1
|
Marie-Orleach L, Glémin S, Brandrud MK, Brysting AK, Gizaw A, Gustafsson ALS, Rieseberg LH, Brochmann C, Birkeland S. How Does Selfing Affect the Pace and Process of Speciation? Cold Spring Harb Perspect Biol 2024; 16:a041426. [PMID: 38503508 PMCID: PMC11529850 DOI: 10.1101/cshperspect.a041426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Surprisingly little attention has been given to the impact of selfing on speciation, even though selfing reduces gene flow between populations and affects other key population genetics parameters. Here we review recent theoretical work and compile empirical data from crossing experiments and genomic and phylogenetic studies to assess the effect of mating systems on the speciation process. In accordance with theoretical predictions, we find that accumulation of hybrid incompatibilities seems to be accelerated in selfers, but there is so far limited empirical support for a predicted bias toward underdominant loci. Phylogenetic evidence is scarce and contradictory, including studies suggesting that selfing either promotes or hampers speciation rate. Further studies are therefore required, which in addition to measures of reproductive barrier strength and selfing rate should routinely include estimates of demographic history and genetic divergence as a proxy for divergence time.
Collapse
Affiliation(s)
- Lucas Marie-Orleach
- Natural History Museum, University of Oslo, 0562 Oslo, Norway
- CNRS, Université de Rennes, ECOBIO-UMR 6553, Campus de Beaulieu, Rennes 35042, France
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, Tours 37200, France
| | - Sylvain Glémin
- CNRS, Université de Rennes, ECOBIO-UMR 6553, Campus de Beaulieu, Rennes 35042, France
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Evolutionsbiologiskt Centrum EBC, Uppsala, Sweden
| | | | - Anne K Brysting
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - Abel Gizaw
- Natural History Museum, University of Oslo, 0562 Oslo, Norway
| | | | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | | | - Siri Birkeland
- Natural History Museum, University of Oslo, 0562 Oslo, Norway
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| |
Collapse
|
2
|
Cheng XJ, Fritsch PW, Lin YJ, Li GH, Chen YQ, Zhang MY, Lu L. The role of Pleistocene dispersal in shaping species richness of sky island wintergreens from the Himalaya-Hengduan Mountains. Mol Phylogenet Evol 2024; 197:108082. [PMID: 38705251 DOI: 10.1016/j.ympev.2024.108082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 03/19/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
In addition to topography and climate, biogeographic dispersal has been considered to influence plant diversity in the Himalaya-Hengduan Mountains (HHM), yet, the mode and tempo of sky island dispersal and its influence on species richness has been little explored. Through phylogenetic analysis of Gaultheria ser. Trichophyllae, a sky island alpine clade within the HHM, we test the hypothesis that dispersal has affected current local species richness. We inferred the dynamics of biogeographic dispersal with correlation tests on direction, distance, occurrence time, and regional species richness. We found that G. ser. Trichophyllae originated at the end of the Miocene and mostly dispersed toward higher longitudes (eastward). In particular, shorter intra-regional eastward dispersals and longer inter-regional westward dispersals were most frequently observed. We detected a prevalence of eastward intra-region dispersals in both glacial periods and interglacials. These dispersals may have been facilitated by the reorganization of paleo-drainages and monsoon intensification through time. We suggest that the timing of dispersal corresponding to glacial periods and the prevalence of intra-region dispersal, rather than dispersal frequency, most influenced the pattern of species richness of G. ser. Trichophyllae. This study facilitates a more comprehensive understanding of biodiversity in the sky islands within the HHM.
Collapse
Affiliation(s)
- Xiao-Juan Cheng
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Peter W Fritsch
- Botanical Research Institute of Texas, 1700 University Drive, Fort Worth, TX 76107, USA
| | - Yan-Jun Lin
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Guo-Hong Li
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Yan-Quan Chen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; School of Pharmacy, Sun Yat-sen University, Guangzhou 510000, China
| | - Ming-Ying Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| | - Lu Lu
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China.
| |
Collapse
|
3
|
Wang Y, Wang H, Ye C, Wang Z, Ma C, Lin D, Jin X. Progress in systematics and biogeography of Orchidaceae. PLANT DIVERSITY 2024; 46:425-434. [PMID: 39280975 PMCID: PMC11390685 DOI: 10.1016/j.pld.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 09/18/2024]
Abstract
Orchidaceae are one of the largest families of angiosperms in terms of species richness. In the last decade, numerous studies have delved into reconstructing the phylogenetic framework of Orchidaceae, leveraging data from plastid, mitochondrial and nuclear sources. These studies have provided new insights into the systematics, diversification and biogeography of Orchidaceae, establishing a robust foundation for future research. Nevertheless, pronounced controversies persist regarding the precise placement of certain lineages within these phylogenetic frameworks. To address these discrepancies and deepen our understanding of the phylogenetic structure of Orchidaceae, we provide a comprehensive overview and analysis of phylogenetic studies focusing on contentious groups within Orchidaceae since 2015, delving into discussions on the underlying reasons for observed topological conflicts. We also provide a novel phylogenetic framework at the subtribal level. Furthermore, we examine the tempo and mode underlying orchid species diversity from the perspective of historical biogeography, highlighting factors contributing to extensive speciation. Ultimately, we delineate avenues for future research aimed at enhancing our understanding of Orchidaceae phylogeny and diversity.
