveg
- Department of Anthropology and Archaeology, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Francesco Carano
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Scott R Woodward
- Sorenson Molecular Genealogy Foundation, Salt Lake City, UT, United States
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria.,Forensic Science Program, The Pennsylvania State University, State College, PA, United States
| | - Ugo A Perego
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy.,Sorenson Molecular Genealogy Foundation, Salt Lake City, UT, United States.,Department of Math and Science, Southeastern Community College, Burlington, IA, United States
| | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Alessandro Achilli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
9
|
Mitogenomics of modern Mongolic-speaking populations. Mol Genet Genomics 2021; 297:47-62. [PMID: 34757478 DOI: 10.1007/s00438-021-01830-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 10/27/2021] [Indexed: 10/19/2022]
Abstract
Here, we present a comprehensive data set of 489 complete mitogenomes (211 of which are new) from four Mongolic-speaking populations (Mongols, Barghuts, Khamnigans, and Buryats) to investigate their matrilineal genetic structure, ancestry and relationship with other ethnic groups. We show that along with very high levels of genetic diversity and lack of genetic differentiation, Mongolic-speaking populations exhibit strong genetic resemblance to East Asian populations of Chinese, Japanese, and Uyghurs. Phylogeographic analysis of complete mitogenomes reveals the presence of different components in the gene pools of modern Mongolic-speaking populations-the main East Eurasian component is represented by mtDNA lineages of East Asian, Siberian and autochthonous (the Baikal region/Mongolian) ancestry, whereas the less pronounced West Eurasian component can be ascribed to Europe and West Asia/Caucasus. We also observed that up to one third of the mtDNA subhaplogroups identified in Mongolic-speaking populations can be considered as Mongolic-specific with the coalescence age of most of them not exceeding 1.7 kya. This coincides well with the population size growth which started around 1.1 kya and is detectable only in the Bayesian Skyline Plot constructed based on Mongolic-specific mitogenomes. Our data suggest that the genetic structure established during the Mongol empire is still retained in present-day Mongolic-speaking populations.
Collapse
|
10
|
Cai N, Gomez-Duran A, Yonova-Doing E, Kundu K, Burgess AI, Golder ZJ, Calabrese C, Bonder MJ, Camacho M, Lawson RA, Li L, Williams-Gray CH, Di Angelantonio E, Roberts DJ, Watkins NA, Ouwehand WH, Butterworth AS, Stewart ID, Pietzner M, Wareham NJ, Langenberg C, Danesh J, Walter K, Rothwell PM, Howson JMM, Stegle O, Chinnery PF, Soranzo N. Mitochondrial DNA variants modulate N-formylmethionine, proteostasis and risk of late-onset human diseases. Nat Med 2021; 27:1564-1575. [PMID: 34426706 DOI: 10.1038/s41591-021-01441-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/15/2021] [Indexed: 02/02/2023]
Abstract
Mitochondrial DNA (mtDNA) variants influence the risk of late-onset human diseases, but the reasons for this are poorly understood. Undertaking a hypothesis-free analysis of 5,689 blood-derived biomarkers with mtDNA variants in 16,220 healthy donors, here we show that variants defining mtDNA haplogroups Uk and H4 modulate the level of circulating N-formylmethionine (fMet), which initiates mitochondrial protein translation. In human cytoplasmic hybrid (cybrid) lines, fMet modulated both mitochondrial and cytosolic proteins on multiple levels, through transcription, post-translational modification and proteolysis by an N-degron pathway, abolishing known differences between mtDNA haplogroups. In a further 11,966 individuals, fMet levels contributed to all-cause mortality and the disease risk of several common cardiovascular disorders. Together, these findings indicate that fMet plays a key role in common age-related disease through pleiotropic effects on cell proteostasis.
Collapse
Affiliation(s)
- Na Cai
- Human Genetics Department, Wellcome Sanger Institute (WT), Hinxton, UK.,European Bioinformatics Institute (EMBL-EBI), Hinxton, UK.,Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Aurora Gomez-Duran
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Madrid, Spain
| | - Ekaterina Yonova-Doing
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Primary Public Health and Primary Care, University of Cambridge, Cambridge, UK.,Department of Genetics, Novo Nordisk Research Centre Oxford, Oxford, UK
| | - Kousik Kundu
- Human Genetics Department, Wellcome Sanger Institute (WT), Hinxton, UK
| | - Annette I Burgess
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Zoe J Golder
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Claudia Calabrese
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Marc J Bonder
- European Bioinformatics Institute (EMBL-EBI), Hinxton, UK.,Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marta Camacho
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Rachael A Lawson
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Lixin Li
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Caroline H Williams-Gray
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Emanuele Di Angelantonio
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Primary Public Health and Primary Care, University of Cambridge, Cambridge, UK.,British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK.,National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK.,Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - David J Roberts
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK.,NHS Blood and Transplant-Oxford Centre, John Radcliffe Hospital, Oxford, UK.,Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Nick A Watkins
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
| | - Willem H Ouwehand
- Human Genetics Department, Wellcome Sanger Institute (WT), Hinxton, UK.,British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK.,NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK.,Department of Haematology, University of Cambridge, Cambridge, UK
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Primary Public Health and Primary Care, University of Cambridge, Cambridge, UK.,British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK.,National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK.,Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | | | - Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Nick J Wareham
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | | | - John Danesh
- Human Genetics Department, Wellcome Sanger Institute (WT), Hinxton, UK.,British Heart Foundation Cardiovascular Epidemiology Unit, Department of Primary Public Health and Primary Care, University of Cambridge, Cambridge, UK.,British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK.,National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK.,Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - Klaudia Walter
- Human Genetics Department, Wellcome Sanger Institute (WT), Hinxton, UK
| | - Peter M Rothwell
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Joanna M M Howson
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Primary Public Health and Primary Care, University of Cambridge, Cambridge, UK.,Department of Genetics, Novo Nordisk Research Centre Oxford, Oxford, UK
| | - Oliver Stegle
- European Bioinformatics Institute (EMBL-EBI), Hinxton, UK. .,Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK. .,Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| | - Nicole Soranzo
- Human Genetics Department, Wellcome Sanger Institute (WT), Hinxton, UK. .,British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK. .,National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK. .,Department of Haematology, University of Cambridge, Cambridge, UK. .,Genomics Research Centre, Human Technopole, Milan, Italy.
| |
Collapse
|
11
|
Modi A, Vai S, Posth C, Vergata C, Zaro V, Diroma MA, Boschin F, Capecchi G, Ricci S, Ronchitelli A, Catalano G, Lauria G, D'Amore G, Sineo L, Caramelli D, Lari M. More data on ancient human mitogenome variability in Italy: new mitochondrial genome sequences from three Upper Palaeolithic burials. Ann Hum Biol 2021; 48:213-222. [PMID: 34459344 DOI: 10.1080/03014460.2021.1942549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Recently, the study of mitochondrial variability in ancient humans has allowed the definition of population dynamics that characterised Europe in the Late Pleistocene and Early Holocene. Despite the abundance of sites and skeletal remains few data are available for Italy. AIM We reconstructed the mitochondrial genomes of three Upper Palaeolithic individuals for some of the most important Italian archaeological contexts: Paglicci (South-Eastern Italy), San Teodoro (South-Western Italy) and Arene Candide (North-Western Italy) caves. SUBJECTS AND METHODS We explored the phylogenetic relationships of the three mitogenomes in the context of Western Eurasian ancient and modern variability. RESULTS Paglicci 12 belongs to sub-haplogroup U8c, described in only two other Gravettian individuals; San Teodoro 2 harbours a U2'3'4'7'8'9 sequence, the only lineage found in Sicily during the Late Pleistocene and Early Holocene; Arene Candide 16 displays an ancestral U5b1 haplotype already detected in other Late Pleistocene hunter-gatherers from Central Europe. CONCLUSION Regional genetic continuity is highlighted in the Gravettian groups that succeeded in Paglicci. Data from one of the oldest human remains from Sicily reinforce the hypothesis that Epigravettian groups carrying U2'3'4'7'8'9 could be the first inhabitants of the island. The first pre-Neolithic mitogenome from North-Western Italy, sequenced here, shows more affinity with continental Europe than with the Italian peninsula.