Collapse
Affiliation(s)
- Yajun Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Hanchen Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Chao Ye
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Zhiping Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Chongbo Ma
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Dongliang Lin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xiaohua Jin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
4
|
Simpson L, Clements MA, Orel HK, Crayn DM, Nargar K. Plastid phylogenomics clarifies broad-level relationships in Bulbophyllum (Orchidaceae) and provides insights into range evolution of Australasian section Adelopetalum. FRONTIERS IN PLANT SCIENCE 2024; 14:1219354. [PMID: 38854888 PMCID: PMC11157511 DOI: 10.3389/fpls.2023.1219354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/13/2023] [Indexed: 06/11/2024]
Abstract
The hyperdiverse orchid genus Bulbophyllum is the second largest genus of flowering plants and exhibits a pantropical distribution with a center of diversity in tropical Asia. The only Bulbophyllum section with a center of diversity in Australasia is sect. Adelopetalum. However, the phylogenetic placement, interspecific relationships, and spatio-temporal evolution of this section remain largely unclear. To infer broad-level relationships within Bulbophyllum, and interspecific relationships within sect. Adelopetalum, a genome skimming dataset was generated for 89 samples, which yielded 70 plastid coding regions and a nuclear ribosomal DNA cistron. For 18 additional samples, Sanger data from two plastid loci (matK and ycf1) and nuclear ITS were added using a supermatrix approach. The study provided new insights into broad-level relationships in Bulbophyllum, including phylogenetic evidence for the non-monophyly of sections Beccariana, Brachyantha, Brachypus, Cirrhopetaloides, Cirrhopetalum, Desmosanthes, Minutissima, Oxysepala, Polymeres, and Sestochilos. Section Adelopetalum and sect. Minutissima s.s. formed a highly supported clade that was resolved as a sister group to the remainder of the genus. Divergence time estimations based on a relaxed molecular clock model placed the origin of Bulbophyllum in the Early Oligocene (ca. 33.2 Ma) and sect. Adelopetalum in the Late Oligocene (ca. 23.6 Ma). Ancestral range estimations based on a BAYAREALIKE model identified the Australian continent as the ancestral area of the sect. Adelopetalum. The section underwent crown diversification from the mid-Miocene to the late Pleistocene, predominantly in continental Australia. At least two independent long-distance dispersal events were inferred eastward from the Australian continent to New Zealand and to New Caledonia from the early Pliocene onwards, likely mediated by predominantly westerly winds of the Southern hemisphere. Retraction and fragmentation of the eastern Australian rainforests from the early Miocene onwards are likely drivers of lineage divergence within sect. Adelopetalum facilitating allopatric speciation.
Collapse
Affiliation(s)
- Lalita Simpson
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
- College of Science and Engineering, James Cook University, Cairns, QLD, Australia
| | - Mark A. Clements
- Centre for Australian National Biodiversity Research (joint venture between Parks Australia and Commonwealth Industrial and Scientific Research Organisation (CSIRO)), Canberra, ACT, Australia
| | - Harvey K. Orel
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- National Research Collections Australia, Commonwealth Industrial and Scientific Research Organisation (CSIRO), Canberra, ACT, Australia
| | - Darren M. Crayn
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
| | - Katharina Nargar
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
- National Research Collections Australia, Commonwealth Industrial and Scientific Research Organisation (CSIRO), Canberra, ACT, Australia
| |
Collapse
|
5
|
Martín-Hernanz S, Albaladejo RG, Lavergne S, Rubio E, Marín-Rodulfo M, Arroyo J, Aparicio A. Strong conservatism of floral morphology during the rapid diversification of the genus Helianthemum. AMERICAN JOURNAL OF BOTANY 2023; 110:e16155. [PMID: 36912727 DOI: 10.1002/ajb2.16155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 05/16/2023]
Abstract
PREMISE Divergence of floral morphology and breeding systems are often expected to be linked to angiosperm diversification and environmental niche divergence. However, available evidence for such relationships is not generalizable due to different taxonomic, geographical and time scales. The Palearctic genus Helianthemum shows the highest diversity of the family Cistaceae in terms of breeding systems, floral traits, and environmental conditions as a result of three recent evolutionary radiations since the Late Miocene. Here, we investigated the tempo and mode of evolution of floral morphology in the genus and its link with species diversification and environmental niche divergence. METHODS We quantified 18 floral traits from 83 taxa and applied phylogenetic comparative methods using a robust phylogenetic framework based on genotyping-by-sequencing data. RESULTS We found three different floral morphologies, putatively related to three different breeding systems: type I, characterized by small flowers without herkogamy and low pollen to ovule ratio; type II, represented by large flowers with approach herkogamy and intermediate pollen to ovule ratio; and type III, featured by small flowers with reverse herkogamy and the highest pollen to ovule ratio. Each morphology has been highly conserved across each radiation and has evolved independently of species diversification and ecological niche divergence. CONCLUSIONS The combined results of trait, niche, and species diversification ultimately recovered a pattern of potentially non-adaptive radiations in Helianthemum and highlight the idea that evolutionary radiations can be decoupled from floral morphology evolution even in lineages that diversified in heterogeneous environments as the Mediterranean Basin.
Collapse
Affiliation(s)
- Sara Martín-Hernanz
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - Rafael G Albaladejo
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Sébastien Lavergne
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Laboratoire d'Ecologie Alpine (LECA), FR-38000, Grenoble, France
| | - Encarnación Rubio
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Macarena Marín-Rodulfo
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
- Departamento de Botánica, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Juan Arroyo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Abelardo Aparicio
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
6
|
Nargar K, O’Hara K, Mertin A, Bent SJ, Nauheimer L, Simpson L, Zimmer H, Molloy BPJ, Clements MA. Evolutionary Relationships and Range Evolution of Greenhood Orchids (Subtribe Pterostylidinae): Insights From Plastid Phylogenomics. FRONTIERS IN PLANT SCIENCE 2022; 13:912089. [PMID: 35845679 PMCID: PMC9277221 DOI: 10.3389/fpls.2022.912089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Australia harbours a rich and highly endemic orchid flora with over 90% of native species found nowhere else. However, little is known about the assembly and evolution of Australia's orchid flora. Here, we used a phylogenomic approach to infer evolutionary relationships, divergence times and range evolution in Pterostylidinae (Orchidoideae), the second largest subtribe in the Australian orchid flora, comprising the genera Pterostylis and Achlydosa. Phylogenetic analysis of 75 plastid genes provided well-resolved and supported phylogenies. Intrageneric relationships in Pterostylis were clarified and monophyly of eight of 10 sections supported. Achlydosa was found to not form part of Pterostylidinae and instead merits recognition at subtribal level, as Achlydosinae. Pterostylidinae were inferred to have originated in eastern Australia in the early Oligocene, coinciding with the complete separation of Australia from Antarctica and the onset of the Antarctic Circumpolar Current, which led to profound changes in the world's climate. Divergence of all major lineages occurred during the Miocene, accompanied by increased aridification and seasonality of the Australian continent, resulting in strong vegetational changes from rainforest to more open sclerophyllous vegetation. The majority of extant species were inferred to have originated in the Quaternary, from the Pleistocene onwards. The rapid climatic oscillations during the Pleistocene may have acted as important driver of speciation in Pterostylidinae. The subtribe underwent lineage diversification mainly within its ancestral range, in eastern Australia. Long-distance dispersals to southwest Australia commenced from the late Miocene onwards, after the establishment of the Nullarbor Plain, which constitutes a strong edaphic barrier to mesic plants. Range expansions from the mesic into the arid zone of eastern Australia (Eremaean region) commenced from the early Pleistocene onwards. Extant distributions of Pterostylidinae in other Australasian regions, such as New Zealand and New Caledonia, are of more recent origin, resulting from long-distance dispersals from the Pliocene onwards. Temperate eastern Australia was identified as key source area for dispersals to other Australasian regions.
Collapse
Affiliation(s)
- Katharina Nargar
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
- National Research Collections Australia, Commonwealth Industrial and Scientific Research Organisation (CSIRO), Canberra, ACT, Australia
| | - Kate O’Hara
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
- National Research Collections Australia, Commonwealth Industrial and Scientific Research Organisation (CSIRO), Canberra, ACT, Australia
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Allison Mertin
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
- National Research Collections Australia, Commonwealth Industrial and Scientific Research Organisation (CSIRO), Canberra, ACT, Australia
| | - Stephen J. Bent
- DATA61, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, QLD, Australia
| | - Lars Nauheimer
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
| | - Lalita Simpson
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
| | - Heidi Zimmer
- Centre for Australian National Biodiversity Research (Joint Venture Between Parks Australia and CSIRO), Canberra, ACT, Australia
| | - Brian P. J. Molloy
- Allan Herbarium, Manaaki Whenua – Landcare Research, Lincoln, New Zealand
| | - Mark A. Clements
- Centre for Australian National Biodiversity Research (Joint Venture Between Parks Australia and CSIRO), Canberra, ACT, Australia
| |
Collapse
|
7
|
Yang J, Zhang F, Ge Y, Yu W, Xue Q, Wang M, Wang H, Xue Q, Liu W, Niu Z, Ding X. Effects of geographic isolation on the Bulbophyllum chloroplast genomes. BMC PLANT BIOLOGY 2022; 22:201. [PMID: 35439926 PMCID: PMC9016995 DOI: 10.1186/s12870-022-03592-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/11/2022] [Indexed: 06/02/2023]
Abstract
BACKGROUND Because chloroplast (cp) genome has more conserved structures than nuclear genome and mitochondrial genome, it is a useful tool in estimating the phylogenetic relationships of plants. With a series of researches for cp genomes, there have been comprehensive understandings about the cp genome features. The genus Bulbophyllum widely distributed in Asia, South America, Australia and other places. Therefore, it is an excellent type genus for studying the effects of geographic isolation. RESULTS In this study, the cp genomes of nine Bulbophyllum orchids were newly sequenced and assembled using the next-generation sequencing technology. Based on 19 Asian (AN) and eight South American (SA) Bulbophyllum orchids, the cp genome features of AN clade and SA clade were compared. Comparative analysis showed that there were considerable differences in overall cp genome features between two clades in three aspects, including basic cp genome features, SSC/IRB junctions (JSBs) and mutational hotspots. The phylogenetic analysis and divergence time estimation results showed that the AN clade has diverged from the SA clade in the late Oligocene (21.50-30.12 mya). After estimating the occurrence rates of the insertions and deletions (InDels), we found that the change trends of cp genome structures between two clades were different under geographic isolation. Finally, we compared selective pressures on cp genes and found that long-term geographic isolation made AN and SA Bulbophyllum cp genes evolved variably. CONCLUSION The results revealed that the overall structural characteristics of Bulbophyllum cp genomes diverged during the long-term geographic isolation, and the crassulacean acid metabolism (CAM) pathway may play an important role in the Bulbophyllum species evolution.