Collapse
Affiliation(s)
- Alessandra Modi
- Dipartimento di Biologia, Università di Firenze, Firenze, Italy
| | - Stefania Vai
- Dipartimento di Biologia, Università di Firenze, Firenze, Italy
| | - Cosimo Posth
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Chiara Vergata
- Dipartimento di Biologia, Università di Firenze, Firenze, Italy
| | - Valentina Zaro
- Dipartimento di Biologia, Università di Firenze, Firenze, Italy
| | | | - Francesco Boschin
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università degli Studi di Siena, Siena, Italy
| | - Giulia Capecchi
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università degli Studi di Siena, Siena, Italy
| | - Stefano Ricci
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università degli Studi di Siena, Siena, Italy
| | - Annamaria Ronchitelli
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università degli Studi di Siena, Siena, Italy
| | - Giulio Catalano
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo, Italy
| | - Gabriele Lauria
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo, Italy.,Departamento de Ciencia Animal, Universitat Politecnica de Valencia, Valencia, Spain
| | - Giuseppe D'Amore
- Istituto di Studi Archeo-antropologici - I.S.A, Scandicci, Italy
| | - Luca Sineo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo, Italy
| | - David Caramelli
- Dipartimento di Biologia, Università di Firenze, Firenze, Italy
| | - Martina Lari
- Dipartimento di Biologia, Università di Firenze, Firenze, Italy
| |
Collapse
|
12
|
Genetic characterization of a collection of Tsantsas from Ecuadorian museums. Forensic Sci Int 2021; 325:110879. [PMID: 34174769 DOI: 10.1016/j.forsciint.2021.110879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/17/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
Tsantsas are shrunken human heads originally made for ceremonial purposes by Amazonian indigenous groups of the Shuar and Achuar family, previously called Jivaroan tribes. A significant demand of these objects during the first half of the 20th century led to the manufacture of counterfeit shrunken heads for commercial purposes. For museums where these collections are held, as well as for the indigenous groups who claim their ownership, it is important to identify the origin and authenticity of these tsantsas. We hypothesized that a collection of 14 tsantsas from 3 different museum collections in Ecuador are human and aimed to characterize their sex and potential origin. We amplified the amelogenin gene and performed a high resolution melting analysis to determine their human origin and characterize their sex. We also analyzed a fragment (16209-16402) from the HVR-1 region to identify the mtDNA haplogroups present in the tsantsa collection. Our exploratory results show that all the tsantsas are human and that the collection is comprised of 13 males and 1 female. A total of seven mtDNA haplogroups were found among the tsantsa collection using the mtDNA EMPOP database. These results show a predominance of the Amerindian mtDNA haplogroups B, C and D. Additional principal component analysis, genetic distance tree and haplotype network analyses suggest a relationship between the tsantsa specimens and Native American groups.
Collapse
|
13
|
Maár K, Varga GIB, Kovács B, Schütz O, Maróti Z, Kalmár T, Nyerki E, Nagy I, Latinovics D, Tihanyi B, Marcsik A, Pálfi G, Bernert Z, Gallina Z, Varga S, Költő L, Raskó I, Török T, Neparáczki E. Maternal Lineages from 10-11th Century Commoner Cemeteries of the Carpathian Basin. Genes (Basel) 2021; 12:460. [PMID: 33807111 PMCID: PMC8005002 DOI: 10.3390/genes12030460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022] Open
Abstract
Nomadic groups of conquering Hungarians played a predominant role in Hungarian prehistory, but genetic data are available only from the immigrant elite strata. Most of the 10-11th century remains in the Carpathian Basin belong to common people, whose origin and relation to the immigrant elite have been widely debated. Mitogenome sequences were obtained from 202 individuals with next generation sequencing combined with hybridization capture. Median joining networks were used for phylogenetic analysis. The commoner population was compared to 87 ancient Eurasian populations with sequence-based (Fst) and haplogroup-based population genetic methods. The haplogroup composition of the commoner population markedly differs from that of the elite, and, in contrast to the elite, commoners cluster with European populations. Alongside this, detectable sub-haplogroup sharing indicates admixture between the elite and the commoners. The majority of the 10-11th century commoners most likely represent local populations of the Carpathian Basin, which admixed with the eastern immigrant groups (which included conquering Hungarians).
Collapse
Affiliation(s)
- Kitti Maár
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary; (K.M.); (O.S.); (E.N.)
| | - Gergely I. B. Varga
- Department of Archaeogenetics, Institute of Hungarian Research, H-1014 Budapest, Hungary; (G.I.B.V.); (B.K.); (Z.M.); (E.N.); (B.T.)
| | - Bence Kovács
- Department of Archaeogenetics, Institute of Hungarian Research, H-1014 Budapest, Hungary; (G.I.B.V.); (B.K.); (Z.M.); (E.N.); (B.T.)
| | - Oszkár Schütz
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary; (K.M.); (O.S.); (E.N.)
| | - Zoltán Maróti
- Department of Archaeogenetics, Institute of Hungarian Research, H-1014 Budapest, Hungary; (G.I.B.V.); (B.K.); (Z.M.); (E.N.); (B.T.)
- Department of Pediatrics and Pediatric Health Center, University of Szeged, H-6725 Szeged, Hungary;
| | - Tibor Kalmár
- Department of Pediatrics and Pediatric Health Center, University of Szeged, H-6725 Szeged, Hungary;
| | - Emil Nyerki
- Department of Archaeogenetics, Institute of Hungarian Research, H-1014 Budapest, Hungary; (G.I.B.V.); (B.K.); (Z.M.); (E.N.); (B.T.)
- Department of Pediatrics and Pediatric Health Center, University of Szeged, H-6725 Szeged, Hungary;
| | - István Nagy
- SeqOmics Biotechnology Ltd., H-6782 Mórahalom, Hungary; (I.N.); (D.L.)
- Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary
| | - Dóra Latinovics
- SeqOmics Biotechnology Ltd., H-6782 Mórahalom, Hungary; (I.N.); (D.L.)
| | - Balázs Tihanyi
- Department of Archaeogenetics, Institute of Hungarian Research, H-1014 Budapest, Hungary; (G.I.B.V.); (B.K.); (Z.M.); (E.N.); (B.T.)
- Department of Biological Anthropology, University of Szeged, H-6726 Szeged, Hungary; (A.M.); (G.P.)
| | - Antónia Marcsik
- Department of Biological Anthropology, University of Szeged, H-6726 Szeged, Hungary; (A.M.); (G.P.)
| | - György Pálfi
- Department of Biological Anthropology, University of Szeged, H-6726 Szeged, Hungary; (A.M.); (G.P.)
| | - Zsolt Bernert
- Department of Anthropology, Hungarian Natural History Museum, H-1083 Budapest, Hungary;
| | - Zsolt Gallina
- Ásatárs Ltd., H-6000 Kecskemét, Hungary;
- Department of Archaeology, Institute of Hungarian Research, H-1014 Budapest, Hungary
| | | | - László Költő
- Rippl-Rónai Municipal Museum with Country Scope, H-7400 Kaposvár, Hungary;
| | - István Raskó
- Institute of Genetics, Biological Research Centre, H-6726 Szeged, Hungary;
| | - Tibor Török
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary; (K.M.); (O.S.); (E.N.)
- Department of Archaeogenetics, Institute of Hungarian Research, H-1014 Budapest, Hungary; (G.I.B.V.); (B.K.); (Z.M.); (E.N.); (B.T.)
| | - Endre Neparáczki
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary; (K.M.); (O.S.); (E.N.)