Collapse
Affiliation(s)
- Jiapeng Yang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China
| | - Fuwei Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China
| | - Yajie Ge
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China
| | - Wenhui Yu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China
| | - Qiqian Xue
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China
| | - Mengting Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China
| | - Hongman Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China
| | - Qingyun Xue
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China
| | - Wei Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China
| | - Zhitao Niu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China.
| | - Xiaoyu Ding
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China.
| |
Collapse
|
8
|
Ethnobotany, Phytochemistry, Biological Activities, and Health-Promoting Effects of the Genus Bulbophyllum. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6727609. [PMID: 35295925 PMCID: PMC8920616 DOI: 10.1155/2022/6727609] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022]
Abstract
The genus Bulbophyllum is of scientific interest due to the phytochemical components and diverse biological activities found across species of the genus. Most Bulbophyllum species are epiphytic and located in habitats that range from subtropical dry forests to wet montane cloud forests. In many cultures, the genus Bulbophyllum has a religious, protective, ornamenting, cosmetic, and medicinal role. Detailed investigations into the molecular pharmacological mechanisms and numerous biological effects of Bulbophyllum spp. remain ambiguous. The review focuses on an in-depth discussion of studies containing data on phytochemistry and preclinical pharmacology. Thus, the purpose of this review was to summarize the therapeutic potential of Bulbophyllum spp. biocompounds. Data were collected from several scientific databases such as PubMed and ScienceDirect, other professional websites, and traditional medicine books to obtain the necessary information. Evidence from pharmacological studies has shown that various phytoconstituents in some Bulbophyllum species have different biological health-promoting activities such as antimicrobial, antifungal, antioxidant, anti-inflammatory, anticancer, and neuroprotective. No toxicological effects have been reported to date. Future clinical trials are needed for the clinical confirmation of biological activities proven in preclinical studies. Although orchid species are cultivated for ornamental purposes and have a wide traditional use, the novelty of this review is a summary of biological actions from preclinical studies, thus supporting ethnopharmacological data.
Collapse
|
9
|
Hu AQ, Gale SW, Liu ZJ, Fischer GA, Saunders RMK. Diversification Slowdown in the Cirrhopetalum Alliance ( Bulbophyllum, Orchidaceae): Insights From the Evolutionary Dynamics of Crassulacean Acid Metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:794171. [PMID: 35185977 PMCID: PMC8851032 DOI: 10.3389/fpls.2022.794171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/10/2022] [Indexed: 05/17/2023]
Abstract
Evolutionary slowdowns in diversification have been inferred in various plant and animal lineages. Investigation based on diversification models integrated with environmental factors and key characters could provide critical insights into this diversification trend. We evaluate diversification rates in the Cirrhopetalum alliance (Bulbophyllum, Orchidaceae subfam. Epidendroideae) using a time-calibrated phylogeny and assess the role of Crassulacean acid metabolism (CAM) as a hypothesised key innovation promoting the spectacular diversity of orchids, especially those with an epiphytic habit. An explosive early speciation in the Cirrhopetalum alliance is evident, with the origin of CAM providing a short-term advantage under the low atmospheric CO2 concentrations (pCO2) associated with cooling and aridification in the late Miocene. A subsequent slowdown of diversification in the Cirrhopetalum alliance is possibly explained by a failure to keep pace with pCO2 dynamics. We further demonstrate that extinction rates in strong CAM lineages are ten times higher than those of C3 lineages, with CAM not as evolutionarily labile as previously assumed. These results challenge the role of CAM as a "key innovation" in the diversification of epiphytic orchids.
Collapse
Affiliation(s)
- Ai-Qun Hu
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Division of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Kadoorie Farm and Botanic Garden, Tai Po, Hong Kong SAR, China
| | - Stephan W. Gale
- Kadoorie Farm and Botanic Garden, Tai Po, Hong Kong SAR, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Richard M. K. Saunders
- Division of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
10
|
Gamisch A, Winter K, Fischer GA, Comes HP. Evolution of crassulacean acid metabolism (CAM) as an escape from ecological niche conservatism in Malagasy Bulbophyllum (Orchidaceae). THE NEW PHYTOLOGIST 2021; 231:1236-1248. [PMID: 33960438 DOI: 10.1111/nph.17437] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/21/2021] [Indexed: 05/29/2023]
Abstract
Despite growing evidence that niche shifts are more common in flowering plants than previously thought, little is known of whether such shifts are promoted by changes in photosynthetic pathways. Here we combine the most complete phylogeny for epiphytic Malagasy Bulbophyllum orchids (c. 210 spp.) with climatic niche and carbon isotope ratios to infer the group's spatial-temporal history, and the role of strongly expressed crassulacean acid metabolism (CAM) in facilitating niche shifts and diversification. We find that most extant species still retain niche (Central Highland) and photosynthesis (C3 ) states as present in the single mid-Miocene (c. 12.70 million yr ago (Ma)) ancestor colonizing Madagascar. However, we also infer a major transition to CAM, linked to a late Miocene (c. 7.36 Ma) invasion of species from the sub-humid highland first into the island's humid eastern coastal, and then into the seasonally dry 'Northwest Sambirano' rainforests, yet without significant effect on diversification rates. These findings indicate that CAM in tropical epiphytes may be selectively advantageous even in high rainfall habitats, rather than presenting a mere adaptation to dry environments or epiphytism per se. Overall, our study qualifies CAM as an evolutionary 'gateway' trait that considerably widened the spatial-ecological amplitude of Madagascar's most species-rich orchid genus.
Collapse
Affiliation(s)
- Alexander Gamisch
- Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, Salzburg, 5020, Austria
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Apartado, Balboa, Ancón, 0843-03092, Republic of Panama
| | - Gunter A Fischer
- Kadoorie Farm and Botanic Garden Corporation, Lam Kam Road, Tai Po, NT, Hong Kong SAR, China
| | - Hans Peter Comes
- Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, Salzburg, 5020, Austria
| |
Collapse
|
11
|
Sharples MT, Bentz PC, Manzitto-Tripp EA. Evolution of apetaly in the cosmopolitan genus Stellaria. AMERICAN JOURNAL OF BOTANY 2021; 108:869-882. [PMID: 33982285 DOI: 10.1002/ajb2.1650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/29/2020] [Indexed: 05/22/2023]
Abstract
PREMISE Apetaly is widespread across distantly related lineages of flowering plants and is associated with abiotic (or self-) pollination. It is particularly prevalent in the carnation family, and the cosmopolitan genus Stellaria contains many lineages that are hypothesized to have lost petals from showy petalous ancestors. But the pollination biology of apetalous species of Stellaria remains unclear. METHODS Using a substantial species-level sampling (~92% of known taxonomic diversity), we describe the pattern of petal evolution within Stellaria using ancestral character state reconstructions. To help shed light on the reproductive biology of apetalous Stellaria, we conducted a field experiment at an alpine tundra site in the southern Rocky Mountains to test whether an apetalous species (S. irrigua) exhibits higher levels of selfing than a sympatric, showy petalous congener (S. longipes). RESULTS Analyses indicated that the ancestor of Stellaria was likely showy petalous and that repeated, parallel reductions of petals occurred in clades across much of the world, with uncommon reversal back to showy petals. Field experiments supported high rates of selfing in the apetalous species and high rates of outcrossing in the petalous species. CONCLUSIONS Petal loss is rampant across major clades of Stellaria and is potentially linked with self-pollination worldwide. Self-pollination occurs within the buds in S. irrigua, and high propensities for this and other forms of selfing known in many other taxa of arctic-alpine habitats may reflect erratic availability of pollinators.
Collapse
Affiliation(s)
- Mathew T Sharples
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
| | - Philip C Bentz
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Erin A Manzitto-Tripp
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
- Museum of Natural History, COLO Herbarium, University of Colorado, Boulder, Colorado, 80309, USA
| |
Collapse
|
12
|
Kerbs B, Crawford DJ, White G, Moura M, Borges Silva L, Schaefer H, Brown K, Mort ME, Kelly JK. How rapidly do self-compatible populations evolve selfing? Mating system estimation within recently evolved self-compatible populations of Azorean Tolpis succulenta (Asteraceae). Ecol Evol 2020; 10:13990-13999. [PMID: 33391697 PMCID: PMC7771160 DOI: 10.1002/ece3.6992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 01/04/2023] Open
Abstract
Genome-wide genotyping and Bayesian inference method (BORICE) were employed to estimate outcrossing rates and paternity in two small plant populations of Tolpis succulenta (Asteraceae) on Graciosa island in the Azores. These two known extant populations of T. succulenta on Graciosa have recently evolved self-compatibility. Despite the expectation that selfing would occur at an appreciable rate (self-incompatible populations of the same species show low but nonzero selfing), high outcrossing was found in progeny arrays from maternal plants in both populations. This is inconsistent with an immediate transition to high selfing following the breakdown of a genetic incompatibility system. This finding is surprising given the small population sizes and the recent colonization of an island from self-incompatible colonists of T. succulenta from another island in the Azores, and a potential paucity of pollinators, all factors selecting for selfing through reproductive assurance. The self-compatible lineage(s) likely have high inbreeding depression (ID) that effectively halts the evolution of increased selfing, but this remains to be determined. Like their progeny, all maternal plants in both populations are fully outbred, which is consistent with but not proof of high ID. High multiple paternity was found in both populations, which may be due in part to the abundant pollinators observed during the flowering season.
Collapse
Affiliation(s)
- Benjamin Kerbs
- Department of Ecology & Evolutionary BiologyUniversity of KansasLawrenceKSUSA
| | - Daniel J. Crawford
- Department of Ecology & Evolutionary BiologyUniversity of KansasLawrenceKSUSA
- Biodiversity InstituteUniversity of KansasLawrenceKSUSA
| | - Griffin White
- Department of Ecology & Evolutionary BiologyUniversity of KansasLawrenceKSUSA
- ETH ZurichFunctional Genomics Center ZurichZurichSwitzerland
| | - Mónica Moura
- InBIO Laboratório Associado, Pólo dos AçoresFaculdade de Ciências TecnoclogiaCIBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade dos AçoresPonta DelgadaPortugal
| | - Lurdes Borges Silva
- InBIO Laboratório Associado, Pólo dos AçoresFaculdade de Ciências TecnoclogiaCIBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade dos AçoresPonta DelgadaPortugal
| | - Hanno Schaefer
- Department of Ecology and Ecosystem ManagementPlant Biodiversity ResearchTechnical University of MunichFreisingGermany
| | - Keely Brown
- Department of Ecology & Evolutionary BiologyUniversity of KansasLawrenceKSUSA
| | - Mark E. Mort
- Department of Ecology & Evolutionary BiologyUniversity of KansasLawrenceKSUSA
| | - John K. Kelly
- Department of Ecology & Evolutionary BiologyUniversity of KansasLawrenceKSUSA
| |
Collapse
|
13
|
Bromham L, Hua X, Cardillo M. Macroevolutionary and macroecological approaches to understanding the evolution of stress tolerance in plants. PLANT, CELL & ENVIRONMENT 2020; 43:2832-2846. [PMID: 32705700 DOI: 10.1111/pce.13857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/26/2020] [Accepted: 07/05/2020] [Indexed: 05/24/2023]
Abstract
Environmental stress response in plants has been studied using a wide range of approaches, from lab-based investigation of biochemistry and genetics, to glasshouse studies of physiology and growth rates, to field-based trials and ecological surveys. It is also possible to investigate the evolution of environmental stress responses using macroevolutionary and macroecological analyses, analysing data from many different species, providing a new perspective on the way that environmental stress shapes the evolution and distribution of biodiversity. "Macroevoeco" approaches can produce intriguing results and new ways of looking at old problems. In this review, we focus on studies using phylogenetic analysis to illuminate macroevolutionary patterns in the evolution of environmental stress tolerance in plants. We follow a particular thread from our own research-evolution of salt tolerance-as a case study that illustrates a macroevolutionary way of thinking that opens up a range of broader questions on the evolution of environmental stress tolerances. We consider some potential future applications of macroevolutionary and macroecological analyses to understanding how diverse groups of plants evolve in response to environmental stress, which may allow better prediction of current stress tolerance and a way of predicting the capacity of species to adapt to changing environmental stresses over time.