- Department of Archaeogenetics, Institute of Hungarian Research, H-1014 Budapest, Hungary; (G.I.B.V.); (B.K.); (Z.M.); (E.N.); (B.T.)
| |
Collapse
|
14
|
Chen C, Li Y, Tao R, Jin X, Guo Y, Cui W, Chen A, Yang Y, Zhang X, Zhang J, Li C, Zhu B. The Genetic Structure of Chinese Hui Ethnic Group Revealed by Complete Mitochondrial Genome Analyses Using Massively Parallel Sequencing. Genes (Basel) 2020; 11:E1352. [PMID: 33202591 PMCID: PMC7698084 DOI: 10.3390/genes11111352] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial DNA (mtDNA), coupled with maternal inheritance and relatively high mutation rates, provides a pivotal way for us to investigate the formation histories of populations. The Hui minority with Islamic faith is one of the most widely distributed ethnic groups in China. However, the exploration of Hui's genetic architecture from the complete mitochondrial genome perspective has not been detected yet. Therefore, in this study, we employed the complete mitochondrial genomes of 98 healthy and unrelated individuals from Northwest China, as well as 99 previously published populations containing 7274 individuals from all over the world as reference data, to comprehensively dissect the matrilineal landscape of Hui group. Our results demonstrated that Hui group exhibited closer genetic relationships with Chinese Han populations from different regions, which was largely attributable to the widespread of haplogroups D4, D5, M7, B4, and F1 in these populations. The demographic expansion of Hui group might occur during the Late Pleistocene. Finally, we also found that Hui group might have gene exchanges with Uygur, Tibetan, and Tajik groups in different degrees and retained minor genetic imprint of European-specific lineages, therefore, hinting the existence of multi-ethnic integration events in shaping the genetic landscape of Chinese Hui group.
Collapse
Affiliation(s)
- Chong Chen
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (C.C.); (X.J.); (Y.G.); (X.Z.)
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China; (R.T.); (A.C.); (Y.Y.); (J.Z.)
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China;
| | - Yuchun Li
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China;
| | - Ruiyang Tao
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China; (R.T.); (A.C.); (Y.Y.); (J.Z.)
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610017, China
| | - Xiaoye Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (C.C.); (X.J.); (Y.G.); (X.Z.)
| | - Yuxin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (C.C.); (X.J.); (Y.G.); (X.Z.)
| | - Wei Cui
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China;
| | - Anqi Chen
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China; (R.T.); (A.C.); (Y.Y.); (J.Z.)
- Department of Forensic Medicine, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yue Yang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China; (R.T.); (A.C.); (Y.Y.); (J.Z.)
- School of Basic Medicine, Inner Mongolia Medical University, Hohhot 010030, China
| | - Xingru Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (C.C.); (X.J.); (Y.G.); (X.Z.)
| | - Jingyi Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China; (R.T.); (A.C.); (Y.Y.); (J.Z.)
| | - Chengtao Li
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China; (R.T.); (A.C.); (Y.Y.); (J.Z.)
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China;
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610017, China
- Department of Forensic Medicine, Shanghai Medical College of Fudan University, Shanghai 200032, China
- School of Basic Medicine, Inner Mongolia Medical University, Hohhot 010030, China
| | - Bofeng Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (C.C.); (X.J.); (Y.G.); (X.Z.)
- Multi-Omics Innovative Research Center of Forensic Identification, Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China;
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| |
Collapse
|
15
|
Toncheva D, Serbezov D, Karachanak-Yankova S, Nesheva D. Ancient mitochondrial DNA pathogenic variants putatively associated with mitochondrial disease. PLoS One 2020; 15:e0233666. [PMID: 32970680 PMCID: PMC7514063 DOI: 10.1371/journal.pone.0233666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/09/2020] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial DNA variants associated with diseases are widely studied in contemporary populations, but their prevalence has not yet been investigated in ancient populations. The publicly available AmtDB database contains 1443 ancient mtDNA Eurasian genomes from different periods. The objective of this study was to use this data to establish the presence of pathogenic mtDNA variants putatively associated with mitochondrial diseases in ancient populations. The clinical significance, pathogenicity prediction and contemporary frequency of mtDNA variants were determined using online platforms. The analyzed ancient mtDNAs contain six variants designated as being "confirmed pathogenic" in modern patients. The oldest of these, m.7510T>C in the MT-TS1 gene, was found in a sample from the Neolithic period, dated 5800-5400 BCE. All six have well established clinical association, and their pathogenic effect is corroborated by very low population frequencies in contemporary populations. Analysis of the geographic location of the ancient samples, contemporary epidemiological trends and probable haplogroup association indicate diverse spatiotemporal dynamics of these variants. The dynamics in the prevalence and distribution is conceivably result of de novo mutations or human migrations and subsequent evolutionary processes. In addition, ten variants designated as possibly or likely pathogenic were found, but the clinical effect of these is not yet well established and further research is warranted. All detected mutations putatively associated with mitochondrial disease in ancient mtDNA samples are in tRNA coding genes. Most of these mutations are in a mt-tRNA type (Model 2) that is characterized by loss of D-loop/T-loop interaction. Exposing pathogenic variants in ancient human populations expands our understanding of their origin and prevalence dynamics.
Collapse
Affiliation(s)
- Draga Toncheva
- Department of Medical Genetics, Medical University of Sofia, Bulgarian Academy of Science, Sofia, Bulgaria
- Bulgarian Academy of Sciences–BAS, Sofia, Bulgaria
- * E-mail:
| | - Dimitar Serbezov
- Department of Medical Genetics, Medical University of Sofia, Bulgarian Academy of Science, Sofia, Bulgaria
| | - Sena Karachanak-Yankova
- Department of Medical Genetics, Medical University of Sofia, Bulgarian Academy of Science, Sofia, Bulgaria
- Department of Genetics, Faculty of biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Desislava Nesheva
- Department of Medical Genetics, Medical University of Sofia, Bulgarian Academy of Science, Sofia, Bulgaria
| |
Collapse
|
16
|
Davidovic S, Malyarchuk B, Grzybowski T, Aleksic JM, Derenko M, Litvinov A, Rogalla-Ładniak U, Stevanovic M, Kovacevic-Grujicic N. Complete mitogenome data for the Serbian population: the contribution to high-quality forensic databases. Int J Legal Med 2020; 134:1581-1590. [PMID: 32504149 DOI: 10.1007/s00414-020-02324-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 05/28/2020] [Indexed: 11/24/2022]
Abstract
Mitochondrial genome (mtDNA) is a valuable resource in resolving various human forensic casework. The usage of variability of complete mtDNA genomes increases their discriminatory power to the maximum and enables ultimate resolution of distinct maternal lineages. However, their wider employment in forensic casework is nowadays limited by the lack of appropriate reference database. In order to fill in the gap in the reference data, which, considering Slavic-speaking populations, currently comprises only mitogenomes of East and West Slavs, we present mitogenome data for 226 Serbians, representatives of South Slavs from the Balkan Peninsula. We found 143 (sub)haplogroups among which West Eurasian ones were dominant. The percentage of unique haplotypes was 85%, and the random match probability was as low as 0.53%. We support previous findings on both high levels of genetic diversity in the Serbian population and patterns of genetic differentiation among this and ten studied European populations. However, our high-resolution data supported more pronounced genetic differentiation among Serbians and two Slavic populations (Russians and Poles) as well as expansion of the Serbian population after the Last Glacial Maximum and during the Migration period (fourth to ninth century A.D.), as inferred from the Bayesian skyline analysis. Phylogenetic analysis of haplotypes found in Serbians contributed towards the improvement of the worldwide mtDNA phylogeny, which is essential for the interpretation of the mtDNA casework.