Collapse
Affiliation(s)
- Lindell Bromham
- Macroevolution & Macroecology, Research School of Biology, Australian National University, Canberra, Australia
| | - Xia Hua
- Macroevolution & Macroecology, Research School of Biology, Australian National University, Canberra, Australia
- Mathematical Sciences Institute, Australian National University, Canberra, Australia
| | - Marcel Cardillo
- Macroevolution & Macroecology, Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
14
|
Evans A, Jacquemyn H. Impact of mating system on range size and niche breadth in Epipactis (Orchidaceae). ANNALS OF BOTANY 2020; 126:1203-1214. [PMID: 32722751 PMCID: PMC7684703 DOI: 10.1093/aob/mcaa142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND AIMS The geographical distribution of plant species is linked fundamentally not only to environmental variables, but also to key traits that affect the dispersal, establishment and evolutionary potential of a species. One of the key plant traits that can be expected to affect standing genetic variation, speed of adaptation and the capacity to colonize and establish in new habitats, and therefore niche breadth and range size, is the plant mating system. However, the precise role of the mating system in shaping range size and niche breadth of plant species remains unclear, and different studies have provided contrasting results. In this study, we tested the hypothesis that range size and niche breadth differed with mating system in the orchid genus Epipactis. METHODS We modelled the ecological niches of 14 Epipactis species in Europe using occurrence records and environmental satellite data in Maxent. Niche breadth and niche overlap in both geographic and environmental space were calculated from the resulting habitat suitability maps using ENMTools, and geographic range was estimated using α-hull range definition. Habitat suitability, environmental variable contributions and niche metrics were compared among species with different mating systems. KEY RESULTS We did not detect significant differences in niche breadth, occurrence probability or geographical range between autogamous and allogamous Epipactis species, although autogamous species demonstrated notably low variation in niche parameters. We also found no significant differences in niche overlap between species with the same mating system or different mating systems. For all Epipactis species, occurrence was strongly associated with land cover, particularly broad-leafed and coniferous forests, and with limestone bedrock. CONCLUSIONS These results suggest that the mating system does not necessarily contribute to niche breadth and differentiation, and that other factors (e.g. mycorrhizal specificity) may be more important drivers of range size and niche breadth in Epipactis and orchids in general.
Collapse
Affiliation(s)
- Alexandra Evans
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Heverlee, Belgium
| | - Hans Jacquemyn
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Heverlee, Belgium
| |
Collapse
|
15
|
Hu AQ, Gale SW, Liu ZJ, Suddee S, Hsu TC, Fischer GA, Saunders RM. Molecular phylogenetics and floral evolution of the Cirrhopetalum alliance (Bulbophyllum, Orchidaceae): Evolutionary transitions and phylogenetic signal variation. Mol Phylogenet Evol 2020; 143:106689. [DOI: 10.1016/j.ympev.2019.106689] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 10/03/2019] [Accepted: 11/16/2019] [Indexed: 12/30/2022]
|
16
|
Gamisch A, Comes HP. Clade-age-dependent diversification under high species turnover shapes species richness disparities among tropical rainforest lineages of Bulbophyllum (Orchidaceae). BMC Evol Biol 2019; 19:93. [PMID: 31014234 PMCID: PMC6480529 DOI: 10.1186/s12862-019-1416-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/31/2019] [Indexed: 01/05/2023] Open
Abstract
Background Tropical rainforests (TRFs) harbour almost half of the world’s vascular plant species diversity while covering only about 6–7% of land. However, why species richness varies amongst the Earth’s major TRF regions remains poorly understood. Here we investigate the evolutionary processes shaping continental species richness disparities of the pantropical, epiphytic and mostly TRF-dwelling orchid mega-genus Bulbophyllum (c. 1948 spp. in total) using diversification analyses based on a time-calibrated molecular phylogeny (including c. 45–50% spp. each from Madagascar, Africa, Neotropics, and 8.4% from the Asia-Pacific region), coupled with ecological niche modelling (ENM) of geographic distributions under present and past (Last Glacial Maximum; LGM) conditions. Results Our results suggest an early-to-late Miocene scenario of ‘out-of-Asia-Pacific’ origin and progressive, dispersal-mediated diversification in Madagascar, Africa and the Neotropics, respectively. Species richness disparities amongst these four TRF lineages are best explained by a time-for-speciation (i.e. clade age) effect rather than differences in net diversification or diversity-dependent diversification due to present or past spatial-bioclimatic limits. For each well-sampled lineage (Madagascar, Africa, Neotropics), we inferred high rates of speciation and extinction over time (i.e. high species turnover), yet with the origin of most extant species falling into the Quaternary. In contrast to predictions of classical ‘glacial refuge’ theories, all four lineages experienced dramatic range expansions during the LGM. Conclusions As the Madagascan, African and Neotropical lineages display constant-rate evolution since their origin (early-to-mid-Miocene), Quaternary environmental change might be a less important cause of their high species turnover than intrinsic features generally conferring rapid population turnover in tropical orchids (e.g., epiphytism, specialization on pollinators and mycorrhizal fungi, wind dispersal). Nonetheless, climate-induced range fluctuations during the Quaternary could still have played an influential role in the origination and extinction of Bulbophyllum species in those three, if not in all four TRF regions. Electronic supplementary material The online version of this article (10.1186/s12862-019-1416-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexander Gamisch
- Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria.