Collapse
Affiliation(s)
- Slobodan Davidovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, PO Box 23, Vojvode Stepe 444a, Belgrade, 11010, Serbia.,Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11060, Serbia
| | - Boris Malyarchuk
- Genetics Laboratory, Institute of Biological Problems of the North, Russian Academy of Sciences, Portovaya 18, Magadan, 685000, Russia
| | - Tomasz Grzybowski
- Department of Forensic Medicine, Division of Molecular and Forensic Genetics, Ludwik Rydygier Collegium Medicum, Faculty of Medicine, Nicolaus Copernicus University, Marii-Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland
| | - Jelena M Aleksic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, PO Box 23, Vojvode Stepe 444a, Belgrade, 11010, Serbia
| | - Miroslava Derenko
- Genetics Laboratory, Institute of Biological Problems of the North, Russian Academy of Sciences, Portovaya 18, Magadan, 685000, Russia
| | - Andrey Litvinov
- Genetics Laboratory, Institute of Biological Problems of the North, Russian Academy of Sciences, Portovaya 18, Magadan, 685000, Russia
| | - Urszula Rogalla-Ładniak
- Department of Forensic Medicine, Division of Molecular and Forensic Genetics, Ludwik Rydygier Collegium Medicum, Faculty of Medicine, Nicolaus Copernicus University, Marii-Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland
| | - Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, PO Box 23, Vojvode Stepe 444a, Belgrade, 11010, Serbia.,Faculty of Biology, University of Belgrade, Studentski Trg 16, Belgrade, 11000, Serbia.,Serbian Academy of Sciences and Arts, Kneza Mihaila 35, Belgrade, 11000, Serbia
| | - Natasa Kovacevic-Grujicic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, PO Box 23, Vojvode Stepe 444a, Belgrade, 11010, Serbia.
| |
Collapse
|
17
|
Rare human mitochondrial HV lineages spread from the Near East and Caucasus during post-LGM and Neolithic expansions. Sci Rep 2019; 9:14751. [PMID: 31611588 PMCID: PMC6791841 DOI: 10.1038/s41598-019-48596-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/21/2019] [Indexed: 01/05/2023] Open
Abstract
Of particular significance to human population history in Eurasia are the migratory events that connected the Near East to Europe after the Last Glacial Maximum (LGM). Utilizing 315 HV*(xH,V) mitogenomes, including 27 contemporary lineages first reported here, we found the genetic signatures for distinctive movements out of the Near East and South Caucasus both westward into Europe and eastward into South Asia. The parallel phylogeographies of rare, yet widely distributed HV*(xH,V) subclades reveal a connection between the Italian Peninsula and South Caucasus, resulting from at least two (post-LGM, Neolithic) waves of migration. Many of these subclades originated in a population ancestral to contemporary Armenians and Assyrians. One such subclade, HV1b-152, supports a postexilic, northern Mesopotamian origin for the Ashkenazi HV1b2 lineages. In agreement with ancient DNA findings, our phylogenetic analysis of HV12 and HV14, the two exclusively Asian subclades of HV*(xH,V), point to the migration of lineages originating in Iran to South Asia before and during the Neolithic period. With HV12 being one of the oldest HV subclades, our results support an origin of HV haplogroup in the region defined by Western Iran, Mesopotamia, and the South Caucasus, where the highest prevalence of HV has been found.
Collapse
|
18
|
Malyarchuk BA. Sources of the mitochondrial gene pool of Russians by the results of analysis of modern and paleogenomic data. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Paleogenomic studies of recent years have shown that the Bronze Age migrations of populations of the PontoCaspian steppes from the east to the west of Europe had a great influence on the formation of the genetic makeup of modern Europeans. The results of studies of the variability of mitochondrial genomes in the modern Russian populations of Eastern Europe also made it possible to identify an increase in the effective population size during the Bronze Age, which, apparently, could be related to the migration processes of this time. This paper presents the results of analysis of data on the variability of entire mitochondrial genomes in the modern Russian populations in comparison with the distribution of mtDNA haplogroups in the ancient populations of Europe and the Caucasus of the Neolithic and Bronze Age. It was shown that the formation of the modern appearance of the Russian mitochondrial gene pool began approximately 4 thousand years B.C. due to the influx of mtDNA haplotypes characteristic of the population of Central and Western Europe to the east of Europe. It is assumed that the migrations of the ancient populations of the Ponto-Caspian steppes in the western direction led to the formation of mixed populations in Central Europe, bearing mitochondrial haplogroups H, J, T, K, W characteristic of Western and Central Europeans. Further expansion of these populations to the east of Europe and further to Asia explains the emergence of new features of the mitochondrial gene pool in Eastern Europeans. The results of a phylogeographic analysis are also presented, showing that the features of the geographical distribution of the subgroups of the mitochondrial haplogroup R1a in Europe are a reflection of the “Caucasian” component that appeared in the gene pools of various groups of Europeans during the migration of the Bronze Age. The results of phylogeographic analysis of mitochondrial haplogroups U2e2a1d, U4d2, N1a1a1a1, H2b, and H8b1 testify to the migrations of ancient Eastern Europeans to Asia – the south of Siberia and the Indian subcontinent.
Collapse
|
19
|
Silva M, Justeau P, Rodrigues S, Oteo-Garcia G, Dulias K, Foody G, Fichera A, Yau B, Rito T, Wilson JF, Gandini F, Edwards CJ, Pala M, Soares PA, Richards MB. Untangling Neolithic and Bronze Age mitochondrial lineages in South Asia. Ann Hum Biol 2019; 46:140-144. [PMID: 31267777 DOI: 10.1080/03014460.2019.1623319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Two key moments shaped the extant South Asian gene pool within the last 10 thousand years (ka): the Neolithic period, with the advent of agriculture and the rise of the Harappan/Indus Valley Civilisation; and Late Bronze Age events that witnessed the abrupt fall of the Harappan Civilisation and the arrival of Indo-European speakers. This study focuses on the phylogeographic patterns of mitochondrial haplogroups H2 and H13 in the Indian Subcontinent and incorporates evidence from recently released ancient genomes from Central and South Asia. It found signals of Neolithic arrivals from Iran and later movements in the Bronze Age from Central Asia that derived ultimately from the Steppe. This study shows how a detailed mtDNA phylogeographic approach, combining both modern and ancient variation, can provide evidence of population movements, even in a scenario of strong male bias such as in the case of the Bronze Age Steppe dispersals.
Collapse
Affiliation(s)
- M Silva
- a Department of Biological and Geographical Sciences, School of Applied Sciences , University of Huddersfield , Queensgate , UK
| | - P Justeau
- a Department of Biological and Geographical Sciences, School of Applied Sciences , University of Huddersfield , Queensgate , UK
| | - S Rodrigues
- a Department of Biological and Geographical Sciences, School of Applied Sciences , University of Huddersfield , Queensgate , UK
| | - G Oteo-Garcia
- a Department of Biological and Geographical Sciences, School of Applied Sciences , University of Huddersfield , Queensgate , UK
| | - K Dulias
- a Department of Biological and Geographical Sciences, School of Applied Sciences , University of Huddersfield , Queensgate , UK
| | - G Foody
- a Department of Biological and Geographical Sciences, School of Applied Sciences , University of Huddersfield , Queensgate , UK
| | - A Fichera
- a Department of Biological and Geographical Sciences, School of Applied Sciences , University of Huddersfield , Queensgate , UK
| | - B Yau
- a Department of Biological and Geographical Sciences, School of Applied Sciences , University of Huddersfield , Queensgate , UK
| | - T Rito
- b School of Medicine , Life and Health Sciences Research Institute (ICVS), University of Minho , Braga , Portugal.,c ICVS/3B's , PT Government Associate Laboratory , Guimarães , Portugal
| | - J F Wilson
- d Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics , University of Edinburgh, Teviot Place , Edinburgh , UK.,e MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine , University of Edinburgh, Western General Hospital , Edinburgh , UK
| | - F Gandini
- a Department of Biological and Geographical Sciences, School of Applied Sciences , University of Huddersfield , Queensgate , UK
| | - C J Edwards
- a Department of Biological and Geographical Sciences, School of Applied Sciences , University of Huddersfield , Queensgate , UK
| | - M Pala
- a Department of Biological and Geographical Sciences, School of Applied Sciences , University of Huddersfield , Queensgate , UK
| | - P A Soares
- f CBMA (Centre of Molecular and Environmental Biology), Department of Biology , University of Minho , Braga , Portugal.,g Institute of Science and Innovation for Bio-Sustainability (IB-S) , University of Minho , Braga , Portugal
| | - M B Richards
- a Department of Biological and Geographical Sciences, School of Applied Sciences , University of Huddersfield , Queensgate , UK
| |
Collapse
|
20
|
Malyarchuk BA, Litvinov AN, Derenko MV. Structure and Forming of Mitochondrial Gene Pool of Russian Population of Eastern Europe. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419050107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Vai S, Sarno S, Lari M, Luiselli D, Manzi G, Gallinaro M, Mataich S, Hübner A, Modi A, Pilli E, Tafuri MA, Caramelli D, di Lernia S. Ancestral mitochondrial N lineage from the Neolithic 'green' Sahara. Sci Rep 2019; 9:3530. [PMID: 30837540 PMCID: PMC6401177 DOI: 10.1038/s41598-019-39802-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 01/30/2019] [Indexed: 11/16/2022] Open
Abstract
Because Africa's climate hampers DNA preservation, knowledge of its genetic variability is mainly restricted to modern samples, even though population genetics dynamics and back-migrations from Eurasia may have modified haplotype frequencies, masking ancient genetic scenarios. Thanks to improved methodologies, ancient genetic data for the African continent are now increasingly available, starting to fill in the gap. Here we present newly obtained mitochondrial genomes from two ~7000-year-old individuals from Takarkori rockshelter, Libya, representing the earliest and first genetic data for the Sahara region. These individuals carry a novel mutation motif linked to the haplogroup N root. Our result demonstrates the presence of an ancestral lineage of the N haplogroup in the Holocene "Green Sahara", associated to a Middle Pastoral (Neolithic) context.
Collapse
Affiliation(s)
- Stefania Vai
- Department of Biology, University of Florence, Florence, Italy
| | - Stefania Sarno
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Martina Lari
- Department of Biology, University of Florence, Florence, Italy
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Giorgio Manzi
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Marina Gallinaro
- Department of Ancient World Studies, Sapienza University of Rome, Rome, Italy
| | - Safaa Mataich
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Alexander Hübner
- Max-Planck-Institute for Evolutionary Anthropology, Department Evolutionary Genetics, Leipzig, Germany
| | - Alessandra Modi
- Department of Biology, University of Florence, Florence, Italy
| | - Elena Pilli
- Department of Biology, University of Florence, Florence, Italy
| | - Mary Anne Tafuri
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - David Caramelli
- Department of Biology, University of Florence, Florence, Italy.
| | - Savino di Lernia
- Department of Ancient World Studies, Sapienza University of Rome, Rome, Italy.
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
22
|
Karafet TM, Osipova LP, Savina OV, Hallmark B, Hammer MF. Siberian genetic diversity reveals complex origins of the Samoyedic-speaking populations. Am J Hum Biol 2018; 30:e23194. [PMID: 30408262 DOI: 10.1002/ajhb.23194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/26/2018] [Accepted: 09/23/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES We examined autosomal genome-wide SNPs and Y-chromosome data from 15 Siberian and 12 reference populations to study the affinities of Siberian populations, and to address hypotheses about the origin of the Samoyed peoples. METHODS Samples were genotyped for 567 096 autosomal SNPs and 147 Y-chromosome polymorphic sites. For several analyses, we used 281 093 SNPs from the intersection of our data with publicly available ancient Siberian samples. To examine genetic relatedness among populations, we applied PCA, FST , TreeMix, and ADMIXTURE analyses. To explore the potential effect of demography and evolutionary processes, the distribution of ROH and IBD sharing within population were studied. RESULTS Analyses of autosomal and Y-chromosome data reveal high differentiation of the Siberian groups. The Siberian populations have a large proportion of their genome in ROH and IBD segments. Several populations (ie, Nganasans, Evenks, Yukagirs, and Koryaks) do not appear to have experienced admixture with other Siberian populations (ie, producing only positive f3), while for the other tested populations the composition of mixing sources always included Nganasans or Evenks. The Nganasans from the Taymyr Peninsula demonstrate the greatest level of shared shorter ROH and IBD with nearly all other Siberian populations. CONCLUSIONS Autosomal SNP and Y-chromosome data demonstrate that Samoyedic populations differ significantly in their genetic composition. Genetic relationship is observed only between Forest and Tundra Nentsi. Selkups are affiliated with the Kets from the Yenisey River, while the Nganasans are separated from their linguistic neighbors, showing closer affinities with the Evenks and Yukagirs.
Collapse
Affiliation(s)
- Tatiana M Karafet
- ARL Division of Biotechnology, University of Arizona, Tucson, Arizona
| | - Ludmila P Osipova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Olga V Savina
- ARL Division of Biotechnology, University of Arizona, Tucson, Arizona
| | - Brian Hallmark
- Interdisciplinary Program in Statistics, University of Arizona, Tucson, Arizona
| | - Michael F Hammer
- ARL Division of Biotechnology, University of Arizona, Tucson, Arizona.,Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona
| |
Collapse
|
23
|
Neparáczki E, Maróti Z, Kalmár T, Kocsy K, Maár K, Bihari P, Nagy I, Fóthi E, Pap I, Kustár Á, Pálfi G, Raskó I, Zink A, Török T. Mitogenomic data indicate admixture components of Central-Inner Asian and Srubnaya origin in the conquering Hungarians. PLoS One 2018; 13:e0205920. [PMID: 30335830 PMCID: PMC6193700 DOI: 10.1371/journal.pone.0205920] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/02/2018] [Indexed: 01/07/2023] Open
Abstract
It has been widely accepted that the Finno-Ugric Hungarian language, originated from proto Uralic people, was brought into the Carpathian Basin by the conquering Hungarians. From the middle of the 19th century this view prevailed against the deep-rooted Hungarian Hun tradition, maintained in folk memory as well as in Hungarian and foreign written medieval sources, which claimed that Hungarians were kinsfolk of the Huns. In order to shed light on the genetic origin of the Conquerors we sequenced 102 mitogenomes from early Conqueror cemeteries and compared them to sequences of all available databases. We applied novel population genetic algorithms, named Shared Haplogroup Distance and MITOMIX, to reveal past admixture of maternal lineages. Our results show that the Conquerors assembled from various nomadic groups of the Eurasian steppe. Population genetic results indicate that they had closest connection to the Onogur-Bulgar ancestors of Volga Tatars. Phylogenetic results reveal that more than one third of the Conqueror maternal lineages were derived from Central-Inner Asia and their most probable ultimate sources were the Asian Scythians and Asian Huns, giving support to the Hungarian Hun tradition. The rest of the lineages most likely originated from the Bronze Age Potapovka-Poltavka-Srubnaya cultures of the Pontic-Caspian steppe. Available data imply that the Conquerors did not have a major contribution to the gene pool of the Carpathian Basin.