| | - Hans Peter Comes
- Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| |
Collapse
|
17
|
Freyman WA, Höhna S. Stochastic Character Mapping of State-Dependent Diversification Reveals the Tempo of Evolutionary Decline in Self-Compatible Onagraceae Lineages. Syst Biol 2018; 68:505-519. [DOI: 10.1093/sysbio/syy078] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- William A Freyman
- Department of Integrative Biology, University of California, Berkeley, 3040 Valley Life Sciences Building #3140, CA 94720, USA
| | - Sebastian Höhna
- Division of Evolutionary Biology, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| |
Collapse
|
18
|
Landis JB, Bell CD, Hernandez M, Zenil-Ferguson R, McCarthy EW, Soltis DE, Soltis PS. Evolution of floral traits and impact of reproductive mode on diversification in the phlox family (Polemoniaceae). Mol Phylogenet Evol 2018; 127:878-890. [DOI: 10.1016/j.ympev.2018.06.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 01/19/2023]
|
19
|
Hanschen ER, Herron MD, Wiens JJ, Nozaki H, Michod RE. Repeated evolution and reversibility of self-fertilization in the volvocine green algae. Evolution 2018; 72:386-398. [PMID: 29134623 PMCID: PMC5796843 DOI: 10.1111/evo.13394] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 12/14/2022]
Abstract
Outcrossing and self-fertilization are fundamental strategies of sexual reproduction, each with different evolutionary costs and benefits. Self-fertilization is thought to be an evolutionary "dead-end" strategy, beneficial in the short term but costly in the long term, resulting in self-fertilizing species that occupy only the tips of phylogenetic trees. Here, we use volvocine green algae to investigate the evolution of self-fertilization. We use ancestral-state reconstructions to show that self-fertilization has repeatedly evolved from outcrossing ancestors and that multiple reversals from selfing to outcrossing have occurred. We use three phylogenetic metrics to show that self-fertilization is not restricted to the tips of the phylogenetic tree, a finding inconsistent with the view of self-fertilization as a dead-end strategy. We also find no evidence for higher extinction rates or lower speciation rates in selfing lineages. We find that self-fertilizing species have significantly larger colonies than outcrossing species, suggesting the benefits of selfing may counteract the costs of increased size. We speculate that our macroevolutionary results on self-fertilization (i.e., non-tippy distribution, no decreased diversification rates) may be explained by the haploid-dominant life cycle that occurs in volvocine algae, which may alter the costs and benefits of selfing.
Collapse
Affiliation(s)
- Erik R. Hanschen
- Department of Ecology and Evolutionary Biology, University of Arizona
| | | | - John J. Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona
| | | | - Richard E. Michod
- Department of Ecology and Evolutionary Biology, University of Arizona
| |
Collapse
|
20
|
Hu AQ, Gale SW, Kumar P, Saunders RMK, Sun M, Fischer GA. Preponderance of clonality triggers loss of sex in Bulbophyllum bicolor, an obligately outcrossing epiphytic orchid. Mol Ecol 2017; 26:3358-3372. [PMID: 28390097 DOI: 10.1111/mec.14139] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 02/20/2017] [Accepted: 03/24/2017] [Indexed: 12/01/2022]
Abstract
Vegetative propagation (clonal growth) conveys several evolutionary advantages that positively affect life history fitness and is a widespread phenomenon among angiosperms that also reproduce sexually. However, a bias towards clonality can interfere with sexual reproduction and lead to sexual extinction, although a dearth of effective genetic tools and mathematical models for clonal plants has hampered assessment of these impacts. Using the endangered tropical epiphytic or lithophytic orchid Bulbophyllum bicolor as a model, we integrated an examination of breeding system with 12 microsatellite loci and models valid for clonal species to test for the "loss of sex" and infer likely consequences for long-term reproductive dynamics. Bagging experiments and field observations revealed B. bicolor to be self-incompatible and pollinator-dependent, with an absence of fruit-set over 4 years. Challenging the assumptions that clonal populations can be as genotypically diverse as sexually reproducing ones and that clonality does not greatly influence genetic structure, just 22 multilocus genotypes were confirmed among all 15 extant natural populations, 12 of the populations were found to be monoclonal, and all three multiclonal ones exhibited a distinct phalanx clonal architecture. Our results suggest that all B. bicolor populations depend overwhelmingly on clonal growth for persistence, with a concomitant loss of sex due to an absence of pollinators and a lack of mating opportunities at virtually all sites, both of which are further entrenched by habitat fragmentation. Such cryptic life history impacts, potentially contributing to extinction debt, could be widespread among similarly fragmented, outcrossing tropical epiphytes, demanding urgent conservation attention.
Collapse
Affiliation(s)
- Ai-Qun Hu
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.,Kadoorie Farm & Botanic Garden, Hong Kong, China
| | | | - Pankaj Kumar
- Kadoorie Farm & Botanic Garden, Hong Kong, China
| | | | - Mei Sun
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
21
|
Gamisch A. Notes on the Statistical Power of the Binary State Speciation and Extinction (BiSSE) Model. Evol Bioinform Online 2016; 12:165-74. [PMID: 27486297 PMCID: PMC4962954 DOI: 10.4137/ebo.s39732] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 02/07/2023] Open
Abstract
The Binary State Speciation and Extinction (BiSSE) method is one of the most popular tools for investigating the rates of diversification and character evolution. Yet, based on previous simulation studies, it is commonly held that the BiSSE method requires phylogenetic trees of fairly large sample sizes (>300 taxa) in order to distinguish between the different models of speciation, extinction, or transition rate asymmetry. Here, the power of the BiSSE method is reevaluated by simulating trees of both small and large sample sizes (30, 60, 90, and 300 taxa) under various asymmetry models and root state assumptions. Results show that the power of the BiSSE method can be much higher, also in trees of small sample size, for detecting differences in speciation rate asymmetry than anticipated earlier. This, however, is not a consequence of any conceptual or mathematical flaw in the method per se but rather of assumptions about the character state at the root of the simulated trees and thus the underlying macroevolutionary model, which led to biased results and conclusions in earlier power assessments. As such, these earlier simulation studies used to determine the power of BiSSE were not incorrect but biased, leading to an overestimation of type-II statistical error for detecting differences in speciation rate but not for extinction and transition rates.