Collapse
Affiliation(s)
| | - Zoltán Maróti
- Department of Pediatrics and Pediatric Health Center, University of Szeged, Szeged, Hungary
| | - Tibor Kalmár
- Department of Pediatrics and Pediatric Health Center, University of Szeged, Szeged, Hungary
| | - Klaudia Kocsy
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Kitti Maár
- Department of Genetics, University of Szeged, Szeged, Hungary
| | | | - István Nagy
- SeqOmics Biotechnology Ltd., Mórahalom, Hungary
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Erzsébet Fóthi
- Department of Anthropology, Hungarian Natural History Museum, Budapest, Hungary
| | - Ildikó Pap
- Department of Anthropology, Hungarian Natural History Museum, Budapest, Hungary
| | - Ágnes Kustár
- Department of Anthropology, Hungarian Natural History Museum, Budapest, Hungary
| | - György Pálfi
- Department of Biological Anthropology, University of Szeged, Szeged, Hungary
| | - István Raskó
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Albert Zink
- Institute for Mummies and the Iceman, EURAC, Bolzano, Italy
| | - Tibor Török
- Department of Genetics, University of Szeged, Szeged, Hungary
| |
Collapse
|
24
|
Hsieh P, Hallmark B, Watkins J, Karafet TM, Osipova LP, Gutenkunst RN, Hammer MF. Exome Sequencing Provides Evidence of Polygenic Adaptation to a Fat-Rich Animal Diet in Indigenous Siberian Populations. Mol Biol Evol 2018; 34:2913-2926. [PMID: 28962010 DOI: 10.1093/molbev/msx226] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Siberia is one of the coldest environments on Earth and has great seasonal temperature variation. Long-term settlement in northern Siberia undoubtedly required biological adaptation to severe cold stress, dramatic variation in photoperiod, and limited food resources. In addition, recent archeological studies show that humans first occupied Siberia at least 45,000 years ago; yet our understanding of the demographic history of modern indigenous Siberians remains incomplete. In this study, we use whole-exome sequencing data from the Nganasans and Yakuts to infer the evolutionary history of these two indigenous Siberian populations. Recognizing the complexity of the adaptive process, we designed a model-based test to systematically search for signatures of polygenic selection. Our approach accounts for stochasticity in the demographic process and the hitchhiking effect of classic selective sweeps, as well as potential biases resulting from recombination rate and mutation rate heterogeneity. Our demographic inference shows that the Nganasans and Yakuts diverged ∼12,000-13,000 years ago from East-Asian ancestors in a process involving continuous gene flow. Our polygenic selection scan identifies seven candidate gene sets with Siberian-specific signals. Three of these gene sets are related to diet, especially to fat metabolism, consistent with the hypothesis of adaptation to a fat-rich animal diet. Additional testing rejects the effect of hitchhiking and favors a model in which selection yields small allele frequency changes at multiple unlinked genes.
Collapse
Affiliation(s)
- PingHsun Hsieh
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ
| | - Brian Hallmark
- Interdisciplinary Program in Statistics, University of Arizona, Tucson, AZ
| | - Joseph Watkins
- Department of Mathematics, University of Arizona, Tucson, AZ
| | | | - Ludmila P Osipova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Ryan N Gutenkunst
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ
| | - Michael F Hammer
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ.,ARL Division of Biotechnology, University of Arizona, Tucson, AZ
| |
Collapse
|
25
|
Derenko M, Denisova G, Malyarchuk B, Dambueva I, Bazarov B. Mitogenomic diversity and differentiation of the Buryats. J Hum Genet 2017; 63:71-81. [PMID: 29215085 DOI: 10.1038/s10038-017-0370-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/25/2022]
Abstract
In this paper we present a results of first comprehensive study of the complete mitogenomes in the Buryats with regard to their belonging to the main regional (eastern and western Buryats); tribal (Khori, Ekhirid, Bulagad, and Khongodor), and ethno-territorial (Aginsk, Alar, Balagansk, Barguzin, Ida, Khorinsk, Kuda, Selenga, Verkholensk, Olkhon, Tunka, and Shenehen Buryats) groups. The analysis of molecular variation performed using regional, tribal, and ethno-territorial divisions of the Buryats showed lack of genetic differentiation at all levels. Nonetheless, the complete mitogenome analysis revealed a very high level of genetic diversity in the Buryats which is the highest among Siberian populations and comparable to that in populations of eastern and western Asia. The AMOVA and MDS analyses results imply to a strong genetic similarity between the Buryats and eastern Asian populations of Chinese and Japanese, suggesting their origin on the basis of common maternal ancestry components. Several new Buryat-specific branches of haplogroup G (G2a2a, G2a1i, G2a5a) display signals of dispersals dating to 2.6-6.6 kya with a possible origin in eastern Asia, thus testifying Bronze Age and Neolithic arrival of ancestral eastern Asian component to the South Siberia region.
Collapse
Affiliation(s)
- Miroslava Derenko
- Genetics Laboratory, Institute of Biological Problems of the North, Russian Academy of Sciences, Magadan, Russia.
| | - Galina Denisova
- Genetics Laboratory, Institute of Biological Problems of the North, Russian Academy of Sciences, Magadan, Russia
| | - Boris Malyarchuk
- Genetics Laboratory, Institute of Biological Problems of the North, Russian Academy of Sciences, Magadan, Russia
| | - Irina Dambueva
- Institute of Mongolian, Buddhist and Tibetan Studies, Russian Academy of Sciences, Ulan-Ude, Russia
| | - Boris Bazarov
- Institute of Mongolian, Buddhist and Tibetan Studies, Russian Academy of Sciences, Ulan-Ude, Russia
| |
Collapse
|
26
|
Malyarchuk B, Litvinov A, Derenko M, Skonieczna K, Grzybowski T, Grosheva A, Shneider Y, Rychkov S, Zhukova O. Mitogenomic diversity in Russians and Poles. Forensic Sci Int Genet 2017. [PMID: 28633069 DOI: 10.1016/j.fsigen.2017.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Complete mtDNA genome sequencing improves molecular resolution for distinguishing variation between individuals and populations, but there is still deficiency of mitogenomic population data. To overcome this limitation, we used Sanger-based protocol to generate complete mtDNA sequences of 376 Russian individuals from six populations of European part of Russia and 100 Polish individuals from northern Poland. Nearly complete resolution of mtDNA haplotypes was achieved - about 97% of haplotypes were unique both in Russians and Poles, and no haplotypes overlapped between them when indels were considered. While European populations showed a low, but statistically significant level of between-population differentiation (Fst=0.66%, p=0), Russians demonstrate lack of between-population differences (Fst=0.22%, p=0.15). Results of the Bayesian skyline analysis of Russian mitogenomes demonstrate not only post-Last Glacial Maximum expansion, but also rapid population growth starting from about 4.3kya (95% CI: 2.9-5.8kya), i.e. in the Bronze Age. This expansion strongly correlates with the Kurgan model established by archaeologists and confirmed by paleogeneticists.
Collapse
Affiliation(s)
- Boris Malyarchuk
- Institute of Biological Problems of the North, Far-East Branch of the Russian Academy of Sciences, Portovaya Street 18, Magadan 685000, Russia.
| | - Andrey Litvinov
- Institute of Biological Problems of the North, Far-East Branch of the Russian Academy of Sciences, Portovaya Street 18, Magadan 685000, Russia
| | - Miroslava Derenko
- Institute of Biological Problems of the North, Far-East Branch of the Russian Academy of Sciences, Portovaya Street 18, Magadan 685000, Russia
| | - Katarzyna Skonieczna
- Division of Molecular and Forensic Genetics, Department of Forensic Medicine, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University,Sklodowskiej-Curie Street 9, Bydgoszcz 85-094, Poland
| | - Tomasz Grzybowski
- Division of Molecular and Forensic Genetics, Department of Forensic Medicine, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University,Sklodowskiej-Curie Street 9, Bydgoszcz 85-094, Poland
| | - Aleksandra Grosheva
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences,Gubkin Street 3, Moscow 119991, Russia, Russia
| | - Yuri Shneider
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences,Gubkin Street 3, Moscow 119991, Russia, Russia
| | - Sergei Rychkov
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences,Gubkin Street 3, Moscow 119991, Russia, Russia
| | - Olga Zhukova
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences,Gubkin Street 3, Moscow 119991, Russia, Russia
| |
Collapse
|
27
|
Larruga JM, Marrero P, Abu-Amero KK, Golubenko MV, Cabrera VM. Carriers of mitochondrial DNA macrohaplogroup R colonized Eurasia and Australasia from a southeast Asia core area. BMC Evol Biol 2017; 17:115. [PMID: 28535779 PMCID: PMC5442693 DOI: 10.1186/s12862-017-0964-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 05/11/2017] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The colonization of Eurasia and Australasia by African modern humans has been explained, nearly unanimously, as the result of a quick southern coastal dispersal route through the Arabian Peninsula, the Indian subcontinent, and the Indochinese Peninsula, to reach Australia around 50 kya. The phylogeny and phylogeography of the major mitochondrial DNA Eurasian haplogroups M and N have played the main role in giving molecular genetics support to that scenario. However, using the same molecular tools, a northern route across central Asia has been invoked as an alternative that is more conciliatory with the fossil record of East Asia. Here, we assess as the Eurasian macrohaplogroup R fits in the northern path. RESULTS Haplogroup U, with a founder age around 50 kya, is one of the oldest clades of macrohaplogroup R in western Asia. The main branches of U expanded in successive waves across West, Central and South Asia before the Last Glacial Maximum. All these dispersions had rather overlapping ranges. Some of them, as those of U6 and U3, reached North Africa. At the other end of Asia, in Wallacea, another branch of macrohaplogroup R, haplogroup P, also independently expanded in the area around 52 kya, in this case as isolated bursts geographically well structured, with autochthonous branches in Australia, New Guinea, and the Philippines. CONCLUSIONS Coeval independently dispersals around 50 kya of the West Asia haplogroup U and the Wallacea haplogroup P, points to a halfway core area in southeast Asia as the most probable centre of expansion of macrohaplogroup R, what fits in the phylogeographic pattern of its ancestor, macrohaplogroup N, for which a northern route and a southeast Asian origin has been already proposed.
Collapse
Affiliation(s)
- Jose M Larruga
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain
| | - Patricia Marrero
- Research Support General Service, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain
| | - Khaled K Abu-Amero
- Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Vicente M Cabrera
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain.
| |
Collapse
|
28
|
|
29
|
Davidovic S, Malyarchuk B, Aleksic J, Derenko M, Topalovic V, Litvinov A, Skonieczna K, Rogalla U, Grzybowski T, Stevanovic M, Kovacevic-Grujicic N. Mitochondrial super-haplogroup U diversity in Serbians. Ann Hum Biol 2017; 44:408-418. [PMID: 28140657 DOI: 10.1080/03014460.2017.1287954] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Available mitochondrial (mtDNA) data demonstrate genetic differentiation among South Slavs inhabiting the Balkan Peninsula. However, their resolution is insufficient to elucidate the female-specific aspects of the genetic history of South Slavs, including the genetic impact of various migrations which were rather common within the Balkans, a region having a turbulent demographic history. AIM The aim was to thoroughly study complete mitogenomes of Serbians, a population linking westward and eastward South Slavs. SUBJECTS AND METHODS Forty-six predominantly Serbian super-haplogroup U complete mitogenomes were analysed phylogenetically against ∼4000 available complete mtDNAs of modern and ancient Western Eurasians. RESULTS Serbians share a number of U mtDNA lineages with Southern, Eastern-Central and North-Western Europeans. Putative Balkan-specific lineages (e.g. U1a1c2, U4c1b1, U5b3j, K1a4l and K1a13a1) and lineages shared among Serbians (South Slavs) and West and East Slavs were detected (e.g. U2e1b1, U2e2a1d, U4a2a, U4a2c, U4a2g1, U4d2b and U5b1a1). CONCLUSION The exceptional diversity of maternal lineages found in Serbians may be associated with the genetic impact of both autochthonous pre-Slavic Balkan populations whose mtDNA gene pool was affected by migrations of various populations over time (e.g. Bronze Age pastoralists) and Slavic and Germanic newcomers in the early Middle Ages.
Collapse
Affiliation(s)
- Slobodan Davidovic
- a Institute of Molecular Genetics and Genetic Engineering , University of Belgrade , Belgrade , Serbia
| | - Boris Malyarchuk
- b Genetics Laboratory, Institute of Biological Problems of the North , Russian Academy of Sciences , Magadan , Russia
| | - Jelena Aleksic
- a Institute of Molecular Genetics and Genetic Engineering , University of Belgrade , Belgrade , Serbia
| | - Miroslava Derenko
- b Genetics Laboratory, Institute of Biological Problems of the North , Russian Academy of Sciences , Magadan , Russia
| | - Vladanka Topalovic
- a Institute of Molecular Genetics and Genetic Engineering , University of Belgrade , Belgrade , Serbia
| | - Andrey Litvinov
- b Genetics Laboratory, Institute of Biological Problems of the North , Russian Academy of Sciences , Magadan , Russia
| | - Katarzyna Skonieczna
- c Department of Forensic Medicine, Division of Molecular and Forensic Genetics, Ludwik Rydygier Collegium Medicum, Faculty of Medicine , Nicolaus Copernicus University , Bydgoszcz , Poland
| | - Urszula Rogalla
- c Department of Forensic Medicine, Division of Molecular and Forensic Genetics, Ludwik Rydygier Collegium Medicum, Faculty of Medicine , Nicolaus Copernicus University , Bydgoszcz , Poland
| | - Tomasz Grzybowski
- c Department of Forensic Medicine, Division of Molecular and Forensic Genetics, Ludwik Rydygier Collegium Medicum, Faculty of Medicine , Nicolaus Copernicus University , Bydgoszcz , Poland
| | - Milena Stevanovic
- a Institute of Molecular Genetics and Genetic Engineering , University of Belgrade , Belgrade , Serbia
| | - Natasa Kovacevic-Grujicic
- a Institute of Molecular Genetics and Genetic Engineering , University of Belgrade , Belgrade , Serbia
| |
Collapse
|
30
|
Nikitin AG, Ivanova S, Kiosak D, Badgerow J, Pashnick J. Subdivisions of haplogroups U and C encompass mitochondrial DNA lineages of Eneolithic-Early Bronze Age Kurgan populations of western North Pontic steppe. J Hum Genet 2017; 62:605-613. [PMID: 28148921 DOI: 10.1038/jhg.2017.12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 01/01/2023]
Abstract
Prehistoric Europe experienced a marked cultural and economic shift around 4000 years ago, when the established Neolithic agriculture-based economy was replaced by herding-pastoralist industry. In recent years new data about the genetic structure of human communities living during this transition period began to emerge. At the same time, the genetic identities of the Eneolithic and Early Bronze Age (EBA) inhabitants from a prehistoric cultural crossroad in western North Pontic steppe region remain understudied. This report presents results of the investigation of maternal genetic lineages of individuals buried in kurgans constructed during the Eneolithic-EBA transition in the western part of the North Pontic Region (NPR). Mitochondrial DNA (mtDNA) lineages from the interments belonging to the Eneolithic as well as the EBA cultures such as Yamna (Pit Grave), Catacomb and Babino (Mnogovalikovaya or KMK) were examined. In the 12 successfully haplotyped specimens, 75% of mtDNA lineages consisted of west Eurasian haplogroup U and its U4 and U5 sublineages. Furthermore, we identified a subgroup of east Eurasian haplogroup C in two representatives of the Yamna culture in one of the studied kurgans. Our results indicate the persistence of Mesolithic hunter-gatherer mtDNA lineages in western NPR through the EBA, as well as suggesting a mtDNA lineage continuum connecting the western NPR inhabitants of the Early Metal Ages to the North Pontic Neolithic population groups.
Collapse
Affiliation(s)
- Alexey G Nikitin
- Biology Department, Grand Valley State University, Allendale, MI, USA
| | - Svetlana Ivanova
- Institute of Archaeology, National Academy of Sciences of Ukraine, Odessa, Ukraine
| | - Dmytro Kiosak
- I.I. Mechnikov Odessa National University, Odessa, Ukraine
| | - Jessica Badgerow
- Biology Department, Grand Valley State University, Allendale, MI, USA
| | - Jeff Pashnick
- Biology Department, Grand Valley State University, Allendale, MI, USA
| |
Collapse
|
31
|
Pankratov V, Litvinov S, Kassian A, Shulhin D, Tchebotarev L, Yunusbayev B, Möls M, Sahakyan H, Yepiskoposyan L, Rootsi S, Metspalu E, Golubenko M, Ekomasova N, Akhatova F, Khusnutdinova E, Heyer E, Endicott P, Derenko M, Malyarchuk B, Metspalu M, Davydenko O, Villems R, Kushniarevich A. East Eurasian ancestry in the middle of Europe: genetic footprints of Steppe nomads in the genomes of Belarusian Lipka Tatars. Sci Rep 2016; 6:30197. [PMID: 27453128 PMCID: PMC4958967 DOI: 10.1038/srep30197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/29/2016] [Indexed: 12/04/2022] Open
Abstract
Medieval era encounters of nomadic groups of the Eurasian Steppe and largely sedentary East Europeans had a variety of demographic and cultural consequences. Amongst these outcomes was the emergence of the Lipka Tatars—a Slavic-speaking Sunni-Muslim minority residing in modern Belarus, Lithuania and Poland, whose ancestors arrived in these territories via several migration waves, mainly from the Golden Horde. Our results show that Belarusian Lipka Tatars share a substantial part of their gene pool with Europeans as indicated by their Y-chromosomal, mitochondrial and autosomal DNA variation. Nevertheless, Belarusian Lipkas still retain a strong genetic signal of their nomadic ancestry, witnessed by the presence of common Y-chromosomal and mitochondrial DNA variants as well as autosomal segments identical by descent between Lipkas and East Eurasians from temperate and northern regions. Hence, we document Lipka Tatars as a unique example of former Medieval migrants into Central Europe, who became sedentary, changed language to Slavic, yet preserved their faith and retained, both uni- and bi-parentally, a clear genetic echo of a complex population interplay throughout the Eurasian Steppe Belt, extending from Central Europe to northern China.