Collapse
Affiliation(s)
- Alexander Gamisch
- Department of Ecology and Evolution, University of Salzburg, Salzburg, Austria
| |
Collapse
|
22
|
Jaros U, Fischer GA, Pailler T, Comes HP. Spatial patterns of AFLP diversity in Bulbophyllum occultum (Orchidaceae) indicate long-term refugial isolation in Madagascar and long-distance colonization effects in La Réunion. Heredity (Edinb) 2016; 116:434-46. [PMID: 26883184 DOI: 10.1038/hdy.2016.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 10/21/2015] [Accepted: 12/15/2015] [Indexed: 01/30/2023] Open
Abstract
Bulbophyllum occultum, an epiphytic orchid mainly distributed in the rainforests of (north)eastern Madagascar and La Réunion, represents an interesting model case for testing the effects of anthropogenic vs historical (e.g., climate induced) habitat isolation and long-distance colonization on the genetic structure of plant species with disjunct distributions in the Madagascan region. To this aim, we surveyed amplified fragment length polymorphisms (AFLPs) across 13 populations in Madagascar and nine in La Réunion (206 individuals in total). We found overall high levels of population subdivision (Φ(PT)=0.387) and low within-population diversity (H(E), range: 0.026-0.124), indicating non-equilibrium conditions in a mainly selfing species. There was no impact of recent deforestation (Madagascar) or habitat disturbance (La Réunion) detectable on AFLP diversity. K-means clustering and BARRIER analyses identified multiple gene pools and several genetic breaks, both within and among islands. Inter-island levels of population genetic diversity and subdivision were similar, whereby inter-individual divergence in flower colour explained a significant part of gene pool divergence in La Réunion. Our results suggest that (i) B. occultum persisted across multiple isolated ('refugial') regions along the eastern rainforest corridor of Madagascar over recent climatic cycles and (ii) populations in La Réunion arose from either single or few independent introductions from Madagascar. High selfing rates and sufficient time for genetic drift likely promoted unexpectedly high population genetic and phenotypic (flower colour) differentiation in La Réunion. Overall, this study highlights a strong imprint of history on the genetic structure of a low-gene-dispersing epiphytic orchid from the Madagascan region.
Collapse
Affiliation(s)
- U Jaros
- Department of Ecology and Evolution, University of Salzburg, Salzburg, Austria
| | - G A Fischer
- Kadoorie Farm and Botanic Garden Corporation, Tai Po, N.T., Hong Kong, SAR
| | - T Pailler
- UMR CIRAD-université de La Réunion. Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Le Tampon, Réunion, France
| | - H P Comes
- Department of Ecology and Evolution, University of Salzburg, Salzburg, Austria
| |
Collapse
|
23
|
Gamisch A, Fischer GA, Comes HP. Frequent but asymmetric niche shifts in Bulbophyllum orchids support environmental and climatic instability in Madagascar over Quaternary time scales. BMC Evol Biol 2016; 16:14. [PMID: 26781289 PMCID: PMC4717530 DOI: 10.1186/s12862-016-0586-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/12/2016] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Species or clades may retain or shift their environmental niche space over evolutionary time. Understanding these processes offers insights into the environmental processes fuelling lineage diversification and might also provide information on past range dynamics of ecosystems. However, little is known about the relative contributions of niche conservatism versus niche divergence to species diversification in the tropics. Here, we examined broad-scale patterns of niche evolution within a Pliocene-Pleistocene clade of epiphytic Bulbophyllum orchids (30 spp.) whose collective distribution covers the northwest and eastern forest ecosystems of Madagascar. RESULTS Using species occurrence data, ecological niche models, and multivariate analyses of contributing variables, we identified a three-state niche distribution character for the entire clade, coinciding with three major forest biomes viz. phytogeographical provinces in Madagascar: A, Northwest 'Sambirano'; B, 'Eastern Lowlands'; and C, 'Central Highlands'. A time-calibrated phylogeny and Bayesian models of niche evolution were then used to detect general trends in the direction of niche change over the clade's history (≤5.3 Ma). We found highest transitions rates between lowlands (A and B) and (mostly from B) into the highland (C), with extremely low rates out of the latter. Lowland-to-highland transitions occurred frequently during the Quaternary, suggesting that climate-induced vegetational shifts promoted niche transitions and ecological speciation at this time. CONCLUSIONS Our results reveal that niche transitions occurred frequently and asymmetrically within this Madagascan orchid clade, and in particular over Quaternary time scales. Intrinsic features germane to Bulbophyllum (e.g., high dispersal ability, drought tolerance, multiple photosynthetic pathways) as well as extrinsic factors (ecological, historical) likely interacted to generate the niche transition patterns observed. In sum, our results support the emerging idea of dramatic environmental and climatic fluctuations in Madagascar during the recent geological past, which overturns the long-held paradigm of long-term stability in tropical forest settings. The generality of the patterns and timings reported here awaits the availability of additional comparative studies in other Madagascan endemics.
Collapse
Affiliation(s)
- Alexander Gamisch
- Department of Ecology and Evolution, University of Salzburg, A-5020, Salzburg, Austria.
| | | | - Hans Peter Comes
- Department of Ecology and Evolution, University of Salzburg, A-5020, Salzburg, Austria.
| |
Collapse
|