Collapse
Affiliation(s)
- Vasili Pankratov
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Sergei Litvinov
- Institute of Biochemistry and Genetics, Ufa Research Centre, RAS, Ufa, Bashkortostan, Russia.,Estonian Biocentre, Tartu, Estonia
| | - Alexei Kassian
- Institute of Linguistics, Russian Academy of Sciences, Moscow, Russia.,School for Advanced Studies in the Humanities, Russian Presidential Academy of National Economy and Public Administration, Moscow, Russia
| | - Dzmitry Shulhin
- Belarusian State University, Faculty of Applied Mathematics and Computer Science Department of Probability Theory and Mathematical Statistics, Minsk, Belarus
| | - Lieve Tchebotarev
- Center of analytical and genetic engineering studies, Institute of Microbiology, National Academy of Sciences of Belarus, Minsk, Belarus
| | | | - Märt Möls
- Institute of Mathematical Statistics, University of Tartu, Tartu, Estonia
| | - Hovhannes Sahakyan
- Estonian Biocentre, Tartu, Estonia.,Laboratory of Ethnogenomics, Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan, 0014, Armenia
| | - Levon Yepiskoposyan
- Laboratory of Ethnogenomics, Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan, 0014, Armenia
| | | | - Ene Metspalu
- Estonian Biocentre, Tartu, Estonia.,Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Maria Golubenko
- The Research Institute for Medical Genetics, 634050, Tomsk, Russia
| | - Natalia Ekomasova
- Department of Genetics and Fundamental Medicine of Bashkir State University, Ufa, Bashkortostan, Russia
| | - Farida Akhatova
- Department of Genetics and Fundamental Medicine of Bashkir State University, Ufa, Bashkortostan, Russia.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Research Centre, RAS, Ufa, Bashkortostan, Russia.,Department of Genetics and Fundamental Medicine of Bashkir State University, Ufa, Bashkortostan, Russia
| | - Evelyne Heyer
- Eco-Anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Université Paris Diderot, Sorbonne Universités, Muséum national d'Histoire naturelle, Musée de l'Homme, Paris, France
| | - Phillip Endicott
- Eco-Anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Université Paris Diderot, Sorbonne Universités, Muséum national d'Histoire naturelle, Musée de l'Homme, Paris, France
| | - Miroslava Derenko
- Institute of Biological Problems of the North, Russian Academy of Sciences, Magadan, Russia
| | - Boris Malyarchuk
- Institute of Biological Problems of the North, Russian Academy of Sciences, Magadan, Russia
| | | | - Oleg Davydenko
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Richard Villems
- Estonian Biocentre, Tartu, Estonia.,Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Alena Kushniarevich
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus.,Estonian Biocentre, Tartu, Estonia
| |
Collapse
|
32
|
Pugach I, Matveev R, Spitsyn V, Makarov S, Novgorodov I, Osakovsky V, Stoneking M, Pakendorf B. The Complex Admixture History and Recent Southern Origins of Siberian Populations. Mol Biol Evol 2016; 33:1777-95. [PMID: 26993256 PMCID: PMC4915357 DOI: 10.1093/molbev/msw055] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although Siberia was inhabited by modern humans at an early stage, there is still debate over whether it remained habitable during the extreme cold of the Last Glacial Maximum or whether it was subsequently repopulated by peoples with recent shared ancestry. Previous studies of the genetic history of Siberian populations were hampered by the extensive admixture that appears to have taken place among these populations, because commonly used methods assume a tree-like population history and at most single admixture events. Here we analyze geogenetic maps and use other approaches to distinguish the effects of shared ancestry from prehistoric migrations and contact, and develop a new method based on the covariance of ancestry components, to investigate the potentially complex admixture history. We furthermore adapt a previously devised method of admixture dating for use with multiple events of gene flow, and apply these methods to whole-genome genotype data from over 500 individuals belonging to 20 different Siberian ethnolinguistic groups. The results of these analyses indicate that there have been multiple layers of admixture detectable in most of the Siberian populations, with considerable differences in the admixture histories of individual populations. Furthermore, most of the populations of Siberia included here, even those settled far to the north, appear to have a southern origin, with the northward expansions of different populations possibly being driven partly by the advent of pastoralism, especially reindeer domestication. These newly developed methods to analyze multiple admixture events should aid in the investigation of similarly complex population histories elsewhere.
Collapse
Affiliation(s)
- Irina Pugach
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Rostislav Matveev
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
| | - Viktor Spitsyn
- Research Centre for Medical Genetics, Federal State Budgetary Institution, Moscow, Russian Federation
| | - Sergey Makarov
- Research Centre for Medical Genetics, Federal State Budgetary Institution, Moscow, Russian Federation
| | - Innokentiy Novgorodov
- Institute of Foreign Philology and Regional Studies, North-Eastern Federal University, Yakutsk, Russian Federation
| | - Vladimir Osakovsky
- Institute of Health, North-Eastern Federal University, Yakutsk, Russian Federation
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Brigitte Pakendorf
- Laboratoire Dynamique du Langage, UMR5596, CNRS and Université Lyon Lumière 2, Lyon, France
| |
Collapse
|
33
|
Palanichamy MG, Mitra B, Zhang CL, Debnath M, Li GM, Wang HW, Agrawal S, Chaudhuri TK, Zhang YP. West Eurasian mtDNA lineages in India: an insight into the spread of the Dravidian language and the origins of the caste system. Hum Genet 2015; 134:637-47. [PMID: 25832481 DOI: 10.1007/s00439-015-1547-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/25/2015] [Indexed: 11/28/2022]
Abstract
There is no indication from the previous mtDNA studies that west Eurasian-specific subclades have evolved within India and played a role in the spread of languages and the origins of the caste system. To address these issues, we have screened 14,198 individuals (4208 from this study) and analyzed 112 mitogenomes (41 new sequences) to trace west Eurasian maternal ancestry. This has led to the identification of two autochthonous subhaplogroups--HV14a1 and U1a1a4, which are likely to have originated in the Dravidian-speaking populations approximately 10.5-17.9 thousand years ago (kya). The carriers of these maternal lineages might have settled in South India during the time of the spread of the Dravidian language. In addition to this, we have identified several subsets of autochthonous U7 lineages, including U7a1, U7a2b, U7a3, U7a6, U7a7, and U7c, which seem to have originated particularly in the higher-ranked caste populations in relatively recent times (2.6-8.0 kya with an average of 5.7 kya). These lineages have provided crucial clues to the differentiation of the caste system that has occurred during the recent past and possibly, this might have been influenced by the Indo-Aryan migration. The remaining west Eurasian lineages observed in the higher-ranked caste groups, like the Brahmins, were found to cluster with populations who possibly arrived from west Asia during more recent times.
Collapse
Affiliation(s)
- Malliya Gounder Palanichamy
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, 650 091, Yunnan, China,
| | | | | | | | | | | | | | | | | |
Collapse
|